
Vol.:(0123456789)

SN Computer Science (2021) 2:113
https://doi.org/10.1007/s42979-021-00514-x

SN Computer Science

ORIGINAL RESEARCH

The Coupling Effect of Lipschitz Regularization in Neural Networks

Nicolas Couellan1,2 

Received: 10 November 2020 / Accepted: 8 February 2021 / Published online: 25 February 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. part of Springer Nature 2021

Abstract
We investigate the robustness of feed-forward neural networks when input data are subject to random uncertainties. More
specifically, we consider regularization of the network by its Lipschitz constant and emphasize its role. We highlight the
fact that this regularization is not only a way to control the magnitude of the weights but has also a coupling effect on the
network weights across the layers. We claim and show evidence on regression and classification datasets that this coupling
effect brings a trade-off between robustness and expressiveness of the network. This suggests that Lipschitz regularization
should be carefully implemented so as to maintain coupling across layers.

Keywords  Artificial neural networks · Deep learning · Robustness · Regularization · Lipschitz constant

Introduction

With the increasing interest in deep neural networks, a lot of
research work has been focusing lately on their sensitivity to
input perturbations [3, 10, 14, 15]. Most of these investiga-
tions have highlighted their weakness to handle adversarial
attacks and the addressed means to increase their robustness.
Adversarial attacks are real threats that could slow down or
eventually stop the development and applications of these
tools wherever robustness guarantees are needed. If input
uncertainty is not adversarial but simply generated by the
context and environment of the specific application, deep
networks do not show better behavior in terms of robustness.
If no immunization mechanism is used, their generalization
performance can greatly suffer. Actually, most of the tech-
niques that are used to handle adversarial attacks can be also
applied in this context. These techniques can mostly be clas-
sified into two categories: robust optimization techniques
that consider an adversarial loss [10, 15] and regularization
techniques that penalize noise expansion throughout the net-
work [4, 7, 12, 18, 21, 22].

In this article, we address the second type of techniques
where robustness can be achieved by ensuring that the
Lipschitz constant of the network remains small. The net-
work can be seen as a mapping between inputs and outputs.
Its robustness to input uncertainties can be controlled by
how much the mapping output expands the inputs. In the
case network with Lipschitz continuous activations, this is
equivalent to controlling the Lipschitz constant of the whole
network mapping.

Expressiveness is another important property of the neu-
ral network. It defines the ability of the network to represent
highly complex functions. It is achieved by depth [2, 13]. Of
course, such ability is also to be balanced with its generaliza-
tion power to avoid over-fitting during training. On one hand,
if the weights of the networks are free to grow too high,
the generalization power will be low. On the other hand, if
the weights are overly restricted, the expressiveness of the
network will be low. Usually, this trade-off is controlled by
constructing a loss that accounts for both training error and
generalization error, the so-called regularized empirical risk
functional. A parallel has been established between robust-
ness and regularization [20]. Actually in the case of support
vector machines, it has been shown that both are equivalent.
The work on deep regularized networks we have mentioned
above suggests that this is also true for neural networks. The
idea we are developing here is a contribution along this line.

We argue that Lipschitz regularization does not only
restrict the weights magnitude but it also implements a
coupling mechanism across layers, allowing some weights

 *	 Nicolas Couellan
	 nicolas.couellan@recherche.enac.fr

1	 ENAC, Université de Toulouse, 7 Avenue Edouard Belin,
31400 Toulouse, France

2	 Institut de Mathématiques de Toulouse, Université de
Toulouse, UPS IMT, 31062 Toulouse Cedex 9, France

http://orcid.org/0000-0003-3775-1468
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00514-x&domain=pdf

	 SN Computer Science (2021) 2:113113  Page 2 of 9

SN Computer Science

to grow high while others are allowed to vanish. This hap-
pens across layers, meaning that the Lipschitz constant can
remain small with some large weights values in one layer
while some other weight in other layers counterbalance this
growth by remaining small. On the contrary, if all weights
are restricted uniformly across the network, even though net-
work depth is large, the expressiveness of the network may
be inhibited. Through numerical experiments on regression
and classification datasets, we show evidence of this phe-
nomenon and draw some conclusions and recommendations
about software implementation of Lipschitz regularization.

