
Vol.:(0123456789)

SN Computer Science (2021) 2:301
https://doi.org/10.1007/s42979-021-00702-9

SN Computer Science

SURVEY ARTICLE

A Survey on Variational Autoencoders from a Green AI Perspective

Andrea Asperti1  · Davide Evangelista2 · Elena Loli Piccolomini1

Received: 5 March 2021 / Accepted: 13 May 2021 / Published online: 27 May 2021
© The Author(s) 2021

Abstract
Variational Autoencoders (VAEs) are powerful generative models that merge elements from statistics and information theory
with the flexibility offered by deep neural networks to efficiently solve the generation problem for high-dimensional data.
The key insight of VAEs is to learn the latent distribution of data in such a way that new meaningful samples can be gener-
ated from it. This approach led to tremendous research and variations in the architectural design of VAEs, nourishing the
recent field of research known as unsupervised representation learning. In this article, we provide a comparative evaluation
of some of the most successful, recent variations of VAEs. We particularly focus the analysis on the energetic efficiency of
the different models, in the spirit of the so-called Green AI, aiming both to reduce the carbon footprint and the financial cost
of generative techniques. For each architecture, we provide its mathematical formulation, the ideas underlying its design, a
detailed model description, a running implementation and quantitative results.

Keywords  Generative modeling · Variational Autoencoders · Green AI

Introduction

Data generation, which is the task of generating new realistic
samples given a set of training data, is a fascinating problem
of AI, with many relevant applications in different areas,
spanning from computer vision, to natural language process-
ing and medicine. Due to the curse of dimensionality, the
problem was practically hopeless to solve, until Deep Neural
Networks enabled the scalability of the required techniques
via learned approximators. In recent years, deep generative
models have gained a lot of attention in the deep learning
community, not just for their amazing applications, but also
for the fundamental insight they provide on the encoding
mechanisms of Neural Networks, the extraction of deep fea-
tures, and the latent representation of data.

In spite of the successful results, deep generative mode-
ling remains one of the most complex and expensive tasks in
AI. Training a complex generative model typically requires
a lot of time and computational resources. To make a cou-
ple of examples, the hyper-realistic Generative Adversarial
Network for face generation in [36] required training on 8
Tesla V100 GPUs for 4 days; the training of BERT [18], a
well-known generative model for NLP, takes about 96 h on
64 TPU2 chips.

As remarked in [51], this computational cost has huge
implications, both from the ecological point of view, and
for the increasing difficulties for academics, students, and
researchers, in particular those from emerging economies, to
do competitive, state of the art research. As a good practice
in Deep Learning, one should give detailed reports about
the financial cost of training and running models, in such
a way to promote the investigation of increasingly efficient
methods.

In this article, we offer a comparative evaluation of some
recent generative models. To make the investigation more
focused and exhaustive, we restricted the analysis to a single
class of models: the so called Variational Autoencoders [38,
48] (VAEs).

Variational Autoencoders are becoming increasingly pop-
ular inside the scientific community [53, 60, 61], both due
to their strong probabilistic foundation, that will be recalled

 *	 Andrea Asperti
	 andrea.asperti@unibo.it

	 Davide Evangelista
	 davide.evangelista5@unibo.it

	 Elena Loli Piccolomini
	 elena.loli@unibo.it

1	 Department of Informatics: Science and Engineering (DISI),
University of Bologna, Bologna, Italy

2	 Department of Mathematics, University of Bologna,
Bologna, Italy

http://orcid.org/0000-0002-9677-6350
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00702-9&domain=pdf

	 SN Computer Science (2021) 2:301301  Page 2 of 23

SN Computer Science

in “Theoretical Background”, and the precious insight on
the latent representation of data. However, in spite of the
remarkable achievements, the behaviour of Variational
Autoencoders is still far from satisfactory; there is a number
of well-known theoretical and practical challenges that still
hinder this generative paradigm (see “The Vanilla VAE and
Its Problems”), and whose solution drove the recent research
on this topic. We try to give an exhaustive presentation of
most of the VAE variants in the literature, relating them to
the implementation and theoretical issues they were meant
to address.

Hence, we focus on a restricted subset of recent archi-
tectures that, in our opinion, deserve a deeper investigation,
for their paradigmatic nature, the elegance of the underly-
ing theory, or some key architectural insight. The three cat-
egories of models that we shall compare are the Two-stage
model [16], the Regularized Autoencoder1 [39], and some
versions of Hierarchical Autoencoders. In the latter class, we
provide a detailed analysis of the recent Nouveau VAE [58];
however, its complexity trespasses our computing facilities,
so we investigate a much simpler model, and an interesting
variant exploiting Feature-wise Linear Modulation [44] at
high scales.

One of the metrics used to compare these models is their
energetic efficiency, in the spirit of the emerging paradigm
known as Green AI [51], aiming to assess performance/effi-
ciency trade-offs. Specifically, for each architecture, we pro-
vide a precise mathematical formulation, a discussion of the
main ideas underlying their design, a detailed model descrip-
tion, a running implementation in TensorFlow 2 freely avail-
able on our GitHub repository https://​github.​com/​devan​gelis​
ta2/​Green​VAE, and quantitative results.

Structure of the Article

The article is meant to offer a self-contained introduction
to the topic of Variational Autoencoders, just assuming a
basic knowledge of neural networks. In the next section,
we start with the theoretical background, discussing the
strong and appealing probabilistic foundation of this class
of generative models. In the following section, we address
the way theory is translated into a vanilla neural net imple-
mentation, and introduce the many issues arising from this
operation: balancing problems in the loss function, posterior
collapse, aggregate posterior vs. prior mismatch, blurriness
and disentanglement.

In the next three sections, we give a detailed mathemati-
cal introduction to the three classes of models for which
we provide a deeper investigation, namely the Two-Stage

approach, the regularized VAE and hierarchical models.
After these sections, our experimental setting is described:
we discuss the metrics used for the comparison, and provide
a detailed description of the neural network architectures.
In the penultimate section, we provide the results of our
experimentation, making a critical discussion. In the con-
clusive section, we summarize the content of the article and
draw a few considerations on the future of this field, and the
challenges ahead.

Theoretical Background

In this section, we give a formal, theoretical introduction
to Variational Autoencoders (VAEs), deriving the so called
Evidence Lower Bound (ELBO) adopted as a learning objec-
tive for this class of models.

To deal with the problem of generating realistic data
points x ∈ ℝ

d given a dataset � = {x(1),… , x(N)} , genera-
tive models usually make the assumption that there exists
a ground-truth distribution �GT supported on a low-dimen-
sional manifold 𝜒 ⊆ ℝ

d with dimension k < d , absolutely
continuous with respect to the Hausdorff measure on � and
with density pgt(x) . With this assumption, one can rewrite

where z ∈ ℝ
k is the latent variable associated with x, distrib-

uted with a simple distribution p(z) named prior distribution.
The idea behind generative models is that if we can learn

a good approximation of pgt(x|z) from the data, then we can
use that approximation to generate new samples with ances-
tral sampling, that is,

•	 Sample z ∼ p(z).
•	 Generate x ∼ pgt(x|z).

For this reason, it is common to define a parametric family
of probability distributions P� = {p�(x|z)|� ∈ ℝ

s} with a
neural network, and to find �∗ such that

i.e. the Maximum Likelihood Estimation (MLE).
Unfortunately, (2) is usually computationally infeasible.

For this reason, VAEs define another probability distribution
q�(z|x) named encoder distribution which describes the rela-
tionship between a data point x ∈ � and its latent variable
z ∈ ℝ

k and optimizes � and � such that:

(1)

pgt(x) = ∫
ℝk

pgt(x, z)dz = ∫
ℝk

pgt(x|z)p(z)dz = 𝔼p(z)[pgt(x|z)],

(2)

�∗ = argmax
�

𝔼
𝔻
[log p�(x)] = argmax

�
𝔼
𝔻

[
log∫

ℝk

p�(x|z)p(z)dz
]
,

1  Strictly speaking, this is not a Variational model, but it helps in
understanding them.

https://github.com/devangelista2/GreenVAE
https://github.com/devangelista2/GreenVAE

SN Computer Science (2021) 2:301	 Page 3 of 23  301

SN Computer Science

where DKL(q�(z|x)||p�(z|x)) = �q�(z|x)[log q�(z|x) − log p�(z|x)] is the
Kullback–Leibler divergence between q�(z|x) and p�(z|x).

But

Thus,

since DKL(q�(z|x)||p�(z|x)) ≥ 0 , which implies that the Left
Hand Side of the equation above is a lower bound for the
loglikelihood of p�(x) . For this reason, it is usually called
Evidence Lower BOund (ELBO).

Since ELBO is more tractable than MLE, it is used as the
cost function for the training of neural network to optimize
both � and �:

It is worth to remark that ELBO has a form resembling an
autoencoder, where the term q�(z|x) maps the input x to its
latent representation z, and p�(x|z) decodes z back to x. Fig-
ure 1 shows a diagram representing the basic VAE structure.

For generative sampling, we forget the encoder and just
exploit the decoder, sampling the latent variables according
to the prior distribution p(z) (that must be known).

(3)�∗,�∗ = argmin
�,�

�
�
[DKL(q�(z|x)||p�(z|x))],

(4)

DKL(q�(z|x)||p�(z|x))
= �q�(z|x)[log q�(z|x) − log p�(z|x)]

= �q�(z|x)[log q�(z|x) − log p�(x|z) − log p�(z) + log p�(x)]

= DKL(q�(z|x)||p(z)) − �q�(z|x)[log p�(x|z)] + log p�(x).

(5)

�q�(z|x)[log p�(x|z)] − DKL(q�(z|x)||p(z))

= log p�(x) − DKL(q�(z|x)||p�(z|x))
≤ log p�(x),

(6)L�,�(x) ∶= �q�(z|x)[log p�(x|z)] − DKL(q�(z|x)||p(z))

(7)L�,� ∶= �
�
[L�,�(x)].

The Vanilla VAE and Its Problems

In this section, we explain how the theoretical form of the
ELBO (Eq. 6) can be translated into a numerical loss func-
tion exploitable for training of neural networks. This will
allow us to point out some of the typical problems that affect
this architecture and whose solution drove the design of the
variants discussed in the sequel.

In the vanilla VAE, we assume q�(z|x) to be a Gaussian
(spherical) distribution G(��(x), �

2
�
(x)) , so that learning

q�(z|x) amounts to learning its two first moments.
Similarly, we assume p�(x|z) has a Gaussian distribution

around a decoder function ��(z) . The functions ��(x) , �2
�
(x)

and ��(z) are modelled by deep neural networks. We remark
that knowing the variance of latent variables allows sam-
pling during training.

