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Abstract
Data nowadays are extremely valuable resource. However, data are created and stored in different places with various for-
mats and types. As a result, it is not easy and efficient for data analysis and data mining which can make profits for every 
aspect of social applications. To overcome this problem, data conversion is a crucial step that we have to build for linking 
and merging different data resources to a unified data store. In this paper, based on the intermediate data conversion model, 
we proposed an elastic data conversion framework for data integration system. Besides, we also performed an experiment 
to evaluate our model using MySQL and MongoDB.
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Introduction

With the development of technology, data is becoming an 
extremely valuable resource. Data is being created, analyzed 
and used in a massive scale in every modern system. As a 
result, data analysis and data mining are very essential in 
each aspect of social applications. Data will even be put 
to much better use if we combine the data from different 
sources into bigger, more informative data sets, making 
the data even more suitable for the analyzing and mining 
tasks. The integration of data is especially useful for solv-
ing current social problems [1, 2]. However, to make data 

integration feasible, data transformation is a crucial chal-
lenge that we have to overcome.

Data transformation can be described as a task that can 
flexibly convert data among different models and formats, 
thereby supporting the combination of multiple data sets 
from various sources to a unified one, in another word, a uni-
fied data set. The problem of data transformation is not easy, 
even when converting traditional data model like relational 
data model with few data sources that has simple structures. 
The transformation process usually requires the participa-
tion of human to understand the meaning of the data in each 
data source to solve the data ambiguity problems, including 
semantic and data representation ambiguity.

In the age of big data, the problem of data conversion 
becomes more and more challenging when data are not only 
heterogeneous, but are also produced continuously with 
enormous mass [3]. These following three main character-
istics of big data are known through the notation “3V”:

•	 Volume: Data sources not only contain a large amount of 
data but the number of data sources also becomes very 
large.

•	 Velocity: Data are continuously generated and changed 
over time.

•	 Variety: Data from many different sources have diverse 
and heterogeneous structures.
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Data transformation is an essential problem in many indus-
tries. For example, the traffic data integrated from the bus 
black boxes and the cameras on the road provide a com-
prehensive view of the traffic situation of the city. When 
combining these information with data on population such as 
population density and distribution, the management agen-
cies and related departments will be able to make appropri-
ate decisions and policies such as traffic flow, reconstructing 
and establishing traffic infrastructure, or navigating traffic 
to avoid traffic jams. The problem is that departments often 
store data with completely different models and formats. 
Hence, data transformation is an indispensable step in the 
integration, analysis, and decision-making process. In the 
U.S., transport agencies rely on large amounts of data to 
support everyday tasks such as planning, designing, and con-
struction [4]. Therefore, these agencies also need to gather 
and exchange a lot of information. The access speed together 
with the accuracy and consistency of the information from 
these different platforms and targets lead to the problem of 
data conversion. In addition, the converted data sets can be 
combined together into a unified dataset and through data 

mining process, the unified dataset can bring many benefits 
to data analysis and management applications as well as can 
provide potential and optimal value [5–7]. Furthermore, this 
combined dataset is a rich resource in making predictions 
and supporting decision making. Data now can be collected 
and integrated to store and manage in data centers for a vari-
ety of purposes (Fig. 1).

However, the data transformation’s main challenge is 
that the structure and format diversity of the various data 
source. Hence, it is necessary to do research and propose a 
data standard format to support storage in data centers and 
propose a framework supporting data transformation before 
integrating them into data centers. This research direction is 
also one of the research trends on Information Technology 
for the Ho Chi Minh City in the period of 2018–2023. In this 
paper, we propose a novel data conversion framework for 
data integration system. The rest of this paper is organized 
as follows: some related works and researches are discussed 
in the next section, and our proposed framework is explored 
in the subsequent section. In the penultimate section, we 
performed experiment and evaluation. The final section is 
about the summary and conclusion of our work.

Related Works

Since 2010, there have been a lot of researches in the field 
of data conversion and the researchers have proposed some 
methods for data conversion. In 2013, Ivan et al. proposed 
a data transformation system based on a community contri-
bution model [8]. As depicted in Fig. 2, the data shared on 
the publicdata.eu portal included data from many different 
organizations of various formats. The system would then 
make initial mappings, then the community could contrib-
ute by creating new mappings, re-editing existing mappings, 
transforming the data, and using the data. The accuracy in 
data conversion would be improved over time with the con-
tribution of the community.

