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Abstract
The building of robust classifiers with high precision is an important goal. In reality, it is quite challenging to achieve such 
a goal with the data that are typically noise, sparse, or derived from heterogeneous sources. Thus, a considerable gap exists 
between a model built with training (seen) data and testing (unseen) data in applications. Recent works, including zero-shot 
learning (ZSL) and generalized zero-short learning (G-ZSL), have attempted to overcome the apparent gap through transfer 
learning. However, most of these works are required to build a model using visual input with associated data like semantics, 
attributes, and textual information. Furthermore, models are made with all of the training data. Thus, these models apply to 
more generic contexts but do not apply to the specific settings that will eventually be required for real-world applications. In 
this paper, we propose a novel model named class representative learning (CRL), a class-based classifier designed with the 
following unique contributions in machine learning: (1) the unique design of a latent feature vector, i.e., class representa-
tive, represents the abstract embedding space projects with the features extracted from a deep neural network learned only 
from input images. (2) Parallel ZSL algorithms with class representative learning; (3) a novel projection-based inferencing 
method uses the vector space model to reconcile the dominant difference between the seen classes and unseen classes. This 
study demonstrates the benefit of using the class-based approach with CRs for ZSL and G-ZSL on eight benchmark datasets. 
Extensive experimental results suggest that our proposed CRL model significantly outperforms the state-of-the-art methods 
in ZSL/G-ZSL based image classification.

Keywords  Zero-shot learning · Image classification · Transfer learning

Introduction

Deep learning technologies have received significant atten-
tion for large-scale image classification in the area of com-
puter vision. The substantial requirements for such image 
classification tasks are the availability of a large amount of 
labeled data. Besides the limited amount of labeled data for 
supervised learning, we face severe challenges in applying 
image classification models to real-world problems, such 
as a lack of effectively transferring knowledge from one 
domain to another, or the effective adaption for newly gen-
erated data. There is a strong need for systematic research 

exploring the processes that support effective transfer learn-
ing at finding a robust and feasible solution for real-world 
applications.

Recent efforts are focused on developing zero-shot learn-
ing (ZSL) [1] or few-shot learning (FSL) [2, 3] that aims 
to handle the challenges of image classification. The goal 
of ZSL is to recognize instances from unseen (target) cat-
egories by using external linguistic or semantic information 
through intermediate-level semantic representations from 
seen (source) categories [4–6]. These studies focus on effec-
tive transfer learning by fully leveraging information from 
pre-trained models. The central idea behind these studies is 
that known and unknown classes’ auxiliary information can 
be used for image classification [7, 8]. It will allow them 
to learn from a few training examples (few-shot) or even 
without seeing them (zero-shot). However, it is required to 
map new instances (unseen) into a semantic space, which is 
aligned with the pre-trained models (seen). This will lead 

 *	 Mayanka Chandrashekar 
	 mckw9@mail.umkc.edu

1	 University of Missouri-Kansas City, Kansas City, MO, USA

http://orcid.org/0000-0002-3697-5972
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00648-y&domain=pdf


	 SN Computer Science (2021) 2:313313  Page 2 of 21

SN Computer Science

to more effective transfer of learning and help to minimize 
training efforts and maximize learning outcomes [9–11].

For the effective transfer learning from the known to the 
unknown, one of the most popular ZSL approaches is the 
semantic space model that is based on a joint embedding 
framework of the label-embedding space [1, 12] and the 
attribute space [13]. The label-embedding space is based on 
a combination of visual embeddings and word embeddings, 
while the attribute space is based on attribute annotations for 
the ZSL model. External or auxiliary information is used as 
a form of combining two or more sources of data, e.g., image 
features and word embedding, image features and attribute 
information, or image features and ontologies. We propose a 
novel ZSL model called class representative learning (CRL), 
which builds a class prototype from the instances of each 
class and defines it as a class representative (CR), which 
will be used for inference. The class prototypes for source 
and target domains are generated using the features extracted 
from a base architecture of the source (seen) domain. These 
class prototypes are used for inferencing with a projection 
function. CRs are a unified representation of the classes 
in the source and target domains, which support effective 
transfer-learning from the source to the target. Our study 
demonstrates the CRL’s usefulness for transfer learning in 
image classification, with the significantly improved perfor-
mance of ZSL and G-ZSL algorithms.

The class representative learning (CRL) model can be 
categorized as the projection method of Class-Inductive 
Instance-Inductive (as defined in [1]). In the training phase 
for the seen classes, the feature learning model is built 
from the training instances. During the testing phase for 
the unseen classes, both the unseen and seen prototypes are 
projected into the same space, based on learned models. Our 
study adopts the evaluation methods defined in Xian et al. 
[7, 8]. It extends it to the generalized zero-shot (G-ZSL) 
algorithm, in which the seen classes were built from the 
feature extraction learning from the ImageNet dataset [14]. 
The G-ZSL algorithm’s performance was validated with 
the harmonic mean of seen and unseen classification per-
formance [7, 8].

The contributions of this paper can be summarized as 
follows:

–	 Proposing the CRL model as an efficient way of building 
class-level classifiers by fully utilizing the features from a 
pre-trained Convolutional Neural Network (CNN) using 
visual data only;

–	 Designing a universal representation, called class rep-
resentative feature space (CRFS), for source and target 
classes that can be applied to multiple cross domains;

–	 Applying the CRL model to ZSL and G-ZSL problems;
–	 Designing the parallel ZSL and G-ZSL algorithms based 

on CRL;

–	 Through extensive evaluations, the proposed CRL model 
shows significant performance gain compared to the 
state-of-the-art research in ZSL and G-ZSL.

The remainder of the paper is organized as follows. In 
"Related work", we literature review in ZSL and G-ZSL 
research. In "Class Representative Learning Model", we 
present the proposed CRL model and point out the justifi-
cation of our design. In "Class Representative Inference", 
we describe the projection function in ZSL and present the 
ZSL/G–ZSL algorithms for the CRL inferencing. "Experi-
ments" describes the design of the experiments. "Results 
and Evaluation" presents the results and makes comparisons 
with other models. Finally, in "Discussion" and "Conclu-
sion", we provide a brief discussion and conclude the paper 
by presenting conclusions based on our work.

Related Work

Universal Representation

Some various research works are proposed to combine data-
sets to enhance models. Ubernet [15] is a universal CNN 
that allows solving multiple tasks efficiently in a unified 
architecture. It provides a simple end-to-end network archi-
tecture for diverse datasets, and scalable and efficient low 
memory processing. Also, universal representations [16, 
17] have been shown to work well in a uniform manner for 
visual domains. They have proven to be efficient for multiple 
domain learning in relatively small neural networks. Rebuff 
et al. [18] presented that universal parametric families of 
networks could share parameters among multiple domains 
using parallel residual adapter modules. Similar to our work, 
all these works presented universal representations for vari-
ous domains or various tasks. However, unlike CRL, their 
models cannot adequately support effective transfer learning 
in a distributed and parallel manner.

Feature selection is a crucial step in machine learning 
since it directly influences the performance of machine 
learning. The right choice of features drives the classifier 
to perform well. However, Kapoor et al. [19] observed that 
finding useful features for multi-class classification is not 
trivial. It is because of the volume in the high-dimensional 
feature space as well as the sparseness over the search 
space. Dictionary learning [20] was presented to determine 
the subspaces and build dictionaries by efficiently reduc-
ing dimensionality for efficient representations of classes 
in the domain. They overcame the sparsity constraints and 
improved the accuracy by identifying essential components 
of the observed data. In CRL, the class representative feature 
space CRFS provides a basis for building the prototypes, 
i.e., CRs, using the features from the CNN network that are 



SN Computer Science (2021) 2:313	 Page 3 of 21  313

SN Computer Science

a uniform representation of the images. The proposed CRL 
model is based on distributed and parallel processing, which 
improves the efficiency of the CR generation and inferenc-
ing. It is possible due to the nature of the independence 
among CRs.

