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Abstract
Cardiotocography consists of fetal heart rate and uterine contraction signals that have been utilized for fetal well-being assess-
ment. Researchers have applied several machine learning methods to improve the classification accuracy of the fetal state 
assessment. However, the proposed methods do not fulfill the required accuracy, as they have to address signal challenges 
such as missing value and external noise. Recently, convolutional neural networks have been brought to researchers’ attention 
to cope with the challenges above in other machine learning applications. In this article, a new shallow architecture of 1-D 
convolution neural network is proposed to enhance fetal state assessment accuracy. This architecture has performed based 
on one convolution layer, resulting in computational complexity reduction. Besides, pooling operation that is a standard part 
of traditional CNN is not applied in this architecture to have more features in the classification phase. The performance of 
the proposed architecture is evaluated using five different clinical data sets. The results show that the proposed architecture 
is more efficient than traditional 1-D CNN and five implemented classifiers. The proposed architecture also achieves very 
competitive accuracy in the fetal state assessment compared to previous researches.
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Introduction

Cardiotocography (CTG) is a technical means of the fetal 
state assessment introduced in early1970 [1]. CTG aims to 
assess a pathological state, including early detection of con-
genital heart defect, fetal distress, or hypoxia that are crucial 
for further treatment during pregnancy [2]. CTG includes 

fetal heart rate (FHR) and uterine activity (UA) signals. Fun-
damental challenges for CTG classification by experts are 
that they need time, and an accurate assessment depends on 
the knowledge and clinical experience [1]. Therefore, apply-
ing computer decision-making methods is an efficient way 
of evaluating fetal well-being due to progress techniques in 
signal processing and pattern recognition.

Several methods have been proposed for fetal state assess-
ment, such as probabilistic neural network [3], stochastic 
forest (SF) algorithm [4], and the extreme learning machine 
[5]. However, these solutions have to perform additional 
computation for CTG signal processing, such as data pro-
cessing, feature extraction, and selection. Since they have 
to address CTG signal processing obstacles, including irrel-
evant or redundant attributes, missing value, and external 
noise [6] to obtain optimal accuracy. Recently, convolution 
neural network (CNN) is utilized to address these challenges 
in other domains, such as image processing and social net-
work analysis [7] and has obtained remarkable success in 
this field. Since CNN can automatically extract and learn 
useful attributes from input data and generate deep features 
that are robust against irrelevant or redundant attributes, 
missing values, and external noise [8].
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This research is an extension of our previous work [9] in 
which we have introduced a deep architecture of 1-D CNN 
based on four convolution layers, three pooling layers, and 
three fully connected layers to diagnose arrhythmia dis-
eases automatically. However, in this research, we propose 
a new shallow architecture of 1-D CNN to improve fetal 
state assessment accuracy. This architecture has conducted 
based on one convolution layer, resulting in computational 
complexity reduction. In addition, pooling operation that 
is a regular part of traditional CNN is not applied in this 
architecture to increase the number of features in the clas-
sification phase. Accordingly, due to this feature increment, 
the classification phase is conducted by three fully connected 
layers.

We applied the cardiotocography data set (CTG) to evalu-
ate the performance of the proposed architecture. The CTG 
data set is the most famous data set for fetal state assess-
ment and includes three fetal statuses, consisting of nor-
mal, suspicious, and pathological. Furthermore, apart from 
the CTG data set, four real-world data sets, namely, statlog 
(ST), lymphography (LY), breast cancer (BC), and cervical 
cancer data set (CC), have been obtained from UCI [10] 
machine learning repository and considered for further 
evaluation. Besides, we implemented six classifiers such 
as neural network, SVM, k-nearest neighbor, decision tree, 
logistic regression, and deep belief network. We compared 
the proposed architecture results with these classifiers in 
terms of accuracy, sensitivity, specificity, and area under 
the roc curve (AUC). The results show that the proposed 
architecture outperforms other implemented classifiers, and 
in comparison with previous research, it achieves very com-
petitive results in terms of accuracy.