In 2015, Rocha et al. proposed a method to support the 
migration of data from relational databases management sys-
tem (RDBMS) to NoSQL [9]. This method included 2 main 
module: data migration and data mapping.

Fig. 1   Data stores stores the combined data sets-making it very valu-
able for mining and analyzing task

Fig. 2   Data transformation 
system based on a community 
contribution model [8]
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•	 The data migration module’s (Fig.  3) responsibility 
included automatically identifying all elements from the 
original relational databases (e.g. tables, properties, rela-
tionships, indexes, etc.), creating equivalent structures 
using the NoSQL data model and exporting the data to 
the new model.

•	 The data mapping module (Fig.  4) consisted of an 
abstract class, it was designed as an interface between 
the application and the DBMS. This module oversaw all 
SQL transactions from the applications, and translated 
these operations then moved to the NoSQL model that 
was created in data migration module.

Hyeonjeong et al. developed a semi-automatic tool for 
converting ecological data in Korea in 2017 [10]. The goal 

of this tool was to gather data in different formats from 
various research organizations and institutes specializ-
ing in environment in Korea and then convert to a shared 
standard ecological dataset. To accomplish this goal, the 
authors proposed 4 transformation steps as described in 
Fig. 5 including:

•	 Step 1: Data file and protocol selection: This step pro-
vided an interface that allowed users to select data from 
the source file and the corresponding protocol.

•	 Step 2: Species selection: The user chose which species 
in the data to be converted.

•	 Step 3: Attribute mapping: This step was responsible for 
mapping attributes from source data to normalized attrib-
utes defined in the protocol.

Fig. 3   The migration of data 
from relational databases 
RDBMS to NoSQL-data migra-
tion module [9]

Fig. 4   The migration of data 
from relational databases 
RDBMS to NoSQL-data map-
ping module [9]

Fig. 5   Semi-automatic tool for 
converting ecological data in 
Korea [10]
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•	 Step 4: Data standardization: This step bear the respon-
sibility for converting mapped data to a shared standard.

However, this tool could only convert data for few species 
from the original data. Another limitation is that it only sup-
ported data sources stored in .csv format whereas the actual 
data are usually represented in many different formats.

In 2017, Milan et al. looked to the context of factory inte-
gration through the use of the data transformation toolkit for 
AutomationML (AML), an open standard XML-based data 
format for storage and exchange of technical information of 
the plant [11]. In this context, factory automation requires 
the participation and collaboration in a variety of fields from 
automation control, mechanical engineering, electronics, and 
software engineering. These domains all have different sup-
port tools, and the tools manipulate different data structures. 
Therefore, the authors proposed a model integrating these 
tools with AML using a process engineering transformation 

tool. This model converted the data described by the AML 
into the appropriate formats corresponding to the technical 
tools of different disciplines as depicted in Fig. 6. Although 
the model could work well, the input of the process could 
only be stored in AML standard.

In 2017, Luis et al. developed a data conversion frame-
work to support energy simulation [12]. The goal of this 
framework was to convert data in different formats to enable 
communicating and interacting among different systems in 
an automated environment. This approach designed an inter-
mediate component defined as the Interoperability Specifica-
tion to enforce reciprocal interaction between two different 
data formats. Figure 7 illustrates the architecture of the inter-
active implementation. However, the study did not provide 
any more detail about their implementation.

Besides, data transformation solutions are also embedded in 
data integration systems. Dong and Srivastava in [13], based 
on traditional data integration architectures as depicted in 

Fig. 6   Factory integration 
through the use of the data 
transformation toolkit for Auto-
mationML [11]

Fig. 7   Data conversion frame-
work to support energy simula-
tion [12]
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Fig. 8, highlighted three main challenges of three main phrases 
of big data integration:

•	 Schema alignment: This phases solves semantic ambiguity 
challenges.

•	 Record linkage: This phases solves ambiguity challenges 
of data representation.

•	 Data fusion: This phases solves data quality challenges.

In another work of Marek et al. [14], the authors described 
different types of data inconsistencies, especially semantic 
inconsistencies. From there, the integration problem was clas-
sified according to two different challenges: low level and high 
level integration. In an attempt to reduce semantic heterogene-
ity, the authors used Semantic Web Technology for data inte-
gration and proposed architectural model called Semantic Big 
Data Historian (SBDH) with four main components as follows:

•	 Data acquisition layer: This layer collected data from sen-
sors, additional internal data sources, or from external data 
sources. The problem of heterogeneity of platforms related 
to different systems would be solved in this layer.