In the context of zero-shot learning and few-shot learn-
ing, the representatives are known as a class prototype, 
which is defined as vector representation in semantic space 
corresponding to each class [1]. EXEM proposed the class 
exemplar, which is similar to class representatives in CRL, 
as the center of visual feature vectors used in prediction and 
label embedding [21]. A hierarchical super prototype was 
proposed based on a combination of semantic prototype 
and visual data for seen and unseen classes [22]. Fu et al. 
proposed a prototype graph where each prototype is a node 
in the graph, and the semantic relationship between classes 
is an edge for their connectivity [23]. The prototype is also 
used in few-shot learning (FSL), as demonstrated by Snell 
et al. [24].

In the CRL model, the class prototype is part of the pre-
dictive step, unlike the previous works defined as an inter-
mediate step towards a learning model. The class prototype, 
i.e., CRs, can be built independently class by class to be 
self-contained and is not dependent on other classes. For 
example, a class representative (CR) for dog class is built 
using the data only from one class (i.e., dog), regardless of 
other classes, such as horse or cat.

Zero‑Shot Learning

A semantic encoding was derived from a semantic knowl-
edge base [25] for predicting new classes in Zero-shot 
learning (ZSL). Besides the knowledge bases, explicit and 
external attributes are considered for visual learning [25]. 
In addition to standard image feature extraction techniques, 
other feature learning techniques such as boosting tech-
niques [26], object detection [27], chopping algorithm [28], 
feature adaption [29], and linear classifiers [30] are used to 
enhance the accuracy for predicting unseen classes.

In Wang et al. [1], zero-shot learning was categorized, 
based on feature requirements, into engineered seman-
tic space for attribute, lexical, and keyword informa-
tion and learned semantic space for label-embedding, 

text-embedding, and image-representation. Table 1 shows 
the CRL model and the state-of-the-art ZSL models which 
are compared in the evaluation section. Recent ZSL works 
mostly include two kinds of semantic spaces, namely label-
embedding spaces [1, 12] and attribute spaces [1] (also 
known as probability prediction strategy [12]). The image 
representative space is present in the zero-shot learning 
works but it is typically coupled with an additional semantic 
space. The ZSL’s label-embedding space focus on learning 
a projection strategy. This strategy maps semantic features 
extracted from the image representative space to the labels 
that are represented in a high dimensional embedding such 
as Word2Vec [31] or Glove [32]. Image representative space 
are typically learned from convolutional neural networks 
[13, 33–37]. Attribute space or Probability prediction strat-
egy pre-trains attribute classifiers based on the source data 
[12], where an attribute is defined as a set of terms having 
the properties for a given class [1]. A class has distinguish-
ing attributes, the embedding of visual features for the defin-
ing characteristics of the class, and assignment of the label 
to a class based on these features and attributes [4, 6, 38]. 
Unlike these works, CRL focuses on uses a mono-modal, 
specifically just the image representative semantic space. 
Using only the image representative gives CRL the advan-
tage in terms of classification performance comparing to 
using a multi-modal semantic space approach.

ZSL approaches using only image representation space 
are rarely observed. One of the few works was based on the 
image deep representation (i.e., neural network-based) and 
fisher vector for the inference [39], and an extension of this 
approach was used to create unsupervised domain adaptation 
[40]. Zhu et al. used a partial image representation method 
to achieve a universal representation for action recogni-
tion [41]. Similarly, CRL uses only image representative 
semantic space. However, CRL utilizes a unique method of 
creating class prototypes and perform inference all within 
the space.

ZSL Projection Methods

The ZSL approaches can be categorized into classifier-based 
and instance-based methods. Based on the categorization, 
the CRL model is defined as a zero-shot learning model 

Table 1   Related work: zero-shot learning methods

Instance-based ZSL method
 Projection method CRL (ours), DWV [42], Deep-SVR [4, 43], ConSE [6], CMT [44], SAE [45], Embed [46]
 Synthesizing method GAN+ALE [47], GAN+Softmax [47], CADA-VAE [48], cycle-GAN [49], BPL+LR [50]

Classifier-based ZSL method
 Relationship method SSE [51], AMP [35], SynC [52]

  Correspondence method SJE [33], LATEM [37], ALE [5], DeViSE [34], ESZSL [36], SP-AEN [53]
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that uses image representation semantic space and employs 
an instance-based projection method for model building 
and inference. The projection method provides insights 
on the labeled instances of an unseen class by projecting 
them onto the common feature space or the semantic space 
where instances and prototypes are compared [1]. A litera-
ture review is conducted as described below in the four dif-
ferent inference methods of zero-shot learning: classifier-
based correspondence method, classifier-based relationship 
method, instance-based projection method, and instance-
based synthesizing method.

Classifier-Based Correspondence Method constructs a 
correspondence between binary one-vs-rest classifier and 
unseen class prototypes to classify unseen classes. The 
compatibility function is a key part of the correspond-
ence method. It takes instances and prototypes as an input 
to compute a compatibility score denoting the probability 
of instances to classes [1, 7, 54]. A bilinear function is a 
widely used compatibility function, including DeViSE [34], 
ALE [54], SJE [33], and ESZSL [36]. The other widely used 
method is the projection functions, such as linear projec-
tion [55, 56]. Even though the correspondence method uses 
classifier and prototype method, no explicit relationships 
between classes are modeled due to one vs. all strategy. As 
the class relationship plays a vital role in understanding 
ZSL performance, the CRL model uses a pure-prototype 
approach that aims to discover the class relationship to 
increase the model’s interpretability.

Classifier-Based Relationship Method constructs classi-
fier for the unseen classes based on the relationships among 
classes [1]. SSE [51] uses binary one-vs-rest classifiers for 
seen classes, and unseen class prototypes establish their 
relationship with seen classes. AMP [35] uses a directed 
k-nearest neighbor graph where each edge establishes the 
relationship between the classes. The relationship method 
focuses on creating a classifier by creating a class-to-class 
relationship; this inter-class dependency creates scalability 
issues. To handle scalability issues, CRL focuses on inter-
class independence during model building, and the relation-
ship between class is determined using their prototypes.

Instance-Based Projection Method classifies the instances 
of the unseen classes by projecting both the feature space 
instances and the semantic space prototypes into a shared 
space [1]. The projection space is defined as a space where 
the classification is performed. The approaches using projec-
tion methods are further categorized according to the projec-
tion space: semantic space as projection space, visual space 
as projection space, and Transductive projection strategy.

Semantic Space as Projection Space: A projection function 
is used to project the visual feature space into a linear or 
non-linear semantic space. The goal of cross-modal transfer 
(CMT) based on semantic word vector representations and 
Bayesian framework is to differentiate the semantic mani-
fold of seen classes and unseen classes [44]. Some of these 
works use regression function as the projection method as 
well as softmax classifier on the semantic space [25, 44, 
57]. A projection method was achieved from a convex com-
bination of seen class prototypes (ConSE) [6], which has 
an n-way classifier built on seen data and is used to predict 
probabilities on the unseen instances. The projection func-
tion of Deep-SVR consists of attribute-based classifiers. The 
probabilities from attribute classifiers are coordinates with 
projected instances in semantic space using 1-NN classifica-
tion [4, 43].

Visual Space as Projection Space: The projection function 
was learned to project the semantic space to visual feature 
space. Linear regression-based projection approach was 
used to mapping from the target space to the source space 
[58]. However, there is a strong assumption of a multivariate 
normal distribution of data and it lacks advanced similar-
ity measures, such as cosine similarity or multi-modal data 
distributions. Non-linear regression (DEM) uses the visual 
space as the embedding space, resulting in fewer hubness 
problems than other ZSL approaches [46]. Unseen visual 
data synthesis (UVDS) was proposed with a latent embed-
ding space that takes into account both semantic space and 
visual feature space [59]. Multiple projection spaces, such 
as semantic auto-encoder (SAE), were designed to learn a 
more generalized projection function [45].