If the model approximating the decoder function ��(z) is
sufficiently expressive (that is case, for deep neural net-
works), the shape of the prior distribution p(z) does not
really matter, and for simplicity it is assumed to be a normal
distribution p(z) = G(0, I) . The term DKL(q�(z|x)||p(z)) is
hence the KL-divergence between two Gaussian distribu-
tions G(��(x), �

2
�
(x)) and G(0, I) and it can be computed in

closed form as

where k is the dimension of the latent space. The previous
equation has an intuitive explanation, as a cost function. By
minimizing ��(x) , when x is varying on the whole dataset,
we are centering the latent space around the origin (i.e. the
mean of the prior). The other component is preventing the
variance �2

�
(x) to drop to zero, implicitly forcing a better

coverage of the latent space.
Coming to the reconstruction loss � q�(z|x)[log p�(x|z)] ,

under the Gaussian assumption, the logarithm of p�(x|z) is
the quadratic distance between x and its reconstruction ��(z) ;
the variance of this Gaussian distribution can be understood
as a parameter balancing the relative importance between
reconstruction error and KL-divergence [20].

The problem of integrating sampling with backpropa-
gation during training is solved by the well-known repara-
metrization trick proposed in [38, 48], where the sample
is performed using a standard distribution (outside of the
backpropagation flow) and this value is rescaled with ��(x)
and ��(x).

The basic model of the Vanilla VAE that we just outlined
is unfortunately hindered by several known theoretical and
practical challenges. In the next Sections, we give a short
list of important topics which have been investigated in the

(8)
DKL(G(��(x), ��(x)),G(0, I)) =

1

2

∑k

i=1
��(x)

2
i
+ �2

�
(x)i − log(�2

�
(x)i) − 1,

Fig. 1   A diagram representing the VAE architecture. The stochastic
component � in the gray diamond is sampled from G(0,I)

	 SN Computer Science (2021) 2:301301  Page 4 of 23

SN Computer Science

literature, along with a short discussion of the main works
addressing them.

The Balancing Issue

The VAE loss function is the sum of two distinct compo-
nents, with somehow contrasting effects

The log-likelihood loss is just meant to improve the quality
of reconstruction, while the Kullback–Leibler component is
acting as a regularizer, pushing the aggregate inference dis-
tribution q�(z) = �

�
[q�(z|x)] towards the desired prior p(z).

Log-likelihood and KL-divergence are frequently bal-
anced by a suitable parameter, allowing to tune their mutual
relevance. The parameter is called � , in this context, and it
is considered as a normalizing factor for the reconstruction
loss.

Privileging log-likelihood will improve the quality of
reconstruction, neglecting the shape of the latent space (with
ominous effects on generation). Privileging KL-divergence
typically results in a smoother and normalized latent space,
and more disentangled features [11, 29]; this usually comes
at the cost of a more noisy encoding, finally resulting in
more blurriness in generated images. [1].

Discovering a good balance between these components is
a crucial aspect for an effective training of VAEs.

Several techniques for the calibration of � have been
investigated in the literature, comprising an annealed opti-
mization schedule [8] or a policy enforcing minimum KL
contribution from subsets of latent units [37]. These schemes
typically require hand-tuning and, as observed in [63], they
easily risk to interfere with the principled regularization
scheme that is at the core of VAEs.

An alternative possibility, investigated in [16], consists in
learning the correct value for the balancing parameter dur-
ing training, that also allows its automatic calibration along
the training process.

In [2] it is observed that considering the objective func-
tion used in [16] to learn � , the optimal � parameter is in fact
proportional to the current reconstruction error; so learning
can be replaced by a mere computation, using, e.g. a run-
ning average. This has a simple and intuitive explanation:
what matters is to try to maintain a fixed balance between
the two components during training: if the reconstruction
error decreases, we must proportionally decrease the KL
component that could otherwise prevail, preventing further
improvements. The technique in [2] is simple and effective:
we shall implicitly adopt it in all our VAE models, unless
explicitly stated differently.

(9)
L�,�(x) ∶= �q�(z|x)[log p�(x|z)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
log-likelihood

−� DKL(q�(z|x)||p(z))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

KL-divergence

.

A similar technique has been recently investigated in
[52], where the KL-divergence is used as a feedback during
model training for dynamically tuning the balance of the
two components.

Variable Collapse Phenomenon

The KL-divergence component of the VAE loss function
typically induces a parsimonious use of latent variables,
some of which may be altogether neglected by the decoder,
possibly resulting in an under-exploitation of the network
capacity; if this is a beneficial side effect or regularization
[5, 16] or an issue to be solved ([10, 46, 57, 63]), it is still
debated.

The variable collapse phenomenon has a quite intuitive
explanation. If, during training, a latent variable gives a
modest contribution for the reconstruction of the input (in
comparison with other variables), then the Kullback–Leibler
divergence may prevail, pushing the mean towards 0 and the
standard deviation towards 1. This will make the latent vari-
able even more noisy, in a vicious cycle that will eventually
induce the network to completely ignore the latent variable
(see Fig. 2, Left).

As described in [3], one can easily get an empirical evi-
dence of the phenomenon by adding some artificial noise
to a variable and monitoring its evolution during training
(Fig. 2, Right). The contribution of a latent variable to
reconstruction is computed as the difference between the
reconstruction loss when the variable is masked with respect
to the case when it is normally taken into account; we call
this information reconstruction gain.

When the reconstruction gain of the variable is becom-
ing less than the KL-divergence, the variable gets ignored
by the network: its correspondent mean value will collapse
to 0 (independently from x) and its sampling variance is
pushed to 1. Sampling has no impact on the network, pre-
cisely because the variable is ignored by the decoder.

The variable collapse phenomenon is, at some extent,
reversible. However, reactivating a collapsed variable is not
a completely trivial operation for a network, probably due
to saturation effects and vanishing gradients.

Aggregate Posterior vs. Expected Prior Mismatch

The crucial point of VAEs is to learn an encoder producing
an aggregate posterior distribution q�(z) = �

�
[q�(z|x)] close

to the prior p(z). If this objective is not achieved, generation
is doomed to fail.

Before investigating ways to check the intended behavior,
let us discuss how the Kullback–Leibler divergence term in
(9) acts on the distance q�(z) and p(z). So, let us average over
all x (we omit the � subscript):

SN Computer Science (2021) 2:301	 Page 5 of 23  301

SN Computer Science

By minimizing the cross-entropy between q(z) and p(z) we
are pushing one towards the other. Jointly, we try to aug-
ment the entropy of q(z|x); under the assumption that q(z|x)
is Gaussian, its entropy is 1

2
log(e��2) : we are thus enlarging

the (mean) variance, further improving the coverage of the
latent space, essential for generative sampling.

As a simple sanity check, one should always monitor the
moments of the aggregate posterior distribution q(z) during
training: the mean should be 0, and the variance 1. Since
collapsed variables could invalidate this computation (both
mean and variance are close to 0), it is better to use an alter-
native rule [4] : if we look at q(z) = � pgt(x)

[q(z|x)] as a
Gaussian Mixture Model (GMM), its variance �2

GMM
 is given

by the sum of the variances of the means � pgt(x)
[��(x)

2] and
the mean of the variances � pgt(x)

[�2
�
(x)] of the components

(supposing that � pgt(x)
[��(x)]=0):

where in this case ��(x) and �2
�
(x) are the values computed

by the encoder.

(10)

� pgt(x)
[DKL(q(z|x)|p(z))]

= −� pgt(x)
[H(q(z|x))] + � pgt(x)

[H(q(z|x), p(z))] by def. of KL

= −� pgt(x)
[H(q(z|x))] + � pgt(x)

[� q(z|x)[log p(z)]] by def. of entropy

= −� pgt(x)
[H(q(z|x))] + � q(z)[log p(z)] by marginalization

= − � pgt(x)
[H(q(z|x))]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Avg. Entropy

of q(z|x)

+ H(q(z), p(z))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Cross-entropy of

q(x) vs p(z)

by def. of entropy
.

(11)�2
GMM

= � pgt(x)
[��(x)

2] + � pgt(x)
[�2

�
(x)] = 1,

This is called variance law in [4], and can be used to
verify that the regularization effect of the KL-divergence is
properly working.

The big problem is that, even if the two first moments
of q(z) are 0 and 1, this does not imply that it should look
like a Normal (meaning that the KL-divergence got lost in
some local minimum, contenting itself with adjusting the
first moments of the distributions).

The potential mismatch between q(z) and the expected
prior p(z) is a problematic aspect of VAEs that, as observed
by many authors [4, 30, 49], could seriously compromise the
whole generative framework. Attempts to solve this issue
have been made both by acting on the loss function [55] or
by exploiting more complex priors [7, 37, 56].

An interesting possibility, that has been recently deployed
in the Hyperspherical VAE [17], consists in replacing the
Gaussian Distribution with the von Mises-Fisher (vMF)
distribution [24], that is a continuous distribution on the
N-dimensional sphere in use in directional statistics.

An orthogonal, drastic alternative consists in renouncing
to work in the comfortable setting of continuous latent vari-
ables, passing instead in the discrete domain. This approach
is at the core of the Vector Quantized VAE [59] (VQ-VAE):

Fig. 2   (Left) The vicious cycle leading to the variable collapse.
(Right) An empirical demonstration of the phenomenon: we apply
a progressive noise to a latent variable, reducing its contribution to
reconstruction; at some point, KL-divergence prevails, enlarging the

sampling variance of the variable and making it even more noisy; the
phenomenon has catastrophic nature, leading to a complete collapse
of the variable. If we remove the artificial noise, the variable gets
reactivated. Pictures borrowed from [3]

	 SN Computer Science (2021) 2:301301  Page 6 of 23

SN Computer Science

each latent variable is forced to occupy a position in a
finitely sampled space, so that we can treat each latent vari-
able as a k-dimensional vector in a space of dimension d.
This discrete encoding is exploited during sampling, where
the prior is learnt via a suitable autoregressive technique.

Clustering, GMM and Two‑Stage

In case input data are divided into subcategories (as in the
case of MNIST and Cifar10), or have macroscopic attributes
like, say, a different color for hairs in the case of CelebA,
we could naturally expect to observe this information in the
latent encoding of data [62]. In other words, we could imag-
ine the latent space to be organized in clusters, (possibly)
reflecting macroscopic features of data.