•	 Data transformation layer: This layer converted data into 
integrated semantic form based on the proposed seman-
tic network (SHS Ontology). This class could also correct 
the corrupted data if necessary. Semantic inconsistencies 
would be resolved in this class.

•	 Data storage layer: This layer played the role of data storage 
based on three systems: 4Store1, CumulusRDF, Hadoop 
and Jena Elephas.

•	 Analytic layer: This layer provided direct access to the 
storage layer for compost data analysis or user query pro-
cessing. Selected analytical framework options included: 
KNIME, Mahout.

Knoblock and Szekely developed the Karma system, an inte-
grated data system in the cultural heritage domain [15]. This 
system integrated data with high data heterogeneity from dif-
ferent museums. The process is described through four main 
stages:

•	 Data import phase: The data from any different source 
including databases, spreadsheets, or web services pro-
vided in XML or JSON format would be imported into the 
system.

•	 Data cleansing and normalization phase: In this phase, 
unusual data components and normalizing the data 

according to similar formats of related sources would be 
identified.

•	 Modeling phase: Semantic description of each resource 
would be created.

•	 Phase integration: The data would be converted into a 
single format using a description on semantics and data 
integration in an unified framework.

However, the above integrated system only focused on inte-
grating the data source at the schema level, not the data link 
problem. Moreover, this system only considered the data 
heterogeneity factor (Variety), while the other two factors 
of big data, which are data volume (Volume) and the rate of 
data generation (Velocity), have not been mentioned.

There have been some studies related to data transfor-
mation and integration in Vietnam like the PhD thesis on 
integrating data models in the data center of oil and gas 
industry in Vietnam, the Master thesis on geographic data 
conversion tools integrated into GIS, or workshop on health 
data integration for management of smart health. In general, 
these studies focused on the problem of data integration in 
a specific field.

In the industry, there are also many products and tools 
for data conversion and integration. Information Builders 
launched the iWay Big Data Integrator that provided a mod-
ern approach to the conversion, integration and management 
of data based on the Hadoop platform [16]. Microsoft Cor-
poration also has SQL Server Integration Services (SSIS) 
products with services that are able to extract and trans-
form data from various data sources such as XML, files, and 
relational data sources, and load the data into one or more 
data storage [17]. Furthermore, Talend provides tools for 
big data integration and transformation solutions [18]. How-
ever, these tools perform the transformation of data directly 
through user interaction without the standard conversion 
data specification.

In Vietnam, the problem of data conversion has not been 
given adequate attention. Currently, almost data sources 
are stored individually at different departments, branches. 
Therefore, utilizing the value of this data source is very lim-
ited because it is difficult to combine data since each place 
often stores data in different formats and models. Although 
there are data centers in the infrastructure; however, these 
centers have not really combined data to create a unified data 
source to serve the needs of data mining and data analysis.

In the next section, we proposed a framework that con-
verts data from many different sources and formats into a 

Fig. 8   Challenges for big data 
integration [13]
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common format called standard data format. Furthermore, 
we proposed a data conversion framework based on this 
standard one.

Proposed Framework

Approaching Methods for Data Conversion

The data conversion methods can be divided into two cat-
egories: direct conversion and intermediate conversion.

•	 Direct conversion: The data are converted directly from 
source to target format. This conversion method is the 
most popular conversion method due to its simplicity and 

ease of implementation. However, this method is only 
effective when the number of source and target formats 
is small. As this number increases, the complexity of the 
system increases rapidly (Fig. 9).

•	 Intermediate conversion: Data will be converted to inter-
mediate data format and these data will be converted 
to the format that the user wants. This method has the 
advantage that it will reduce the complexity of the sys-
tem and make the system much more easy to expand 
(Fig. 10).

Most studies and works mainly use the direct conver-
sion model [10, 12]. The reason for the popularity of this 
model is due to the goal of the authors’ projects: the need 
to convert data from one or several specific forms to one or 

Fig. 9   Direct data conversion

Fig. 10   Intermediate data 
conversion
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several specific forms. However, with the goal of designing 
an extensible system that can work with a variety of input 
and output formats, the direct transformation model creates 
a lot of complexity when adding more data types for the sys-
tem. In the direct conversion model, if we add a new input 
format to the system including n outputs of the system, it is 
required to manually programmatically extend n functions.

However, if the intermediate conversion model is used, 
only one additional function is needed for the system. There-
fore, the direct conversion model is not suitable for the needs 
of a large and extensible data conversion system. In this 
paper, we used the intermediate conversion for our proposed 
framework. For this type of approaching method, one of 
the most significant problems is finding the most suitable 
intermediate data type for the system.

