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Abstract
We investigate the robustness of feed-forward neural networks when input data are subject to random uncertainties. More 
specifically, we consider regularization of the network by its Lipschitz constant and emphasize its role. We highlight the 
fact that this regularization is not only a way to control the magnitude of the weights but has also a coupling effect on the 
network weights across the layers. We claim and show evidence on regression and classification datasets that this coupling 
effect brings a trade-off between robustness and expressiveness of the network. This suggests that Lipschitz regularization 
should be carefully implemented so as to maintain coupling across layers.
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Introduction

With the increasing interest in deep neural networks, a lot of 
research work has been focusing lately on their sensitivity to 
input perturbations [3, 10, 14, 15]. Most of these investiga-
tions have highlighted their weakness to handle adversarial 
attacks and the addressed means to increase their robustness. 
Adversarial attacks are real threats that could slow down or 
eventually stop the development and applications of these 
tools wherever robustness guarantees are needed. If input 
uncertainty is not adversarial but simply generated by the 
context and environment of the specific application, deep 
networks do not show better behavior in terms of robustness. 
If no immunization mechanism is used, their generalization 
performance can greatly suffer. Actually, most of the tech-
niques that are used to handle adversarial attacks can be also 
applied in this context. These techniques can mostly be clas-
sified into two categories: robust optimization techniques 
that consider an adversarial loss [10, 15] and regularization 
techniques that penalize noise expansion throughout the net-
work [4, 7, 12, 18, 21, 22].

In this article, we address the second type of techniques 
where robustness can be achieved by ensuring that the 
Lipschitz constant of the network remains small. The net-
work can be seen as a mapping between inputs and outputs. 
Its robustness to input uncertainties can be controlled by 
how much the mapping output expands the inputs. In the 
case network with Lipschitz continuous activations, this is 
equivalent to controlling the Lipschitz constant of the whole 
network mapping.

Expressiveness is another important property of the neu-
ral network. It defines the ability of the network to represent 
highly complex functions. It is achieved by depth [2, 13]. Of 
course, such ability is also to be balanced with its generaliza-
tion power to avoid over-fitting during training. On one hand, 
if the weights of the networks are free to grow too high, 
the generalization power will be low. On the other hand, if 
the weights are overly restricted, the expressiveness of the 
network will be low. Usually, this trade-off is controlled by 
constructing a loss that accounts for both training error and 
generalization error, the so-called regularized empirical risk 
functional. A parallel has been established between robust-
ness and regularization [20]. Actually in the case of support 
vector machines, it has been shown that both are equivalent. 
The work on deep regularized networks we have mentioned 
above suggests that this is also true for neural networks. The 
idea we are developing here is a contribution along this line.

We argue that Lipschitz regularization does not only 
restrict the weights magnitude but it also implements a 
coupling mechanism across layers, allowing some weights 
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to grow high while others are allowed to vanish. This hap-
pens across layers, meaning that the Lipschitz constant can 
remain small with some large weights values in one layer 
while some other weight in other layers counterbalance this 
growth by remaining small. On the contrary, if all weights 
are restricted uniformly across the network, even though net-
work depth is large, the expressiveness of the network may 
be inhibited. Through numerical experiments on regression 
and classification datasets, we show evidence of this phe-
nomenon and draw some conclusions and recommendations 
about software implementation of Lipschitz regularization.

In “Neural Network Robustness as a LipschitzConstant 
Regularization Problem”, we introduce the relationship 
between network robustness and Lipschitz regularization 
and discuss the coupling mechanism taking place. “Experi-
ments” is an illustration of the phenomenon through numeri-
cal experiments and “Conclusions” concludes the article.

Neural Network Robustness as a Lipschitz 
Constant Regularization Problem

Propagating Additive Noise Through the Network

Fully Connected Networks

Consider feed-forward fully connected neural networks that 
we represent as a successive composition of linear weighted 
combination of functions such that xl = f l(Wlxl−1 + bl) for 
l = 1,… , L , where xl−1 ∈ ℝ

nl−1 is the input of the l-th layer, 
the function f l is the Ll

f
-Lipschitz continuous activation 

function at layer l, and Wl ∈ ℝ
nl×nl−1 and bl ∈ ℝ

nl are the 
weight matrix and bias vector between layer l − 1 and l that 
define our model parameter � = {Wl, bl}L

l=1
 that we want to 

estimate during training. The network can be seen as the 
mapping g� ∶ x0 → g�(x

0) = xL . The training phase of the 
network can be written as the minimization of the empirical 
loss L(x, y, �) = 1

n

∑n

i=1
l�(g�(xi), yi) where l� is a measure of 

discrepancy between the network output and the desired 
output.