Transductive Projection Strategy Manifold regulariza-
tion was used together with data augmentation strategies 
to enhance the semantic space, which has resulted in easy 
access to testing data in the training phase [60]. Matrix 
factorization with testing instances and unseen class pro-
totypes was designed for unsupervised domain adaptation 
to overcome the projection domain shift problem [61]. The 
self-training strategy aims to adjust the prototypes of unseen 
classes with the testing instances when performing 1-NN 
classification. For an unseen class, the prototype is adjusted 
as the mean value of the k nearest testing instances [62–66]. 
This unseen prototype creation is also used in a few-shot 
learning setting [24]. Markov chain process-based projec-
tion method was proposed to compute semantic manifold 
distance in embedding space as a seamless fusion of the 
semantic relatedness and embedding-based methods for 
ZSL [35]. Fu et al. presented a unified framework based 
on vocabulary-informed learning. It incorporates distance 
constraints from vocabulary atoms for projecting closer to 
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their correct prototypes in semantic manifold-based recog-
nition [42].

As mentioned earlier, the CRL model can be categorized 
as a projection method. Unlike most of the existing works, 
CRL uses the visual feature space that is created by a projec-
tion function for inference. Class representative generation is 
similar to the prototype created by self-training strategy. The 
zero-shot learning with self-training uses the visual feature 
and additional semantic space for creating the prototype. The 
few-shot learning approach uses a massive network classifier 
model post prototype generation. The unique feature of CR 
generation is the sole use of visual feature space.

Instance-based synthesizing method of the zero-shot 
learning has been prevalent to a generative neural network in 
creating additional data points, especially for unseen classes, 
and handling the problem pertinent to data imbalance issues. 
GAN+ALE [47], GAN+Softmax [47] and cycle-GAN [49] 
rely on various types of generative adversarial network 
(GAN) model, which samples a random vector, combines 
that with the unseen class prototype to form the input to 
the generator, whereas CADA-VAE [48] uses variational 
auto-encoder for data synthesizing. BPL [50] uses semantic 
feature synthesis by perturbation approach that directly per-
turbs the seen class samples onto unseen class prototypes. 
In the context of the projection method, BPL [50] uses bidi-
rectional projection learning as the part of a competitive 
learning strategy between seen samples and unseen proto-
types. Synthesizing methods differ from the CRL model in 
architectural sense, but we compare it with CRL since it is 
known as one of the ZSL’s top-performing models.

Class Representative Learning Model

In this paper, we present the class representative learning 
(CRL) model designed to project the input data onto a global 
space and generate a universal representation for domains 
and use it for inference in zero-shot learning. The space of 
the CRL model is similar to the universal representation 
proposed by Tamaazousti et al. [67], where visual elements 
in the configuration (e.g., scale, context) can be encoded 
universally for the transfer learning. Unlike their work, our 
CRL representation is defined based on the aggregation 
patterns from the activation of neurons of the projection 
function (typically a pre-trained model, such as CNN). The 
CRL model’s fundamental concept is its ability to create the 
representatives of class independently from other classes for 
a given domain.

Figure 1a shows the conventional label-embedding based 
zero-shot learning model. Figure 1b shows the class-repre-
sentative model in a similar setting. As shown in Fig. 1a, 
Nourouzi et al. introduced zero-shot learning with a two-step 
mapping function [6], where the first step is a projection 
function, and the second step is an inference function in 
the label-space. As shown in Fig. 1b, the two-step mapping 
stays in place, but the second mapping becomes non-essen-
tial because the class representatives (image feature proto-
types) have the label as tagged information. In the label-
based embedding model (Fig. 1a), the second mapping plays 
an essential role where the image feature space maps into 
the label space. In most of the existing works, the classifica-
tion happens in the label space, wherein CRL’s classification 
happens only in an image feature space, also known as class 
representative feature space (CRFS) [68].

Fig. 1   a Label Embedding Based ZSL. b Class Representative Based ZSL
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Problem Setup

Assume the given source data Ds = {xi, yi}
ms

i=1
 of ms labeled 

points with a label from the source class � , where xi ∈ ℝ is 
the feature of the ith image in the source data and yi ∈ � , S 
is the set of source classes. The target data is represented as 
Dt = {xi, yi}

mt

i=1
 classes where yi ∈ �  . Each class c ∈ � ∪ �  

has a class representative CR(c), which is the semantic rep-
resentative of class c. Furthermore, the source label � and 
the target label �  are considered such that � ∩ � = � . For 
simplicity, the source and target datasets may have over-
lapped labels, but these overlapped classes are considered 
distinct. In the CRL model, the source data are considered 
as seen, and the target data are unseen. In other words, the 
target data are not used in the learning process. Table 2 
summarizes all the symbols and notations used in the CRL 
model. The goal of the CRL model is that given a new test 
data x∗ , the model classifies it into one of the classes y∗ , 
where y∗ ∈ C . The CRL model defines a universal problem 
for a ZSL approach as well as G-ZSL as follows:

–	 Zero-shot learning (ZSL): y∗ ∈ �

–	 Generalized zero-shot learning (G-ZSL): y∗ ∈ {� ∪ �}

There are no dependencies among CRs in any of the models. 
The difference between these two models is in the properties 
of the inference. If the CR of the target set was introduced, 
then it would be ZSL, and if both CRs of the source set and 
the target set are introduced, then it would be G-ZSL.

Definition: Class representative (CR) is a representa-
tive of K instances in a single class. The activation feature 
map of the CR is a unique characteristic pattern of visual 
expression using the projection function; for example, the 
feature map is generated from the deep learning process 
using convolutional neural networks as the projection func-
tion (CNN). Activation feature map (AFM) is a vector of 
features extracted from a base model, which is learned from 
the source dataset. Thus, CR is an abstraction of instances 
of a class by computing an aggregation of the average mean 
vectors of the AFM for the K instances. The CR represents 
the characteristics of a class as well as it differentiates one 
class against another. The class representatives CR(c) for 
Class c is represented as {CR1

c
, CR2

c
,… , CRn

c
} with n dimen-

sional aggregated features. Each dimension corresponds to 
a separate feature. If a feature occurs in CR, its value in the 
vector is non-zero.

Class Representative Classifier

We define a class representative classifier CRC ∶ Id → c 
that maps an input image space Id of the dimension d and 
c ∈ � ∪ �  . Classifier has two essential functions, such as 
the projection function P(.) and inference function L(.). The 
projection function takes the input images and learns the 
feature space for class representatives through source data 
Ds . The inference function uses the class representative fea-
ture space CRFSn of the dimension n to classify it to class 
c. CRC is defined as a composition of these two functions, 
as shown in Eq. 1.

The CRC model first learns a projection function S using 
the seen data, which aids the mapping of the input images Id 
into class representative feature space CRFSn with n dimen-
sions. �  the inference function L creates class representa-
tives CR in the CRFSn of either the seen data or unseen data 
depending on the setting. The L maps a new image to Label 
c in CRFSn where c ∈ �  or c ∈ � ∪ � .

Projection Function

In the CRL method, we use a projection mechanism that 
uses only a visual feature space. The visual feature space in 
the CRL method is known as the class representative feature 
space. The projection function is prevalent as part of the 
class representative classifier in two ways. First, learning 
the projection method using the seen data and building the 
class representative feature space CRFSn . Second, applying 
the pre-learned projection mapping mechanism to the seen 

(1)
CRC = L(P(.))