Framework Components

The framework contains six components (Fig. 11): I/O mod-
ule, Data Stores module, Schema Detection module, Schema 
Conversion module, Schema Data module, and Validation 
module. All six components handle different processes of 
the system, making the conversion framework feasible.

Of the aforementioned six components of our system, 
the following three components are not directly involved in 
the conversion process: I/O module, Data Stores module, 
and Validation module. I/O module, as its name suggested, 
handles the input and output processes of the entire system. 
Data Stores module is responsible for the saving and stor-
ing data of the system. Validation module is used to check 
the input to ensure the data are convertible and validate the 
correctness of output before sending to user.

The remaining three components are responsible for 
transforming the data, these components are Data Stores 
module, Schema Detection module and Schema Conver-
sion module. While Schema Detection module and Schema 
Conversion module both work with the schema of data, their 
responsibilities are quite different. Schema Detection mod-
ule’s goal is to detect and recognize the structure and schema 
of data. After the schema of the data has been identified by 
Schema Detection module, Schema Conversion module will 
convert the original schema into the target data format. Data 
Conversion module will then create a mapping for convert-
ing each original data record to target data format.

The Working Flow of the System

The data conversion system performs can be divided into 
two phases or processes: input-to-data-storage phase and 
data-storage-to-output phase. Figure 12 describes these two 
processes, the big arrows represent the flow of input process 
while the small arrows represent the flow of output process. 
The first phase is described as follows: 

1.	 Input user’s data: In this step, the data will be provided 
by the user to the system through the open data portal 
(I/O module).

2.	 Validation: The data user provide will be checked by 
Validation module whether it is suitable for converting 
or not. If it is suitable, a back-up file will be created then 
saved to the corresponding storage. If it is not, process 
will stop.

3.	 Schema detection: This step plays a core role in the 
whole process. In this step, Schema Detection module 
will read input data and detect its schema.

Fig. 11   Components of frame-
work
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4.	 Schema conversion: Schema Conversion module will 
convert data schema into intermediate format schema.

5.	 Data conversion: Data Stores module creates a mapping 
from the detected schema to the converted schema, the 
whole dataset will be converted through this mapping to 
intermediate data format.

6.	 Saving data to data stores: Once the conversion is fin-
ished, both the schema and the converted data will be 
saved in the data stores.

The second phase can be describe as follows: 

1.	 Loading data from data stores: When receiving demands 
from users, the system will find the required datasets and 
load to Data Conversion module.

2.	 Conversion: Schema Conversion module will convert 
intermediate schema to target format schema and Data 
Conversion module will convert loaded data into desti-
nation format.

3.	 Validation: The correctness of final converted data will 
be validated (by comparing with saved schemas) before 
sending back to users.

4.	 Exporting data: Converted data to users will be exported 
and presented to the user through I/O module.

Framework Architecture

The overall structure of the data transformation frame-
work is shown in Fig. 13.

I/O Module

The job of the Input/Output module is to receive and return 
data to the users. Because of its jobs, the I/O module is an 
interaction point between system and users. It is essential to 
communicate with the users through an intuitive interface. 
Therefore, we used an open data communication portal for 
this I/O module, because the open data portal will make 
the users’ interaction with our framework much more con-
venient. This design will also help the system become more 
flexible and extensible. There is two ways a user can use 
to input data into the system: through a direct connection 
to user database system or through raw uploaded files. For 
some large or big data, there must be a module to ensure the 
integrity of the data.

Validation

Every data must be checked before inputting to the system 
or outputting to users. For input data, validation module 
should:

•	 Ensure that data are of some specific formats that can be 
converted.

•	 For a set of files such as images and videos. Validation 
module should check and ensure the data are harmless to 
the system.

Before sending output data to users, the Validation module 
should:

Fig. 12   Work flow of the system
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•	 Ensure the output data are similar to the original data.
•	 Ensure that current user having the right to access the 

output or part of the output.

Schema Detection

This component is responsible for extracting and detecting 
the schema of the data provided by the user. According to 
the design of the framework, input data will include two 
types of data: structured data and NoSQL data. Therefore, 
the Schema Detection module must be able to handle both 
structured data and NoSQL data.

Schema Conversion

This module will convert the detected schema into the tar-
get data formats. This step requires the schema conversion 

module to be able to understand and recognize the meanings 
of original schema.