This article is structured as follows: “Related Work” 
explains a short review of previous researches. “1-D CNN 

for Fetal State Assessment” introduces our proposed archi-
tecture for CTG classification. “Evaluation” demonstrates 
the experimental results on five data sets, and the study is 
concluded in “Conclusion and Future Work”.

Related Work

This section briefly reviews CNN research for signal pro-
cessing and its previous fetal state assessment applications 
based on CTG signals. There is a growing tendency to apply 
machine learning methods for the clinical decision support 
system, as these methods offer appropriate solutions for 
accurate medical data analysis [11] (Fig. 1).

As shown in Fig. 1, clinical disease diagnosis (CDD) 
solutions can be classified into machine learning, 
metaheuristic-based, and artificial neural networks (ANN) 
methods. Metaheuristic-based methods are a combination 
of feature selection algorithms and classifiers [12]. Some 
well-known metaheuristic algorithms have been used in 
this category, such as practical swarm optimization (PSO) 
[1], genetic algorithms (GA) [13], and differential evolu-
tion (DE) [14]. These algorithms aim to select effective fea-
tures in different applications, particularly for more accurate 
disease diagnosis [15]. Machine learning methods such as 
B-tree, näive Bayes, k-nearest neighbor, SVM, decision tree, 
and logistic regression usually are simple in use, and they 
show acceptable results for clean data sets. Deep learning 
is a sub-branch of ANN, which includes various methods 
such as deep belief network (DBN) [16], deep neural net-
work (DNN) [17], recurrent neural network (RNN) [18], 
deep autoencoder (DA) [19] and convolution neural network 
(CNN). The CNN can be divided into three different archi-
tectures, including 1-D CNN [9], 2-D CNN [20], and 3-D 

Fig. 1   Classification of clinical decision support system methods
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CNN[21] for CDD. Feedforward neural network(FNN) [22], 
radial basis function neural network (RBFNN) [1], multi-
layer perceptron (MLP) [3], and extreme learning machine 
(ELM) [23] are other methods of ANN.

Signal Processing Based on 1‑D CNN

Giri et al. [24] used a different model of 1-D CNN to diag-
nose Ischemic stroke from EEG and EOG signals. In this 
model, batch normalization is implemented to accelerate the 
training process. They evaluated their model on a clinical 
data set consisted of 62 instances and 24 features. The aver-
age accuracy of this model is equal to 86%. Acharya et al. 
[25] implemented a 1-D CNN architecture based on three 
convolutional layers, three max-pooling layers, and three 
fully connected to classify various heartbeats categories 
based on ECG. Their experiments were conducted in Phys-
ionet databases, accounting for accuracy of 94.03%. Kiran-
yaz et al. [26] introduced a monitoring system to distinguish 
ventricular ectopic beats from supraventricular ectopic beats 
based on ECG. They considered MIT-BIH to evaluate their 
proposed method, representing an accuracy of 98.9%.

Machine Learning Methods for Fetal State 
Assessment

Ravindran et al. [5] implemented a new clinical decision 
support system for detecting fetal state classes based on an 
extreme learning machine and a modified genetic algorithm. 
The accuracy of their model was calculated at 94%. Yılmaz 
[3] implemented three neural network models, including 
probabilistic, generalized regression, and multilayer per-
ceptron for the fetal state assessment. This research shows 
that the probabilistic neural network’s accuracy is more than 
other algorithms, accounting for 92.15%. Tsouros et al. [4] 
presented a new stochastic approach to create independent 
and robust decision trees. In this method, attributes in every 