In “Neural Network Robustness as a LipschitzConstant
Regularization Problem”, we introduce the relationship
between network robustness and Lipschitz regularization
and discuss the coupling mechanism taking place. “Experi-
ments” is an illustration of the phenomenon through numeri-
cal experiments and “Conclusions” concludes the article.

Neural Network Robustness as a Lipschitz
Constant Regularization Problem

Propagating Additive Noise Through the Network

Fully Connected Networks

Consider feed-forward fully connected neural networks that
we represent as a successive composition of linear weighted
combination of functions such that xl = f l(Wlxl−1 + bl) for
l = 1,… , L , where xl−1 ∈ ℝ

nl−1 is the input of the l-th layer,
the function f l is the Ll

f
-Lipschitz continuous activation

function at layer l, and Wl ∈ ℝ
nl×nl−1 and bl ∈ ℝ

nl are the
weight matrix and bias vector between layer l − 1 and l that
define our model parameter � = {Wl, bl}L

l=1
 that we want to

estimate during training. The network can be seen as the
mapping g� ∶ x0 → g�(x

0) = xL . The training phase of the
network can be written as the minimization of the empirical
loss L(x, y, �) = 1

n

∑n

i=1
l�(g�(xi), yi) where l� is a measure of

discrepancy between the network output and the desired
output.

Assume now that the input sample xi is corrupted by some
bounded additive noise �i such that for all i in {1,… , n} ,
‖�i‖ ≤ �i for some positive constant �i . We define
x̃l
i
= xl

i
+ 𝛿l

i
 as the noisy observation of xl

i
 that we obtain after

propagating a noisy input through layer l. We can write
‖𝛿l

i
‖ = ‖x̃l

i
− xl

i
‖ = ‖f l(Wlx̃l−1

i
) − f l(Wlxl−1

i
)‖ that can be

upper bounded by Ll
f
‖Wl(x̃l−1

i
− xl−1

i
)‖ = Ll

f
‖Wl𝛿l−1

i
‖ since

f l is Ll
f
-Lipschitz continuous. Therefore, the network map-

ping g� is Lg�-Lipschitz continuous and the propagation of
the input noise throughout the whole network, leads to an
output noise that satisfies the following:

where Lf =
∏L

l=1
Ll
f
 , ‖Wl‖ denotes the operator norm:

and the quantity L̂g𝜃 = Lf‖W1‖ × ‖W2‖ ×⋯ × ‖WL‖ is actu-
ally an upper bound of Lg�.

Many common activation functions are actually 1-Lip-
schitz (ex: ReLu, hyperbolic tangent an other sigmoid
functions) and therefore L̂g𝜃 can often be simplified as
L̂g𝜃 =

∏L

l=1
‖Wl‖.

Convolutional Networks

The case of convolutional neural networks (CNN) is not
actually different from the case of fully connected networks.
Indeed, a convolutional layer performs discrete convolutions
with several filters. This can be seen as a weight matrix mul-
tiplication operation where the weight matrix is very sparse
due to parameter sharing and sparse connectivity induced
by the small size of filters usually used in practical applica-
tions. Therefore, the output of a l-th convolutional layer can
also be written as xl = Wlxl−1 + bl where xl−1 is a flattening
transformation of a tensor Xl−1 of feature maps (transforma-
tion of tensor into vector) and bl is also a flattened version
of the bias of the l-th layer (see [6, 7] for more details about
the linearity of convolutional layers).

