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Abstract
This paper compares different solution approaches for the multi-objective shortest path problem (MSPP) on multigraphs. 
Multigraphs as a modelling tool are able to capture different available trade-offs between objectives for a given section of a 
route. For this reason, they are increasingly popular in modelling transportation problems with multiple conflicting objec-
tives (e.g., travel time and fuel consumption), such as time-dependent vehicle routing, multi-modal transportation planning, 
energy-efficient driving, and airport operations. The multigraph MSPP is more complex than the NP-hard simple graph 
MSPP. Therefore, approximate solution methods are often needed to find a good approximation of the true Pareto front in a 
given time budget. Evolutionary algorithms have been successfully applied for the simple graph MSPP. However, there has 
been limited investigation of their applications to the multigraph MSPP. Here, we extend the most popular genetic repre-
sentations to the multigraph case and compare the achieved solution qualities. Two heuristic initialisation methods are also 
considered to improve the convergence properties of the algorithms. The comparison is based on a diverse set of problem 
instances, including both bi-objective and triple objective problems. We found that the metaheuristic approach with heuristic 
initialisation provides good solutions in shorter running times compared to an exact algorithm. The representations were 
all found to be competitive. The results are encouraging for future application to the time-constrained multigraph MSPP.

Keywords  Multi-objective shortest path problems · Multigraphs · Genetic representation techniques · Heuristic 
initialisation

Introduction

There is substantial evidence [1–5] that modelling transpor-
tation problems as multigraphs offer benefits with regards to 
time, cost, environmental impact, and flexibility in multiple 
practical settings. The adoption of multiple parallel edges 
between pairs of nodes is rooted in the multi-objective 
nature of the problems. When there are multiple ways to 
traverse a section of the route, offering different trade-offs 

between the objectives, they should all be modelled in the 
optimisation process to find a set of Pareto-optimal solu-
tions. The parallel edges in practice might correspond to 
different physical routes as in multi-objective vehicle routing 
problems [2, 6], different modes of transport [3], or the same 
physical route traversed with different speed profiles such as 
in energy-efficient driving [4, 5] and in the airport ground 
movement problem [1].

The multi-objective shortest path problem (MSPP) on 
multigraphs can be decomposed to two intertwined NP-
hard problems, the MSPP on simple graphs [7] and the fixed 
sequence arc selection problem (FSASP) [6]. In the FSASP, 
the sequence of nodes to be traversed is fixed, but there are 
multiple parallel edges between any neighbouring nodes in 
the sequence. Consequently, finding the exact solutions for a 
multigraph MSPP often requires an unacceptably long time, 
in particular, in real-world applications.

For the simple graph MSPP, metaheuristics and, in par-
ticular, genetic algorithms have been used with success 
[8–10] to obtain a good representation of the Pareto-optimal 
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solutions in a short time. Genetic algorithms imitate the bio-
logical process of natural selection to find near-optimal solu-
tions to computationally difficult problems. A key aspect 
of this process is the chosen representation method, that 
determines how the candidate solutions are encoded to the 
so-called chromosomes for the evolutionary process. The 
representation method has an important role in determining 
the search landscape and thus affects the effectiveness of the 
search [11]. Moreover, the representation also determines 
the kind of crossover and mutation operators that can be 
used.

Several different representation methods and genetic 
operators have been proposed for the simple graph MSPP. 
The multigraph MSPP, on the other hand, received consid-
erably less attention, even though it is a relevant issue for a 
wide range of real-world problems and a natural extension 
to the body of research investigating the simple graph MSPP. 
To our knowledge, the only previous attempts at applying 
metaheuristics to the multigraph MSPP were in the context 
of multi-modal transportation [12, 13]. Both of these studies 
used genetic algorithms and extend the direct variable length 
[14] representation. There are three other representations 
proposed for the simple graph shortest path problems, the 
direct fixed length [15], random key [16], and integer-valued 
priority [10] representations. In this paper, we investigate 
and extend all the four mentioned representations.

The representations introduced for the simple graph 
problem cannot be used without modification for the mul-
tigraph MSPP. The extension requires the incorporation of 
the choice between parallel edges into the chromosomes. 
Figure  1 illustrates an example of a solution path in a 
multigraph.

Heuristic initialisation techniques have been proven to 
be useful in different combinatorial optimisation problems 
[17–20], as they can lead to quicker convergence by starting 
the evolutionary process with an already high-quality initial 
population. This is done by locating promising areas of the 
search space through utilising a priori information about the 
specific problem. The initial population is then drawn par-
tially or exclusively from those promising areas.

A common concern about such initialisation methods is 
that they might lead to premature convergence caused by 
a lack of sufficient diversity. This explains why there are 
relatively few studies utilising heuristic initialisation for 
the MSPP. The problem of premature convergence can be 
mitigated by introducing enough randomness into the popu-
lation, while still preserving higher quality compared to a 
purely random population.

We employ a heuristic initialisation method utilising sin-
gle objective search. This method was introduced for the 
case of direct representation in [9], and here, we extend it 
to the case of the other representations. Moreover, we also 
introduce a novel heuristic initialisation method based on 
the idea of discouraging detours, that is applicable to all the 
representations used.

Contributions

The main contributions of this paper:

–	 Four representations that were originally proposed for 
simple graph shortest path problems are adapted and 
extended to the multigraph MSPP. Three of these repre-
sentations have not been previously applied to the multi-
graph MSPP.

–	 A novel indirect method of incorporating the choice of 
parallel edges into the chromosomes is proposed. This 
method makes it possible to adopt the priority-based rep-
resentations to the multigraph problem with inhomoge-
neous numbers of parallel edges without the use of any 
repairing mechanism. The method can also be used with 
the direct representations.

–	 The direct [12] and indirect ways of encoding parallel 
edges are compared for the direct variable length repre-
sentation.

–	 A heuristic initialisation method based on graph struc-
ture is proposed and shown to provide additional benefits 
when used together with the existing heuristic initialisa-
tion method [9].

–	 The representation and initialisation methods are com-
pared on a diverse problem set using dominance-compli-
ant quality indicators. It is observed that some represen-
tations are better suited for specific graph types.

This study extends our previous work [21]. The first main 
addition compared to [21] is the inclusion of more variants 
of different representations. Variants include (1) different 
crossover operators, (2) direct way of encoding parallel 
edges for the direct variable length representations, and (3) 
adapting an existing heuristic initialisation method [9] to pri-
ority-based representations. Second, a larger set of problem 
instances is used for the comparison, and the performance 

Fig. 1   An example of a multigraph network and a solution path from 
node 1 to node 5 in it, indicated by the bold lines
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of the exact algorithm on these instances is described in 
more detail.

Structure of Paper

In the rest of the paper, “” describes the multigraph MSPP 
problem. Related work on representation methods for the 
simple and multigraph MSPP, and initialisation techniques 
are summarised in “Related Work”. “Proposed Represen-
tations and Initialisation Methods” describes our approach 
to extend the main representations to the multigraph case, 
the genetic operators used, and the proposed heuristic ini-
tialisation technique. “ Details” contains the implementation 
details of the algorithms, description of test instances, and 
the evaluation of the approximate solution sets. In “Results”, 
numerical experiments and their results are presented. 
Finally, conclusion is drawn and future research directions 
are discussed in “Conclusion and Future Work”.

Problem Description

The multigraph MSPP is defined by a multigraph network 
G = (V ,E) and a multi-dimensional cost-vector associated 
with each edge in G. The network is assumed to be undi-
rected in this paper. V = 1,… , n represents the set of nodes, 
and E represents the set of edges. Given that G is a multi-
graph, there might be multiple edges in E connecting the 
same nodes. Thus, an edge in the network is denoted by 
e = (u, v, i) , where u, v ∈ V  and i is a parallel edge index, 
which differentiates between the edges with the same end-
points u and v. These edges are numbered as i(u, v), where i 
is starting from 1 up to l(u, v), where l(u, v) is the number of 
parallel edges between the two nodes u and v. There are two 
special nodes vO, vD ∈ V  , the origin and destination nodes, 
respectively. The costs associated with each edge accord-
ing to k objectives considered are given by a k-dimensional 
cost-vector cost(e) = (c1(e), c2(e),… , ck(e)) . For a valid path 
P between vO and vD , the corresponding cost-vector can be 
calculated according to Eq. (1).

We are looking for the minimum cost path between vO and 
vD considering all k objectives. The solution is a set of valid 
paths with non-dominated cost-vectors, i.e., the Pareto-
optimal solutions. A solution path P1 is said to be Pareto-
optimal if there is no solution path that is at least as good 
as P1 according to all k objectives and better according to at 
least one objective.

(1)C(P) =
∑

e∈P

cost(e).

Related Work

In this section, we review the genetic representation methods 
and operators proposed for simple graph shortest path prob-
lems and the multigraph MSPP. Initialisation techniques are 
also discussed.

Genetic Representations for Paths in Simple Graphs

In the single objective shortest path problem (SSPP) and 
simple graph MSPP, candidate solutions need to encode a 
sequence of neighbouring nodes in a graph. Several genetic 
representation methods have been introduced for these prob-
lems. These methods can be classified as direct representations 
and priority-based representations.