tree node are selected based on a defined probability. The 
accuracy of their model was calculated by 88.66%. Comert 
et al. [27] conducted five artificial neural network methods 
such as Resilient Backpropagation, Gradient Descent, Quasi-
Newton Conjugate Gradient Levenberg–Marquardt for fetal 
state classification. In this study, Levenberg–Marquardt 
backpropagation and Resilient Backpropagation achieved 
the best accuracy, representing 89.69% and 89.14%, respec-
tively. Yilmaz and Kilikçier [1] used a binary decision tree 
and conducted a least-squares support vector (LS-SVM) 
machine for CTG classification. They applied a PSO for 
LS-SVM parameter optimization. In this study, the accu-
racy of LS-SVM was calculated at 88.66% by performing 
tenfold cross validation. Piri et al. [28] have conducted a 
solution based on an evolutionary multi-objective genetic 
algorithm to extract essential features that lead to fetal death. 
The extracted features have been classified by Seven exist-
ing classifiers, such as LR, SVM, RF, DT, KNN, GNB, and 
XGBoost. The best accuracy performance is related to the 
XGBoost classifier, accounting for 94%.

1‑D CNN for Fetal State Assessment

This section introduces our proposed architecture for devel-
oping a more accurate 1-D CNN for the fetal state assess-
ment. CNN’s fundamental concepts are related to the neural 
network (NN), while it is distinct from NN’s traditional use. 
This distinction is that CNN uses various operations such as 
convolution, pooling, and the ReLU activation function and 
implements a new method in the training stage [29].

CNN architecture can increment computational complexity 
that can lead to overfitting [30]. When overfitting occurs, the 
classifier cannot effectively classify new features and achieves 
an optimal accuracy. Therefore, first, we implemented a shal-
low network based on the minimum number of convolution 
layers (one convolution layer), resulting in computational 

Fig. 2   Proposed architecture for Fetal State Assessment
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complexity reduction. Second, pooling operation is not applied 
in this architecture to have more features in the classification 
phase. In medical data processing, especially in using a shal-
low model, applying this operation can lead to the lack of 
important medical features in the classification stage. How-
ever, traditional CNN needs this operation to reduce the num-
ber of features by mapping a special size of an image region 
to a feature map on image classification. Finally, three fully 
connected layers were considered for the classification phase 
due to the increase in the number of features. Figure 2 dem-
onstrates the introduced architecture that is specifically con-
figured for different data sets. These configurations are shown 
in Table 1.

Architecture

CNN for image classification applies feature extraction in both 
horizontal and vertical directions, since image data are relevant 
in both directions. However, in biomedical data organized as a 
matrix such as CTG signals, 1-D CNN performs convolution 
operations only in the horizontal direction, as the data in this 
direction are just relevant and in the vertical direction are inde-
pendent [31]. Equation (1) shows a 2-D convolution operation 
that is altered to a 1-D convolution operation (Eq. 2). In this 
equation, w is our kernel, which puts a group of weights and 
shares all over the input space, xi is our input (x1, x2, xn) and 
n is the whole number of instances. Consequently, the output 
of the 1-D convolutional layer can be computed as Eq. (3). In 
this Equation � is the activation function, wk and bk refer to the 
weights and bias of the kth activation map, and N is the filter 
size. Equation (4) shows the number of the filter in each layer 
with the stride size of 1.

(1)I� =
∑

i,j

I(x − i, y − j) ⋅ w(i, j)

(2)z[n] =
∑

w[i] ⋅ x[n − i]

(3)Ct
k
= �

(

N
∑

i=1

xt−1(i)wt−1
k

(i) + bt
k

Furthermore, complex features are learned by applying 
a ReLU activation function that introduces the nonlinearity 
into the network [32]. A flattening operation is applied in 
the first fully connected layer in the classification tasks that 
changes the convolutional layer outputs into a single feature 
vector. Besides, the dropout technique [33] is implemented 
for reducing overfitting. This technique is a useful regulari-
zation method, preventing complex co-adaptations on the 
training data [33]. After that, a SoftMax activation function 
is performed to create a probability generalization based on 
network output, according to Eq. (5). Eventually, a standard 
feedforward and backpropagation pass is performed in the 
training phase.