P ∶ Id → CRFSn

L ∶ CRFSn → c

Table 2   Formal symbol and notations in the CRL model

Notation Description

Ds andDt Source and target domain
ms andmt #Data points from source and target, respectively
� and � Source and target label set
C #Classes
x Feature vector of labeled data point
y Label of data point
j #Neurons in a given activation layer
b Base vector learned in P(.) {b1, b2,… , bj}

CR(c) Class representative of class c where c ∈ C

x∗ Unlabeled data point
y∗ Predicated label for x∗

CRC(.) Class representative classifier
P(.) Projection function
L(.) Inference function
CRFS

n Class representative feature space
n Dimensions of the CRFSn
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data or the unseen data depending on the setting for infer-
ence (e.g., ZSL or G-ZSL).

CRFS is defined as a n dimensional semantic feature map 
in which each of the n dimensions represents the value of a 
semantic property. These properties may be categorical and 
contain real-valued data or models from deep learning meth-
ods [25]. Class representative feature space is the projection 
space. The class representative feature space represents n 
dimensional representative features as a form of the activa-
tion feature map (AFM). The design of the CRFS is based 
on the equations defined in [69]. The data points from Dt 
{(x1, y1,… , (xmt

, ymt
)} with each feature of xi ∈ ℝ and yi ∈ �  

(as shown in Eq. 3). Note that the data points can also be 
defined in Ds that is used in CRFS of both source and target 
domains (refer to "Validation using Domain Adaptation").

Class representative feature space is created based on the 
base vector b, which has j dimensions with each bj ∈ Rn . 
The base vector b is generated with the projection func-
tion using Ds as an optimization function like stochastic 
gradient descent. Equation 2 points out the self-training 
based on unsupervised data. The activation â(xi) consists 
of {â(x1

i
),… , â(xn

i
)} with each â(xi) ∈ ℝ forms the CRFS’s 

semantic property. Each dimension of an activation vector 
â(xi) is the transformation of input xi using the base bj , where 
j is independent of size of input xi . The base b is learned 
through a smooth approximation of L1 sparsity penalty a(i). 
Even though the approximation does not lead to sparse fea-
tures, Raina et al. used re-calibrated � value before comput-
ing a labeled data representation and improved the classifica-
tion accuracy [69]. This particular base vector definition we 
used as the projection function P(.) is not dependent on the 
supervised nature of neural network models typically used. 
For evaluation purposes, we consider the base b as learned 
based on one of the convolution network layer, where b is 
generated based on the learning on the seen data. Projection 

(2)
â(xi) = P(xi)

â(xi) = argmin(a(i))||xi −
∑
j

a
(i)

j
bj||22 + 𝛽||a(i)||1

(3)

where Ds = {xi, yi}
ms

i=1

Ds ���������→
Pb

D̂s

D̂s = {(â(xi), yi}
ms

i=1

function P(.) can potentially be mapped to a convolution 
network layer or a residual network layer. The advantage of 
having a projection function purely for mapping; any pre-
trained models can be used in it is place. The pre-trained 
model does not influence the ability of the projection func-
tion mapping, instead of contributing to the optimization 
of the base vector. The projection function, independently 
learned from the source classes, is playing an integral role 
in the CRL model.

Class Representative Generation

Class representatives (CR) are generated using the nearest 
prototype strategy by aggregating feature vectors. As the 
name specifies, class representatives create representatives 
from the instances projected in class representative feature 
space CRFSn using Projection Function P(.). Class repre-
sentatives (CR) and the instances share the same feature 
space CRFSn . The nearest mean feature vector with the 
instances of the given class, i.e., class representatives, is 
computed for every class. Correctly, the average feature 
mean operation was used to summarize the instances of 
classes. The CR is an aggregated vector of the mean features 
for all the elements in the feature maps.

For the CR generation, we considered the transformed 
source dataset D̂s as the input (as shown in Eq. 2). As we 
emphaze on the distributed and parallel processing with 
CRs, we considered the individual activation vector â(xi) 
such that yi = c where c ∈ � , that will be used in formulating 
the CR generation as shown in Eq. 4.

Equation 4 shows the feature-wise CR generation in CRFS. 
For the CR generation, the projected source data D̂s is con-
sidered. For each class c ∈ � , the projected source data 
{(â(xi), yi} is considered such as yi = c . Each feature is rep-
resented in the CRFSn dimension ranged 1 to n, the average 
represents the corresponding dimension for CR(c).

(4)

D̂s = {(â(xi), yi}
ms

i=1

CR(c) =

⎧⎪⎪⎨⎪⎪⎩

CR1 =
1

ms

∑ms

i=1
â(x1

i
), if yi = c

CR2 =
1

ms

∑ms

i=1
â(x2

i
), if yi = c

⋮

CRn =
1

ms

∑ms

i=1
â(xn

i
), if yi = c

CR(c) = {CR1, CR2, ..., CRn}, ∀c ∈ �
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Class Representative Inference

Zero‑Shot Learning Setting

The ZSL setting for class representative classifier (CRC) is 
designed with the pre-learned projection function P of the 
source or seen dataset Ds on the unseen or target dataset Dt . 
The CR-based classifier involves the following three steps: 
projection function (as describes in "Projection Function"), 
class representative generation (as described in "Class 

Representative Generation"), and inference function L. 
Algorithm 1 presents the projection function Pb that is pre-
trained on the source dataset Ds and used to map the target 
Dt instances and the test data point x∗ to class representative 
feature space CRFSn . As is true for the projection meth-
ods, each unseen class needs at least one labeled instance 
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to create a prototype, i.e., class representative [1]. The class 
representative creation is independent of the number of 
instances per class, with the only requirement of having at 
least one labeled instance per class.

The aggregation of projected unseen dataset D̂t creates 
the class representative for all classes c ∈ �  . As shown in 
Eq. 4, the dimensions of the projected are maintained for 
the class representative as well. The class representatives 
CR(c)∀c ∈ �  and the new data point â(x∗) reside the same 
feature space, i.e., class representative feature space CRFSn . 
For the inference, the cosine similarity between the class 
representative in T and projected new data point â(x∗) is 
calculated. The label information is retained and coupled 
with each class representative. For the final inference step, 
the label of the class representative with the highest cosine 
similarity is returned as the predicted class y∗ for the new 
data point x∗ . The CRC classifier uses an instance-based 
projection method and inference method with no learning 
for unseen data or any new data as an ideal zero-shot learn-
ing setting.

Algorithm 2 shows the variation of Algorithm 1, incorporat-
ing the generalized zero-shot learning(G-ZSL) setting. In the 
G-ZSL setting, the source dataset, target dataset, and new 
data point are projected into the feature space for the projec-
tion function. The projection method used here is based on 
pre-trained base vectors b learned from the source or seen 
dataset. Having projected both seen and unseen dataset onto 
the class representative feature space CRFSn , class repre-
sentatives are generated for all class c ∈ � ∪ �  as shown 
in Eq. 4. The class representative CR(c)∀c ∈ � ∪ �  and the 
projected data point â(x∗) reside in the same feature space 
CRFSn for the inference step. The inference step involves 
getting c, where the class representative CR(c) has the high-
est cosine similarity with the data point, leading to the con-
clusion that data point is predicted with the label c.

Generalized Zero‑Shot Learning
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Model Parallelism

Algorithm 3 describes the parallelized zero-shot learning 
inference for the class representative classifier. As there is 
no learning for the target classes and no dependence between 
classes, CRC can support parallel processing for even larger 
datasets. The algorithm is designed with the CRCW (con-
current read concurrent write) model, which allows the par-
allel computing, including I/O, with the shared memory and 

processors. The parallelized class representative classifier 
function CRC is composed of the following major steps:

First, involves in the declaration of the global variables, 
broadcasting certain inputs, and distribution of other inputs. 
Global variables are the variables that can be accessed and 
updated across the parallel process. Algorithm 3 declares 
predicted label set Y and corresponding cosine similar-
ity score set SCORE as global variables. The broadcast 
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variables are the ones that represent the new projected data 
point â(x∗) and pre-trained base vectors b for the projection 
function P(.).