In convolutional architecture, usually convolution is com-
bined with other types of layers. Activation layers (ex: ReLu
activation) provide non linearity to the network and, as men-
tioned above, we often have Ll

f
= 1 . Pooling layers are also

used to reduce the dimension of feature maps by summariz-
ing extracted information and can also be viewed as an
operator on the output of the convolutional layer that has a
Lipschitz constant smaller than 1 [7].

Therefore, from the point of view of noise contraction or
expansion developed above, combining the various types of
layers usually found in CNN architecture, is exactly the same
framework as the fully connected network case. Hence, the
techniques developed in the following fully apply to deep
network architectures and the conclusions that are drawn in
the sequel of the article are also valid.

Network Noise Contraction by Controlling its
Lipschitz Constant

In this section, for simplicity, but without loss of generality,
we will consider 1-Lipschitz activation functions, meaning
that Lf = 1 (this is for example the case of ReLu functions).

We have just seen that the quantity L̂g𝜃 (𝜃) , which equals
to

∏L

l=1
‖Wl‖ here, says how much the input noise will be

‖�L
i
‖ ≤ Lf‖W1‖ × ‖W2‖ ×⋯ × ‖WL‖�i

‖Wl‖ = sup
x∈ℝnl∗

‖Wlx‖
‖x‖

SN Computer Science (2021) 2:113	 Page 3 of 9  113

SN Computer Science

expanded after propagation through the network. There-
fore, if during the training process, we ensure that this
quantity remains small, we also ensure that input uncer-
tainties will not be expanded by the successive neurons
layers. There are two ways to control this quantity during
training:

Constrained optimization: The idea is to solve the fol-
lowing empirical risk minimization problem:

where Lmax is a positive parameter. The difficulty with this
approach is the non linearity of the constraint. One would
like, for example, to use a projected stochastic gradient
method to solve the training problem. However, project-
ing onto this constraint is a difficult problem. To do so, in
[7, 21], the authors have proposed to compute and restrict
‖Wl‖ layer by layer instead of restricting the whole product.
Restricting the norm of the weights layer by layer is actually
very different from restricting the product of their norms.
The layer by layer process isolates the tuning of weights
while if the whole product is considered, some layers may
be privileged against other. We will see in the next section
how this can affect, for some datasets the expressiveness of
the network.

Lipschitz regularization: The alternative is to introduce
a regularization term in the loss as follows:

where � is a positive parameter. There are no projection
involved, the regularization acts through the addition of a
correction term in the gradient of the loss so as to ensure

min
�=(Wl,bl)L

l=1

L(x, y, �) st

L�

l=1

‖Wl‖ ≤ Lmax

min
�=(Wl,bl)L

l=1

1

�
L(x, y, �) +

L�

l=1

‖Wl‖

a low value of the Lipschitz constant. The gradient of the
regularized loss, denoted Lr can be written as:

and, as mentioned above, depends on the complete cross-
layer structure via ∇𝜃L̂g𝜃 (𝜃) . To further emphasize this
coupling effect, under the assumption that Lf = 1 , we can
rewrite L̂g𝜃 (𝜃) as

where �max(A) denotes the largest eigenvalue of matrix A.
We see in this last expression that, if we could rotate the
matrix Wl⊤Wl at each layer l such that the principal axes
are aligned with its eigenvectors, the upper bound L̂g𝜃 (𝜃)
would only depend on the product layer by layer of the larg-
est weight length along these axes. The upper bound could
then be seen as a layer by layer product of weight ”size”.
This also means that if at one layer, weights are small, there
is room for increase at another layer as long at the whole
product remains small. In this sense, we say that the weights
have more degrees of freedom than when they are restricted
at each layer independently.