Evaluation

The introduced architecture’s performance is appraised by 
several experiments conducted by different data sets and val-
idated using the cross-validation method. In the following, 
the experimental environment and data sets are introduced, 
then the experimental results are explained.

Data Sets Description

We have implemented the introduced architecture on the 
Google Colab environment and considered five different 
data sets from the UCI repository [10] for the proposed 
architecture evaluation. These data sets are considered with 
different challenges, such as imbalanced and missing values 
data. Table 2 demonstrates data sets’ statistical information, 
and their descriptions are as follows.

Cardiotocography data set consists of 2126 CTG samples 
and 23 features extracted from FHR and UC attributes by 
experts. This data set has three fetal state classes, includ-
ing suspect, normal, and pathologic. Out of these 2126 
instances, 1655 samples were classified as normal, and 176 

(4)The number of the filter =
Input_size − Filter_size

Stride_size

(5)F
�

xi
�

=
Exp

�

xi
�

∑n

0
Exp

�

xj
� [i = 0, 1,… , k]

Table 1   Summary of the 
proposed CNN for analyzing 
data sets

KN kernel number, FS filter size, FC fully connected layer, CL convolution layer

Configurations ST LG BC CTG​ CC

KN and FS of 1st CL 12@1X3 13@1X5 25@1X5 17@1X5 27@1X7
1st FC kernel number 64 91 128 150 256
2st FC kernel number 32 32 64 81 32
3rd FC kernel number 2 2 2 3 2
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and 295 instances belong to pathological and suspect states, 
respectively.

Statlog (Heart) data set Commonly has been used for 
heart disease diagnosis. This data set contains 13 features 
and 270 clinical records demonstrating the presence (120 
samples) and absence (150 samples) of heart disease.

Lymphography data set has been considered for the diag-
nosis of lymphatic diseases. This data set originally consists 
of 148 samples, 18 attributes, and four classes gathered from 
radiologist judgments and estimations. We considered only 
two classes in this research, including metastases and malign 
lymph with 81 and 60 instances, respectively, since other 
classes have less than four attributes.

Breast Cancer Wisconsin (Diagnostic) data set includes 
features that are extracted from breast mass’ digitized 
images. This data set consists of 32 tumor features and 569 
instances (212—malignant, 357—benign).

Cervical cancer data set includes cervical cancer fea-
tures, such as demographic information, patient habits, and 
historical medical records with 858 instances and 36 attrib-
utes with 44% missing value. In this research, we have con-
sidered Biopsy as the target variable in which cancer patients 
were 55 and non-cancer were 803.

Performance Evaluation Criteria

The proposed architecture has addressed both binary and 
multi-class classification. Thus, the performance of the pro-
posed architecture is evaluated based on various criteria, 
such as accuracy (ACC), sensitivity (SE), specificity (SP), 
and area under the roc curve (AUC) [3]. We utilized com-
mon formulas for binary performance measures that can be 
studied in [3]. In addition, the confusion matrix is of size 

3 × 3, as shown in Table 3. Accordingly, this multi-class con-
fusion matrix can be utilized for multi-class performance 
measures by calculating the average of each class’s meas-
ures, as shown in Table 4.

Performance Analysis

We have conducted various experiment sets to appraise the 
proposed architecture performance. We implemented three 
different 1-D CNN architectures named 1-D CNN, 1-D 
CNNI, and 1-D CNNII (the proposed architecture) in the 
first experiment set. The 1-D CNN architecture is a tradi-
tional CNN implemented based on two convolutions and two 
fully connected layers. Consistently, 1-D CNNI architecture 
is developed by one convolution layer that can lead to com-
putational complexity reduction, and three fully connected 
layers were considered for its classification phase. We use 
this architecture to evaluate reducing the convolution layers 
(computational complexity) on architecture performance. 
Eventually, in the 1-D CNNII, pooling operation is not 
applied to this architecture to have more features in the clas-
sification phase. This architecture was implemented based 
on one convolution layer and three fully connected layers.