Data Conversion

This component is responsible for transforming the data 
according to the schema outlined in the previous step. There-
fore, this component is only active when the schema-related 
modules have finished. The input of this component is the 
schema converted by the Schema Conversion module and 
the original user data. The output is the data after converted.

As shown in Fig. 13, this component also converts inter-
mediate data in data stores back to destination formats. This 
is an inverted process but much more simple.

For big data, this process will take a lot of time. Paral-
lel processing with big data frameworks such as Hadoop or 
Spark will make this task faster and more efficient.

Fig. 13   Framework architecture
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Data Stores

For each input data, the data stores will save these follow-
ing about the data:

•	 Backup data: Backup data are the original dataset. This 
is used for backup in case users need the original data.

•	 Converted data: Converted data are the data that have 
been converted into intermediate data format.

•	 Original schema: The schema acquired from Schema 
Detection module. This is used for validating process 
to ensure the output data are similar to the original data 
schema.

•	 Converted schema: The schema acquired from Schema 
Conversion module.

Furthermore, the data stores must satisfy these following 
conditions:

•	 Systematic data storage: Data Stores should have system-
atic data storage to help users creating, storing, searching 
data accurately and quickly.

•	 Data safety: Data stores must ensure that data integrity 
and security is one of the most important concerns in the 
public data storage.

•	 Data stores can allow simultaneous access of multiple 
users on data.

Experiments for MySQL and MongoDB

Intermediate Data Type

The framework is designed to use an intermediate data type 
(or standard data format) in the transformation process. In 
fact, this standard format of data will also be stored in the 
storage block, for later needs and purposes. This data stand-
ard format must meet the following criteria:

•	 Flexible structure: The standard format structure must be 
flexible enough to express data of other formats without 
losing their distinct characteristics.

•	 Efficient storage: The standard format storage size on 
disk should be as small as possible but the storage size 
could be increased to accommodate other criteria.

•	 Good scalability: The standard format should scale well 
when the size of data grows.

In [19], the authors have confirmed that to satisfy these 
above standards, only formats such as JSON, XML and 
BSON meet the needs since traditional database mod-
els would not be suitable for flexible structure. Moreover, 
among these data types, JSON seemed to be the best choice 
due to its several advantages (Table 1).

Therefore, in this experiment, we used JSON as the inter-
mediate data type with these benefits:

•	 Require small storage: The data that use JSON format all 
have reasonable storage size on disk.

Table 1   Comparison between XML, JSON and BSON [19]

XML JSON BSON

Number of related repositories on 
GitHub

About 95,000 (Oct 2020) About 240,000 (Oct 2020) About 900 (Oct 2020)

Number of questions on StackOver-
flow

About 0.6% of questions on Stack 
Overflow in 2019 [20]

About 1.5% of questions on Stack 
Overflow in 2019 [20]

No data available

Data streaming supported Full supported such as XMPP, QuiX-
Schematron, XLTL 3.0

Full supported such as Jackson_
(API), jq, logstash, ldjson-stream

Few

The format this format is based on SGML None (But based on JavaScript 
syntax)

JSON

The formats based on this format YAML, Fast Infoset, SOAP, XML-
RPC, Efficient XML Interchange 
(EXI)

YAML, BSON, Ion, Smile, CBOR, 
Mes-sagePack, Extensible Data 
Notation (EDN)

None

The standardization of the format Standardized Standardized Not Standardized
The standard APIs of the format DOM, SAX, XQuery, XPath Clarinet, JSONQuery, JSONPath, 

JSON-LD
No Standard APIs

Notable libraries of the format JSON_checker, YAJL, json-c, json-
parser, JSONKit, JSONUtil, json2.
js

DOM4J, StAX, JDOM, xml2js, 
libxmljs, sax, fast-xml-parser, xml-
stream

Libbson, Mongo-GLib, 
bson4jackson, CookJ-
son, PyMongo
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•	 Widely used in a lot of projects: JSON is a mature format 
that is widely used in real-world applications.

•	 Fully supported community and technology: With its 
maturity, JSON format has a thriving support community 
and as well as a wide range of support libraries.

•	 Easy to learn for new users: JSON is easy for new users 
to learn and understand.

Initialization

We considered the current trend of using database manage-
ment systems to choose the data formats for this experi-
ment. According to statistics from DB-Engines [21] on 
March 2021, the first five positions in the list of most popu-
lar databases are Oracle, MySQL, Microsoft SQL Server, 
PostgreSQL and MongoDB, respectively (Fig. 14). It can be 
seen that relational database management systems (RDBMS) 
have been, and still are, occupying a large proportion of 
applications.