Direct Variable Length Encoding

The most straightforward way of encoding a path in a graph is 
the direct variable length representation proposed in [22] for 
the SSPP. Chromosomes consist of lists of node IDs, that form 
a path starting with the origin node. An arbitrary list of nodes 
usually will not correspond to a feasible path in the graph, and 
this necessitates the use of problem specific genetic operators, 
which maintain feasibility of the path. Ahn and Ramakrishna 
introduced a crossover based on common nodes in the solution 
paths and a mutation based on a random walk for the SSPP 
[14], which were adapted by multiple authors for the multi-
objective problem [8, 9, 23].

The main advantage of this representation is that it gives a 
one-to-one mapping, which is usually preferable over one-to-
n mapping, since it avoids introducing plateaus in the search 
space. In one-to-n mapping, several different chromosomes 
might encode the same solution path, and thus have the same 
associated fitnesses, forming a plateau. The algorithm then 
might rediscover the same solutions over and over again 
through different chromosomes and waste computational 
resources.

A disadvantage is that the genetic operators might lead to 
loop formation, and thus offspring need to be checked and 
repaired after mutation and crossover. Also, according to [24, 
25], this representation is not suitable for large networks.

An example of a chromosome with direct variable length 
representation that encodes the solution path in Fig. 1 without 
specifying the choice between parallel edges is:

Direct Fixed Length Encoding

Another node ID-based representation was proposed by Ina-
gaki et al. [15]. The length of the chromosome equals n, the 

[1, 6, 2, 4].
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number of nodes in the network, and the node IDs are the 
numbers from 1 to n. The chromosomes incorporate a pointer 
to a neighbouring node for each node. The locus of a gene 
corresponds to a node in the network with the same ID, and 
the value of the gene is the ID of a neighbour that should be 
the next node in the path. The path is decoded by following 
the pointers until the destination is reached or a loop is formed.

Note that this is an one-to-n representation, because, gener-
ally, there are genes whose values do not affect the decoding 
process. The crossover operator applied in Ref. [15] is essen-
tially uniform crossover. This approach is deemed ineffective 
and requires large population sizes [14, 24].

An example of a chromosome with direct fixed length rep-
resentation that encodes the solution path in Fig. 1 without 
specifying the choice between parallel edges is:

Integer‑Valued Priority‑Based Encoding

Gen et al. proposed a priority-based encoding technique [26] 
that uses integer priority values to encode solution paths indi-
rectly. Chromosomes consist of some permutation of the inte-
gers from 1 to n. The priority assigned to a node with ID i is 
given by the value of a gene at locus i.

A path is decoded from the chromosome by starting at the 
origin node and step-by-step moving to the neighbouring node 
with the highest priority, given it is not yet in the path. If it is 
already in the path, the neighbour with the next highest priority 
is chosen instead, if there is one.

The main advantage of this representation is that a ran-
dom permutation of the priorities will always be decoded to 
some valid path starting from the origin node. This means 
that more traditional crossover operators can be used and 
expected to produce feasible paths, unlike in the case of the 
direct representations.

In Ref. [26], position-based crossover (PX) was used. An 
extension of the one-point crossover for integer-valued priority 
representation, the weight mapping crossover (WMX), was 
proposed specifically for this problem [10]. This approach has 
been shown to perform well in comparison to the direct vari-
able length representation for the bi-objective problem.

An example of a chromosome with integer-valued priority 
representation that encodes the solution path in Fig. 1 without 
specifying the choice between parallel edges is:

Random Key‑Based Encoding

Gen and Lin proposed another similar encoding technique 
using floating-point numbers instead of integers as priorities 

[6, 4, 2, 5, 4, 2].

[6, 3, 1, 2, 5, 4].

[27], resulting in a random key representation for the SSPP. 
Random keys were found to be a powerful method for per-
mutation representation in other combinatorial optimisation 
problems [28].

The advantage of random key encoding is that we do not 
have to maintain distinct priority values, as most of the time, 
the value of two priorities compared will not be equal. This 
makes it possible to use different crossover operators that are 
not designed specifically for the MSPP, such as arithmetical 
crossover, uniform crossover, or two-point crossover. In Ref. 
[27], arithmetical crossover is employed, where the offspring 
are calculated as the weighted average of the two parent 
chromosomes. The authors report higher search capability, 
enhanced rate of reaching optimal solutions, and improved 
computation time compared to the integer-valued priority-
based encoding and the direct variable length encoding.

An example of a chromosome with random key repre-
sentation that encodes the solution path in Fig. 1 without 
specifying the choice between parallel edges is:

Genetic Representations for Paths in Multigraphs

To encode solution paths in multigraphs, the indices of par-
allel edges used in the path also need to be specified.

Abbaspour and Samadzadegan extended the direct vari-
able length representation to the multi-modal transportation 
problem [12] by indicating the mode of travel for each edge 
in the path. The chromosome is twice as long as the number 
of nodes in the network. The genes at odd loci correspond 
to node IDs, as in Ref. [14]. The genes at even loci are used 
to indicate the mode of travel between the nodes.

Yu and Lu [13] proposed a slightly different approach, 
where they only indicated the changes in the mode of travel 
and do not specify it for each edge separately. Genes indi-
cating the mode of travel for the consecutive node IDs have 
a negative value, to differentiate them from the node IDs. 
However, only a limited number of parallel edges were 
used. When the number of parallel edges grows, the pos-
sible advantage of a shorter chromosome is diminished by 
the burden of maintaining the chromosome structure with 
more complicated operators.

Initialisation

Most mentioned works applied random initialisation, which 
implies a random walk starting from the origin node, random 
pointers to neighbours, or random priorities. There are two 
notable examples when heuristic initialisation methods were 
used, both with the direct variable length representation. (1) 
Information about the spatial location of the nodes in the 

[0.93, 0.36, 0.12, 0.25, 0.51, 0.45].
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graph is utilised [23]. The initial solutions are generated in 
a way that each edge moves away from the origin node and 
closer to the destination node measured by Euclidean dis-
tance. However, spatial information is not always available 
and in some cases might be misleading. (2) Single objective 
search is utilised [9]. Shortest paths are found according 
to weighted aggregations of smaller subsets of the objec-
tives with the Dijkstra’s algorithm. These are included 
in the initial population along with randomly generated 
chromosomes.

A heuristic initialisation approach was proposed for solv-
ing the SSPP with particle swarm optimisation and prior-
ity-based representation in Ref. [25]. Similar to [23], this 
method aims to decrease the risk of loop formation, but it 
uses information about the structure of the graph instead of 
spatial information. Priorities were randomly assigned and 
node IDs were assigned in a way that the higher the IDs are, 
the closer a node is to the destination. Then, detours in solu-
tion paths can be detected through finding decreasing node 
IDs. Not all detours were prohibited, only the ones where 
the decrease in node IDs is above some pre-specified limit.

Proposed Representations and Initialisation 
Methods

Encoding Parallel Edges

Representations for the multigraph MSPP need to encode the 
parallel indices for each pair of consecutive nodes in a solu-
tion path, not just the node sequence. The previously pro-
posed methods for encoding mode of transport in the multi-
modal transportation literature employ the direct variable 
length representation, which allows for direct inclusion of 
the parallel edge indices. Extending the priority-based rep-
resentations to the multigraph case is less straightforward.

The multigraph might contain varied numbers of parallel 
edges between pairs of nodes, as in the multi-modal trans-
portation problem. This does not cause a problem in the 
direct representations, because once the parallel edge indices 
are initialised to be feasible, and the crossover and mutation 
operators do not ruin feasibility. This is not the case with the 
priority-based representations.

Following a similar strategy for the priority-based repre-
sentations to assign parallel edge indices to node IDs may 
lead to infeasible solutions after genetic operators. Take 
an example of a crossover that results in a solution path in 
which a node u is followed by another node v. In both of 
the parent solution paths, the node u might be followed by 
nodes other than v. Then, the parallel indices assigned to 
node u in the parents might be higher than what is available 
between u and v.

One possible way of overcoming this problem would 
be to apply a repairing mechanism after the solution path 
is decoded. Apparently, the choice between parallel edges 
would be mostly governed by this repairing mechanism, not 
taking full advantage of the exploration and exploitation 
capabilities rendered by the mechanism of the evolutionary 
process. Also, the computational burden would increase. 
Here, we propose an alternative method for representing the 
parallel indices that does not require repairing.

Instead of encoding the indices of parallel edges directly, 
we use a floating-point number r between 0 and 1, denoted 
the parallel edge indicator. Parallel edge indicators are 
assigned to node IDs, and they encode which parallel edge 
to use when leaving the given node. Given two neighbouring 
nodes u, v and the number of parallel edges between them 
l(u, v), the index of the chosen parallel edge can be calcu-
lated as ⌊r(u) ∗ l(u, v)⌋ + 1 when moving from u to v (index-
ing starts at 1). Any random value of parallel edge indicators 
can be decoded to an index of a parallel edge that is available 
between two given nodes. The parallel edge indicators are 
employed with all four representations as a way of extending 
them to the multigraph problem.