Second, the target data points Dt and the target domain �  
gets distributed into smaller sets of classes using distribute(.) 
function. The distribute function splits the target classes �  
and the corresponding data points Dt into smaller sets of 
classes Cp and their corresponding data points Dp . The distri-
bution can be aligned according to the CRL’s parallelization 
capacity. The class set Cp can be as small as a single class 
due to the independence between classes in target classes 
c ∈ �  . Each processor works with each set of data points Dp 
and classes Cp to create class representatives CR(c) for all 
classes in Cp and compare with the new data point â(x∗) . At 
the end of each parallel execution, a predicted label yp and 
the cosine similarity scorep between CR(yp) and â(x∗) are 
returned. The predicted label and score are accumulated onto 
the global variables, Y, and SCORE. The final resultant label 
y is obtained using the reduction step where the label with 
the highest cosine similarity in Y, SCORE, is determined 
(refer to Eq. 9 in Algorithm 3).

Validation using Domain Adaptation

We validate the domain compatibility by checking the com-
patibility between source (seen) domain and target (unseen) 
domain inspired from the existing domain adaptation tech-
niques [70, 71]. The domain adaptation problem arises when 
the source domain data distribution is different from target 
domain data distribution. Domain adaptation aims to learn a 
predictor function in given a feature space using the source 
domain and apply it to the target domain. The hypothesis 
of domain adaptation is verified by measuring the distance 
between using the probability distribution obtained as the 
conditional probabilities of the outcome given predictor 
between source and target [70, 71].

In this paper, we use domain adaptation to validate 
the class representative distribution of source and target 
domains. The domain adaptation typically is used with the 
predictor function and the instance distribution of source and 
target to measure the divergence. Unlike this conventional 
way, we formalize the domain distribution using the cosine 
similarity between CRs of the sources classes and the tar-
get classes. The domain distribution using cosine similarity 
between CRs determine the degree of the similarity between 
the classes, i.e., if the current feature space is favorable for 
the discrimination of classes within the source and target 
domains. In this way, we can determined if the target domain 
has the same CR-to-CR cosine similarity distribution as the 
source domain.

Figure 2 shows an abstract three dimensional (X,Y,Z) 
vector space model of the CR cosine similarity distribution. 
Note that the dimensions of vector space model corresponds 

to the n dimensions of CRFS. We consider three classes 
(i,j,k) from source domain and their corresponding class rep-
resentatives ( CRi,CRj,CRk ). We also consider three classes 
n(i’,j’,k’) from target domain and their corresponding class 
representatives ( CRi′ ,CRj′ ,CRk′ ). The cosine similarity 
between each pair of class representative is calculated to 
each domain distribution in the class representative feature 
space (refer to Eq. 5).

The distribution differences over the instances in a given 
domain (i.e., either source or target) [70, 71] can be used 
for improving the target learner performance as the domain 
adaptation process. The distribution is the probability distri-
bution over the prediction function; instead, we use the dis-
tribution of cosine similarity. ESZSL in [36] firstly defined 
zero-shot learning as a domain adaptation problem with the 
probability distributions over the instances. Romera et al. 
presented the theoretical model using A-distance as the 
measurement between the source and target distributions. 
The A-distance is defined as the total variation or the L1 
norm between the distribution within a given measurable 
subset A with the domains [72].

Intuitively, A-distance shows the most substantial change 
in the similarity of a given set. The set can be considered as 
a manual choice or conditional filtering, and we show con-
ditional filtering set in Table 4. The first conditional set is 
obtained by filtering the higher cosine similarity ∀(0.5 ≤ �) 
that indicates the highly similar CRs, leading to the potential 
mis-classification between the classes. Similarly, the second 

(5)

f (�) = {�i,j, �i,k, �k,j}

f (� ) = {�i�,j� , �i�,k� , �k�,j� }

where �i,j = cos(CRi,CRj)

Fig. 2   Source domain—Cosine similarity distribution
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conditional set is generated by filtering lower cosine similar-
ity (0 < 𝜃 < 0.5 ), which indicates the class representative 
pair with the least similarity.

The Kolmogorov-Smirnov (KS) test is used to measure vari-
ation across the entire distribution, whereas A-distance is 
used to measure variation across a subset obtained from 
both the distribution for a given condition. As shown in 
Eq. 6, f (�) and f (� ) are the distribution functions based on 
the cosine similarity distribution for the source and target 
domain, respectively. Vks defines the Kolmogorov-Smirnov 
distance between the entire source CR distribution and 
target CR distribution. VA defines the A-distance between 
the source and target domain on a given subset of data. For 
VA and Vks , a lower score means the target is closer to the 
source, and the higher score means the targets are further 
away from the source. The higher score indirectly indicates 
incompatibility between the target and the source, and the 
classification with the target might perform poorly because 
of the far distance, i.e., with a lower accuracy.

Experiments

Datasets

The CRL model was evaluated using six different target 
(unseen) datasets in two different settings. For our experi-
ments, ImageNet-1K (2015), with 1000 classes [14], was 
used as the source dataset. The target dataset info is shown 
in Table 3. We considered four standard zero-shot learning 
(ZSL) datasets and two classification datasets for the target 
dataset. The four ZSL datasets include Animals with Attrib-
utes-2 (AWA2), Caltech-UCSD Birds-200 (CUB200), Scene 
Attribute dataset (SUN_A), and ImageNet-360 (IN360). 
IN360 includes 360 unique classes present in ImageNet-1K 
(2010) version, which is different from the source domain 
dataset, ImageNet-1K (2015) [42, 50, 63]. In addition, there 

(6)
Vks = sup |f (�) − f (� )|
VA = 2 sup

A

|f (�A) − f (�A)|

are the two classification datasets, including Caltech-101 
(C-101), Caltech-256 (C-256).

Setting-1: We investigated the effects of the seen and 
unseen split for Setting-1 similar to work presented by Xian 
et al. [8]. The seen and unseen data in Setting-1 are prepared 
for a fair comparison with the state-of-the-art ZSL mod-
els. It is noted that the seen and unseen split is mainly for 
evaluation purposes. We want to highlight that there is no 
training activity happening with the unseen data in the CRL 
model since the ImageNet-1K pre-trained models are used 
as projection function as a default method (refer to "Pre-
trained Model as Projection Function"). The ImageNet-1K 
pre-trained model should be sufficient for inference with the 
seen and unseen data for this setting.

Setting-2: The Setting-2 is a unique setup for CRL, 
where the source domain (ImageNet-1K) included in the 
pre-trained model is considered as seen classes. Typically, 
the G-ZSL setting includes both source and target classes 
as a class set during inference. For this G-ZSL setting, we 
argue that ImageNet-1K should be included with the given 
dataset in the class set as it is present during the learning of 
projection function (as we are using a pre-trained model). 
As CRL focuses on no learning for unseen classes, Table 3 
Setting-2 shows the ImageNet-1K as the seen classes (source 
domain) and each dataset’s categories as the unseen classes 
(target domain).

Pre‑Trained Model as Projection Function

As described in "Projection Function", the projection func-
tion P(.) mapping the input images into the class representa-
tive feature space. For the experiments, we use widely avail-
able image classification models that are pre-trained using 
ImageNet-1k (2015). MATLAB’s pre-trained deep neural 
networks [77] were used as projection functions, includ-
ing Inception-V3 [78], ResNet101 [79], VGG-19 [80] and 
GoogleLeNet [81]. One of the CNN models was defined as 
the projection function (pre-trained with ImageNet-1K) for 
our experiments. The last convolution layer from the CNN 
model was considered as the base vector b. The j dimensions 
are based on the input size of the layer, and the layer’s output 

Table 3   Benchmark dataset: 
seen and unseen classes

Dataset #Class #Image Setting-1 Setting-2

Seen Unseen Seen Unseen

C-101 [73] 101 8677 – 1000 101
C-256 [74] 256 30,608 – 1000 256
AWA2 [8] 50 30,475 40 10 1000 50
CUB200 [75] 200 11,788 150 50 1000 200
IN360 [14] 360 2,44,800 1000 360 1000 360
SUN_A [76] 806 14,340 697 109 1000 806
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dimensions become n dimensions of class representative fea-
ture space CRFS.