To make an example, in Fig. 3 it is described the latent
encoding of MNIST digits, with a different color for each
class in the range 0–9.

We can clearly observe that different digits naturally
organize themselves in separate clusters. While the overall
distribution still has a Gaussian-like shape, the presence of
clusters may obviously contrast with the required smooth-
ness of the internal encoding, introducing regions with
higher/lower probability densities. Observe, e.g. the gaps
between some of the clusters: sampling in such a region will
eventually result in a poor generative output. In other words,

clustering could be one of the main source for the mismatch
between the prior and the aggregate posterior.

While the phenomenon is evident in a low-dimensional
setting, it is more difficult to observe and testify it in higher
dimensions. Remember that one of the VAE assumptions is
that, as far as you have a sufficiently expressive decoder, the
prior does not really matter since the decoder will be able to
turn each distribution into the desired one [20].

Still, it makes sense to try to exploit clustering, and a
natural approach consists in using a GMM model. Sev-
eral works have been done in this direction. The simplest
approach, followed in [39], is to superimpose a GMM of
fixed dimension on the latent space via ex-post estimation
using standard machine learning techniques (this is also the
approach we shall follow in some of our tests). Alternatively,
the GMM model can be learned. In the Variational Deep
Embedding approach [62] (VaDE), that essentially provides
an unsupervised clustering model, the relevant statistics of
the GMM are estimated via Maximum Likelihood Estima-
tion, in a way similar to the Vanilla case (see also [19] for a
similar, slightly more sophisticated approach).

In the so-called Two-Stage model [16] a second VAE is
trained to learn an accurate approximation of q(z); samples
from a Normal distribution are first used to generate sam-
ples of q(z), passed to the actual generator of data points.

Fig. 3   Latent encoding of
MNIST digits in a latent space
of dimension 2. Digits in dif-
ferent categories are repre-
sented with a different color.
Observe (1) the overall (rough)
Gaussian-like disposition of all
digits and (2) the typical organi-
zation in clusters, in contrast
with the uni-modal objective of
KL-regularization

SN Computer Science (2021) 2:301	 Page 7 of 23  301

SN Computer Science

We shall give an extensive discussion of to the Two-Stage
approach in “Two-Stage VAE”.

In [26], it is proposed to give an ex-post estimation of
q(z), e.g. imposing a distribution with a sufficient complex-
ity (they consider a combination of 10 Gaussians, reflecting
the ten categories of MNIST and Cifar10). A suitable regu-
larization technique alternative to KL is used to induce the
desirable smoothness of the latent space. A deeper analysis
of this approach is done in “Regularized VAE (RAE)”.

An additional and interesting issue of the Two-Stage
model concerns the similarity measure to use as a loss func-
tion in the second stage. In [16], the traditional mean squared
error and categorical cross entropy are considered. However,
we discovered that cosine distance works amazingly better.
We did not get to cosine distance by trial and error, but by a
long and deep investigation on latent representations. These
results will be the object of a forthcoming article.

Blurriness

Variational Autoencoders (VAEs), in comparison with alter-
native generative techniques, usually produce images with a
characteristic and annoying blurriness. The phenomenon can
also be observed in terms of the mean variance of pixels in
generated images, which is significantly lower than that for
data in the training set [6].

The source of the problem is not easy to identify, but it
is likely due to averaging, implicitly underlying the VAE
frameworks (and, more generally, the whole autoencoder
approach). In presence of multimodal output, a loglikelihood
objective typically results in averaging and hence blurriness
[27].

Variational Autoencoders are intrinsically multimodal,
both due to dimensionality reduction, and to the sampling
process during training.

Several attempts to solve the issue acting on the recon-
struction metrics have been made. Structural similarity (fre-
quently used for deblurring purposes) does not seem to be
effective [21]. Better results can be obtained by considering
deep hidden features extracted from a pretrained image clas-
sification model, like e.g. VGG19 [31]. In models of the
VAE-GAN family [41, 50, 64], the reconstruction loss is
altogether replaced by a discriminator trying to distinguish
real images from generated ones. The use of a discrimina-
tor, assessing the quality of generated data and acting on the
density of the prior, is also a basic component of the recent
VAEPP model (VAEs with a pullback prior) [14].

The most promising approaches are however based on
iterative/hierarchical approaches [22, 28, 58]. In these archi-
tectures, following the idea of latent Gaussian models [35],
the vector of latent variables z is split into L groups of latent

variables zl, l = 1, ..., L and the density over the variable of
interest is constructed sequentially, in terms of latent vari-
ables of lower indices. For instance, the prior p(z) would be
written as an autoregressive density of the following kind:

Similarly, the inference probability would be decomposed as

where q(l)
𝜙
(zl|x, z<l) is the encoder density of the lth group.

Suitable (iterative) neural networks modules are used to
sequentially compute the relevant statistics of these distribu-
tions, in terms of previous outputs.

As an example of these architectures, the structure of
NVAE will be detailed in “NVAE”.

The advantage of this approach is that it usually allows to
work with a larger number of latent variables, responsible
for small and progressive adjustments of generated samples.

Disentanglement

Besides the task of generating new images, [11, 29] noticed
that VAEs can also be used to learn an efficient way to repre-
sent the data, with important applications in transfer learning
and classification.

To understand this phenomenon, suppose that there exists
a set of true generative factors v = (v1,… , vS) ∈ ℝ

S such that
pgt(v�x) =

∏S

i=1
pgt(vi�x) (i.e. v are conditionally independ-

ent given x) and that each vi encodes a meaningful feature
of the data point x generated by it. Under the assumption
that k ≥ S , the latent variables z = (z1,… , zk) learnt during
the training are a redundant representation of v in a basis
where the features are not disentangled. To learn an optimal
latent representation of the input image x, it is necessary to
train the network in such a way that S coordinates of z are
related to v, while the other k − S coordinates can be used
to improve the reconstruction of x, recovering the high fre-
quency components that are missing in v.

In �-VAE [11, 29], this constraint is imposed by not-
ing that in the ELBO function the prior distribution
p(z) = G(0, I) forces the decoder q�(z|x) to learn a vec-
tor z where each variable is independent of each other. To
improve disentanglement, we should hence induce the DKL
term to be as small as possible, that can be achieved by aug-
menting the decoder variance � to be greater than 1. Unfor-
tunately, since

(12)p(z) =

L∏

l=1

pl(zl|z<l).

(13)q𝜙(z|x) =
L∏

l=1

q
(l)

𝜙
(zl|x, z<l),

�pgt(x)
[DKL(q�(z|x)||p(z))] = DKL(q�(z)||p(z)) + Iq�(X;Z),

	 SN Computer Science (2021) 2:301301  Page 8 of 23

SN Computer Science

where Iq�(X;Z) is the mutual information between X and Z
with respect to the joint distribution q�(x, z) = q�(z|x)pgt(x) ,
by pushing DKL(q�(z|x)||p(z)) to zero, the mutual informa-
tion between X and Z is also minimized, reducing the recon-
struction efficiency of the network. This problem is
addressed in [23, 43] where the ELBO is modified by adding
more parameters with the intent to improve disentanglement
without losing too much the performance.

Two‑Stage VAE

To address the mismatch of aggregate posterior versus the
expected prior, Bin Dai and David Wipf in [16] introduced
the Two-Stage VAEs.

The idea behind this model is to train two different VAEs
sequentially. The first VAE is used to learn a good represen-
tation q�(z|x) of the data in the latent space without guaran-
teeing exactly q(z) = p(z) , whereas the second VAE should
learn to sample from the true q(z) without using the prior
distribution p(z). A scheme of the implementation follows
(a detailed architectural description is given in “Architecture
Overview”):

–	 Given a data set � = {x(1),… , x(N)} , train a VAE with a
fixed latent dimension k, possibly small.

–	 Generate latent samples Z = {z(1),… , z(N)} via
z(i) ∼ q�(z|x(i)), i = 1,…N . By design, these samples are
distributed as q�(z) = �pgt(x)

[q�(z|x)] , but likely not as
p(z) = G(0, I).

–	 Train a second VAE with parameters (��,��) and latent
variable u ∼ p(u) = G(0, I) of dimension k to learn the
distribution q�(z) with Z as the dataset.

–	 Sample new images by ancestral sampling, i.e. by first
sampling u ∼ p(u) , then generate a z value by p�� (z|u)
and finally x ∼ p�(x|z).

The theoretical foundation of the Two-Stage VAE algorithm
is well presented in [16]. We summarize here the main
results. The two VAEs aim at separating the components of
the ELBO loss function (9), by suitably using the decoder
variance � . Remarking that pgt(x) is the unknown data dis-
tr ibution which we desire to learn and that
p�(x) = �q�(z)

[p�(x|z)] is the learnt distribution, we hope that
p�(x) ≈ pgt(x) ∀x.

Unfortunately, this is not always possible. In fact, there is
a critical distinction between the cases where the dimension
of the data d and the latent space dimension k are equal, and
the case where d > k.

As a matter of facts, in the first case, it is possible to prove
that, under suitable assumptions, for the optimal choice of

the parameters (�∗,�∗) it holds that p�∗ (x) = pgt(x) almost
everywhere (i.e. VAEs strongly converges to the true distri-
bution pgt(x) ). In the second case, only weak convergence,
in the sense that ∫

A
p�∗ (x)dx = ∫

A
pgt(x)dx where A is an open

subset of ℝd , can be proved (see Theorems 1 and 2 in [16]).
In the first stage, since the ambient dimension is obvi-

ously greater than the latent space dimension (i.e. d > k ),
for the previous results only a weak convergence is guar-
anteed; the parameter � is chosen in this case to get a good
reconstruction (Theorem 4 in [16]). In the second stage by
construction the data variable z and its correspondent latent
variable u have the same dimension, hence the unknown
distribution q�(z) is exactly identified by the VAE. As a con-
sequence it is possible to sample directly from q�(z) , without
using the prior p(z), thus bypassing the problem of mismatch
between the aggregate posterior and the prior distributions.

Regularized VAE (RAE)

One of the most interesting variations of vanilla VAE is
the work of Partha Ghosh and Mehdi S. M. Sajjadi [26],
where the authors tried to solve all the problems related to
the classical VAE by completely changing the the way of
approaching the problem. They pointed out that, in their
typical implementation, VAEs can be seen as a regularized
Autoencoder with Additive Gaussian Noise on the decoder
input.

In their work, the authors argued that noise injection
in decoders input can be seen as a form of regularization,
since it implicitly helps to smooth the function learnt by the
network.