One possible drawback is the increased number of alter-
native chromosomes that can encode the same solution path, 
leading to the increased ambiguity of the representations. To 
investigate the effect of this ambiguity, the directly encoded 
parallel edge indices [12] are also implemented with the 
direct variable length representation. This provides a way 
of encoding solution paths in the multigraph without any 
ambiguity, providing an interesting case for comparison with 
all other representations. The directly encoded parallel edge 
indices are also applicable to the direct fixed length repre-
sentation also. We did not include this in our investigation, 
because that representation already includes some ambigu-
ity, as noted in “Direct Fixed Length Encoding”.

The directly encoded parallel edge indices are also rep-
resented as floating-point numbers assigned to node IDs. 
The value of a parallel edge index is divided by 100 to get a 
floating-point number. Therefore, up to 100 parallel edges 
can be represented between two nodes.

Direct Variable Length Representation for the Multigraph 
MSPP

We implement two versions of this representation, abbrevi-
ated DirVarL-indir and DirVarL-dir. The difference is in 
the encoding of the choice between parallel edges, which is 
done indirectly with parallel edge indicators for DirVarL-
indir, and for DirVarL-dir, it is done directly with parallel 
edge indices. Note that DirVarL-dir is similar to the solution 
representation used in Ref. [12], but we use different genetic 
operators. [12] employed an expensive mutation operator 
that includes using the Dijkstra’s algorithm and a repairing 
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mechanism. Instead, we use the mutation suggested in 
[14], as it is most often used with the direct variable length 
representation.

The base of the chromosome is a sequence of node IDs, 
that are integers, such as in [14]. As the parallel edge indi-
cators are floating-point numbers below 1, it is convenient 
to add them to the node IDs. This way, the chromosome is 
the same length as in the simple graph problem. The integer 
parts indicate the node sequence of the path and the frac-
tional parts indicate which of the parallel edges to use when 
leaving the nodes.

The solution path can be decoded according to Algo-
rithm 1. The algorithm loops through the chromosome 
(lines 3–13) and collects the nodes and indices determining 
the solution path. If the choice of parallel edges is encoded 
directly, lines 8–9 are executed, and if they are encoded indi-
rectly, line 11–12 is used to decode the parallel indices.

An example of a chromosome with DirVarL-indir that 
encodes the solution path in Fig. 1 is:

where the value of the first gene encodes that the 
first node in the solution path is 1 and the paral-
lel edge to be used to reach node 6 is calculated as 
⌊r(1) ∗ l(1, 6)⌋ + 1 = ⌊0.38 ∗ 3⌋ + 1 = 2 . An example of a 
chromosome with DirVarL-dir that encodes the solution 
path in Fig. 1 is:

[1.38, 6.82, 2.67, 4.51],

[1.02, 6.02, 2.03, 4.02].

Direct Fixed Length Representation for the Multigraph 
MSPP

The parallel edge indicators are added to the genes to 
extend the representation from [15]. The solution path can 
be decoded according to Algorithm 2. The loop in lines 
3–12 is executed until the destination node is reached by 
the path, or a node would appear a second time in the path. 
The next node to add to the path is found in line 5, and if 
it is not yet in the node sequence, the parallel index to use 
is decoded in lines 10–12 and added to the parallel index 
sequence.

We abbreviate the direct fixed length representation 
for the multigraph MSPP using parallel edge indicators 
DirFixL.

An example of a chromosome with DirFixL that 
encodes the solution path in Fig. 1 is:

Integer‑Valued Priority‑Based Representation 
for the Multigraph MSPP

The parallel edge indicators are added to the genes to 
extend the representation from [10]. Then, the priority 
value of node v can be found as the integer part of the vth 
gene in the chromosome, and the parallel edge indicator 
for node v can be found as the fractional part of this gene.

The node sequence and sequence of parallel indices can 
be decoded according to Algorithm 3. The loop in lines 

[6.38, 4.67, 2.24, 5.51, 4.09, 2.82].
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3–14 is executed until the destination node is reached by 
the path, or any node that only has neighbours that are 
already in the path. The next node to add to the path is 
found in line 10, and the parallel index to use is decoded 
in lines 12–14 and added to the parallel index sequence.

An example of a chromosome from this representation 
that encodes the solution path in Fig. 1 is:

Random Key‑Based Representation for the Multigraph 
MSPP

Given that the priorities in this representation [27] are 
floating-point numbers, we cannot use the same strategy to 
include the parallel edge indicators. They are kept separately, 

[6.38, 3.67, 1.24, 2.51, 5.09, 4.82].

making the genes two-dimensional. The first value of the 
gene at locus i encodes the priority value of the node with 
ID i, while the second of the gene at locus i encodes the 
parallel edge indicator of the node with ID i. The sequence 
of nodes and parallel edge indices can be decoded from a 
chromosome according to Algorithm 3.

An example of a chromosome from this representation 
that encodes the solution path in Fig. 1 is:

Variation Operators for the Representations

Different representations require different genetic operators. 
This section presents the genetic operators employed in this 
paper with each of the representations. For some representa-
tions, multiple crossover operators are considered, resulting 
in different variants of the same representations. The vari-
ants are summarised in Table 1 with example chromosomes 
that encode the same solution path for each representation.

There are two variants for the direct variable length rep-
resentation, the difference being the method used for encod-
ing the parallel edges. Both variants use the same genetic 
operators. Unlike the simple graph case, crossovers can be 
conducted on any two parents that have at least one node in 
common apart from the origin and destination node. Even 
if the resulting node sequence is the same as a parent node 
sequence, the parallel edges might change. The mutation 
operator generates new partial solutions by a random walk 
from a randomly chosen node in the path.

There is only one variant for the direct fixed length repre-
sentation. Uniform crossover is employed. In mutation, the 
integer part of each gene is changed with probability 0.5. 
The integer part at locus i is changed to a random neighbour 
of the ith node. There is no need to change the fractional 
part, i.e., the parallel edge indicators, because they indicate 
a decision between a different set of parallel edges.

[(0.93, 0.38), (0.36, 0.67), (0.12, 0.24), (0.25, 0.51),

(0.51, 0.09), (0.45, 0.82)].

Table 1   Representations and their variants for the multigraph MSPP

Examples are shown for the encoding of the solution path in Fig. 1 using each representation. Variants investigated are listed for each representa-
tion. The details of the variants are described in “Variation Operators for the Representations”

Representation Example candidate Description Variants

Direct variable length [1.02, 6.02, 2.03, 4.02] Node IDs listed with parallel edge indices DirVarL-dir
[1.38, 6.82, 2.67, 4.51] Node IDs listed with parallel edge indicators DirVarL-indir

Direct fixed length [6.38, 4.67, 2.24, 5.51, 4.09, 2.82] Pointers to neighbouring nodes with parallel edge 
indicators

DirFixL

Integer priority [6.38, 3.67, 1.24, 2.51, 5.09, 4.82] Integer priority values with parallel edge indicators IntPri-PX, IntPri-WMX
Random keys [(0.93, 0.38), (0.36, 0.67), (0.12, 0.24), 

(0.25, 0.51), (0.51, 0.09), (0.45, 
0.82)]

Floating point priority values with parallel edge 
indicators

RanKey-arithX, 
RanKey-2ptX, 
RanKey-uniX
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We include two variants for the integer priority repre-
sentation, with two different crossover operators, PX [26] 
and WMX [10], which was specifically introduced for the 
MSPP. In both cases, insertion mutation is used, meaning 
that a randomly picked gene is removed from the chromo-
some and inserted back at a new locus. We abbreviate the 
integer-valued priority-based representation for the mul-
tigraph MSPP using parallel edge indicators paired with 
WMX IntPri-WMX and IntPri-PX when it is paired with PX.

We include three variants for the random key representa-
tion paired with three different crossover operators. In Ref. 
[27], arithmetic crossover was used. We also investigate two-
point crossover and uniform crossover. Insertion mutation 
is used in all these cases. Both the mutation and crossover 
mechanisms are independent of the values of the genes, and 
thus, they are straightforward to apply on the two-dimen-
sional genes described in “Random Key Based Representa-
tion for the Multigraph MSPP”. We abbreviate the random 
key-based representation for the multigraph MSPP using 
parallel edge indicators RanKey-arithX, RanKey-uniX, or 
RanKey-2ptX when it is paired with arithmetic, uniform, or 
two-point crossover, respectively.

Heuristic Initialisation

Heuristic Initialisation Based on Graph Structures

Inspired by [25], we propose a novel heuristic initialisation 
technique that aims to discourage detours (HeurI1). The 
method incorporates knowledge about the network structure 
and randomisation to provide a diverse initial population of 
high quality. The difference is that we incorporate the roles 
of IDs and priorities into a single priority value assigned to 
each node in a semi-random way. The idea is to give higher 
priorities to nodes closer to the destination node with higher 
priorities than to the nodes far from it, thereby discouraging 
detours.