In this performance analysis, tenfold cross validation 
is applied to examines the architectures’ robustness and 
address the instances’ inadequacy. Tables 3, 4 and 5 show 
the average results of the performance analysis using tenfold 
cross validation. The comparative results of different 1-D 
CNN architectures in terms of accuracy (ACC), sensitivity 
(SE), specificity (SP), and training time (TT) are shown in 
Table 5. The results in this table illustrate that 1-D CNNII 
achieves the best performance compared to other 1-D CNN 

Table 2   Data sets’ statistical information

Data set Features Instances Classes

Breast cancer (BC) 32 569 2
Cardiotocography (CTG) 23 2126 3
Cervical cancer (CC) 36 858 2
Lymphography (LG) 18 141 2
Statlog (ST) 13 270 2

Table 3   Confusion matrix

FN false negative (improperly rejected), FP false positive (incorrectly identified), TN true negative (prop-
erly rejected)

True classes Predicated class Prognostic indices

Class1 Class2 Class3 FN FP TN

Class1 n11 n12 n13 n12 + n13 n21 + n31 n22 + n33

Class2 n21 n22 n23 n21 + n23 n12 + n32 n11 + n33

Class3 n31 n32 n33 n31 + n32 n13 + n23 n22 + n11

Table 4   Performance measures for multi-class classification

Measure Equation Description

Accuracy ∑k

i=1

TPi+TNi

TPi+TNi+FNi+FPi

K

Average overall performance

Sensitivity ∑k

i=1

TPi

TPi+FNi

K

Average true positive rate

Specificity ∑k

i=1

TNi

TNi+FPi

K

Average true negative rate



	 SN Computer Science (2021) 2:287287  Page 6 of 9

SN Computer Science

architectures. Although reducing training time as a com-
putational time is still a significant bottleneck for experi-
mental research [30], this table shows that the proposed 
architecture’s training time is faster than two other CNN 
architectures. Table 6 illustrates that CNNII has the best 
performance of correct predictions per class in the task of 
multi-class classification. In addition, as shown in Fig. 3, in 
the validation and training phase of 1-D CNNII, both train-
ing and validation errors decrease as the epochs continue to 
drop. In contrast, the validation error at a certain epoch point 
of 1-D CNN and 1-D CNNI starts to increase, which means 
that these two architectures suffer overfitting.

In the second experiment set, the accuracy and the area 
under the ROC curve (AUC) of CNNII were compared 
with other implemented classifiers such as decision tree 
(DT), neural network (NN), logistic regression (LR), sup-
port vector machine (SVM), k-nearest neighbor (k-NN), 
and standard deep belief network (DBN). Tables 7 and 
8 demonstrate the experimental results for different data 
sets. The results show that the 1-D CNNII is more efficient 
than five implemented classifiers and achieves very com-
petitive accuracy in the fetal state assessment compared to 
previous researches, as demonstrated in Table 9.

Table 5   Experimental results of 
different 1-D CNN architectures

DS 1-D CNN 1-D CNNI 1-D CNNII

ACC​ SE SP TT(S) ACC​ SE SP TT(S) ACC​ SE SP TT(S)

BC 90.13 85.17 92.63 12.10 91.41 85.85 96.60 10.14 95.07 96.71 95.64 9.34
CTG​ 89.87 88.51 70.25 21.82 90.81 86.79 71.89 19.93 97.46 91.98 79.24 19.24
CC 88.56 98.33 95.79 155 85.47 98.25 94.67 127 97.79 97.02 92.14 126
LG 91.38 90.90 89.11 19.38 82.40 86.07 86.10 16.09 89.11 87.20 85.10 15.83
ST 87.91 83.22 87.75 14.89 86.86 82.55 83.71 14.76 88.75 79.52 81.75 14.74