To get a new insight into this problem, they took in con-
sideration the distinct components of ELBO already intro-
duced in (9):

where LREC is a term that measures the distance between the
input and the reconstruction, whereas LKL is a regularization
term that enforces the aggregate posterior to follow the prior
distribution.

To show how LKL(�) regularizes the loss, in [26] the
Constant-Variance VAEs (CV-VAEs) [26] have been inves-
tigated, where the encoder variance �2

�
(x) is fixed for every

x ∈ � and thus treated as an hyperparameter �2 . In this
situation,

(14)
L�,�(x) ∶= �q�(z|x)[log p�(x|z)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=LREC(�,�)

−� DKL(q�(z|x)||p(z))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=LKL(�)

,

(15)LREC(�,�) = −�q�(z|x)

[
1

2
||x − ��(z)||22

]

SN Computer Science (2021) 2:301	 Page 9 of 23  301

SN Computer Science

We observe that the expression in (17) is a Mean Squared
Error (MSE) with L2 regularization on ��(x).

The authors proposed to substitute noise injection in the
decoder input with an explicit regularization scheme in a
classical CV-VAE. This is done by modifying the cost func-
tion L�,� = �pgt(x)

[LREC(�,�) − �LKL(�) − �LREG(�)] , where
LREG(�) is a regularizer for the decoder weights, while
� , � ≥ 0 are regularization parameters.

Whereas LREC(�,�) = −�q�(z|x)[
1

2
||x − ��(z)||22] and

LKL(�) =
1

2
||z||2

2
 are fixed a priori by the CV-VAE architec-

ture, LREG(�) needs to be defined. The choice for LREG(�)
identifies the specific kind of network. Ghosh and Sajjadi
proposed three possible choices for LREG(�):

–	 L2-Regularization, where LREG(�) = ||�||2
2
 is simply the

weight decay on the decoder parameters.
–	 Gradient penalty, where LREG(�) = ||∇��(��(x))||22

bounds the gradient norm of the decoder with respect to
its input, enforcing smoothness.

–	 Spectral normalization, where each weight matrix �l in
the decoder is normalized by an estimate of its largest
singular value: �SN

l
=

�l

s(�l)
 (the estimate s(�l) can be easily

obtained with one iteration of the power method).

Moreover, they argued that removing noise injection from
the decoder input prevents from knowing the distribution
of latent variables, thus losing the generative ability of the
network. They solved this problem by proposing an ex-post
density estimation, where the distribution of the latent varia-
bles is learned a posteriori, by fitting Z = {z(i);z(i) = ��(x

(i))}
with a GMM model q�(z) with a fixed number of components

(16)LKL(�) = DKL(q�(z|x)||p(z)) = ||��(x)||22 + C

(17)
L�,�(x) = −�pgt

[
�q�(z|x)

[
1

2
||x − ��(z)||22

]
− �||��(x)||22

]
.

and then sampling z from q�(z) to generate new samples from
p�(x|z) . The generative model defined in this way is called
Regularized Autoencoder (RAE).

Hierarchical Variational Autoencoder

To improve the quality of the generation in Variational
Autoencoders, Kingma et al. [37] strengthened the infer-
ence network q�(z|x) with the powerful Normalizing Flows
introduced by Rezende and Mohamed [47]. The idea of
Normalizing Flows is to begin with a latent variable z0
sampled by a simple distribution q�(z0|x) , and to iteratively
construct more complex variables by applying transforma-
tions zt = ft(zt−1) for t = 1,… , T  . By observing that the DKL
expression is

its implementation requires the computation of the loga-
rithm of q𝜙(zT |, z<T , x) . If the functions ft(⋅) are simple
enough, it is possible to efficiently use them to compute
log q𝜙(zT |z<T , x) as:

where �ft

�zt−1
 is the Jacobian matrix of ft(zt−1) computed by

repeatedly applying the well-known change of variable theo-
rem to the multi-variate random variable zT defined as

An interesting aspect concerning Normalizing Flows is that,
under suitable assumptions, they are provably universal, in
the sense defined in [32]. As already mentioned, the first
successfully integration of Normalizing Flows in VAEs was

(18)
DKL(q𝜙(zT |z<T , x)||p(zT)) = �q𝜙(zT |z<T ,x)

[
log q𝜙(zT |z<T , x) − log p(zT)

]
,

(19)log q𝜙(zT |z<T , x) = log q𝜙(z0|x) −
T∑

t=1

log det
|||
𝜕ft

𝜕zt−1

|||,

(20)zT = fT (fT−1(… (f1(z0))…)).

Fig. 4   A scheme of Inverse
Autoregressive Flow. Each
white box represents one itera-
tion of Eq. (21), where �t, �

2

t

are generated by the encoder
q�(zt|x)

	 SN Computer Science (2021) 2:301301  Page 10 of 23

SN Computer Science

by Kingma et al. [37], where they introduced Inverse Autore-
gressive Flows (IAF). The idea was to define ft(zt−1) as a
simple affine function of the form:

where z0 ∼ q�(z0|x) = G(��(x), �
2
�
(x)).

Figure 4 schematically represents the unrolling of Eq.
(21).

We highlight that the IAF introduces a natural order in the
latent variables. For this reason, we will refer to this kind of
models as Hierarchical Variational Autoencoder (HVAE).
In this paradigm, we will refer to each zt as a group of latent
variables, and we will collect the set of all groups in a vector
z = (z0,… , zT) where the variables are written in the order
defined above.

If we distinguish between the encoder (inference) network
q�(z|x) and the decoder (generative) network, we need to
choose if the ordering of latent variables is the same in the
two parts of the network (bottom-up inference), or if it is
reversed (bidirectional inference) as shown in Fig. 5.

As it is clear from Fig. 5, in bottom-up inference the
image x ∈ ℝ

d is encoded to z = (z1,… , zT) independently
from the prior p(z) =

∏T

t=1
p(zt�z<t) ; in the generative phase

the image is reconstructed by taking zT as the final output
of the encoder, and then sampling each zt , t = T − 1,… , 0
from the prior distribution independently from q�(zt|x) (i.e.
the encoder and decoder are independent from each other).
We underline that this fact makes the bottom-up inference
training unstable.

Conversely, in bidirectional inference, the process of gen-
erating latent variables is shared between the two parts of

(21)zt = ft(zt−1) = 𝜇t + 𝜎t ⊙ zt−1 ∀t = 1,… , T ,

the network, which makes the training easier, although the
design of the network is a bit more difficult.

Since the results of vanilla IAF are not competitive with
the state of the art, we will not use them in our future analy-
sis (see the original paper for more information), whereas we
will focus our experimental results on two powerful variants
of IAF, making use of bidirectional inference and residual
blocks to generate high-quality images.

Experimental Setting

For each variant of Variational Autoencoder discussed in the
previous sections, we provide an original implementation
in TensorFlow 2, and a set of detailed benchmarks on tradi-
tional datasets, such as MNIST, Cifar10 and CelebA. The
specific architectures which have been tested are described
in the following. All models have been compared using
standard metrics, assessing both their energy consumption
through the number of floating point operations (see “Green
AI and FLOPS”), and their performance via the so-called
Frechèt Inception Distance [42], briefly discussed in “Fre-
chèt Inception Distance”. Numerical results are given in
“Numerical Results”, along with examples of reconstructed
and generated images.

Green AI and FLOPS

The paradigm of Green AI [51] is meant to raise the attention
on the computational efficiency of neural models, encourag-
ing a reduction in the amount of resources required for their

Fig. 5   Diagrams that schematically represents Hierarchical VAE in two different configurations: bottom-up inference (a) and bidirectional infer-
ence (b)

SN Computer Science (2021) 2:301	 Page 11 of 23  301

SN Computer Science

training and deployment. This concept is not so trivial as it
seems; in fact, most of traditional AI research (referred to as
Red AI, in this con) targets accuracy rather than efficiency,
exploiting massive computational power, and resulting in
rapidly escalating costs; this trend is not sustainable for vari-
ous reasons, it is environmentally unfriendly [40], socially
not inclusive and inefficient.

The computation of floating point operations (FLOPS)
was advocated in [51] as a measure of the efficiency of
models; the main advantages of this measure are that it is
hardware independent and has a direct (even if not precise)
correlation with the running time of the model [13]. There
are also known problems related to FLOPs, mostly related
to the fact that memory access time can be a more dominant
factor in real implementations (see the “Trap of FLOPs”
discussion in [33]).

So, while we shall adopt FLOPS for our comparison, we
shall also investigate performance through more traditional
tools, like Tensorboard, also to gain confidence on the reli-
ability of FLOPs-based assessments.

Frechèt Inception Distance

To test the quality of the generator, we should compare the
probability distribution of generated vs. real images. Unfor-
tunately, the dimension of the feature space is typically too
large to allow a direct, significant comparison; moreover,
in the case of images, adjacent pixels are highly correlated,
reducing their statistical relevance. The main idea behind
the so-called Frechèt Inception Distance (FID) [42] is to use,
instead of raw data, their internal representations generated
by some third party, agnostic network. In the case of FID,
the Inception v3 network [54] trained on Imagenet is used to
this purpose; Inception is usually preferred over other mod-
els due to the limited amount of preprocessing performed
on input images (images are rescaled in the interval [– 1,1],
sample wise). The activations that are traditionally used are
those relative to the last pooling layer, with a dimension of
2048 features.

Given the activations a1 and a2 , relative to real and gen-
erated images, and called �i, i = 1, 2 and Ci, i = 1, 2 their
empirical mean and covariance matrix, respectively, the
Frèchet Distance between a1 and a2 is defined as

where we indicate with Tr the trace of a matrix.
A problem of FID is that it is extremely sensible to a

number of different factors listed below.

(22)
FID(a1, a2) = ||�1 − �2||2 + Tr(C1 + C2 − 2(C1 ∗ C2)

1

2),

1.	 the weights of the Inception network. The check-
point that is traditionally used is the inception_
v3_2016_08_28/inception_v3.ckpt
downloaded from TF-Slim’s pre-trained models, also
available through Tensorflow-HUB. These weights
were originally obtained by training on the ILSVRC-
2012-CLS dataset for image classification (“Imagenet”).

2.	 The dimension of the datasets of real/generated images
to be compared. Traditionally, sets of 10 K images are
compared; typically, the FID score is inversely propor-
tional to this dimension.

3.	 The dimension of input images fed to Inception. Incep-
tion may work with images of arbitrary size (larger than
75 × 75 ); however, the “canonical” input dimension is
299 × 299 . Again, varying the dimension may result in
very different scores.