However, in the aforementioned ranking , NoSQL (Not 
only SQL) databases are getting more popular with Mon-
goDB (rank 5) and Redis (rank 7). This can be explained by 
the emergence and rapid development of social media appli-
cations such as Facebook, Twitter, Instagram, and Youtube. 
When using these applications, users have been continuously 
generating a huge amount of data, such as posts, messages, 
images, videos, etc. These data not only have large content 
quantities but also have various heterogeneous structures. On 
the other hand, RDBMS was not designed for storing and 
processing this type of data. Therefore, many engineers have 
turned to NoSQL databases such as MongoDB to deal with 
these complicated structured data. From there, migrating 
data from RDBMS to NoSQL have been an on-going trend.

As a result, in this experiment, we used the relational 
data format as the input and NoSQL as the output. Among 
the many types of database management systems, we cho 
se MySQL and MongoDB because they are widely-used 

(DB-Engines ranks [21]), and the most important reason is 
that they are open-source and free-to-used.

Experiment Model

The system is presumed to be able to successfully convert 
data from MySQL to MongoDB if it can satisfy two tasks: 

1.	 Converting and expressing the properties of the data set 
from the old database in the new database.

2.	 Converting and migrating data from the old database 
to the new one. The conversion must ensure the full 
transfer of all tables and rows of data from MySQL to 
MongoDB without losing or changing the data itself.

Based on the system architecture of the framework, in this 
version, we only implemented some of the modules required 
for converting from RDBMS to NoSQL, unnecessary mod-
ules were not implemented. The intermediate data type is 
JSON, and MongoDB is used to store these data.

All modules are developed using CKAN—an open-
source open data portal tool [22]. Details of the modules 
are as follows (Fig. 15):

Input and Output Gate (IO)

This module used CKAN extension as an interface to inter-
act with users. This module included two components:

•	 Input gate: This component receives input data, in the 
form of SQL file, from the user. Using this file, the sys-
tem will restore the MySQL database for the next steps.

•	 Output gate: This component returns the conversion 
results to the user. The results consist of the backup file 
of the destination database, the external files, and the log 
file containing the conversion result information.

Fig. 14   DB-engines on March 2021 [21]



	 SN Computer Science (2021) 2:325325  Page 12 of 15

SN Computer Science

Schema Conversion for RDBMS

This module consists of two main jobs: extracting and 
converting schema. Details of this module are described 
in Table 2. The two main jobs of this module could be 
described as follows:

•	 Extracting the MySQL schema First, we used Sche-
maCrawler (a database schema discovery and compre-
hension tool) to extract the schema from the MySQL 
database. Schema could be generated in many formats, 
such as plaintext, HTML, JSON, YAML, or even an 
image file. However, we decided to choose JSON because 
this data format is suitable for computers to read and pro-
cess [19]. This schema would be an important object for 
the next steps: migrating the data from relational model 
to document-store model.

•	 Converting the schema MongoDB uses jsonSchema to 
express the structure and properties of the documents 
in the collections. Schema validator is a tool used to 
define schema in MongoDB. Schema validator accom-
plishes that using jsonSchema to define data types and 
constraints fields in the documents. To put it simply, 
schema validator is quite similar to data definition lan-
guage in RDBMS, a language used in RDBMS to define 
the data structures. Therefore, each schema validator will 
be applied to each different collection, and perform the 
check with the task of adding and modifying data in that 
collection. At the moment, MongoDB jsonSchema can-
not fully express all data constraints that are available in 
MySQL, so some properties in the MySQL schema will 

be explicitly shown in jsonSchema, the rest will be saved 
as text.

The reasons for choosing to explicitly implement or just 
saving schema as text are explained as follows:

•	 Column data type: This is an important property that 
needs to be clearly and accurately presented. Because in 
every context, the data type also represents a semantic 
part of the data. For example, the numerical values 215 
and the string “215” are considered to be two completely 
different values. So this constraints must be done in json-
Schema.

•	 Primary key, foreign key: Obviously, primary keys and 
foreign keys must be presented because the relationship 
between tables represents part of the meaning of a data 
set through its schema structure. However, MongoDB’s 
data relational implementation techniques are different 
from MySQL. While the relation of MySQL is based on 
table technique (equivalent to collection), the relation of 
MongoDB is based on documents (equivalent to row). 
For that reason, the relational techniques on MongoDB 
do not belong to jsonSchema above but will be imple-
mented later.