This is also illustrated on a very simple example in
Fig. 1(right). We take the very simple case of a one
hidden layer neural network with one input, one hid-
den and one output neuron, meaning that the parameter
� = (W1,W2) belongs to ℝ2 . In this case, the bound L̂g𝜃 (𝜃)
is equal to |W1| × |W2| . The right figure shows the bound-
ary |W1| × |W2| = 1 and the center square defines the set
{(W1,W2) ∈ ℝ

2 ∶ |W1| ≤ 1, |W2| = 1} which is the restric-
tion of each layer weight matrix to 1 independently. It clearly
shows that this layer by layer restriction is more conserva-
tive than the Lipschitz upper bound that allows some W1 to

∇𝜃Lr(x, y, 𝜃) =
1

𝜆
∇𝜃L(x, y, 𝜃) + ∇𝜃L̂g𝜃 (𝜃)

L̂g𝜃 (𝜃) =

√
𝜆max(W

1⊤W1) ×⋯ ×

√
𝜆max(W

L⊤WL)

Fig. 1   Contours of L̂g𝜃 (𝜃) (left) when � ∈ ℝ
2 and regions where L̂g𝜃 (𝜃) < 1 and |W1| < 1, |W2| < 1 with � = (W1,W2) (right)

	 SN Computer Science (2021) 2:113113  Page 4 of 9

SN Computer Science

Fig. 2   Training mean average error and training loss profiles (Boston dataset)

Fig. 3   Mean absolute validation error profiles (Boston dataset)

SN Computer Science (2021) 2:113	 Page 5 of 9  113

SN Computer Science

be large when W2 is small or the other way around. This is
what we refer to as the coupling mechanism across layers.
Figure 1 only shows a very low dimensional case. If the
dimension is large, it is easy to understand that, for a specific
level of the regularization, the feasible set of the weights for
the Lipschitz regularization will be much larger than the
feasible set of restricted weights at each layer. We argue and
show in the next section that for some specific datasets, this
extra feasible volume for the weights enables better expres-
sive power of the network. Note that, computationally, there
are several difficulties with this coupling approach:

First, the Lipschitz regularization or more precisely, its
upper bound is a non-convex function as shown for exam-
ple on the 2D example of Fig. 1(left). Minimizing such a
function may be difficult and available training algorithms
such as stochastic gradient techniques or its variants may get
trapped in a local minimum. This is not specific to this case.
Non-convex regularization techniques have been proven to
be effective in other contexts while facing the same difficulty
[19]. However, in practice, the benefit is often confirmed.

The computation of ∇𝜃L̂g𝜃 (𝜃) may also be difficult. In
practice, it requires the use of numerical differentiation since
there is no simple explicit expression of the gradient. In [21],
alternatively, the authors have used a power iteration method
to approximate the operator norm. Observe, however, that
since the network parameter values must already be stored
at any time during the training process, the computation of
∇𝜃L̂g𝜃 (𝜃) does not increase storage requirements.

With respect to these numerical difficulties, please also
note that we only emphasize the role of the coupling effect of
the Lipschitz regularization and we do not claim to provide

efficient techniques to handle it especially on large problems.
However, we want to point out that the future development
of efficient robust neural network algorithms should preserve
the cross-layer structure of the regularization. The design
of methods that isolate layers are of course computationally
interesting but will loose some of the property of Lipschitz
regularization and may turn out to be over-conservative in

terms of robustness, at least on some datasets, as we will see
in the next section.

Experiments

In the following experiments, four various training regular-
ized loss formulations are compared:

–	 (No reg) no regularization
–	 (Layer reg) spectral norm regularization at each layer (no

coupling)
–	 (Lipschitz reg) Lipschitz regularization across layers

(with coupling)
–	 (MaxNorm) MaxNorm constraint on weights (max value

= 10 on weights at each layer) as described in [16].

The first experiment is a regression task where the mean
average error, the mean average validation error, the loss
values and the spectral norm of the weights matrix of each
layer is analyzed during training for the four strategies. The
second experiment is focusing on a pattern recognition task
(classification) on a larger dataset (60000 training samples,
10000 validation samples), the MNIST dataset [11] and
results are expressed in terms of training and validation
accuracy.