The method is first introduced for random key representa-
tion. Then, the initialised solutions can be easily converted 
to the other three representations. The priority p is assigned 
to node v according to (2). The hopcount (the minimum 
number of edges in a path) between node v and node vD in G 
is denoted h(v, vD,G) , and �max denotes the maximum value 
of the randomisation coefficient �:

The likelihood of detours appearing in the decoded paths 
can be controlled by the parameter �max . The higher �max is, 
the more random the priorities are, and the less prominent is 
the effect of the heuristic initialisation compared to a purely 
random one. With a value of 𝜏max > 1 , small detours are pos-
sible, a path might move from a node to another one with the 

(2)p(v, vD) = −h(v, vD,G) + �, � ∈ (0, �max).

same hopcount, as depicted in Fig. 2. If 𝜏max > 2 , moving 
to a node that is at higher hopcount from the destination is 
possible and becomes more probable with the increase of 
�max . The value of �max can be optimised with the rest of the 
parameters for the experiments.

The resulting values need to be transformed according to 
the representations before they are fed to the algorithms as 
initial populations. For random key encoding, they need to 
be normalised to fit the appropriate intervals. For integer-
valued priority encoding, the priorities are converted to inte-
gers by sorting them into increasing order and assign to each 
node the rank of its priority value. For direct encodings, the 
priorities are converted to node-based representations. This 
way, the method can be used with all four representations. 
The parallel edge indicators are assigned randomly.

A crucial point is that the heuristic initialisation method 
should be easily computable compared to the original prob-
lem being solved. The proposed method makes use of the 
hopcount of each node in the graph from the destination 
node, which can be computed in O(V + E) time. This is sig-
nificantly lower than solving the multigraph MSPP, which 
is in general NP-hard.

Heuristic Initialisation Based on Single Objective Search

The second heuristic initialisation method (HeurI2) is 
adapted from [9], it returns an already good solution by 
using single objective search (Dijkstra’s algorithm). We use 
this method to initialise five solutions for the bi-objective 
problem with weights for the objective values equally dis-
tributed in the interval (0, 1). For the triple objective prob-
lem, we initialise seven solutions with this method: one with 
each single objective, one with each pair of objectives with 
equal weights, and one considering all objectives with equal 
weights. The rest of the candidates are initialised using the 
HeurI1 method, or a purely random initialisation.

Fig. 2   Illustration of the role of �max in heuristic initialisation. Here, 
�max = 1.5 , and thus, detours are possible, as demonstrated by the 
path indicated in bold, on nodes 1, 6, 2, 4, 5. The path without detour 
would consist of nodes 1, 6, 4, 5. Because the difference in the hop-
counts of nodes 2 and 4 from node 5 is smaller than the difference of 
the random numbers associated with these nodes, a detour is formed.
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The HeurI2 method is most conveniently used with the 
direct variable length representation, as in Ref. [9], because 
Dijkstra’s algorithm returns a solution path. Here, we also 
use it with the other three representations. To do this, we first 
need to translate the solution path with the parallel indices to 
the respective representations. There are multiple ways to do 
this, because only the direct variable length representation 
provides one-to-one encoding.

In Algorithm 4, we describe one of the possible meth-
ods for producing an integer priority-based chromosome 
that encodes a given solution path. In the first stage, the 
priorities of the nodes that appear in the path are set (lines 
5–10). These priorities are increasing from the destination 
node towards the origin node. The rest of the genes are filled 
up with the remaining priority values, and random parallel 
edge indicators in lines (13–15). This way, at any point in 
the decoding process, the neighbour that follows the current 
node in the path has the highest priority in the whole graph 
except for nodes already in the path. Parallel edge indica-
tors are set to encode the required parallel indices between 
nodes in the solution path (lines 6–8). The translation to the 
remaining two representations is done along the same lines.

that corresponds to the ith node in nodeSequence with

Implementation Details

NSGA-II [29] is employed to compare the representation 
and initialisation methods. The selection and elitism mech-
anisms are defined by NSGA-II. This algorithm scales well 

for two and three objective problems [30]. All numerical 
tests are performed on Queen Mary’s Apocrita HPC facil-
ity [31]. The methods are implemented in Python, for the 
NSGA-II implementation, the inspyred package [32] was 
used. The parameters for the NSGA-II and the initialisa-
tion were tuned with the use of the irace package [33], 
separately for all the variants of the representations. The 
tuned parameters are shown in Table 2.

The fitness of a valid path is calculated according to (1). 
It might happen that some candidates encode paths that do 
not reach the destination node. In these cases, a penalty func-
tion is used, which assigns a large cost to such candidates. 
The penalty is larger the further away the path ends from 
the destination node, measured by hopcount. The fitness 
of an infeasible path P′ that does not reach the destination 
node is calculated according to Eq. (3), where costmax is the 
k-dimensional vector where each component equals the max-
imum value of any cost component in the given instance:

Test Instances

The algorithms are evaluated using 32 test instances, 16 for 
the 2 objective problem, and 16 for the 3 objective problem. 
These instances differ in the graph type, the maximum num-
ber of parallel edges in the multigraph, and the correlation 
between the objectives.

We use Waxman networks [34] with 100 and 196 nodes 
and square grid networks with the same number of nodes 
(10 by 10 and 14 by 14 nodes). The origin and destination 
nodes are specified as two endpoints of a diameter (largest 
hopcount) of the network, to ensure that they are not too 
close, to avoid setting a trivial problem. Each edge in these 

(3)C(P�) =
∑

e∈P�

cost(e) + costmax ∗ h(P�, vD).

Table 2   Values of the parameters for the different variants, tuned by 
the irace package

Variants Popula-
tion size

Crossover rate Mutation rate �max

DirVarL-dir 64 0.94 0.10 2.46
DirVarL-indir 58 0.65 0.08 2.00
DirFixL 28 0.89 0.04 0.63
IntPri-PX 44 0.62 0.12 0.30
IntPri-WMX 28 0.94 0.15 0.50
RanKey-arithX 64 0.93 0.20 0.65
RanKey-2ptX 38 0.95 0.17 1.02
RanKey-uniX 24 0.99 0.08 2.76



	 SN Computer Science (2021) 2:176176  Page 10 of 22

SN Computer Science

simple graphs is converted to a multi-edge by assigning a 
cost matrix to it.

The cost matrix contains a cost-vector in each of its rows, 
corresponding to a parallel edge. The number of rows of 
these cost matrices is randomly chosen between 1 and lmax , 
where lmax the maximum allowed number of parallel edges, 
5 or 10 in this case. All parallel edges between the same two 
nodes have non-dominated cost-vectors.

We included instances with uncorrelated objectives and 
with negative correlation between the objectives. Negative 
correlation is the case where a multi-objective approach is 
essential for real-world applications and also these kinds 
of instances are the most challenging for exact solution 
approaches [35].

The cost assignment method described in Ref. [35] was 
used, to generate pairs of cost components with a specified 
negative correlation multiplier � . The method is described 
by (4), where the first cost component ( C1 ) is randomly gen-
erated from a uniform distribution within the interval speci-
fied by Cmin and Cmax . (C2)

∗ is a randomly generated value 
from the same interval, and C2 is the second cost component. 
In our instances, the interval is specified by Cmin = 10 and 
Cmax = 1000:

Note that for positive correlation multipliers, there is a sep-
arate formula [36]. However, we do not include instances 
with positive correlation, because they are generally easier 
to solve by exact approaches. In the case of three objectives, 
the third cost component is also calculated from the first cost 
component with the same value of �.

Evaluation of Approximate Solutions

The proposed representations and their variants (listed in 
Table 1) are tested empirically and their performances are 
compared to a reference front using a set of quality indica-
tors. The reference front is the true Pareto front, when it is 
available, and an approximation of it otherwise.

Reference Fronts

The true Pareto front was found by a state-of-the-art exact 
algorithm NAMOA* [37], a multi-objective variant of the 
A* algorithm, which was adapted to the multigraph prob-
lem. This algorithm uses heuristic functions to speed up the 
search. Here, we used a heuristic function proposed in [38] 
defined as, hTC(n) = (c1(n), c2(n),… , cq(n)) , where ci(n) is 
the optimal scalar cost of a path from node n to the destina-
tion node, considering only the ith cost component.

We allowed 1 day for the execution time of NAMOA*. 
When this was not enough, we approximated the Pareto 

(4)C2 = Cmax + Cmin − (|�| ∗ C1 + (1 − |�|) ∗ (C2)
∗).

front using the solutions already found by NAMOA*, if 
any, and the approximate solutions returned by variants of 
NSGA-II. There are some bounds on the quality of Pareto 
fronts approximated this way. We know that they contain 
at least as many members of the true Pareto front as the 
number of objectives, because solutions initialised with the 
HeurI2 method are included. When NAMOA* is stopped 
prematurely, it either does not return any solutions, or it 
returns a subset of the Pareto-optimal solutions, these are 
also included in the reference front when they are available. 
Thus, all other members of the approximate front are non-
dominated by at least some members of the true Pareto front.

Quality Indicators

We use the multiplicative Epsilon indicator, the R3 indicator, 
and the relative hypervolume (RHV) indicator to evaluate 
the approximations of the Pareto fronts. A detailed descrip-
tion of these indicators can be found in Ref. [39]. The use 
of these metrics is in line with the recommendations in [40]. 
All three indicators signal higher qualities of the approxima-
tion front by lower values. When the approximate front is 
fully converged to the real Pareto front, the R3 metric and 
the RHV indicators have a value of 0, and the Epsilon indi-
cator has a value of 1.