Table 6   Experimental results of 
any output CTG classes

Classes 1-D CNN 1-D CNNI 1-D CNNII

ACC​ SE SP ACC​ SE SP ACC​ SE SP

Normal 91.40 90.22 71.23 92 89.13 74.04 100 99.14 83.02
Suspect 89.51 87.13 69.12 89.23 87.14 71.23 97.18 96.53 75.30
Pathological 88.70 88.20 70.40 91.10 84.10 70.50 93.20 80.27 79.40

Fig. 3   Training and validation error generated for analyzing various data sets
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Conclusion and Future Work

The accurate assessment of fetal well-being is crucial for 
further treatment during pregnancy and is also an indica-
tor of fetal distress. Many methods have been proposed 
to improve fetal state assessment. However, because of 
missing values and external noise of CTG signals, these 
methods’ performance is not optimal. Thus, they have to 
implement feature selection and extraction as additional 
computations to address the mentioned challenges. In this 
article, a new shallow architecture of 1-D convolution neu-
ral network is proposed to enhance fetal state assessment 
accuracy. This architecture has performed based on one 
convolution layer, resulting in computational complexity 
reduction. Besides, pooling operation that is a standard 
part of traditional CNN is not applied in this architec-
ture to have more features in the classification phase. In 

medical data processing, especially in the shallow model, 
using this operation can lead to the lack of important med-
ical features in the classification stage. We have considered 
five different disease data sets, such as statlog, lymphogra-
phy, breast cancer, cardiotocography, and cervical cancer 
data sets, to evaluate the proposed architecture. The results 
show that the proposed architecture is more efficient than 
traditional 1-D CNN and five implemented classifiers 
in accuracy, sensitivity, and specificity. This architec-
ture also has achieved very competitive accuracy in the 
fetal state assessment compared to previous research. 
Our research’s future direction includes using recent and 
effective metaheuristic algorithms to determine optimal 
CNN parameters and applying the proposed architecture 
for disease detection based on real-time stream processing.

Funding  This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors.

Table 7    AUC comparison of 
various methods for different 
data sets

DS 1-D CNNII NN KNN DT LR DBN SVM

BC 0.983 0.964 0.907 0.865 0.987 0.754 0.784
CC 0.927 0.897 0.860 0.885 0.921 0.789 0.794
LY 0.957 0.907 0.758 0.722 0.920 0.708 0.723
ST 0.932 0.812 0.824 0.741 0.926 0.667 0.701
CTG​ 0.975 0.932 0.913 0.874 0.950 0.712 0.821

Table 8   Accuracy comparison 
of various methods for different 
data sets

DS 1-D CNNII DBN NN SVM KNN DT LR

BC 95.07 88.01 91.84 88.87 88.92 81.37 92.89
CTG​ 97.46 82.6 92.81 89.74 86.77 87.15 89.12
CC 97.79 88.54 93.98 92.41 86.81 92.79 92.09
LG 89.11 87.57 81.80 80.31 80.43 77.74 87.57
ST 88.75 80.68 79.10 60.53 66.01 74.49 83.37

Table 9   Accuracy comparison 
of the proposed architecture 
with previous works on CTG 
classification

Data sets Author Method ACC​

CTG (3classes) Ravindran et al. [5] Genetic algorithm + extreme Learning 94
Yilmaz [3] Probabilistic neural network 92.15
Cömert and Kocamaz [27] Resilient backpropagation algorithms 89.62
Tsouros et al. [4] Stochastic Forest (SF) algorithm 88.66
Cömert et al. [6] Extreme learning 93.42
Yilmaz and Kilikçier [1] Least-squares support vector machine 91.62
Karabulut and Ibrikci [34] Boosting ensemble of decision trees 95.01
Piri et al. [28] Multi-objective genetic algorithm + XGBoost 94
In this study 1-D CNN (Conventional 1-D CNN) 89.87
In this study 1-D CNNI 90.81
In this study 1-D CNNII 97.46
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