Neural Network Regression with the Boston Dataset

To illustrate the coupling effect discussed above, we con-
sider the neural network regression task with the Boston
dataset [8]. For this purpose, we use a 5 layers feed-forward
fully connected network using ReLu activation functions.
The hidden layers each have 20 neurons. For training and
testing, we use the keras library [1] under the python [17]
environment.

The ADAM optimization algorithm [9] is used for train-
ing. To implement the ”Layer reg” and ”Lipschitz reg”,
a custom regularization and a custom loss were created
respectively in keras. The training procedure was set to 200
epochs with a batch size of 50. The regularization parameter
was selected by grid search. The training is carried out on
a fraction of 4/5 of the entire dataset without perturbing
the input data. However, we validate the various formula-
tions with several levels of test uncertainties to evaluate the
robustness of each formulation on the remaining fraction
of the data. The noisy test inputs are generated as follows:

x̃i = xi + 𝛿i ∀i ∈ T

Table 1   Spectral norm of layer weights and network Lipschitz con-
stant upper bound

Noise No Layer Lipschitz Max
Level reg reg reg Norm

‖W1‖ 2.828 2.508 3.464 2.383
‖W2‖ 1.954 1.625 1.791 1.883
‖W3‖ 1.825 3.315 1.983 1.707
L̂g𝜃 (𝜃)

10.01 13.52 12.31 7.66

	 SN Computer Science (2021) 2:113113  Page 6 of 9

SN Computer Science

where T is the test set, xi is a nominal input set aside
before training from the Boston dataset and �i is an addi-
tive uncertainty such that �i = �(xmax

i
− xmax

i
)ui where

ui ∼ U([0, 1]) (the uniform distribution on the interval
[0, 1]), � ∈ {0, 0.2, 0.4, 0.6} is the noise level and xmin

i
 and

xmax
i

 are the vectors of minimum values and maximum val-
ues for each input features. Figure 2 provides the training
mean average error and loss profiles during training while
Fig. 3 gives the mean average validation error for the various
noise levels �.

During training, Fig. 2 shows that the Lipschitz regu-
larization achieves better mean absolute error and loss
values than the other techniques that achieve all together
similar results. One could suspect over-fitting of the data
during training with Lipschitz regularization but the vali-
dation phase on unseen data as shown in Fig. 3 actually
does not confirm this. The mean absolute validation error
achieved by the Lipschitz regularization is better than the
other methods. This is confirmed for all levels of uncer-
tainties, meaning that Lipschitz regularization is, for the
Boston dataset, the technique that provides the highest

level of robustness. More specifically, it is worth notic-
ing that the layer-by-layer Lipschitz regularization as
opposed to the Lipschitz regularization across layer is not
performing well here. At the highest noise level � = 0.6 ,
the Lipschitz regularization achieves a low mean abso-
lute validation error twice as fast as the layer-by-layer
approach. The MaxNorm approach achieves better results
than the non regularized model but is behind the layer-
by-layer approach. These results are consistent with the
fact that Lipschitz regularization provides a good level
of accuracy. When looking at Table 1, we can observe
some significant differences in the spectral norms of layer
weights for the various network instances. All formula-
tions tend to emphasize the first layer except the layer-
by-layer approach that allocates more weight mass at the
last layer. The Lipschitz regularization across layers tends
also to achieve higher weight values than others, which
is natural when considering the shape of the regulariza-
tion as shown in Fig. 1. The value of the network Lip-
schitz constant are similar except for the MaxNorm case

Fig. 4   MNIST dataset samples
with various levels � of random
noise ( � ∈ {0.0, 0.2, 0.4, 0.6}
from top to bottom)

SN Computer Science (2021) 2:113	 Page 7 of 9  113

SN Computer Science

that tends to restrict more the weights at all layers. This
example confirms that the Lipschitz regularization (across
layers) provides more freedom to the weights than other
techniques for the same value of the network Lipschitz
constant. This confirms that, for some datasets, letting the
regularization play a coupling mechanism across layers
helps in finding the best compromise between robustness
and expressiveness of the network.