•	 Index: Theoretically, although the index is stored with 
the data in the database, the index itself is not consid-
ered to be the data of that data set, but just a technique 
for processing the data faster. MySQL and MongoDB 
both have index feature, but because the difference of 
these two database management systems’ data model, 

Fig. 15   Workflow of data con-
version system

Table 2   Schema conversion 
method

Column data type MongoDB schema validator

Primary key, foreign key Database reference
Index Index
Constraint: check, not null, default, unique Not converted, only saved as text
Triggers, functions, and stored procedures Not converted, only saved as text
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applying MySQL index strategy in MongoDB may not be 
effective. Because of that, we chose not to implement the 
index. However, all the indexes are stored in the schema 
so that the user can decide whether or not to apply them 
in the new database.

•	 Constraint: the MySQL constraint listed in Table 2 can-
not be expressed correctly in MongoDB, so all these con-
straints are saved as the text for users’ reference.

•	 Triggers, functions, and procedures: Similar to indexes, 
these techniques themselves do not belong to the data-
base’s data, but they are more similar to business tasks 
at the database level. So these features are saved as text.

Data Conversion for RDBMS

This module has two main jobs: migrating data from 
MySQL to MongoDB and converting MySQL foreign key 
to reference in MongoDB.

Data migration In this step, the module proceeds to 
retrieve all data from the tables of MySQL and saves it into 
MongoDB. The equivalent terms for the organization of 
data stored in MySQL and MongoDB for data movement 
are listed in Table 3. To achieve the goal of data migration, 
there are two tasks that must be done:

•	 Creating the appropriate SQL queries to get data from 
MySQL.

•	 Converting the data (if necessary) and save them to Mon-
goDB.

Based on the above schema, this module can automati-
cally generate queries to retrieve data from MySQL. Once 
the data are retrieved, the next issue is to convert the data 
type (if necessary) to conform to MongoDB. When using 
Python for the system implementation, by reading MySQL 
data into a Python variable, MySQL data type will be con-
verted to equivalent Python data type. But in real scenario 
, some data types cannot be immediately stored in Mon-
goDB’s database and will raise errors. Therefore, it is nec-
essary to check the data types of MySQL for proper type 
conversion.

As an exception, values of the BLOB and TEXT data 
types of MySQL cannot be stored directly in a BSON docu-
ment due to size limitations. So these data values will be 

written to external files, and also saved the reference in the 
BSON document.

Converting foreign key to reference In MySQL, the 
relationships between tables are very crucial. Those rela-
tionships partly express the meaning of the data set through 
its structure. Besides that, the relationship ensures that 
MySQL maintains consistency, integrity and avoids data 
redundancy through normalization. Therefore, the conver-
sion of these relationships in MongoDB is required and can-
not be ignored. MongoDB has two techniques to express the 
relationship between data records: the referencing approach 
and the embedding approach. We have analyzed and found 
the suitable technique for the implementation as follows:

•	 The referencing approach First, the referencing 
approach uses a database reference, also known as a 
document reference in MongoDB, to demonstrate the 
relationships between documents. This approach is simi-
lar to the one in MySQL, using an object that acts as a 
foreign key. This object has three pieces of information 
including the document’s primary key (the ObjectId id), 
the collection name, and the database name it needs to 
refer to. Hence, this type of document reference in Mon-
goDB fully demonstrates the properties of foreign key 
constraints and foreign key columns in MySQL. Also, 
because the approach and implementation are somewhat 
similar, this referencing does not take full advantage 
of the advantages that MongoDB offers. For example, 
when you need to query data, you still have to execute 
the lookup function (equivalent to a JOIN in MySQL) to 
get all the necessary data.

•	 The embedding approach In contrast to the referenc-
ing approach, in the embedding approach, the referenced 
document will be included in the reference document, 
thereby creating the concept of “rich document” in Mon-
goDB. Then every time data are required, the entire (rich) 
document will be used immediately, instead of having to 
do JOIN operations like in MySQL or lookup in Mon-
goDB to get all the data you need. This approach makes 
searching on MongoDB significantly faster than MySQL.