Results

Finding Exact Solutions for the Multigraph MSPP 
Instances

Table 3 presents the experimental data regarding solving the 
32 test instances using NAMOA*. In particular, it shows the 
high execution times of NAMOA*; for grid graphs, this time 
often exceeds 24 h, and overall, it is only twice below 10 s.

We can see the size of the reference front (true Pareto 
front or the approximated Pareto front). According to both 
running time and reference front size, the bi-objective 
instances on Waxman graphs can be considered the easi-
est and the instances on grid graphs with three objectives 
the most difficult. The last two columns also show that if 
NAMOA* is stopped prematurely after 10 or 20 s, it does 
not return any solutions in the case of most test instances. 
When it does return solutions after this short time, we can 
see that they are rarely a good approximation of the refer-
ence front, as measured by the RHV quality metric. These 
results are compared to NSGA-II in “ Differences Across 
the Instances”.
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In the following, we present results about using NSGA-II 
with the different representations and show that high-quality 
approximate solutions can be found in only 10 s.

Initialisation Methods

Four different initialisation procedures were used.

–	 R: Purely random initialisation
–	 H1: HeurI1 for all candidates

–	 H2 + R: HeurI2 for 5 or 7 candidates as described in 
“Heuristic Initialisation”, and purely random initialisa-
tion for the rest

–	 H1 + H2: HeurI2 for 5 or 7 candidates and HeurI1 for the 
rest.

We combined all eight variants of NSGA-II with each ini-
tialisation procedure and compared the achieved solution 
qualities according to the quality indicators in Table 4. We 
can see that H1 + H2 and H2 + R are visibly better than the 

Table 3   The performance of 
NAMOA* on the 32 problem 
instances. The first five columns 
describe the problem instances

The column “NAMOA* time” specifies the running time of the NAMOA* algorithm on the given 
instances in seconds, if this time is less than a day. The column “Reference front size” specifies the number 
of solutions in the Pareto front, or when the algorithm does not finish in a day, the number of solutions in 
the approximation of the Pareto front. The last two columns describe the solution quality measured by rela-
tive hypervolume reached by NAMOA* when it is stopped prematurely after 10 or 20 s

Problem instances NAMOA* Reference NAMOA* NAMOA*

Obj Graph type lmax n � Time (s) Front size RHV 10 s RHV 20 s

2 Grid 5 100 − 0.75 8601.61 1247 – –
0.00 726.40 236 – –

196 − 0.75 – 592 – –
0.00 14,917.48 472 – –

10 100 − 0.75 62,779.48 2599 – –
0.00 3536.90 416 – –

196 − 0.75 – 506 – –
0.00 14,387.35 657 – –

Waxman 5 100 − 0.75 6.68 36 0.000 0.000
0.00 11.59 48 0.072 0.000

196 − 0.75 305.88 236 0.412 0.292
0.00 61.50 57 0.231 0.173

10 100 − 0.75 442.22 155 0.258 0.233
0.00 9.97 69 0.000 0.000

196 − 0.75 1787.01 368 – –
0.00 256.54 76 – –

3 Grid 5 100 − 0.75 – 1961 – –
0.00 – 1316 – –

196 − 0.75 – 2536 – –
0.00 – 1006 – –

10 100 − 0.75 – 1806 – –
0.00 – 1355 – –

196 − 0.75 – 3518 – –
0.00 – 1357 – –

Waxman 5 100 − 0.75 839.94 218 – –
0.00 205.06 190 – 0.405

196 − 0.75 1654.18 567 0.609 0.590
0.00 3043.82 258 0.290 0.290

10 100 − 0.75 3097.27 868 0.611 0.583
0.00 7178.79 651 0.445 0.390

196 − 0.75 – 946 – –
0.00 70,164.86 666 – –
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other two in all cases. One main reason for this is that the 
H2 method finds the extreme solutions in the initialisation 
step, while these are often not found at all using a method 
without H2.

Apart from the direct variable length representation, the 
H1 + H2 method significantly outperforms the H2 + R. 
On the other hand, H2 + R is significantly better than H1 
+ H2 only in case of the DirVarL-dir variant. The p values 
for the statistical tests are indicated in Table 4. The general 
patterns of the results are similar in case of the 20 s time 
budget. For details, see the Appendix Table 6.

One possible explanation for why the H1 + H2 initiali-
sation method is not better than the H2 + R method only in 
case of the direct variable length representation is the fol-
lowing. In the case of the other three representations, the 
H1 method encodes some extra information about which 
direction to choose at each node in the graph, not just the 
nodes in the encoded path. This is possible because of 
the inherent ambiguity of these representations. If such a 
chromosome is modified through mutation or crossover, 
the extra information might make it more probable that 
the resulting new chromosome will be a valid path. While 
the direct variable length representation encodes the path 
without ambiguity, and thus, the extra information pro-
vided by the H1 initialisation is lost when the chromosome 
is converted to this representation.

Comparison of NSGA‑II Variants

In the following, only the best initialisations are consid-
ered for each variant.

Performance of Variants on Average Across All Instances

Table 4 also shows that, on average, the RanKey-2ptX vari-
ant reaches the best results (with H1 + H2 initialisation) 
considering all instances. This is confirmed by the one-sided 
Wilcoxon signed-rank test with p values below 10−7 for all 
three quality indicators. This also holds for the 20 s time 
budget, see Appendix Tables 6 and 7.

These results might be surprising given that RanKey-
2ptX has the most ambiguity out of the four representations. 
The results suggest that a different search landscape and 
more effective genetic operators can balance the increased 
ambiguity of representations. The extra information encoded 
in the chromosomes with some ambiguity—as discussed in 
“Initialisation Methods”—might also contribute.

In the following, we identify the best variant for each 
of the four representations, based on the data presented in 
Table 4 for the further analysis.

There were two variants considered for the direct variable 
length representation. The DirVarL-dir variant was better 
according to the averages of all three quality indicators than 
the DirVarL-indir. The one-sided Wilcoxon signed-rank test 

Table 4   Illustration of the role of the heuristic initialisation methods in the solution quality achieved by variants of NSGA-II using different 
genetic representations and crossover operators, described by the R3 metric

The lowest values of the quality indicators corresponding to the best initialisation technique are highlighted in bold in each sub-column
Lower values correspond to better quality. The average values are calculated from 50 runs for each of the 32 instances. The time budget for 
NSGA-II is specified as 10 s. The one-sided Wilcoxon signed-rank test was used to decide statistical significance between H1 + H2 and H2 + R. 
Results are indicated as (*)p < 0.05 , (**)p < 0.005 , and (***)p < 0.0005

Representation DirFixL DirVarL DirVarL IntPri IntPri RanKey RanKey RanKey
Initialisation -dir -indir -PX -WMX -2ptX -arithX -uniX

Epsilon indicator
   R 7.7077 3.3283 3.6321 3.7194 2.7993 3.5390 4.0898 4.1144
   H1 2.7818 3.1189 3.3199 2.9096 2.2668 2.2565 2.7872 2.3880
   H1 + H2 1.2041*** 1.2144 1.2358 1.3228*** 1.2897*** 1.1915*** 1.2458*** 1.2547***
   H2 + R 1.2487 1.2090* 1.2334 1.3368 1.2998 1.2039 1.2731 1.2771

R3 indicator
   R 0.6012 0.3682 0.3975 0.3961 0.3122 0.3860 0.4631 0.4344
   H1 0.2913 0.3428 0.3625 0.3173 0.2389 0.2244 0.3136 0.2481
   H1 + H2 0.0255*** 0.0257 0.0285 0.0439*** 0.0394*** 0.0231*** 0.0359*** 0.0346***
   H2 + R 0.0300 0.0246** 0.0283 0.0466 0.0410 0.0241 0.0396 0.0375

RHV indicator
   R 0.5582 0.2296 0.2571 0.2652 0.1799 0.2439 0.3162 0.2971
   H1 0.1632 0.2071 0.2231 0.1864 0.1230 0.1121 0.1690 0.1279
   H1 + H2 0.0135*** 0.0140 0.0160 0.0269*** 0.0227*** 0.0124*** 0.0192*** 0.0196***
   H2 + R 0.0180 0.0137* 0.0160 0.0302 0.0241 0.0132 0.0223 0.0229
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confirms the statistical significance in all cases with p values 
below 10−35 for both values of the time budget. This differ-
ence confirms the expectations that increasing the ambiguity 
of the representation of the parallel edge indices decreases 
the effectiveness of the search to some degree.

There were two variants considered for the integer prior-
ity representation. The IntPri-WMX variant outperformed 
the IntPri-PX variant according to all quality indicators on 
average. The one-sided Wilcoxon signed-rank test confirms 
the statistical significance in all cases with p values below 
10−22 for both values of the time budget. This is not sur-
prising given that WMX was specifically introduced for the 
shortest path problem, while PX not.

There were three variants considered for the random key 
representation. The RanKey-2ptX variant outperformed both 
the RanKey-arithX and RanKey-uniX variants among all 
others, as we have already seen in the overall comparison 
of the variants.