Evaluation Metrics

For zero-shot learning setting ("Problem Setup"), we use the 
average of class-wise accuracy AccT and flat-hit@k. Equa-
tion 7 shows that class-wise accuracy is calculated by the 
average of correct predictions for each class. This evaluation 
was used to interpret the accuracy of the best performing 
class and the worst-performing class. Flat-hit@k evaluation 
is defined as the percentage of the test images for which the 
model returns the matched label in its top k predictions. It is 
useful to determine whether the CRFS is crucial to get better 
accuracy by considering k nearest class representatives to a 
given instance.

For the G-ZSL setting, we used the harmonic mean (H) of 
the source dataset accuracy ( Acc′

S
 ) and the target dataset 

accuracy ( Acc′
T
 ) defined in [7, 8]. Acc′

S
 is calculated by con-

sidering the label space to be both source and target ( � ∪ �  ). 
Similarly, Acc′

T
 is calculated by considering correct predic-

tions of target instances (Eq. 8).

Model Parallelism and System Specifications

A parallel processing is performed to extract features class 
by class and build a CR for each category ("Model Paral-
lelism"). The CR generation was implemented parallel with 
Spark’s resilient distributed datasets (RDDs), a collection of 
data points partitioned across the nodes of the cluster. The 
distribute function was implemented as the RDD partition 
with the condition that all data points of a given class are 
present in the same partition. The CR generation was imple-
mented in the map stage, where each partition is independent 
of each other.

The pre-trained projection method was implemented on 
a single GPU, which is Nvidia GeForce GTX 1080 (with 
12 GB GDDR5X RAM) on MATLAB 2018b version. The 
CR generation and CR-based inference were implemented 
using Spark 2.4.3 version [82]. The parallel and batch pro-
cess was conducted through the RDD based parallelism on 
a single CPU with 4 GHz Intel Core i7-6700K (quad-core, 

(7)AccT =
1

‖T‖
‖T‖�
c=1

# correct predictions in c

#samples in c

(8)

H =
2 ∗ Acc�

S
∗ Acc�

T

Acc�
S
+ Acc�

T

Acc�
S
∶ � ⇒ � ∪ �

Acc�
T
∶ � ⇒ � ∪ �

8MB cache, up to 4.2 GHz with Turbo Boost) and 32 GB 
DDR4 RAM (2133 MHz) (i.e., local parallelism of 4 cores).

Results and Evaluation

Domain Adaptation

The Kolmogorov-Smirnov Test (KS-Test) and A-distance 
are used to identify the type of the transfer learning [83] 
happened during the zero-shot learning process from a given 
source dataset and target dataset. For this experiment, Incep-
tion-V3 based CRs were considered. Each CR was generated 
using ten labeled instances. Homogeneous transfer learning 
happens when the source and target feature spaces have the 
same attributes, labels, and dimensions. In this experiment, 
ImageNet-1K is identified as homogeneous transfer learning 
with Vks and VA scores as zero. If the source is identical to 
the target, it is not typically considered as transfer learn-
ing. The CRL model takes just the feature space established 
based on a pre-trained projection method but it uses a infer-
ence method that is not softmax. Thus, the CRL model in 
ImageNet-1K is identified as homogeneous transfer learning.

Heterogeneous transfer learning happens when the source 
and target domains share limited or no features or labels, 
and dimensions of the feature space differ as well. All the 
target domains can be considered as the heterogeneous trans-
fer learning when no or little label overlap with the source 
domain, i.e., ImageNet-1K. The critical observation is if 
the heterogeneous transfer learning negatively impacts the 
target domain performance, that brings the issue of nega-
tive transfer. Negative transfer learning happens when the 
target domain’s performance has negative implications on 
knowledge transfer from the source domain. The negative 
transfer learning is generally found when the source domain 
has the minimal similarity with the target domain. The KS-
test and A-distance is used to identify if the target domain 
has a negative transfer.

With the highest score in all variations i.e., Vks and both 
VA , the dataset CIFAR-100 has the negative transfer. Fig-
ure 3 shows the target domain data are projected on the 
semantic space that is quite distinct from the source domain. 
Although the CIFAR-100 is semantically relevant to other 
datasets, the CRL space of CIFAR-100 is divergent from 
the source space in terms of image modality, such as image 
quality and image size. The size of CIFAR-100 images is [32 
× 32] while one of the source domain ImageNet-1K is [400 
× 400]. More specifically, the dimension of the projection 
method Inception-V3 is [299 × 299].

Figure 4 demonstrates the similarity distribution in the 
feature space of the source and target datasets. This figure 
further confirms the existance of negative transfer. The next 
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dataset which might have negative performance is CUB200, 
which a score of 0.9737 on cosine similarity greater than 0.5. 
This indicates that the distribution created by the high simi-
lar class representatives in CUB200 is very different from 
one in ImageNet-1K. This distribution disparity can also 
be observed in Fig. 3, where CUB200 forms a highly dense 
cluster in all the figures. It supports the nature of the dataset 
as CUB200 is specific to bird categories, whereas ImageNet-
1K has a variety of animate and inanimate objects.

Table 4 shows that the accuracy of datasets does not per-
fectly correlate with the scores Vks and VA . This lack of cor-
relation is due to the size of the dataset i.e., several classes. 

Figure 5 shows the class-wise distribution of the dataset, 
and the star marker indicates the number of classes. The 
SUN_A dataset’s performance is dependent on multiple fac-
tors such as the size of the dataset, the standard deviation 
of the class-wise accuracy, and the domain compatibility 
score. The standard deviation is class-wise accuracy, and the 
significant difference between two VA can be correlated. This 
inconsistency is due to a lack of quality images for certain 
classes. Figure 6 shows an example of two best performing 
and two worst-performing classes.

Fig. 3   t-SNE visualization of class representatives

Fig. 4   Cosine similarity 
distribution of the benchmark 
datasets
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Comparison with ZSL Algorithms

We have evaluated the CRL model in terms of the three 
perspectives, such as ZSL performances with the six dif-
ferent benchmark datasets, ZSL performance with an 
increasing number of instances, and comparison with the 
state-of-the-art ZSL algorithms. The two types of the CRL 
model (the projection methods) was included Inception-V3 
based model and VGG-19 based model. Table 5 and Fig. 7 
show the CRL’s ZSL performance with flat-hit@k using 
Inception-V3 projection with the dataset under Setting-2. 
Table 6 shows the comparison of the state-of-the-art ZSL 
algorithms using the VGG-19 model, considering only the 
IN360 dataset under Setting-2. The experiments show the 

CRL model’s performance for the ZSL task that recognizes 
the target (unseen) labels without having the source (source) 
labels. Table 5 shows two versions of the recognition tasks 
with the testing data from the target set ( �  ); � ⇒ �  when 
the testing label could be only from the target set y∗ ∈ �  
and � ⇒ � ∪ �  when the testing label could be from both 
the source set and target set y∗ ∈ � ∪ �  . For this experi-
ment, we consider all instances (70%) from the dataset to 
generate class representatives. The results show the influ-
ence of an increasing number of labels in the dataset to the 
ZSL accuracy similar observation was made from Fig. 5. 
When comparing the flat-hit@k with k = 1 (Top-1) and 
k = 2 (Top-2), we can see an average of 21% increase from 
Top-1 accuracy to Top-2 to accuracy. This increase signi-
fies that CRFS provides a well-formed neighborhood, with 
a 21% increase chance of getting the correct prediction at 
the second nearest class representative. Comparing the two 
different recognition tasks, we note the significant drop in 
efficiency is shown when the source set was also considered. 
Note that these results were based on Setting-2, source set 
is ImageNet-1K. The number of classes in � ∪ �  would be a 
minimum of 1050 (case of AWA2 dataset) and a maximum 
of 1806 (case of SUN_A dataset). A negative correlation 
between the number of classes and accuracy was observed.