The benefits of using embedding approach are quite obvi-
ous, but the risks in return are also worth some considera-
tion, especially when using and applying these techniques 
inappropriately. First, the embedding approach could easily 
cause data redundancy. When using embedding method, 
an original document could be embedded in a lot of other 
documents, thus created data redundancy. When the need 
to update the embedded document arises, if the updating 
process is not handled well, it is easy to create data incon-
sistency: the embedded data in some documents are updated 
while some other embedded data in other documents are 
not. Second, in the first example, we have only examined 

Table 3   Data migration MySQL 
to MongoDB-equivalent terms

MySQL MongoDB

Database Database
Table Collection
Row Document
Column Field
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the scenario in which there existed only one original docu-
ment that is need to be embedded. However, in common 
scenarios, a database will use foreign keys much more. The 
embedding approach will then create a massive amount of 
embedded documents. The creation of this many embedded 
documents will then lead to the massive update of docu-
ments; thus, the performance will be hindered. Thereby, we 
can see that the embedding approach is highly dangerous 
if the database is not well designed or misused. Because of 
that, it is recommended to use both in conjunction with each 
other. The problem of deciding which document to embed 
is complex and should then be considered carefully by the 
database designer.

From the analysis of these two approaches, we have 
drawn the following comment. The advantages of the 
embedding approach is that this approach makes a good use 
of MongoDB’s advantages, making the performance system 
much more better, but only if the designer is good enough. 
But when misused or not well designed, it will encumber 
the system performance. The reference approach’s advan-
tage is that it will never cause any data redundancy or data 
inconsistency at the cost of the system performance. But the 
cost of system performance is only noticeable in some cases 
when retrieving data.

In the context that our data conversion system is fully 
automated, applying the embedding approach to a relational 
implementation in MySQL can introduce a lot of risks into 
our system. Therefore, in this version, we decided to use 
document reference for relational transformation. After the 
conversion is complete, users can completely embed docu-
ments according to their preferences, based on the available 
references generated by the system (Fig. 16).

Validation

The experiment version has only output validation, which 
is responsible for ensuring that the data before and after 
conversion is still the same in terms of data value, data 
type, and the relationships between records. To do this, 

the module converts the intermediate MongoDB database 
into another MySQL database, then compares these two 
MySQL databases to check the conversion result. The two 
aforementioned databases is compared on the basis of the 
structure of databases, the number of records in the data-
bases, and the records in the databases.

Evaluation

The test was conducted on 9 different databases, varied in 
structure and size of data. The detail about these databases 
(the number of tables, the total number of attributes or 
columns and the total number of records or rows in each 
database) is presented in Table 4.

The results showed that all 9 databases were success-
fully converted, ensuring the values in the data records 
were not changed, the number of records in the database is 
correct and the relationship between the records was still 
fully expressed. Thereby this experiment version proved 
the feasibility of the framework when it will be developed 
for practical application.

Fig. 16   Referencing vs embedding

Table 4   The detail about the databases that are used in the experi-
ment

Name of input database Number 
of tables

Number of 
columns

Number of rows

Chinook 11 64 15.587
Classicmodels 8 59 3864
Employees 6 31 3.911.594
Northwind 8 78 3.202
Sakila 16 132 47.271
Sample-ip 2 4 5.641.408
Sample-staff 16 170 6.148.999
World 3 24 5.269
Xtoss 110 994 79.355
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Conclusions

Data conversion is an emerging topic closely related to vari-
ous fields, including open data, Internet of Things. Recent 
studies have shown the important role and usefulness of data 
conversion task in data integration systems. However, these 
current data conversion tools are still relatively simple, and 
does not fully consider the diversity of input data sources 
and data formats or the challenging context of big data. 
In particular, there are only a few researches that have the 
ability to expand to deal with various data formats or com-
pletely new data formats. The lack of the aforementioned 
researches was our inspiration. In this paper, we proposed a 
data transformation framework that allows users to declare 
the characteristic of new data and enables to convert the data 
into the desired formats. The novelty of our framework is 
the openness of our framework: users can add or change the 
data formats in our framework.

To evaluate the model, we did an experiment by building 
a system with CKAN, MySQL and MongoDB. Using JSON 
as the intermediate data type, the system performed our pro-
posed framework very smoothly and could be considered as 
a use case for MySQL and MongoDB.

However, there were still some related challenges such as 
schema conversion, schema mapping, efficient data conver-
sion, distributed data conversion techniques, ontology map-
ping between schema, incremental data conversion, remote 
data conversion, etc. Other than aforementioned problems, 
there are also even more challenges in how to use the data: 
how to protect the privacy of the users who provide the data, 
how to prove the provenance of the data or how to use the 
data in a system, etc. All these problems can be considered 
as interesting research topics for us to gradually solve in 
future.
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