Taking the average of the quality indicators across all 
instances as the basis of comparison might cover up impor-
tant differences between the representations. It can be the 
case that the RanKey-2ptX variant is consistently outper-
formed by another variant for a subgroup of the instances. 
This is investigated next.

Performance Differences Across the Instances

In the following, we only consider the best variant for each 
representation with the best initialisation method. The four 
representations are compared in detail on the 32 instances 
separately. Here, the representations are compared with a 
time budget of 10 s. For the sake of comparison, the solu-
tion quality achieved by NAMOA* in 10 s is also included. 
The RHV values are shown, because this quality indicator 
has the highest correlation with the other two. Note that the 
value of the Spearman’s rank correlation coefficient is above 
0.91 between any two of the three quality indicators, and this 
suggests that using any of the three would result in roughly 
the same order between the evaluated variants.

In Table 5, we can see that while RanKey was shown to 
be the best on average in “Performance of Variants on Aver-
age Across All Instances”, in fact, three of the representa-
tions are shown to be competitive when compared separately 
for each of the instances. IntPri-WMX is outperformed by 
the other three in the majority of cases. DirVarL-dir seems 
to be particularly suitable for grid instances with three objec-
tives, while generally less successful in case of Waxman 
networks and grids with two objectives. RanKey-2ptX shows 
an overall good performance. However, the grid instances 
with more than two objectives seem to be a weak point.

We can also see in Table 5 that NAMOA* outperformed 
NSGA-II with the 10 s time budget in only two cases, when 
it found the whole Pareto front within 10 s. In other cases, 

even if NAMOA* returns some solutions, the quality is mag-
nitudes lower than with the NSGA-II variants. Thus, we can 
conclude that for these test instances, we should not choose 
NAMOA* as a solver algorithm if the time budget is small.

The general patterns of the results are similar with the 
other quality indicators and with the time budget of 20 s. 
For the detailed results, see Appendix Tables 6, 7, 8, 9, 10, 
11, and 12.

Conclusion and Future Work

A systematic investigation of design choices of genetic rep-
resentations for the multigraph MSPP was presented in this 
paper. Four main representations were investigated, some 
with multiple variants. The resulting eight variants were 
compared using NSGA-II.

The proposed encoding schemes for incorporating the 
choice between parallel edges are through a floating-point 
number as parallel edge indicators, instead of including the 
parallel edge indices directly. This approach is necessary for 
the extension of priority-based representations to the mul-
tigraph MSPP when inhomogeneous numbers of parallel 
edges between pairs of nodes are possible.

Multiple different initialisation methods are also consid-
ered. Apart from purely random initialisation, two heuristic 
initialisation methods are investigated. One of these is an 
existing method based on single objective search that was 
previously only used with the direct variable length repre-
sentation. We adapted it to be applicable to the other repre-
sentations. We also propose a novel heuristic initialisation 
method that makes use of a priori knowledge about the graph 
structure and can be used with all representations.

The representations and their variants combined with dif-
ferent initialisation methods are compared according to three 
quality indicators. It is found that our proposed initialisation 
method provides additional benefits when used together with 
the other heuristic initialisation methods in three out of the 
four representations.

Regarding the average of the quality indicators across all 
instances, the best variant of the algorithm was the random 
keys representation with two-point crossover. This variant 
employs the novel heuristic initialisation proposed, and the 
parallel edge indicators to encode the choice between paral-
lel edges, which proves the effectiveness of the proposed 
methods.

When breaking down the test instances further, it was 
revealed that for grid-based problem instances with more 
than two objectives, the best approach is the direct variable 
length representation, while the random keys representation 
is generally the best for the other problem instances. This 
might be because the crossover operator of the direct vari-
able length representation requires a common node between 
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the two parent paths, and this is more likely to exist in grid 
graphs. One future research direction is to understand this 
difference in depth, and design an algorithm that incorpo-
rates the strengths of both representations.

The solution qualities achieved this way gave a good rep-
resentation of the reference fronts in only 10 s, while obtain-
ing the exact Pareto front required significantly longer times 
for most of the investigated instances. The running times are 
often important in practical applications.

We saw that the ambiguity of representing the choice 
of parallel edges makes NSGA-II less effective. However, 
the inherent ambiguity of the random key representation in 
encoding node sequences does not seem to cause a prob-
lem. One future direction is to understand how can the 
representation with the most amount of ambiguity be the 
most successful.

Additionally, future work includes the extension to 
constrained problems, particularly the investigation of 
constraint handling methods. The extension will allow 

Table 5   Comparing the best variants of NSGA-II for the four representations, separately for the 32 test instances with a time budget of 10 s

The best values among the representations are shown in bold in each row
The values of the average RHV quality indicator of 50 runs with each representation is shown. The results of NAMOA* regarding the RHV 
quality indicator from Table 3 with the same time budget of 10 s are repeated in the last column, for easy comparison. The one-sided Wilcoxon 
signed-rank test was used to decide statistical significance between each variant compared to the best one in each row. Results are indicated as 
(*)p < 0.05 , (**)p < 0.005 , (***)p < 0.0005

Problem instance DirVarL-dir DirFixL RanKey-2ptX IntPri-WMX NAMOA* 10 s

Obj Graph type lmax n �

2 Grid 5 100 − 0.75 0.0100*** 0.0070 0.0070 0.0122*** –
0.00 0.0109*** 0.0101*** 0.0062 0.0152*** –

196 − 0.75 0.0125*** 0.0078 0.0077 0.0134*** –
0.00 0.0103*** 0.0146*** 0.0079 0.0217*** –

10 100 − 0.75 0.0076*** 0.0064 0.0064 0.0128*** –
0.00 0.0058 0.0086*** 0.0067* 0.0169*** –

196 − 0.75 0.0066 0.0066 0.0064 0.0118*** –
0.00 0.0083 0.0154*** 0.0128*** 0.0192*** –

Waxman 5 100 − 0.75 0.0017*** 0.0007 0.0012*** 0.0009* 0.0000
0.00 0.0072*** 0.0057*** 0.0025 0.0027 0.0718

196 − 0.75 0.0107*** 0.0031 0.0030 0.0089*** 0.4118
0.00 0.0052*** 0.0019 0.0034*** 0.0107*** 0.2314

10 100 − 0.75 0.0026*** 0.0025** 0.0022 0.0026*** 0.2579
0.00 0.0089*** 0.0046*** 0.0037 0.0104*** 0.0000

196 − 0.75 0.0059*** 0.0036*** 0.0031 0.0069*** –
0.00 0.0130*** 0.0091** 0.0079 0.0126*** –

3 Grid 5 100 − 0.75 0.0082 0.0150*** 0.0140*** 0.0209*** –
0.00 0.0222 0.0259*** 0.0261*** 0.0584*** –

196 − 0.75 0.0122 0.0183*** 0.0176*** 0.0267*** –
0.00 0.0229 0.0485*** 0.0387*** 0.0688*** –

10 100 − 0.75 0.0129 0.0136 0.0150*** 0.0215*** –
0.00 0.0178 0.0374*** 0.0397*** 0.0659*** –

196 − 0.75 0.0072 0.0200*** 0.0193*** 0.0272*** –
0.00 0.0176 0.0303*** 0.0324*** 0.0744*** –

Waxman 5 100 − 0.75 0.0189*** 0.0122*** 0.0091 0.0106*** –
0.00 0.0104*** 0.0075 0.0079 0.0156*** –

196 − 0.75 0.0161*** 0.0078*** 0.0055 0.0128*** 0.6088
0.00 0.0366*** 0.0153** 0.0139 0.0255*** 0.2895

10 100 − 0.75 0.0061 0.0103*** 0.0082*** 0.0117*** 0.6114
0.00 0.0169 0.0169 0.0193** 0.0285*** 0.4449

196 − 0.75 0.0421*** 0.0174** 0.0151 0.0296*** –
0.00 0.0426*** 0.0283 0.0276 0.0488*** –
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the proposed approaches to be tested on real-world prob-
lems and to be compared with other exact and approximate 
algorithms.

Appendix

See Tables 6, 7, 8, 9, 10, 11, and 12.