Assume now that the input sample xi is corrupted by some 
bounded additive noise �i such that for all i in {1,… , n} , 
‖�i‖ ≤ �i for some positive constant �i . We define 
x̃l
i
= xl

i
+ 𝛿l

i
 as the noisy observation of xl

i
 that we obtain after 

propagating a noisy input through layer l. We can write 
‖𝛿l

i
‖ = ‖x̃l

i
− xl

i
‖ = ‖f l(Wlx̃l−1

i
) − f l(Wlxl−1

i
)‖ that can be 

upper bounded by Ll
f
‖Wl(x̃l−1

i
− xl−1

i
)‖ = Ll

f
‖Wl𝛿l−1

i
‖ since 

f l is Ll
f
-Lipschitz continuous. Therefore, the network map-

ping g� is Lg�-Lipschitz continuous and the propagation of 
the input noise throughout the whole network, leads to an 
output noise that satisfies the following:

where Lf =
∏L

l=1
Ll
f
 , ‖Wl‖ denotes the operator norm:

and the quantity L̂g𝜃 = Lf‖W1‖ × ‖W2‖ ×⋯ × ‖WL‖ is actu-
ally an upper bound of Lg�.

Many common activation functions are actually 1-Lip-
schitz (ex: ReLu, hyperbolic tangent an other sigmoid 
functions) and therefore L̂g𝜃 can often be simplified as 
L̂g𝜃 =

∏L

l=1
‖Wl‖.

Convolutional Networks

The case of convolutional neural networks (CNN) is not 
actually different from the case of fully connected networks. 
Indeed, a convolutional layer performs discrete convolutions 
with several filters. This can be seen as a weight matrix mul-
tiplication operation where the weight matrix is very sparse 
due to parameter sharing and sparse connectivity induced 
by the small size of filters usually used in practical applica-
tions. Therefore, the output of a l-th convolutional layer can 
also be written as xl = Wlxl−1 + bl where xl−1 is a flattening 
transformation of a tensor Xl−1 of feature maps (transforma-
tion of tensor into vector) and bl is also a flattened version 
of the bias of the l-th layer (see [6, 7] for more details about 
the linearity of convolutional layers).

In convolutional architecture, usually convolution is com-
bined with other types of layers. Activation layers (ex: ReLu 
activation) provide non linearity to the network and, as men-
tioned above, we often have Ll

f
= 1 . Pooling layers are also 

used to reduce the dimension of feature maps by summariz-
ing extracted information and can also be viewed as an 
operator on the output of the convolutional layer that has a 
Lipschitz constant smaller than 1 [7].

Therefore, from the point of view of noise contraction or 
expansion developed above, combining the various types of 
layers usually found in CNN architecture, is exactly the same 
framework as the fully connected network case. Hence, the 
techniques developed in the following fully apply to deep 
network architectures and the conclusions that are drawn in 
the sequel of the article are also valid.

Network Noise Contraction by Controlling its 
Lipschitz Constant

In this section, for simplicity, but without loss of generality, 
we will consider 1-Lipschitz activation functions, meaning 
that Lf = 1 (this is for example the case of ReLu functions).

We have just seen that the quantity L̂g𝜃 (𝜃) , which equals 
to 

∏L

l=1
‖Wl‖ here, says how much the input noise will be 

‖�L
i
‖ ≤ Lf‖W1‖ × ‖W2‖ ×⋯ × ‖WL‖�i

‖Wl‖ = sup
x∈ℝnl∗

‖Wlx‖
‖x‖
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expanded after propagation through the network. There-
fore, if during the training process, we ensure that this 
quantity remains small, we also ensure that input uncer-
tainties will not be expanded by the successive neurons 
layers. There are two ways to control this quantity during 
training:

Constrained optimization: The idea is to solve the fol-
lowing empirical risk minimization problem:

where Lmax is a positive parameter. The difficulty with this 
approach is the non linearity of the constraint. One would 
like, for example, to use a projected stochastic gradient 
method to solve the training problem. However, project-
ing onto this constraint is a difficult problem. To do so, in 
[7, 21], the authors have proposed to compute and restrict 
‖Wl‖ layer by layer instead of restricting the whole product. 
Restricting the norm of the weights layer by layer is actually 
very different from restricting the product of their norms. 
The layer by layer process isolates the tuning of weights 
while if the whole product is considered, some layers may 
be privileged against other. We will see in the next section 
how this can affect, for some datasets the expressiveness of 
the network.