4.	 The resizing algorithm. Images must be resized to bring
them to the expected input dimension of 299 × 299 ;
as observed in [2], the FID score is quite sensible to
the algorithm used to this aim, and in particular to the
employed modality: nearest neighbour, bilinear inter-
polation, cubic interpolation, The default, is usu-
ally bilinear interpolation, being a good compromise
between efficiency and quality.

Unfortunately, articles in the literature are not always fully
transparent on the previous points, that may explain some
discrepancies and the difficulty one frequently faces in rep-
licating results.

All our experiments have been conducted with “defaults”
values: the standard Inception checkpoint inception_
v3_2016_08_28/inception_v3.ckpt, 10000
images of dimension 299 × 299 , rescaled by means of bilin-
ear interpolation.

Let us finally observe that, in the case of VAE, it is cus-
tomary to measure both the FID score for reconstructed
images ( FIDrec ) and the FID score for generated images
( FIDgen ). The former one is usually reputed to be a lower
bound for the latter, no matter what help we may provide to
the generator during the sampling phase.

Architecture Overview

In this section, we provide detailed descriptions of the sev-
eral different neural networks architectures we have been
dealing with, each one inspired by a different article. For
each of them, different possible configurations have been
investigated, varying the number and dimension of layers, as
well as the learning objectives. Moreover, since some of the
techniques considered are not dependent from the encoder/

	 SN Computer Science (2021) 2:301301  Page 12 of 23

SN Computer Science

decoder structure, we also tested a mix of different archi-
tectures, hyperparameters configurations, and optimization
objectives.

Vanilla Convolutional VAE

In our first experiment, we followed the same structure of
[26], which is a simple CNN architecture where we doubled
the number of channels for each Convolution, and we down-
sampled the spatial dimension by 2 (see Fig. 6).

The encoder is structured as follows. In the first layer, the
input image of dimension (d, d, 3) (where d = 32 and d = 64
in CIFAR10 and CelebA, respectively) was passed through a
convolutional layer with 128 channels and stride equals 2, to
obtain 128 images of dimension (d/2, d/2). This operation is
repeated for 256, 512, 1024 channels. The result is flattened
and passed through two Dense layers to obtain the mean and
the variance of the latent variables.

The decoder has the same structure of the encoder, with
Transposed convolutions and Upsample layers.

Each convolutional filter has kernel size 4 and ReLU
activation function, except for the last layer of the decoder,
where we used a sigmoid activation to ensure that the output
is in the range [0, 1].

Resnet‑Like

The Resnet-like architecture was adopted in [16]. The main
difference of this network with respect to the Vanilla VAE
is that, before downsampling, the input is processed by a
so called Scale Block, that is just a sequence of Residual
Blocks. In turn, a Residual Block is an alternated sequence
of BatchNormalization and Convolutional layers (with unit
stride), intertwined with residual connections. The number

of Scale Blocks at each scale of the image pyramid, the
number of Residual Blocks inside each Scale Block, and
the number of convolutions inside each Residual Block are
user configurable hyperparameters.

In the encoder, at the end of the last Scale Block, a global
average level extracts spatial agnostic features. These are
first passed through a so called Dense Block (similar to a
Residual Block but with dense layers instead of convolu-
tions), and finally used to synthesize mean and variance for
latent variables.

The decoder first maps the internal encoding z to a small
map of dimension 4 × 4 × base_dim via a dense layer suit-
ably reshaped. This is then up-sampled to the final expected
dimension, inserting Scale Blocks at each scale.

Two‑Stage VAE

To check in what extent the Two-Stage VAE improve the
generation ability of a Variational Autoencoder, we tried
to fit a second stage to every model we tested, following
the architecture described in the following and graphically
represented in Fig. 7.

The encoder in the second stage model in composed of a
couple of Dense layers of dimension 1536 and ReLU acti-
vation function, followed by a concatenation with the Input
of the model and then by another Dense layer to obtain the
latent representation u with the same dimension of z, follow-
ing what is described in “Two-Stage VAE”. The decoder has
exactly the same structure of the encoder.

As already described, we used the cosine similarity as the
reconstruction part of the ELBO objective function.

We observed that, to improve the quality of the genera-
tion, the second stage should be trained for a large number
of epochs.

Fig. 6   Graphical representation of the Vanilla VAE architecture. The yellow, orange and green boxes represent convolutional, downsampling and
dense layers, respectively

SN Computer Science (2021) 2:301	 Page 13 of 23  301

SN Computer Science

Convolutional RAE

In our implementation of RAE, we followed exactly the
same structure as in Convolutional Vanilla VAE, with the
sole difference that, in RAEs, the latents space is composed
of just one fully connected layer representing the variable
z (see Fig. 8).

In our tests, we only compared L2 and GP regularization,
with parameter � heuristically computed to achieve the best
performance.

NVAE

The model is organized in a bottom-up inference network
and a top-down generative network (see Fig. 9). Each one
of two networks is composed by a hierarchy of modules
at different scales. Each scale is composed by groups of
sequential (residual) blocks.

During generation, each module computes from the cur-
rent input hl a prior p(zl|hl) ( hl depends from z<l ): after sam-
pling from this prior, the result is combined in some way

Fig. 7   a Scale block. The Scale
Block is used to process features
at a given scale; it is a sequence
of Residual Blocks intertwined
with residual connections. A
Residual Block is an alterna-
tion of batchnormalization
layers, rectified linear units
and convolutions. b The input
is progressively downsampled
via convolutions with stride 2,
intermixed by Scale Blocks; at
a given scale, a global average
pooling layer extract features
that are further processed via
dense layers to compute mean
and variance for latent vari-
ables. The decoder is essentially
symmetric

ResBlockResBlock

ScaleBlock

bn + relu

conv / fc

bn + relu

conv / fc

+ +

bn + relu

conv / fc

bn + relu

conv / fc

ScaleBlock 2

Conv

 Avg. pooling

fc fc

x

µ z σ z

Encoder

fc

Sigmoid

x

Conv

ScaleBlock N

Upsample

ScaleBlock 1

z

Reshape

Decoder

Upsample

ScaleBlock fc

ScaleBlock N

Downsample

ScaleBlock 2

Downsample

ScaleBlock 1

)b()a(

Fig. 8   Graphical representation of the RAE architecture. The yellow,
orange and green boxes represent convolutional, downsampling and
dense layers, respectively. The red circle underlines the sole archi-
tectural difference between our implementation of VanillaVAE and

RAE, i.e. the fact that in the latter, the latent space is composed by a
single Dense layer that directly encodes to z, while in VanillaVAE the
encoding is performed by a couple of Dense layers that represents the
mean and the variance of a Gaussian distribution

	 SN Computer Science (2021) 2:301301  Page 14 of 23

SN Computer Science

with the current input hl , the two informations are processed
together and passed to the next module.

During inference, we extract the latent representation at
stage l by synthesizing a mean and a standard deviation for
q(zl|x, hl) : since this information depends from hl , we expect
to provide additional information, not already available by
previous latent encodings. Moreover, the computation of

hl , is done by the top-down network, that is hence a sub-
network of the inference network. During training, both net-
works are trained together.

Each network has a hierarchical organization at different
scales. Each scale is composed by groups of Blocks.

Both Encoder Blocks (EB) and Decoder Blocks (DB)
have similar architectures, and are essentially composed by
an alternated sequence of BatchNormalization and Convo-
lutional layers, separated by non linear activation layers, and
intermixed with residual connections (so, very similar to
the Scale Block discussed in the previous section). A few
technical novelties are, however, introduced by the authors:

–	 the recent Swish activation function f (u) = u

1+e−u
 [45] is

used instead of Relu, Elu, or other more traditional
choices;

–	 a Squeeze-and-Excitation (SE) layer [34] is added at the
end of each block;

–	 a moderate use of depthwise separable convolutions [15]
is deployed to reduce the number of parameters of the
network.

Table 1 gives a summary of hyperparameters used in train-
ing NVAE on the datasets addressed in this article, borrowed
from [58]. D2 indicates a latent variable with the spatial
dimensions of D × D . As an example, the MNIST model
consists of two scales: in the first one, we have five groups of
4 × 4 × 20-dimensional latent variables: in the second one,
we have ten groups of 8 × 8 × 20-dimensional variables.

The figures of merit in Table 1 help to understand the
key novelty of NVAE, that is in the massive usage of space
located latent variables. Consider for instance the case of
Cifar10. The original input of dimension 32 × 32 × 3 is first
transformed to dimension 16 × 16 × 128 and then, without
any further downscaling, processed though a long sequence
of residual cells (30 × 2) . At each iteration, a huge number of
latent variables (16 × 16 × 20) is extracted and used for the
internal representation, which hence has a dimension widely
larger than the input. Due to this fact, as it is also observed
by the authors in the appendix, it is not surprising that most
of the variables will collapse during training.

Working with such a huge number of latent variables
introduces a lot of issues; in particular, it becomes crucial
to balance the KL-component of variables belonging to dif-
ferent groups. To this aim, the authors introduce additional
balancing coefficients �l to ensure that a similar amount of
information is encoded in each group (see [58], Appendix
A):

DKL(q(z|x)||p(z)) =
L∑

l=1

𝛾l � q(z<l|x)[DKL(q(zl|x, z<l)||p(zl|z<l))].

Fig. 9   The whole NVAE architecture (a) and a focus on its decoder
(b)

Table 1   Summary of the hyperparameters used in the training of
NVAE on the datasets used in this paper

Hyperparameter MNIST Cifar10 CelebA

Input size 28 × 28 32 × 32 64 × 64

Epochs 400 400 90
Batch size 200 32 16
Normalizing flows 0 2 2
Scales 2 1 3
Groups per scale 5,10 30 5,10,20
Spatial dims of z per scale 42, 82 162 82, 162, 322

Channel dims of z 20 20 20
Initial channels in Enc. 32 128 64
Residual cells per group 1 2 2
GPUs 2 8 8
Total train time (h) 21 55 92

SN Computer Science (2021) 2:301	 Page 15 of 23  301

SN Computer Science

The balancing coefficient �l is kept proportional to the KL
term for that group, in such a way to encourage the model
to revive the latent variables in that group when KL is low,
and to clip them if KL is too high. Additionally, �l is also
proportional to the size of each group, to encourage the use
of variables at lower scales.

NVAE architectures have a relatively small number of
parameters, due to the extensive use of convolutions and
depthwise separable convolutions; however, they require
a massive amount of memory, and huge computational
power: for the configuration used for Cifar10, composed by
30 groups at scale 16 , we estimated a number of flops for the
inference phase larger then 100 G.