Neural Network Classification with the MNIST
Dataset

In this classification experiment, with use the MNIST dataset
with 60000 training samples and 10000 validation samples.
Each sample is a 28 × 28 image of handwritten characters.
As before, a 5 layers feed-forward fully connected network
with ReLu activations for input and hidden layers and a soft-
max activation at the output layer is used. For the last layer,
since the Lipschitz constant of the softmax function can be
bounded by 1 [5], the regularized loss in the Lipschitz reg
formulation is taken as 1

�
L(x, y, �) +

∏L−1

l=1
‖Wl‖ . During the

experiment, the ADADELTA optimization algorithm [23]
was outperforming the ADAM algorithm, therefore it was
taken as the common training optimization method. Only
a few epochs are required to achieve very good validation
accuracy (above 0.9) for the MNIST dataset and early stop-
ping is therefore applied after 10 epochs. The exact same
perturbation process from the first experiment is used here
again with � ∈ {0, 0.2, 0.4, 0.6} . Figure 4 shows 5 input
samples where various noise level � was applied. Figure 5
reports the accuracies during training on the training sam-
ples and for the various � values while Fig. 6 reports the
validation accuracies on the validation set.

On Figs. 5 and 6, when � = 0 , the algorithms that less
constrain weights are outperforming the others as they allow
better expressiveness of the network. However as noise is
introduced ( 𝜂 > 0 ), this is not the case, anymore, the Lip-
schitz and L2 regularizers are achieving the best validation
accuracies while the others seem to overfit training data
and the trend is confirmed as � grows (with low levels of
validation accuracy for all algorithms when � = 0.6 ). This
experiment shows how the Lipschitz and L2 regularizers

Fig. 5   Training accuracy profiles (MNIST dataset)

	 SN Computer Science (2021) 2:113113  Page 8 of 9

SN Computer Science

are acting as robust regularizers by trying to reduce the
Lipschitz constant of the network. Again, in this case, as �
grows, the Lipschitz regularizer that balances weights values
across layers achieves better validation accuracy than the
L2-regularizer. This shows, as in the previous experiment,
that the cross-layer robust strategy tends to allow better
expressiveness than the layer-by-layer strategy in place in
the L2 regularization.

Conclusions

In this article, we have discussed some properties of Lip-
schitz regularization used as a ”robustification” method in
neural networks. Specifically, we have shown that this regu-
larization does not only control the magnitude of the weights
but also their relative impact across the layers. It acts as a
coupling mechanism across layers that allows some weights
to grow when other counterbalance this growth to control
the expansion of noise throughout the network. Most of Lip-
schitz regularization implementations we are aware of actu-
ally isolate the layers and do not benefit from the coupling

mechanism. We believe that this knowledge should be useful
in the future and help designing robust neural network train-
ing that achieves also good expressiveness properties.

Compliance with ethical standards 

Conflict of interest  The author states that there is no conflict of inter-
est.

References

	 1.	 Chollet F, et al. Keras. GitHub. https​://githu​b.com/fchol​let/keras​.
2015.

	 2.	 Eldan R, Shamir O. The power of depth for feedforward neural
networks. In: COLT; 2016.

	 3.	 Fawzi A, Fawzi O, Frossard P. Analysis of classifiers’ robustness
to adversarial perturbations. Mach Learn. 2018;107(3):481–508.