Lipschitz regularization: The alternative is to introduce 
a regularization term in the loss as follows:

where � is a positive parameter. There are no projection 
involved, the regularization acts through the addition of a 
correction term in the gradient of the loss so as to ensure 

min
�=(Wl,bl)L

l=1

L(x, y, �) st

L�

l=1

‖Wl‖ ≤ Lmax

min
�=(Wl,bl)L

l=1

1

�
L(x, y, �) +

L�

l=1

‖Wl‖

a low value of the Lipschitz constant. The gradient of the 
regularized loss, denoted Lr can be written as:

and, as mentioned above, depends on the complete cross-
layer structure via ∇𝜃L̂g𝜃 (𝜃) . To further emphasize this 
coupling effect, under the assumption that Lf = 1 , we can 
rewrite L̂g𝜃 (𝜃) as

where �max(A) denotes the largest eigenvalue of matrix A. 
We see in this last expression that, if we could rotate the 
matrix Wl⊤Wl at each layer l such that the principal axes 
are aligned with its eigenvectors, the upper bound L̂g𝜃 (𝜃) 
would only depend on the product layer by layer of the larg-
est weight length along these axes. The upper bound could 
then be seen as a layer by layer product of weight ”size”. 
This also means that if at one layer, weights are small, there 
is room for increase at another layer as long at the whole 
product remains small. In this sense, we say that the weights 
have more degrees of freedom than when they are restricted 
at each layer independently.

This is also illustrated on a very simple example in 
Fig.  1(right). We take the very simple case of a one 
hidden layer neural network with one input, one hid-
den and one output neuron, meaning that the parameter 
� = (W1,W2) belongs to ℝ2 . In this case, the bound L̂g𝜃 (𝜃) 
is equal to |W1| × |W2| . The right figure shows the bound-
ary |W1| × |W2| = 1 and the center square defines the set 
{(W1,W2) ∈ ℝ

2 ∶ |W1| ≤ 1, |W2| = 1} which is the restric-
tion of each layer weight matrix to 1 independently. It clearly 
shows that this layer by layer restriction is more conserva-
tive than the Lipschitz upper bound that allows some W1 to 

∇𝜃Lr(x, y, 𝜃) =
1

𝜆
∇𝜃L(x, y, 𝜃) + ∇𝜃L̂g𝜃 (𝜃)

L̂g𝜃 (𝜃) =

√
𝜆max(W

1⊤W1) ×⋯ ×

√
𝜆max(W

L⊤WL)

Fig. 1  Contours of L̂g𝜃 (𝜃) (left) when � ∈ ℝ
2 and regions where L̂g𝜃 (𝜃) < 1 and |W1| < 1, |W2| < 1 with � = (W1,W2) (right)
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Fig. 2  Training mean average error and training loss profiles (Boston dataset)

Fig. 3  Mean absolute validation error profiles (Boston dataset)
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be large when W2 is small or the other way around. This is 
what we refer to as the coupling mechanism across layers. 
Figure 1 only shows a very low dimensional case. If the 
dimension is large, it is easy to understand that, for a specific 
level of the regularization, the feasible set of the weights for 
the Lipschitz regularization will be much larger than the 
feasible set of restricted weights at each layer. We argue and 
show in the next section that for some specific datasets, this 
extra feasible volume for the weights enables better expres-
sive power of the network. Note that, computationally, there 
are several difficulties with this coupling approach:

First, the Lipschitz regularization or more precisely, its 
upper bound is a non-convex function as shown for exam-
ple on the 2D example of Fig. 1(left). Minimizing such a 
function may be difficult and available training algorithms 
such as stochastic gradient techniques or its variants may get 
trapped in a local minimum. This is not specific to this case. 
Non-convex regularization techniques have been proven to 
be effective in other contexts while facing the same difficulty 
[19]. However, in practice, the benefit is often confirmed.