Figure 7 shows the performance of CR-Inception-V3 with 
the images at a specified number ranged from one to ten 
from each class. For this experiment, we considered only 
( � ⇒ �  ) setting. Interestingly, the Top-1 accuracy with just 
ten images reaches higher than 75% of the accuracy com-
pared to the accuracy in Table 5, which considers 70% of 
the data.

Table 6 shows the state-of-the-art zero-shot learning 
(ZSL) algorithms to be compared with CRL in Table 1. 

Table 4   Source and target domains: accuracy, kolmogorov-smirnov 
test scores, A-distance high KS test score indicates negative transfer 
learning

Acc
T
 is from CRL model based on Inception-V3 model (Setting-2)

Target domain Source and target comparison

Dataset Acc
T
 

(%)
V
ks

VA ∀�(0.5 ≤ �) VA ∀𝜃(0 < 𝜃 < 0.5)

ImageNet-
1K

73.7 0 0 0

C-256 70.5 0.0921 0.0908 0.1132
C-101 91.2 0.1570 0.1350 0.2767
SUN_A 31.9 0.3560 0.1398 0.6205
AWA2 76.8 0.4120 0.2848 0.7228
IN360 38.1 0.4580 0.5877 0.9009
CUB200 40.1 0.4740 0.9737 0.2450
CIFAR-100 57.9 0.9125 1.6429 1.3115

Fig. 5   Accuracy distribution of 
8 benchmark datasets
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Fig. 6   Inference performance 
for two best and two worst cases

Table 5   Accuracy for zero-shot 
learning tasks (Setting-2)

Dataset Recognition task accuracy Dataset Recognition task accuracy

Flat-hit@K � ⇒ �  (%) � ⇒ � ∪ �  (%) Flat-hit@K � ⇒ �  (%) � ⇒ � ∪ �  (%)

C-101 1 91.2 86.4 CUB200 1 40.1 38.4
2 97.4 93.5 2 53.9 52.5
5 98.5 97.0 5 71.0 69.9

C-256 1 70.5 55.6 SUN_A 1 31.9 28.5
2 78.3 69.2 2 43.3 40.4
5 84.7 78.7 5 58.7 56.3

AWA2 1 76.8 48.6 1 38.1 28.3
2 87.9 72.9 2 47.6 40.1
5 95.5 86.5 5 59.7 54.3

Fig. 7   Accuracy on CRL model 
based on increasing instances in 
Setting-2 ( � ⇒ � and � ⇒ �)
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This experiment considered the CRL model built using pre-
trained VGG-19 as a projection method with ImageNet-1K 
as a source and IN360 as the target. Table 6 shows that the 
performance of the CRL model is superior in both cases of 
3000 instances and all instances. In the 3000 instance case, 

the CRL model’s Top-1 shows a 27% increase compared to 
the top performer, Deep WMM-Voc. In all cases, the CRL 
model’s Top-1 accuracy is significantly higher than the oth-
ers; on average, the CRL model’s Top-1 accuracy is consid-
erably higher than Deep WMM-Voc’s.

Table 6   Comparison between 
the CRL model with VGG-19 
model for IN360 (Setting-1)

*Results for SOTA Models are from Fu et al. [42]. The CRL model is configured with the same settings, 
e.g., VGG-19 with 3000 instances (three images per class) and all 50000 instances, (50 images per class)

ZSL type Methods 3000 Instances All instances

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

Projection method CRL (Ours) 11.78 25.52 31.6 55.1
DWV [42, 63] 9.26 21.99 10.29 23.12
SAE [45] 5.11 12.26 9.32 21.04
Deep-SVR [4] 5.29 13.32 5.7 14.12
Embed [46] - - 11.0 25.7
ConSE [6] 5.5 13.1 7.8 15.5

Correspondence ESZSL [36] 5.86 13.71 8.3 18.2
DeViSE [34] 3.7 11.8 5.2 12.8

Relationship AMP [35] 3.5 10.5 6.1 13.1

Table 7   Accuracy of 
generalized zero-shot learning 
algorithms with Setting-1

Setting-1: CRL-IN: Inception V3, CRL-RL: ResNet-101: AWA2, CUB200, SUN_A and LeNet: IN360 
Results for SOTA G-ZSL Models are from Guan et al. [50]
Bold values indicate that CRL-Inception-v3 based model (with no learning) performs better for target class 
accuracy for AWA2, CUB200 and IN360 and for SUN_A performs almost as good as other models

Model AWA2 (Top-1) CUB200 (Top-1) SUN_A (Top-1) IN360 (Top-5)

Acc
′
S

Acc
′
T

HM Acc
′
S

Acc
′
T

HM Acc
′
S

Acc
′
T

HM Acc
′
S

Acc
′
T

HM

Instance-based projection method
   CRL-IN (Ours) 86.0 90.8 88.3 73.3 70.4 71.8 39.7 41.2 40.5 89.4 87.5 88.4
   CRL-RL (Ours) 87.4 83.5 85.4 47.5 54.7 50.8 37.8 41.7 39.6 75.5 70.9 73.1
   Embed [46] 84.7 32.8 47.3 57.9 19.6 29.3 34.3 20.5 25.7 72.2 22.6 34.4
   SAE [45] 71.3 31.5 43.7 36.1 28.0 31.5 25.0 15.8 19.4 89.4 21.8 35.1
   CMT [44] 86.9 8.4 15.3 60.1 4.7 8.7 28.0 8.7 13.3 70.2 11.3 19.5

Instance-based synthesizing method
   BPL+LR [50] 69.4 60.9 64.9 71.6 42.7 53.5 36.9 39.2 38.0 95.5 26.1 41.0
   CADA-VAE [48] 72.8 57.3 64.1 53.5 51.6 52.5 35.7 47.2 40.7 74.6 25.2 37.7
   Cycle-GAN [49] 64.0 56.9 60.2 61.0 45.7 52.3 33.6 49.4 40.0 81.3 24.4 37.5
   GAN+Softmax [47] 61.4 57.9 59.6 57.7 43.7 49.7 36.6 42.6 39.4 79.1 24.2 37.1
   GAN+ALE [47] 57.2 47.6 52.0 59.3 40.2 47.9 31.1 41.3 35.5 78.8 23.4 36.1

Classifier-based relationship method
   SynC [52] 87.3 8.9 16.2 70.9 11.5 19.8 43.3 7.9 13.4 94.3 10.7 19.2
   SSE [51] 80.5 7.0 12.9 46.9 8.5 14.4 36.4 2.1 4.0 84.8 10.8 19.2

Classifier-based correspondence method
   SP-AEN [53] 90.9 23.3 37.1 70.6 34.7 46.5 38.6 24.9 30.3 84.8 20.4 32.9
   ALE [5] 76.1 16.8 27.5 62.8 23.7 34.4 33.1 21.8 26.3 72.4 22.1 33.9
   DeViSE [34] 68.7 13.4 22.4 53.0 23.8 32.8 27.4 16.9 20.9 68.9 21.8 33.1
   SJE [33] 74.6 11.3 19.6 59.2 23.5 33.6 30.5 14.7 19.8 70.1 19.5 30.5
   LATEM [37] 71.7 7.3 13.3 57.3 15.2 24.0 28.8 14.7 19.5 77.3 18.8 30.2
   ESZSL [36] 75.6 6.6 12.1 63.8 12.6 21.0 27.9 11.0 15.8 69.1 16.5 26.6
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Generalized Zero‑Shot Learning

Table 7 shows the performance of the generalized zero-shot 
learning (G-ZSL) model comparing CRL (built on Incep-
tion-v3) to the four state-of-the-art G-ZSL models. The 
SOTA models for AWA2, CUB200, and SUN_A were built 
on ResNet-101, and the SOTA model for IN360 was built 
on Google-LeNet. The number of images for the G-ZSL 
model datasets is as follows: 600 images per class for AWA2, 
50 images per class for CUB200, 20 images per class for 
SUN_A, and 180 images per class for IN360. The number 
of images is the same as the setting specified by Guan et al., 
for fair evaluation [50].