	 4.	 Finlay C, Oberman A, Abbasi B. Improved robustness to adver-
sarial examples using lipschitz regularization of the loss. 2018.
arXiv​:1810.00953​

Fig. 6   Validation accuracy profiles (MNIST dataset)

https://github.com/fchollet/keras
https://arxiv.org/abs/1810.00953

SN Computer Science (2021) 2:113	 Page 9 of 9  113

SN Computer Science

	 5.	 Gao B, Pavel L. On the properties of the softmax function with
application in game theory and reinforcement learning. 2018.
arXiv​:1704.00805​

	 6.	 Goodfellow I, Bengio Y, Courville A. Deep learning. London:
MIT Press; 2016.

	 7.	 Gouk H, Frank E, Pfahringer B, Cree M. Regularisation of
neural networks by enforcing lipschitz continuity. Mach Learn.
2018;110:393–410.

	 8.	 Harrison D, Rubinfeld D. Hedonic prices and the demand for
clean air. J Environ Econ Manag. 1978;5:81–102.

	 9.	 Kingma DP, Ba J. Adam: a method for stochastic optimization.
2017. arXiv​:1412.6980

	10.	 Kolter JZ, Wong E. Provable defenses against adversarial exam-
ples via the convex outer adversarial polytope. In: ICML; 2018.

	11.	 LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning
applied to document recognition. Proc IEEE. 1998;86:2278–324.

	12.	 Finlay C, Calder J. Abbasi B, Oberman A. Lipschitz regularized
deep neural networks generalize and are adversarially robust.
2019. arXiv​:1808.09540​

	13.	 Raghu M, Poole B, Kleinberg J, Ganguli S, Sohl-Dickstein J. On
the expressive power of deep neural networks. In: Proceedings of
the 34th International Conference on Machine Learning; 2017,
pp. 2847–54.

	14.	 Raghunathan A, Steinhardt J, Liang P. Certified defenses against
adversarial examples. 2020. arXiv​:1801.09344​

	15.	 Shaham U, Yamada Y, Negahban S. Understanding adversarial
training: increasing local stability of supervised models through
robust optimization. Neurocomputing. 2018;307:195–204.

	16.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R. Dropout: a simple way to prevent neural networks from overfit-
ting. J Mach Learn Res. 2014;15:1929–58.

	17.	 Van R, Guido D, Fred L. Python 3 Reference Manual. CreateS-
pace, Scotts Valley, CA 2009.

	18.	 Virmaux A, Scaman K. Lipschitz regularity of deep neural net-
works: analysis and efficient estimation. In: Proceedings of the
32nd international conference on neural information processing
systems. Canada, pp 3839–3848 2018.

	19.	 Wen F, Chu L, Liu P, Qiu RC. A survey on nonconvex regulari-
zation based sparse and low-rank recovery in signal processing,
statistics, and machine learning. 2019. arXiv​:1808.05403​

	20.	 Xu H, Caramanis C, Mannor S. Robustness and regularization of
support vector machines. J Mach Learn Res. 2009;10:1485–510.

	21.	 Yoshida Y, Miyato T. Spectral norm regularization for improving
the generalizability of deep learning. 2017. arXiv​:1705.10941​

	22.	 Tsuzuku Y, Sato I, Sugiyama M. Lipschitz-Margin training: scal-
able certification of perturbation invariance for deep neural net-
works. 2018. arXiv​:1802.04034​

	23.	 Zeiler MD. ADADELTA: an adaptive learning rate method. 2012.
arXiv​:1212.5701

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/1704.00805
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1808.09540
https://arxiv.org/abs/1801.09344
https://arxiv.org/abs/1808.05403
https://arxiv.org/abs/1705.10941
https://arxiv.org/abs/1802.04034
https://arxiv.org/abs/1212.5701

	The Coupling Effect of Lipschitz Regularization in Neural Networks
	Abstract
	Introduction
	Neural Network Robustness as a Lipschitz Constant Regularization Problem
	Propagating Additive Noise Through the Network
	Fully Connected Networks
	Convolutional Networks

	Network Noise Contraction by Controlling its Lipschitz Constant

	Experiments
	Neural Network Regression with the Boston Dataset
	Neural Network Classification with the MNIST Dataset

	Conclusions
	References