The computation of ∇𝜃L̂g𝜃 (𝜃) may also be difficult. In 
practice, it requires the use of numerical differentiation since 
there is no simple explicit expression of the gradient. In [21], 
alternatively, the authors have used a power iteration method 
to approximate the operator norm. Observe, however, that 
since the network parameter values must already be stored 
at any time during the training process, the computation of 
∇𝜃L̂g𝜃 (𝜃) does not increase storage requirements.

With respect to these numerical difficulties, please also 
note that we only emphasize the role of the coupling effect of 
the Lipschitz regularization and we do not claim to provide 

efficient techniques to handle it especially on large problems. 
However, we want to point out that the future development 
of efficient robust neural network algorithms should preserve 
the cross-layer structure of the regularization. The design 
of methods that isolate layers are of course computationally 
interesting but will loose some of the property of Lipschitz 
regularization and may turn out to be over-conservative in 

terms of robustness, at least on some datasets, as we will see 
in the next section.

Experiments

In the following experiments, four various training regular-
ized loss formulations are compared:

– (No reg) no regularization
– (Layer reg) spectral norm regularization at each layer (no 

coupling)
– (Lipschitz reg) Lipschitz regularization across layers 

(with coupling)
– (MaxNorm) MaxNorm constraint on weights (max value 

= 10 on weights at each layer) as described in [16].

The first experiment is a regression task where the mean 
average error, the mean average validation error, the loss 
values and the spectral norm of the weights matrix of each 
layer is analyzed during training for the four strategies. The 
second experiment is focusing on a pattern recognition task 
(classification) on a larger dataset (60000 training samples, 
10000 validation samples), the MNIST dataset [11] and 
results are expressed in terms of training and validation 
accuracy.

Neural Network Regression with the Boston Dataset

To illustrate the coupling effect discussed above, we con-
sider the neural network regression task with the Boston 
dataset [8]. For this purpose, we use a 5 layers feed-forward 
fully connected network using ReLu activation functions. 
The hidden layers each have 20 neurons. For training and 
testing, we use the keras library [1] under the python [17] 
environment.

The ADAM optimization algorithm [9] is used for train-
ing. To implement the ”Layer reg” and ”Lipschitz reg”, 
a custom regularization and a custom loss were created 
respectively in keras. The training procedure was set to 200 
epochs with a batch size of 50. The regularization parameter 
was selected by grid search. The training is carried out on 
a fraction of 4/5 of the entire dataset without perturbing 
the input data. However, we validate the various formula-
tions with several levels of test uncertainties to evaluate the 
robustness of each formulation on the remaining fraction 
of the data. The noisy test inputs are generated as follows:

x̃i = xi + 𝛿i ∀i ∈ T

Table 1  Spectral norm of layer weights and network Lipschitz con-
stant upper bound

Noise No Layer Lipschitz Max
Level reg reg reg Norm

‖W1‖ 2.828 2.508 3.464 2.383
‖W2‖ 1.954 1.625 1.791 1.883
‖W3‖ 1.825 3.315 1.983 1.707
L̂g𝜃 (𝜃)

10.01 13.52 12.31 7.66
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where T is the test set, xi is a nominal input set aside 
before training from the Boston dataset and �i is an addi-
tive uncertainty such that �i = �(xmax

i
− xmax

i
)ui where 

ui ∼ U([0, 1]) (the uniform distribution on the interval 
[0, 1]), � ∈ {0, 0.2, 0.4, 0.6} is the noise level and xmin

i
 and 

xmax
i

 are the vectors of minimum values and maximum val-
ues for each input features. Figure 2 provides the training 
mean average error and loss profiles during training while 
Fig. 3 gives the mean average validation error for the various 
noise levels �.