Table 7 also shows the accuracy of the target (unseen) 
and harmonic mean of the CRL model outperforms the 
other SOTA models, including the BPL+LR model, which 
includes synthesized data. On average, the accuracy of CRL 
was 20% better than the other SOTA models. Compared to 
a fine-grained dataset, the CRL model performs better in 
the coarse datasets, such as SUN_A with only 40.5% of 
the Harmonic Mean Accuracy. The CRL accuracies for the 
seen classes have been improved with all datasets excluding 
IN360. For the IN360 dataset, BPL+LR shows the high-
est accuracy of 95.5%, and CRL shows the second-highest 
accuracy of 89.4%. The pattern of source accuracy being 
better than the accuracy can be observed in works, such as 
the instance-based projection method, the classifier-based 
correspondence method, and the classifier-based relation-
ship method. Reportedly difference in accuracy between 
source and target domain is around 60% in those three types 
except CRL. The CRL model is an instance-based projec-
tion method that still reports an accuracy equivalent to the 
instance-based synthesizing method. In the most cases of 
the experiments, the CRL model outperforms the Synthe-
sizing Methods. The most significant advantage of CRL is 
a simple, accuracy, and scalable solution, compared to the 

synthesizing methods that are complex and time consuming 
with generative or auto-encoder models.

CRL Time Performance

The CRL model’s performance is evaluated by comparing it 
with the Inception-V3 pre-trained model retrained with the 
target domain. The CRL model’s performance is calculated 
according to the projection time ("Projection Function"), CR 
model generation time (refer to "Class Representative Genera-
tion") and CR-based inference time (refer to "Class Representa-
tive Inference"). For this experiment, we use Inception-V3 as 
our pre-trained projection. The class representative for this 
experiment was built with 70% of the given dataset. Note that 
since most of the ZSL methods do not report time performance, 
image classification setting was considered. The CRL-based 
image classification setting is the same as the CRL-based ZSL 
setting ( � ⇒ �  ) since no learning happens for either of them. 
Our previous work [68] reports more details on the comparative 
evaluation of the CRL model with others. The comparison is 
with the Inception-V3 pre-trained model from MATLAB (same 
as CRL’s projection method), where the last layer of softmax is 
retrained with the new datasets.

Table 8 shows the comparison of the CRL model’s overall 
time vs. the time taken for retraining the dataset using the 
Inception-V3 pre-trained model. Both pre-trained models 
were run on the same system specification. Pre-training of 
the Inception-V3 Model was stopped at a reported number 
of epochs as the time taken was significantly higher than 
the CRL model’s. The CRL model with three datasets 
(CalTech-101, CalTech-256, and CIFAR-100) have an aver-
age of 99% time reduction that is a significantly reduced time 
compared with that for the original Inception-V3 model. 
Within the same time window and based on the same pre-
trained model, the Inception-V3 model performance has not 
reached the accuracy published in [84]. The CRL model’s 

Table 8   Transfer learning 
performance analysis: CRL vs. 
Inception-V3 [77] pretrained 
model: Inception-V3 with 
ImageNet-1K

* Time is calculated in minutes
Bold values indicate the CRL model takes significantly less time with comparable or even better target 
accuracy than traditional transfer learning and retraining of Inception-V3 on target classes.

Target CRL-based ZSL setting ( � ⇒ �) (Ours) Inception-V3 [77]

Step Time* Acc
T
 (%) Time* Epoch Acc

T
 (%)

C-101 Projection 5.35 7.2 94.4 4257.91 40 88.7
CR generation 1.51
Inference 0.33

C-256 Projection 10.23 13.88 78.2 14193.96 14 59.3
CR generation 1.9
Inference 1.75

CIFAR-100 Projection 13.2 15.73 57.9 26941.85 10 50.3
CR generation 0.93
Inference 1.6
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overall time shows genuinely outstanding achievements in 
the target domains, even if the models were never learned 
from the target domain.

Discussion

The big question of whether our work can be categorized as ’zero-
shot’ learning. Some researchers understand zero-shot learning in 
a sense there is no gradient updates [1, 39], including our work. 
We define CRL model as zero-shot since neither unseen data, 
unseen labels nor unseen prototypes are used during training 
phase. The unseen prototypes are generated post training with 
zero learning. CRL is similar to the generative model in terms 
of building a prototype class by class, using a class representa-
tive criterion [85, 86]. However, they are different since the CR 
generation is not based on probabilistic, but based on the general-
ized mean of aggregated features. For the classification step, a 
standard projection approach is used to compare the prototypes 
with each other. Compared to existing ZSL algorithms, CRL is 
required sorely visual data, rather than both visual data and auxil-
iary information. Still, higher accuracy can be achieved compared 
to the state-of-the-art research in ZSL and G-ZSL. The CR gen-
eration was obtained by extracting the abstraction of each feature’s 
distribution in the class representative feature space CRFS for the 
target domain. For the purpose, we used a straight-forward aggre-
gation approach. Thus, the class representative learning model 
might be susceptible to outliers, sample size bias, and hubness. 
The CRL model was extremely strong at the flat-hit@k with k = 2 
and k = 5 compared to k = 1 (Table 5). This indicates that the 
high similarity between some CRs might lead to misclassification.

To overcome the limitation of the CR generation, an advanced 
optical model such as the Fisher vector (FV) and Gaussian mix-
ture (GM) models might be incorporated in the future. We will 
consider using unsupervised deep learning techniques, such as 
the auto-encoder, for learning efficient data codings and reduc-
ing the CR’s feature space to a more optimal representation. We 
can further extend it to determine the CR vectors’ common and 
unique features and find the weights that maximize the unique-
ness between CRs. Currently, CRL is mainly based on the use of 
visual data only for ZSL. In the future, we will extend the CRL 
model to handle multi-modal data distributions with text data and 
image data. The CRL model has a potential extension to have the 
open set recognition with � ≫ � . Currently, CRL has a openness 
factor of 0.278 [87].

Conclusion

This paper proposes the class representative learning (CRL) 
that projects the abstract features extracted from a deep learn-
ing environment to the high-dimensional visual space. In 
the CRL model, class representatives (CRs) are designed to 

represent potential features for given data from the abstract 
embedding space. A projection-based inferencing method is 
intended to reconcile the dominant difference between the 
seen classes and unseen classes. The CRL model has three 
distinct advantages than existing ZSL approaches. (1) There 
is no dependence among CRs so that they can be built in par-
allel and used freely, depending upon the context. (2) Unlike 
other ZSL approaches, the CRs can be generated only using 
the abstract visual space by eliminating the need for semantic 
spaces or auxiliary information. (3) The abstract embedding 
space of the source (seen classes) is solely used to project the 
instances of the target (unseen classes) without any learn-
ing involved. The current research demonstrated the benefit 
of using the class-based approach with class representatives 
for ZSL and G-ZSL on eight benchmark datasets. Extensive 
experimental results confirm that the proposed CRL model 
significantly outperforms the state-of-the-art methods in 
both ZSL/G-ZSL. The CRL model is presented herein as an 
instance-based projection-method zero-shot learning method, 
but surprisingly this outperforms complex state-of-the-art 
instance-based synthesizing methods.
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