Due to this reasons, we experimented a sensibly lighter
architecture, just composed of five groups, with a few addi-
tional convolutions to augment the receptive fields of the
spatially located latent variables. The good news is that the
network, even in this severely crippled form, still seems
to learn; however, results are really modest and below
the performances of different networks with comparable
complexity.

HFVAE

As we already remarked, the main novelty of NVAE is in the
massive exploitation of a huge number of spatially located
latent variables. To test the relevance of this architectural
decision, we also tested a different variant of the hereditary
architecture of Fig. 9, where we drop the spatial dimension
for latent variables, using instead a Featurewise Linear Mod-
ulation Layer [44] to modulate channels according to the
internal representation. In addition, the first approximation
h1 is directly produced from the latent variable set z0 through
a dense transformation. The general idea is that at lower
scales we decide the content of the resulting image, while
stylistic details at different resolutions (usually captured in
channels correlations [25]) are added at higher scales. We
call this variant HFVAE (Hereditary Film VAE); a similar
architecture has been investigated in [9].

Numerical Results

In this section, we provide quantitative evaluations for some
configurations of the models previously discussed. The pre-
cise configurations (layers, channels, blocks, etc.) are dis-
cussed below.

The datasets used for the comparison are CIFAR10
and CelebA: in a GreenAI perspective, we are reluctant to
address more complex datasets, at higher resolutions, that
would require additional computational resources and addi-
tional costs. On CelebA, we just evaluated a subset of par-
ticularly interesting models.

For each model, we provide the following figures:

•	 Params: the number of parameters;
•	 FLOPs: an estimation of number of FLOPS (see “Green

AI and FLOPS” for more details);
•	 MSE: the mean reconstruction error ×103;
•	 REC: the FID value computed over reconstructed

images;
•	 GEN1: the FID value computed over images generated

by a first VAE;
•	 GEN2: the FID value computed taking advantage of a

second VAE;
•	 GMM: the FID value computed by superimposing a

GMM of ten Gaussians2 on the latent space. In the case
of hierarchical models, the GMM is computed on the
innermost set of latent variables.

The following list provides a legends for the names of mod-
els used in the following tables:

•	 CNN-by-lz: Vanilla VAE with CNN architecture, base-
dim of y channels and latent space of dimension z.

•	 L2-RAE-by-lz: L2-RAE with CNN architecture, basedim
of y channels and latent space of dimension z.

Table 2   Summary of the results
obtained with the networks in
the first column on Cifar10

Model Params FLOPs (M) MSE REC GEN1 GEN2 GMM

CNN-b128-l128 31,034,755 2397 2.8 27.6 96.2 96.8 89.0
L2-RAE-b128-l128 30,510,339 2395 1.2 9.9 108.1 88.4 78.2
GP-RAE-b128-l128 30,510,339 2395 1.2 10.6 118.0 97.6 76.4
Resnet-s4-b48-l128 16,179,363 1431 1.5 37.2 110.0 93.9 96.3
Resnet-s4-b48-l100 16,064,619 1430 1.6 37.5 102.9 88.4 91.4
Resnet-s4-b64-l64 27,766,275 2539 1.7 36.5 94.2 78.8 85.1
HFVAE-s4-z4-l48 27,139,755 1163 1.8 45.9 93.3 90.8 90.0
HFVAE-s4-z12-l64 48,113,051 2085 1.3 33.3 89.0 85.7 86.4
NVAE-z10-b100-l4 8,305,521 4478 3.2 62.6 96.1 87.4 91.4

2  Augmenting the number of Gaussians does not sensibly improve
generation.

	 SN Computer Science (2021) 2:301301  Page 16 of 23

SN Computer Science

•	 GP-RAE-by-lz: GP-RAE with CNN architecture, base-
dim of y channels and latent space of dimension z.

•	 Resnet-sx-by-lz: Resnet-like model, with x ScaleBlocks,
a basedim of y channels, and a latent space of dimension
z.

•	 HFVAE-sx-by-lz: HFVAE with x scales, ScaleBlocks,
a basedim of y channels, and a latent space of dimension
z at hereditary scales; the base latent dimension z0 is 64.

•	 NVAE-zx-by-lz: NVAE with x latent variables channels,
a basedim of y and z latent groups of the same scale.

Quality Evaluation

Here we draw a few conclusions about the design of Vari-
ational Autoencoders deriving from the previous investiga-
tion (Tables 2 and 3) and our past experience with VAEs.

•	 The decoder is more important than the encoder. For
instance, in the ResNet architecture latent features are
extracted via a GlobalAverage layer, obtaining robust
features, less prone to overfitting.

•	 Working with a larger number of latent variables
improves reconstruction, but this does not eventually
implies better generation. This is, e.g. evident compar-
ing the two Resnet-like architectures with latent spaces
of dimension 128 and 100.

•	 Fitting a GMM over the latent space [26] is a cheap
technique (it just takes a few minutes) that invariably
improves generation, both in terms of perceptual qual-
ity and FID score. This fact also confirms the mismatch
between the prior and the aggregated posterior discussed
in “Aggregate Posterior vs. Expected Prior Mismatch”.

•	 The second stage technique [16] typically requires some
tuning to properly works, but when it does it usually out-
performs the GMM approach. Tuning may involve the
loss function (we used cosine similarity in this work),
the architecture of the second VAE, and the learning rate
(more generally, the optimizer’s parameters).

•	 Hierarchical architectures are complex systems, difficult
to understand and to work with (monitoring/calibrating
training is a really complex task). We cannot express an

opinion about NVAE, since its complexity trespasses our
modest computational facilities, but simpler architectures
like those described in [28] or [22], in our experience, do
not sensibly improve generation over a well-constructed
traditional VAE.

•	 The loss of variance for generated images [6] (see “Blur-
riness”) is confirmed in all models, and it almost coin-
cides with the mean squared error for reconstruction.

A qualitative comparison between the different models in
generating images can also be done by looking at the images
in the Appendix.

Energetic Evaluation

Before comparing the energetic footprint of the differ-
ent models, let us briefly discuss the notion of FLOPs as
a measure of computational efficiency. FLOPs have been
computed by a library for Tensorflow Keras under develop-
ment at the University of Bologna, and inspired by similar
works for PyTorch (see, e.g. https://​github.​com/​sovra​sov/​
flops-​count​er.​pytor​ch). FLOPs only provide an abstract,
machine-independent notion of complexity; typically, only
the most expensive layers are taken into account (those with
superlinear complexity with respect to the size of inputs).
The way this quantity will result in an actual execution time
and energetic consumption does, however, largely depend

Table 3   Summary of the results
obtained with the networks in
the first column on CelebA

Model Params FLOPs (M) MSE REC GEN1 GEN2 GMM

CNN-b128-l64 40,668,419 4104 3.2 48.4 66.9 56.2 55.2
L2-RAE-b128-l64 27,359,043 4102 3.3 39.8 230.2 61.7 45.1
GP-RAE-b128-l64 27,359,043 4102 3.2 41.2 230.6 65.3 47.0
Resnet-s4-b32-l64 19,330,627 2924 2.8 51.4 66.0 54.9 57.4
Resnet-s4-b48-l64 38,996,003 6452 2.5 46.8 61.7 50.8 54.5
Resnet-s3-b64-l64 21,370,179 5949 2.6 39.2 59.3 44.9 45.8

Table 4   Average forward time (in seconds) over the Cifar10 Test Set
(10 k images) for different networks, hardware and batchsize (bs).
The two times entries in each cell refer to different machines: the first
is a Laptop with an NVIDIA Quadro T2000 graphics card and a Core
i7-9850H CPU; the second is a workstation with an Asus GeForce
DUAL-GTX1060-O6G graphic card and a intel Core i7-7700K CPU

Network bs100 bs10 bs1

Resnet-s4-b48-l128 3.0 ± 0.2 6.0 ± 0.2 33.3 ± 0.4

4.9 ± 0.2 8.8 ± 0.2 49.5 ± 0.5

Resnet-s4-b48-l100 2.86 ± 0.1 5.9 ± 0.2 32.9 ± 0.4

4.8 ± 0.2 8.7 ± 0.2 49.1 ± 0.5

Resnet-s3-b64-l64 4.4 ± 0.2 9. ± 0.3 47.8 ± 0.4

7.2 ± 0.2 13.5 ± 0.2 78.6 ± 0.5

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch

SN Computer Science (2021) 2:301	 Page 17 of 23  301

SN Computer Science

from the underlying hardware, and the available parallel-
ism. As an example, in Table 4 we compare the execution
time for a forward step over the test set of Cifar10 (10 K)
for a couple of hardware configurations. The first one is a
Laptop with an NVIDIA Quadro T2000 graphics card and a
CPU Core i7-9850H; the second one is a workstation with
an Asus GeForce DUAL-GTX1060-O6G graphic card and
a CPU intel Core i7-7700K. Observe the strong dependency
from the batch size that is not surprising but worth to be
recalled (see [12] for a critical analysis of the performance
of Neural Networks architectures). Of course, as soon as
we move the computation on a cloud, execution times are
practically unpredictable.

Unfortunately, as we shall see, even for a given compu-
tational device, the relation between FLOPs and execution
time is quite aleatory.

Following the traditional paradigm, we compare perfor-
mances on the forward pass. This is already a questionable
point; on one side, it is true that this reflects the final usage
of the network when it is deployed in practical applications;
on the other side, it is plausible to believe that training still
takes a prevalent part of the lifetime of any neural network.
Restricting the investigation to forward time means not tak-
ing into account some expensive techniques of the training
of modern systems, such as regularization components. For
example, it is possible to notice that in Table 5, L2-RAE and
GP-RAE have exactly the same number of FLOPs, since
in terms of forward execution they are equal. However, we
highlight that the training of GP-RAE is almost ten times
slower than the training of L2-RAE. This is a consequence
of the fact that the regularization term of GP-RAE involves
the computation of the decoder gradient with respect to the
latent variables, which is an expensive operation not required
in L2-RAE. Consequently, even if the two models have more
or less the same performance in terms of generation quality,
L2-RAE should be preferred, since its training is cheaper.
Moreover, taking into account only the FLOPs of the model,
the actual convergence speed of systems is neglected.

The results of the energetic evaluation on the for-
ward pass are given in Table 5; inference times have
been computed over a workstation with an Asus

GeForceDUAL-GTX1060-O6G graphic card and a intel
Core i7-7700K CPU. The same results have also been
expressed in graphical form in Fig. 10, relatively to a batch
size of dimension 1. In the plot, we omit L2-RAE and GP-
RAE, since their architectures and figures are essentially
analogous to the basic CNN; similarly for some Resnet
architectures.