During training, Fig. 2 shows that the Lipschitz regu-
larization achieves better mean absolute error and loss 
values than the other techniques that achieve all together 
similar results. One could suspect over-fitting of the data 
during training with Lipschitz regularization but the vali-
dation phase on unseen data as shown in Fig. 3 actually 
does not confirm this. The mean absolute validation error 
achieved by the Lipschitz regularization is better than the 
other methods. This is confirmed for all levels of uncer-
tainties, meaning that Lipschitz regularization is, for the 
Boston dataset, the technique that provides the highest 

level of robustness. More specifically, it is worth notic-
ing that the layer-by-layer Lipschitz regularization as 
opposed to the Lipschitz regularization across layer is not 
performing well here. At the highest noise level � = 0.6 , 
the Lipschitz regularization achieves a low mean abso-
lute validation error twice as fast as the layer-by-layer 
approach. The MaxNorm approach achieves better results 
than the non regularized model but is behind the layer-
by-layer approach. These results are consistent with the 
fact that Lipschitz regularization provides a good level 
of accuracy. When looking at Table 1, we can observe 
some significant differences in the spectral norms of layer 
weights for the various network instances. All formula-
tions tend to emphasize the first layer except the layer-
by-layer approach that allocates more weight mass at the 
last layer. The Lipschitz regularization across layers tends 
also to achieve higher weight values than others, which 
is natural when considering the shape of the regulariza-
tion as shown in Fig. 1. The value of the network Lip-
schitz constant are similar except for the MaxNorm case 

Fig. 4  MNIST dataset samples 
with various levels � of random 
noise ( � ∈ {0.0, 0.2, 0.4, 0.6} 
from top to bottom)
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that tends to restrict more the weights at all layers. This 
example confirms that the Lipschitz regularization (across 
layers) provides more freedom to the weights than other 
techniques for the same value of the network Lipschitz 
constant. This confirms that, for some datasets, letting the 
regularization play a coupling mechanism across layers 
helps in finding the best compromise between robustness 
and expressiveness of the network.

Neural Network Classification with the MNIST 
Dataset

In this classification experiment, with use the MNIST dataset 
with 60000 training samples and 10000 validation samples. 
Each sample is a 28 × 28 image of handwritten characters. 
As before, a 5 layers feed-forward fully connected network 
with ReLu activations for input and hidden layers and a soft-
max activation at the output layer is used. For the last layer, 
since the Lipschitz constant of the softmax function can be 
bounded by 1 [5], the regularized loss in the Lipschitz reg 
formulation is taken as 1

�
L(x, y, �) +

∏L−1

l=1
‖Wl‖ . During the 

experiment, the ADADELTA optimization algorithm [23] 
was outperforming the ADAM algorithm, therefore it was 
taken as the common training optimization method. Only 
a few epochs are required to achieve very good validation 
accuracy (above 0.9) for the MNIST dataset and early stop-
ping is therefore applied after 10 epochs. The exact same 
perturbation process from the first experiment is used here 
again with � ∈ {0, 0.2, 0.4, 0.6} . Figure 4 shows 5 input 
samples where various noise level � was applied. Figure 5 
reports the accuracies during training on the training sam-
ples and for the various � values while Fig. 6 reports the 
validation accuracies on the validation set.

On Figs. 5 and  6, when � = 0 , the algorithms that less 
constrain weights are outperforming the others as they allow 
better expressiveness of the network. However as noise is 
introduced ( 𝜂 > 0 ), this is not the case, anymore, the Lip-
schitz and L2 regularizers are achieving the best validation 
accuracies while the others seem to overfit training data 
and the trend is confirmed as � grows (with low levels of 
validation accuracy for all algorithms when � = 0.6 ). This 
experiment shows how the Lipschitz and L2 regularizers 

Fig. 5  Training accuracy profiles (MNIST dataset)
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are acting as robust regularizers by trying to reduce the 
Lipschitz constant of the network. Again, in this case, as � 
grows, the Lipschitz regularizer that balances weights values 
across layers achieves better validation accuracy than the 
L2-regularizer. This shows, as in the previous experiment, 
that the cross-layer robust strategy tends to allow better 
expressiveness than the layer-by-layer strategy in place in 
the L2 regularization.

Conclusions

In this article, we have discussed some properties of Lip-
schitz regularization used as a ”robustification” method in 
neural networks. Specifically, we have shown that this regu-
larization does not only control the magnitude of the weights 
but also their relative impact across the layers. It acts as a 
coupling mechanism across layers that allows some weights 
to grow when other counterbalance this growth to control 
the expansion of noise throughout the network. Most of Lip-
schitz regularization implementations we are aware of actu-
ally isolate the layers and do not benefit from the coupling 

mechanism. We believe that this knowledge should be useful 
in the future and help designing robust neural network train-
ing that achieves also good expressiveness properties.
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