Table 6   Illustration of the role of the heuristic initialisation methods in the solution quality achieved by variants of NSGA-II using different 
genetic representations and crossover operators, described by the R3 metric

The lowest values of the quality indicators corresponding to the best initialisation technique are highlighted in bold in each sub-column
Lower values correspond to better quality. The average values are calculated from 50 runs for each of the 32 instances. The time budget for 
NSGA-II is specified as 20 s. The one-sided Wilcoxon signed-rank test was used to decide statistical significance between H1 + H2 and H2 + R. 
Results are indicated as (*)p < 0.05 , (**)p < 0.005 , (***)p < 0.0005

Representation DirFixL DirVarL DirVarL IntPri IntPri RanKey RanKey RanKey
Initialisation -dir -indir -PX -WMX -2ptX -arithX -uniX

Epsilon indicator
R 7.4730 3.1227 3.4750 3.2724 2.5375 3.4757 3.9342 3.9197
H1 2.7997 2.9739 3.1787 2.6662 2.1416 2.1760 2.7162 2.3856
H1 + H2 1.1934*** 1.2048 1.2263 1.2909*** 1.2738*** 1.1765*** 1.2371*** 1.2358***
H2 + R 1.2363 1.2000*** 1.2225 1.3045 1.2787 1.1853 1.2621 1.2511
R3 indicator
R 0.5846 0.3485 0.3825 0.3548 0.2778 0.3822 0.4504 0.4230
H1 0.2904 0.3323 0.3495 0.2861 0.2192 0.2171 0.3077 0.2481
H1 + H2 0.0236*** 0.0239 0.0268 0.0389** 0.0364*** 0.0202*** 0.0342*** 0.0315***
H2 + R 0.0281 0.0231*** 0.0262 0.0406 0.0376 0.0212 0.0380 0.0340
RHV indicator
R 0.5353 0.2111 0.2415 0.2238 0.1525 0.2418 0.2998 0.2840
H1 0.1633 0.1957 0.2111 0.1632 0.1095 0.1065 0.1634 0.1264
H1 + H2 0.0124*** 0.0129 0.0148 0.0232*** 0.0208*** 0.0107*** 0.0181*** 0.0174***
H2 + R 0.0163 0.0124*** 0.0148 0.0254 0.0217 0.0113 0.0210 0.0201

Table 7   Comparing variants of NSGA-II with their best initialisation methods for both the 10 s and 20 s time budgets

The one-sided Wilcoxon signed rank test was used to decide statistical significance between each variant compared to the best one in each row 
(highlighted in bold)
Average solution qualities on the 32 instances are shown according to the three quality indicators. Lower values correspond to better qual-
ity. The average values are calculated from 50 runs for each of the 32 instances. The one-sided Wilcoxon signed-rank test was used to decide 
statistical significance between each variant compared to the best one in each row. Results are indicated as (*)p < 0.05 , (**)p < 0.005 , and 
(***)p < 0.0005

Representation DirFixL DirVarL DirVarL IntPri IntPri RanKey RanKey RanKey
Time budget [s] -dir -indir -PX -WMX -2ptX -arithX -uniX

Epsilon indicator
   10 1.2041*** 1.2090*** 1.2334*** 1.3228*** 1.2897*** 1.1915 1.2458*** 1.2547***
   20 1.1934*** 1.2000*** 1.2225*** 1.2909*** 1.2738*** 1.1765 1.2371*** 1.2358***

R3 indicator
   10 0.0255*** 0.0246*** 0.0283*** 0.0439*** 0.0394*** 0.0231 0.0359*** 0.0346***
   20 0.0236*** 0.0231*** 0.0262*** 0.0389*** 0.0364*** 0.0202 0.0342*** 0.0315***

RHV indicator
   10 0.0135*** 0.0137*** 0.0160*** 0.0269*** 0.0227*** 0.0124 0.0192*** 0.0196***
   20 0.0124*** 0.0124*** 0.0148*** 0.0232*** 0.0208*** 0.0107 0.0181*** 0.0174***
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Table 8   Comparing the best variants of NSGA-II for the four representations, separately for the 32 test instances with a time budget of 20 s

The best values among the representations are shown in bold in each row
The values of the average RHV quality indicator of 50 runs with each representation are shown. The results of NAMOA* regarding the RHV 
quality indicator with the same time budget of 20 s are shown in the last column, for comparison. The one-sided Wilcoxon signed-rank test 
was used to decide statistical significance between each variant compared to the best one in each row. Results are indicated as (*)p < 0.05 , 
(**)p < 0.005 , and (***)p < 0.0005

Problem instance DirVarL-dir DirFixL RanKey-2ptX IntPri-WMX NAMOA* 20s

obj graph type lmax n �

2 grid 5 100 − 0.75 0.0093*** 0.0070*** 0.0053 0.0109*** –
0.00 0.0101*** 0.0092*** 0.0050 0.0133*** –

196 − 0.75 0.0102*** 0.0064* 0.0059 0.0120*** –
0.00 0.0097*** 0.0123*** 0.0062 0.0202*** –

10 100 − 0.75 0.0068*** 0.0056 0.0054 0.0112*** –
0.00 0.0056* 0.0077*** 0.0050 0.0159*** –

196 − 0.75 0.0060*** 0.0055*** 0.0046 0.0101*** –
0.00 0.0082 0.0137*** 0.0114*** 0.0185*** –

Waxman 5 100 − 0.75 0.0013*** 0.0008 0.0011 0.0008* 0.0000
0.00 0.0062*** 0.0046*** 0.0023 0.0023 0.0000

196 − 0.75 0.0083*** 0.0033*** 0.0024 0.0074*** 0.2918
0.00 0.0045*** 0.0018 0.0030*** 0.0098*** 0.1730

10 100 − 0.75 0.0024** 0.0026** 0.0022 0.0023* 0.2328
0.00 0.0094*** 0.0045*** 0.0034 0.0100*** 0.0000

196 − 0.75 0.0061*** 0.0034*** 0.0028 0.0056*** –
0.00 0.0117*** 0.0092*** 0.0067 0.0116*** –

3 grid 5 100 − 0.75 0.0069 0.0144*** 0.0124*** 0.0194*** –
0.00 0.0204 0.0239*** 0.0229*** 0.0543*** –

196 − 0.75 0.0108 0.0165*** 0.0156*** 0.0234*** –
0.00 0.0205 0.0425*** 0.0316*** 0.0637*** –

10 100 − 0.75 0.0125 0.0128 0.0124 0.0192*** –
0.00 0.0157 0.0348*** 0.0351*** 0.0601*** –

196 − 0.75 0.0062 0.0176*** 0.0173*** 0.0252*** –
0.00 0.0165 0.0259*** 0.0274*** 0.0707*** –

Waxman 5 100 − 0.75 0.0162*** 0.0121*** 0.0084 0.0098*** –
0.00 0.0094*** 0.0069 0.0067 0.0143*** 0.4047

196 − 0.75 0.0122*** 0.0077*** 0.0049 0.0118*** 0.5902
0.00 0.0344*** 0.0158*** 0.0120 0.0219*** 0.2895

10 100 − 0.75 0.0052 0.0105*** 0.0077*** 0.0106*** 0.5829
0.00 0.0165** 0.0151 0.0190*** 0.0258*** 0.3898

196 − 0.75 0.0376*** 0.0176*** 0.0127 0.0259*** –
0.00 0.0403*** 0.0269 0.0238 0.0462*** –
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Table 9   Comparing the best variants of NSGA-II for the four representations, separately for the 32 test instances with a time budget of 10 s

The best values among the representations are shown in bold in each row
The values of the average Epsilon quality indicator of 50 runs with each representation is shown. The results of NAMOA* regarding the Epsi-
lon quality indicator with the same time budget of 10 s are shown in the last column, for comparison. The one-sided Wilcoxon signed-rank 
test was used to decide statistical significance between each variant compared to the best one in each row. Results are indicated as (*)p < 0.05 , 
(**)p < 0.005 , and (***)p < 0.0005

Problem instance DirVarL-dir DirFixL RanKey-2ptX IntPri-WMX NAMOA* 10 s

Obj Graph type lmax n �

2 Grid 5 100 − 0.75 1.0654*** 1.0450 1.0452 1.0638*** –
0.00 1.1896*** 1.2170*** 1.1509 1.3325*** –

196 − 0.75 1.1080*** 1.0571* 1.0527 1.0735*** –
0.00 1.2094*** 1.3056*** 1.1666 1.3539*** –

10 100 − 0.75 1.0680*** 1.0551 1.0532 1.0849*** –
0.00 1.1630 1.2795*** 1.2115*** 1.3453*** –

196 − 0.75 1.0476 1.0533*** 1.0523*** 1.0749*** –
0.00 1.3301 1.7687*** 1.6615*** 1.7445*** –

Waxman 5 100 − 0.75 1.0634*** 1.0320 1.0466*** 1.0339 1.0000
0.00 1.1912*** 1.1465*** 1.0939 1.0934 2.3609

196 − 0.75 1.1301*** 1.0536 1.0595** 1.0987*** 4.7292
0.00 1.1884*** 1.1003 1.1601*** 1.2524*** 5.1258

10 100 − 0.75 1.1088*** 1.1058 1.1075** 1.1071*** 4.2204
0.00 1.4441*** 1.3008 1.3205 1.5825*** 1.0000

196 − 0.75 1.0818*** 1.0554 1.0533 1.0698*** –
0.00 1.2413*** 1.1597* 1.1504 1.2407*** –

3 Grid 5 100 − 0.75 1.0476 1.0596*** 1.0599*** 1.0778*** –
0.00 1.2156 1.2329*** 1.2189 1.3434*** –

196 − 0.75 1.0781 1.0810* 1.0798* 1.1374*** –
0.00 1.2009 1.3451*** 1.2689*** 1.3512*** –

10 100 − 0.75 1.1489 1.1598 1.2072*** 1.2144*** –
0.00 1.2249 1.3985*** 1.3746*** 1.6090*** –

196 − 0.75 1.0541 1.0989*** 1.1010*** 1.1653*** –
0.00 1.2516 1.4188*** 1.3974*** 1.6710*** –