As it is clear from these results, there is no precise cor-
relation between FLOPS and execution time.

As an example, from Table 5, we see that HFVAE
requires a computation time 4–6 times higher than the
others in the face of the lowest number of FLOPS. One
of the possible reasons for this behaviour is, in our opin-
ion, the fact that the total computation time also includes
memory access time in addition to FLOPS. As observed
by several authors (see, e.g. [33]), memory access time
is a crucial factor in real implementations, as densely
packed data might be read faster than a few numbers of
scattered values. For instance, while depthwise convolu-
tions greatly reduce the number of parameters and FLOPS,
they require a more fragmented memory access, harder to

Table 5   Average Forward
Time (in seconds) over the
Cifar10 Test Set (10 k images)
for different architectures and
different batchsize (bs); times
refer to a workstation equipped
with an Asus GeForceDUAL-
GTX1060-O6G GPU and a
Intel Core i7-7700K CPU

Model Params FLOPS (M) bs100 bs10 bs1

CNN-b128-l128 31,034,755 2397 5.8 ± 0.1 9.0 ± 0.1 54.1 ± 0.4
L2-RAE-b128-l128 30,510,339 2395 11.6 ± 0.2 13.9 ± 0.2 57.3 ± 0.5
GP-RAE-b128-l128 30,510,339 2395 12.5 ± 0.2 14.1 ± 0.2 56.3 ± 0.5
Resnet-s4-b48-l128 16,179,363 1431 4.9 ± 0.2 8.8 ± 0.2 49.5 ± 0.4

Resnet-s4-b48-l100 16,064,619 1430 4.8 ± 0.2 8.7 ± 0.2 49.1 ± 0.4

Resnet-s4-b64-l64 27,766,275 2539 7.2 ± 0.2 13.5 ± 0.2 78.6 ± 0.5

HFVAE-s4-z4-l48 27,139,755 1163 13.1 ± 0.2 29.2 ± 0.3 207.0 ± 1.1

HFVAE-s4-z12-l64 48,113,051 2085 21.3 ± 0.3 48.7 ± 0.4 325.2 ± 1.6

Fig. 10   FLOPs versus execution time. From the plot, we can evince
the little relation between the two figures but, possibly, at a magni-
tude level

	 SN Computer Science (2021) 2:301301  Page 18 of 23

SN Computer Science

be implemented efficiently. In future works, we intend to
deeper investigate other causes for the absence of correla-
tion between FLOPS and time.

Conclusions

In this article, we presented a critical survey of recent
variants of Variational Autoencoders, referring them to the
several problems that still hinder this generative paradigm.
In view of the emerging Green AI paradigm [51], we also
focused the attention on the computational cost of the dif-
ferent architectures. The main conclusions of our investi-
gation are given in “Quality Evaluation”, and we shall not
try to summarize them here; we just observe that, while we
strongly support the Green AI vision, we must eventually
find better metrics than FLOPs to compare the energetic
performance of neural networks, or more realistic way to
compute them.

The constant improvement in generative sampling dur-
ing the last few years is very promising for the future of
this field, suggesting that state-of-the-art generative perfor-
mance can be achieved or possibly even improved by care-
fully designed VAE architectures.

At the same time, the quest for scaling models to higher
resolution and larger images, and the introduction of addi-
tional, and usually computationally expensive, regularization
techniques, is a scaring and dangerous perspective from the
point of view of Green AI.

From this point of view, our experience with NVAE is
explicative and quite frustrating. The architecture is interest-
ing, and it should eventually deserve a deeper investigation;
unfortunately, it seems to require computational facilities far
beyond those at our disposal.

A Examples of Generated Images

A.1 Cifar10

See Figs. 11, 12, 13, 14, 15 and 16.

Fig. 11   Examples of Cifar-like images generated by Vanilla VAE

Fig. 12   Examples of Cifar-like images generated by Resnet

SN Computer Science (2021) 2:301	 Page 19 of 23  301

SN Computer Science

Fig. 13   Examples of Cifar-like images generated by L2-RAE

Fig. 14   Examples of Cifar-like images generated by GP-RAE

Fig. 15   Examples of Cifar-like images generated by HFVAE

Fig. 16   Examples of Cifar-like images generated by (a severely sim-
plified version of) NVAE

	 SN Computer Science (2021) 2:301301  Page 20 of 23

SN Computer Science

A.2 CelebA

See Figs. 17, 18, 19 and 20.

Acknowledgements  We would like to thank Federico Brunelllo who,
under the supervision of Prof. Asperti, is developing the library for the
computation of flops used in this article.

Fig. 17   Examples of CelebA faces generated by Vanilla VAE

Fig. 18   Examples of CelebA faces generated by Resnet-s3-b64-l64

Fig. 19   Examples of CelebA faces generated by L2-RAE

Fig. 20   Examples of CelebA faces generated by GP-RAE

SN Computer Science (2021) 2:301	 Page 21 of 23  301

SN Computer Science

Funding  Open access funding provided by Alma Mater Studiorum -
Università di Bologna within the CRUI-CARE Agreement.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Alemi AA, Poole B, Fischer I, Dillon JV, Saurous RA, Murphy K.
Fixing a broken ELBO. In: Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10–15, 2018; 2018. pages 159–68.

	 2.	 Andrea Asperti and Matteo Trentin. Balancing reconstruction
error and kullback-leibler divergence in variational autoencod-
ers. IEEE Access. 2020;8:199440–8.

	 3.	 Asperti A. Variational autoencoders and the variable collapse
phenomenon. Sens Transducers. 2019;234(6):1–8.

	 4.	 Asperti A. About generative aspects of variational autoencod-
ers. In: Machine Learning, Optimization, and Data Science—5th
International Conference, LOD 2019, Siena, Italy, September
10–13, 2019, Proceedings; 2019. pages 71–82.

	 5.	 Asperti A. Sparsity in variational autoencoders. In: Proceedings of
the First International Conference on Advances in Signal Process-
ing and Artificial Intelligence, ASPAI, Barcelona, Spain, 20–22
March 2019; 2019.

	 6.	 Asperti A. Variance loss in variational autoencoders. In: Machine
Learning, Optimization, and Data Science—6th International
Conference, LOD 2020, Siena, Italy, September 10–13, 2020, July
19–23, 2020, Proceedings, volume To appear of Lecture Notes in
Computer Science. Springer; 2020.

	 7.	 Bauer M, Mnih A. Resampled priors for variational autoencoders.
CoRR. 2018. arxiv:​abs/​1810.​11428.

	 8.	 Bowman SR, Vilnis L, Vinyals O, Dai AM, Józefowicz R, Bengio
S. Generating sentences from a continuous space. CoRR. 2015.
arxiv:​abs/​1511.​06349.

	 9.	 Branca D. Generazione di attributi facciali mediante feature-wise
linear modulation. Master’s thesis, University of Bologna. 2020.

	10.	 Burda Y, Grosse RB, Salakhutdinov R. Importance weighted
autoencoders. CoRR. 2015. arxiv:​abs/​1509.​00519.

	11.	 Burgess CP, Higgins I, Pal A, Matthey L, Watters N, Desjardins
G, Lerchner A. Understanding disentangling in beta-vae. 2018.

	12.	 Canziani A, Culurciello E, Paszke A. Evaluation of neural network
architectures for embedded systems. In: IEEE International Sym-
posium on Circuits and Systems, ISCAS 2017, Baltimore, MD,
USA, May 28–31, 2017, pages 1–4. IEEE; 2017.

	13.	 Canziani A, Paszke A, Culurciello E. An analysis of deep neural
network models for practical applications. 2017.

	14.	 Chen W, Liu W, Cai Z, Xu H, Pei D. VAEPP: variational autoen-
coder with a pull-back prior. In: Yang H, Pasupa K, Leung AC-S,
Kwok JT, Chan JH, King I, editors. Neural Information Process-
ing—27th International Conference, ICONIP 2020, Bangkok,
Thailand, November 23-27, 2020, Proceedings, Part III, volume
12534 of Lecture Notes in Computer Science, pages 366–79.
Springer; 2020.

	15.	 Chollet F. Xception: Deep learning with depthwise separable con-
volutions. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR); 2017. pages 1800–7.

	16.	 Dai B, Wipf DP. Diagnosing and enhancing vae models. In: Sev-
enth International Conference on Learning Representations (ICLR
2019), May 6–9, New Orleans; 2019.

	17.	 Davidson TR, Falorsi L, De Cao N, Kipf T, Tomczak JM. Hyper-
spherical variational auto-encoders. In: Amir G, Ricardo S, edi-
tors. Proceedings of the Thirty-Fourth Conference on Uncertainty
in Artificial Intelligence, UAI 2018, Monterey, California, USA,
August 6–10, 2018, pages 856–65. AUAI Press; 2018.

	18.	 Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training
of deep bidirectional transformers for language understanding.
In: Jill B, Christy D, Thamar S, editors. Proceedings of the 2019
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019,
Volume 1 (Long and Short Papers), pages 4171–86. Association
for Computational Linguistics; 2019.

	19.	 Dilokthanakul N, Mediano PAM, Garnelo M, Lee MCH, Salim-
beni H, Arulkumaran K, Shanahan M. Deep unsupervised cluster-
ing with gaussian mixture variational autoencoders. CoRR. 2016.
arxiv:​abs/​1611.​02648.

	20.	 Doersch C. Tutorial on variational autoencoders. CoRR. 2016.
arxiv:​abs/​1606.​05908.

	21.	 Dosovitskiy A, Brox T. Generating images with perceptual simi-
larity metrics based on deep networks. In: Lee DD, Sugiyama M,
von Luxburg U, Guyon I, and Garnett R, editors. Advances in
Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5–10,
2016, Barcelona, Spain; 2016. pages 658–66.

	22.	 Eslami SMA, Danilo JR, Frederic B, Fabio V, Morcos AS, Gar-
nelo M, Ruderman A, Rusu AA, Danihelka I, Gregor K, Reichert
DP, Buesing L, Weber T, Vinyals O, Rosenbaum D, Rabinowitz
N, King H, Hillier C, Botvinick M, Wierstra D, Kavukcuoglu
K, Hassabis D. Neural scene representation and rendering. 2018;
360(6394):1204–10.

	23.	 Esmaeili B, Wu H, Jain S, Bozkurt A, Siddharth N, Paige B,
Brooks DH, Dy JG, van de Meent J-W. Structured disentangled
representations. In: Kamalika C and Masashi S, editors. The 22nd
International Conference on Artificial Intelligence and Statistics,
AISTATS 2019, 16–18 April 2019, Naha, Okinawa, Japan, vol-
ume 89 of Proceedings of Machine Learning Research, pages
2525–34. PMLR; 2019.

	24.	 Fisher NI, Lewis T, Embleton BJJ. Statistical analysis of spherical
data. Cambridge: Cambridge University Press; 1987.

	25.	 Gatys LA, Ecker AS, Bethge M. Image style transfer using convo-
lutional neural networks. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27–30, 2016, pages 2414–23. IEEE Computer Society;
2016.

	26.	 Ghosh P, Sajjadi MSM, Vergari A, Black MJ, Schölkopf B. From
variational to deterministic autoencoders. In: 8th International
Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26–30, 2020. OpenReview.net; 2020.

	27.	 Goodfellow IJ. NIPS 2016 tutorial: Generative adversarial net-
works. CoRR. 2017. arxiv:​abs/​1701.​00160.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/abs/1810.11428
http://arxiv.org/abs/abs/1511.06349
http://arxiv.org/abs/abs/1509.00519
http://arxiv.org/abs/abs/1611.02648
http://arxiv.org/abs/abs/1606.05908
http://arxiv.org/abs/abs/1701.00160

	 SN Computer Science (2021) 2:301301  Page 22 of 23

SN Computer Science

	28.	 Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D.
DRAW: a recurrent neural network for image generation. In:
Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6–11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 1462–71.
JMLR.org; 2015.

	29.	 Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M,
Mohamed S, Lerchner A. beta-vae: Learning basic visual concepts
with a constrained variational framework. 2017.

	30.	 Hoffman MD, Johnson MJ. Elbo surgery: yet another way to
carve up the variational evidence lower bound. In: Workshop in
Advances in Approximate Bayesian Inference, NIPS, volume 1;
2016.

	31.	 Hou X, Shen L, Sun K, Qiu G. Deep feature consistent variational
autoencoder. CoRR. 2016. arxiv:​abs/​1610.​00291.

	32.	 Jaini P, Kobyzev I, Yu Y, Brubaker M. Tails of lipschitz triangular
flows. In: Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages
4673–81. PMLR; 2020.

	33.	 Jeon Y, Kim J. Constructing fast network through deconstruc-
tion of convolution. In: Bengio S, Wallach HM, Larochelle H,
Grauman K, Cesa-Bianchi N, and Garnett R, editors. Advances
in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada; 2018. pages 5955–65.

	34.	 Jie H, Shen L, Albanie S, Sun G, Enhua W. Squeeze-and-
excitation networks. IEEE Trans Pattern Anal Mach Intell.
2020;42(8):2011–23.

	35.	 Junyoung C, Kyle K, Laurent D, Kratarth G, Courville Aaron C,
Yoshua B. A recurrent latent variable model for sequential data.
In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R,
editors. Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems
2015(December), pp. 7–12, . Montreal. Canada: Quebec; 2015.
p. 2980–8.

	36.	 Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of gans
for improved quality, stability, and variation. In: 6th International
Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30–May 3, 2018, Conference Track Proceed-
ings. OpenReview.net; 2018.

	37.	 Kingma DP, Salimans T, Józefowicz R, Chen X, Sutskever I,
Welling M. Improving variational autoencoders with inverse
autoregressive flow. In: Advances in Neural Information Process-
ing Systems 29: Annual Conference on Neural Information Pro-
cessing Systems 2016, December 5–10, 2016, Barcelona, Spain;
2016. pages 4736–44.

	38.	 Kingma DP, Welling M. Auto-encoding variational bayes. In:
2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14–16, 2014, Conference Track
Proceedings; 2014.

	39.	 Kumar A, Poole B, Murphy K. Regularized autoencoders via
relaxed injective probability flow. In: Silvia C and Roberto C,
editors. The 23rd International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2020, 26–28 August 2020, Online
[Palermo, Sicily, Italy], volume 108 of Proceedings of Machine
Learning Research, pages 4292–4301. PMLR; 2020.

	40.	 Lacoste A, Luccioni A, Schmidt V, Dandres T. Quantifying the
carbon emissions of machine learning. 2019.

	41.	 Larsen Anders BL, Sønderby SK, Larochelle H, Winther O.
Autoencoding beyond pixels using a learned similarity metric. In:
Maria-Florina Balcan and Kilian Q, edition. Weinberger, editors,
Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19–24,
2016, volume 48 of JMLR Workshop and Conference Proceed-
ings, pages 1558–66. JMLR.org; 2016.

	42.	 Martin H, Hubert R, Thomas U, Bernhard N, Sepp H. Gans
trained by a two time-scale update rule converge to a local nash
equilibrium. In: Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing
Systems 2017, 4–9 December 2017. CA, USA: Long Beach; 2017.
p. 6629–40.

	43.	 Mathieu E, Rainforth T, Siddharth N, Teh YW. Disentangling
disentanglement in variational autoencoders. In: Kamalika C and
Ruslan S, editors. Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 4402–12. PMLR; 2019.

	44.	 Perez E, Strub F, de Vries H, Dumoulin V, Courville AC. Film:
visual reasoning with a general conditioning layer. In: McIlraith
SA and Weinberger KQ, editors. Proceedings of the Thirty-Sec-
ond AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2–7, 2018, pages 3942–51. AAAI Press; 2018.

	45.	 Ramachandran P, Zoph B, Le QV. Searching for activation func-
tions. 2017.

	46.	 Razavi A, van den Oord A, Poole B, Vinyals O. Preventing poste-
rior collapse with delta-vaes. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6–9, 2019. OpenReview.net. 2019.

	47.	 Rezende DJ, Mohamed S. Variational inference with normaliz-
ing flows. In: Bach FR and Blei DM, editors. Proceedings of the
32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and
Conference Proceedings, pages 1530–8. JMLR.org; 2015.

	48.	 Rezende DJ, Mohamed S, Wierstra D. Stochastic backpropagation
and approximate inference in deep generative models. In: Pro-
ceedings of the 31th International Conference on Machine Learn-
ing, ICML 2014, Beijing, China, 21–26 June 2014, volume 32 of
JMLR Workshop and Conference Proceedings, pages 1278–86.
JMLR.org; 2014.

	49.	 Rosca M, Lakshminarayanan B, Mohamed S. Distribution match-
ing in variational inference. 2018.

	50.	 Rui G, Xingsong H, Jie Q, Jiaxin C, Li L, Fan Z, Zhao Z, Ling
S. Zero-vae-gan: generating unseen features for generalized and
transductive zero-shot learning. IEEE Trans Image Process.
2020;29:3665–80.

	51.	 Schwartz R, Dodge J, Smith NA, Etzioni O. Green AI. Commun
ACM. 2020;63(12):54–63.

	52.	 Shao H, Xiao Z, Yao S, Zhang A, Liu S, Abdelzaher T. Control-
vae: tuning, analytical properties, and performance analysis. 2020.

	53.	 Spindler A, Geach JE, and Smith MJ. Astrovader: astronomical
variational deep embedder for unsupervised morphological clas-
sification of galaxies and synthetic image generation, 2020.

	54.	 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethink-
ing the inception architecture for computer vision. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27–30, 2016, pages 2818–26.
IEEE Computer Society, 2016.

	55.	 Tolstikhin IO, Bousquet O, Gelly S, Schölkopf B. Wasserstein
auto-encoders. CoRR, abs/1711.01558, 2017.

	56.	 Tomczak JM, Welling M. VAE with a vampprior. In: International
Conference on Artificial Intelligence and Statistics, AISTATS
2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands,
Spain; 2018. pages 1214–23.

	57.	 Trippe B and Turner R. Overpruning in variational bayesian neu-
ral networks. In: Advances in Approximate Bayesian Inference
workshop at NIPS 2017, 2018.

	58.	 Vahdat A and Kautz J. NVAE: a deep hierarchical variational
autoencoder. CoRR, abs/2007.03898, 2020.

http://arxiv.org/abs/abs/1610.00291

SN Computer Science (2021) 2:301	 Page 23 of 23  301

SN Computer Science

	59.	 van den Oord A, Vinyals O, and Kavukcuoglu K. Neural discrete
representation learning. In: Guyon I, von Luxburg U, Bengio S,
Wallach HM, Fergus R, Vishwanathan SVN, and Garnett R, edi-
tors. Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems
2017, December 4–9, 2017, Long Beach, CA, USA; 2017. pages
6306–15.

	60.	 Wei R, Mahmood A. Recent advances in variational autoencoders
with representation learning for biomedical informatics: a survey.
IEEE Access. 2021;9:4939–56.

	61.	 Wei R, Garcia C, El-Sayed A, Peterson V, Mahmood A. Vari-
ations in variational autoencoders—a comparative evaluation.
IEEE Access. 2020;8:153651–70.

	62.	 Xie J, Girshick RB, and Farhadi A. Unsupervised deep embed-
ding for clustering analysis. In: Balcan MF and Weinberger KQ,
editors. Proceedings of the 33nd International Conference on

Machine Learning, ICML 2016, New York City, NY, USA, June
19–24, 2016, volume 48 of JMLR Workshop and Conference Pro-
ceedings, pages 478–87. JMLR.org, 2016.

	63.	 Yeung S, Kannan A, Dauphin Y, and Fei-Fei L. Tackling over-
pruning in variational autoencoders. CoRR, abs/1706.03643,
2017.

	64.	 Yongqin X, Saurabh S, Bernt S, and Zeynep A. F-VAEGAN-D2:
a feature generating framework for any-shot learning. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16–20, 2019, pages 10275–84.
Computer Vision Foundation / IEEE, 2019.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A Survey on Variational Autoencoders from a Green AI Perspective
	Abstract
	Introduction
	Structure of the Article

	Theoretical Background
	The Vanilla VAE and Its Problems
	The Balancing Issue
	Variable Collapse Phenomenon
	Aggregate Posterior vs. Expected Prior Mismatch
	Clustering, GMM and Two-Stage

	Blurriness
	Disentanglement

	Two-Stage VAE
	Regularized VAE (RAE)
	Hierarchical Variational Autoencoder
	Experimental Setting
	Green AI and FLOPS
	Frechèt Inception Distance
	Architecture Overview
	Vanilla Convolutional VAE
	Resnet-Like
	Two-Stage VAE
	Convolutional RAE
	NVAE
	HFVAE

	Numerical Results
	Quality Evaluation
	Energetic Evaluation

	Conclusions
	Acknowledgements
	References