Waxman 5 100 − 0.75 1.2318*** 1.2007 1.2124*** 1.2142*** –
0.00 1.2017*** 1.1554 1.1567 1.2294*** –

196 − 0.75 1.1151*** 1.0546*** 1.0458 1.0704*** 3.1893
0.00 1.4183*** 1.2640 1.2527 1.3235*** 4.7317

10 100 − 0.75 1.0675 1.0700 1.0673 1.0797*** 3.7121
0.00 1.5491 1.5555 1.6199* 1.7931*** 15.2834

196 − 0.75 1.3641*** 1.1619* 1.1292 1.2875*** –
0.00 1.8879*** 1.5401 1.5517 2.1514*** –
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Table 10   Comparing the best variants of NSGA-II for the four representations, separately for the 32 test instances with a time budget of 20 s

The best values among the representations are shown in bold in each row
The values of the average Epsilon quality indicator of 50 runs with each representation is shown. The results of NAMOA* regarding the Epsi-
lon quality indicator with the same time budget of 20 s are shown in the last column, for comparison. The one-sided Wilcoxon signed-rank 
test was used to decide statistical significance between each variant compared to the best one in each row. Results are indicated as (*)p < 0.05 , 
(**)p < 0.005 , and (***)p < 0.0005

Problem Instance DirVarL-dir DirFixL RanKey-2ptX IntPri-WMX NAMOA* 20s

Obj Graph type lmax n �

2 Grid 5 100 − 0.75 1.0629*** 1.0460*** 1.0372 1.0585*** –
0.00 1.1763*** 1.2075*** 1.1276 1.3225*** –

196 − 0.75 1.0827*** 1.0512*** 1.0431 1.0660*** –
0.00 1.2008*** 1.2637*** 1.1276 1.3542*** –

10 100 − 0.75 1.0631*** 1.0503*** 1.0446 1.0765*** –
0.00 1.1610 1.2572*** 1.1558 1.3360*** –

196 − 0.75 1.0456 1.0464 1.0444 1.0643*** –
0.00 1.3280 1.7837 1.6194 1.7287*** –

Waxman 5 100 − 0.75 1.0540*** 1.0348 1.0440*** 1.0316 1.0000
0.00 1.1723*** 1.1248*** 1.0847 1.0843 1.0000

196 − 0.75 1.0988*** 1.0536 1.0549 1.0878*** 3.8131
0.00 1.1739*** 1.0944 1.1550*** 1.2450*** 4.1623

10 100 − 0.75 1.1087*** 1.1035 1.1074* 1.1069*** 3.9561
0.00 1.4674*** 1.2797 1.2969 1.5488*** 1.0000

196 − 0.75 1.0860*** 1.0520 1.0555 1.0611*** –
0.00 1.2275*** 1.1622*** 1.1344 1.2238*** –

3 Grid 5 100 − 0.75 1.0434 1.0562*** 1.0556*** 1.0750*** –
0.00 1.2128** 1.2135* 1.2009 1.3173*** –

196 − 0.75 1.0731 1.0714* 1.0683 1.1146*** –
0.00 1.1776 1.3229*** 1.2379*** 1.3307*** –

10 100 − 0.75 1.1483* 1.1471 1.1608* 1.1888*** –
0.00 1.2214 1.3661*** 1.3490*** 1.5684*** –

196 − 0.75 1.0466 1.0926*** 1.0846*** 1.1476*** –
0.00 1.2390 1.3881*** 1.3575*** 1.6481*** –

Waxman 5 100 − 0.75 1.2193*** 1.1998 1.2012 1.2095** –
0.00 1.1976*** 1.1468 1.1512* 1.2200*** 5.4526

196 − 0.75 1.0910*** 1.0543*** 1.0450 1.0670*** 3.1091
0.00 1.3924*** 1.2732*** 1.2353 1.3196*** 4.7317

10 100 − 0.75 1.0640 1.0734** 1.0649 1.0748*** 3.6113
0.00 1.5479** 1.4930 1.6691*** 1.7472*** 13.0856

196 − 0.75 1.3506*** 1.1594** 1.1117 1.2578*** –
0.00 1.8648*** 1.5212 1.5232 2.0806*** –
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Table 11   Comparing the best variants of NSGA-II for the four representations, separately for the 32 test instances with a time budget of 10 s

The best values among the representations are shown in bold in each row
The values of the average Epsilon R3 quality indicator of 50 runs with each representation are shown. The results of NAMOA* regarding the 
R3 quality indicator with the same time budget of 10 s are shown in the last column, for comparison. The one-sided Wilcoxon signed-rank test 
was used to decide statistical significance between each variant compared to the best one in each row. Results are indicated as (*)p < 0.05 , 
(**)p < 0.005 , and (***)p < 0.0005

Problem instance DirVarL-dir DirFixL RanKey-2ptX IntPri-WMX NAMOA* 10 s

Obj Graph type lmax n �

2 Grid 5 100 − 0.75 0.0123*** 0.0091 0.0091 0.0173*** –
0.00 0.0283*** 0.0253***  0.0170 0.0327*** –

196 − 0.75 0.0156*** 0.0108* 0.0100 0.0177*** –
0.00 0.0275*** 0.0341*** 0.0226 0.0485*** –

10 100 − 0.75 0.0170*** 0.0149 0.0152 0.0297*** –
0.00 0.0285 0.0371*** 0.0301 0.0596*** –

196 − 0.75 0.0120 0.0125 0.0123 0.0198*** –
0.00 0.0361 0.0511*** 0.0432*** 0.0722*** –

Waxman 5 100 − 0.75 0.0016*** 0.0007 0.0012*** 0.0010*** 0.0000
0.00 0.0094*** 0.0076*** 0.0035 0.0036 0.0633

196 − 0.75 0.0169*** 0.0054 0.0054 0.0137*** 0.2933
0.00 0.0141*** 0.0056 0.0094*** 0.0299*** 0.1820

10 100 − 0.75 0.0074*** 0.0074** 0.0066 0.0078*** 0.2288
0.00 0.0294*** 0.0181*** 0.0103 0.0320*** 0.0000

196 − 0.75 0.0110*** 0.0077*** 0.0067 0.0142*** –
0.00 0.0253*** 0.0205** 0.0177 0.0247*** –

3 Grid 5 100 0.75 0.0094 0.0161*** 0.0147*** 0.0223*** –
0.00 0.0280 0.0341*** 0.0330*** 0.0639*** –

196 − 0.75 0.0120 0.0194*** 0.0190*** 0.0296*** –
0.00 0.0303 0.0637*** 0.0520*** 0.0831*** –

10 100 − 0.75 0.0248 0.0251 0.0289*** 0.0391*** –
0.00 0.0378 0.0817*** 0.0815*** 0.1084*** –

196 − 0.75 0.0107 0.0290*** 0.0279*** 0.0413*** –
0.00 0.0349 0.0592*** 0.0618*** 0.1177*** –

Waxman 5 100 − 0.75 0.0198*** 0.0152*** 0.0118 0.0132*** –
0.00 0.0136*** 0.0092 0.0091 0.0189*** –

196 − 0.75 0.0154*** 0.0075*** 0.0051 0.0116*** 0.2852
0.00 0.0477*** 0.0152 0.0149 0.0403*** 0.2317

10 100 − 0.75 0.0076 0.0160*** 0.0124*** 0.0191*** 0.3233
0.00 0.0485** 0.0404 0.0416 0.0825*** 0.4407

196 − 0.75 0.0353*** 0.0165*** 0.0140 0.0261*** –
0.00 0.1204*** 0.0995** 0.0899 0.1190*** –
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Table 12   Comparing the best variants of NSGA-II for the four representations, separately for the 32 test instances with a time budget of 20 s

The best values among the representations are shown in bold in each row
The values of the average Epsilon R3 quality indicator of 50 runs with each representation are shown. The results of NAMOA* regarding the 
R3 quality indicator with the same time budget of 20 s are shown in the last column, for comparison. The one-sided Wilcoxon signed-rank test 
was used to decide statistical significance between each variant compared to the best one in each row. Results are indicated as (*)p < 0.05 , 
(**)p < 0.005 , and (***)p < 0.0005

Problem instance DirVarL-dir DirFixL RanKey-2ptX IntPri-WMX NAMOA* 20s

Obj Graph type lmax n �

2 Grid 5 100 − 0.75 0.0115*** 0.0090 0.0070 0.0157*** –
0.00 0.0265*** 0.0237*** 0.0143 0.0283*** –

196 − 0.75 0.0130*** 0.0088* 0.0077 0.0159*** –
0.00 0.0264*** 0.0316*** 0.0195 0.0456*** –

10 100 − 0.75 0.0154*** 0.0135 0.0131 0.0265*** –
0.00 0.0281 0.0338*** 0.0237 0.0563*** –

196 − 0.75 0.0109 0.0105 0.0091 0.0171*** –
0.00 0.0348 0.0400*** 0.0382*** 0.0694*** –

Waxman 5 100 − 0.75 0.0013*** 0.0008 0.0011*** 0.0009*** 0.0000
0.00 0.0083*** 0.0062*** 0.0032 0.0030 0.0000

196 − 0.75 0.0137*** 0.0055 0.0042 0.0113*** 0.2190
0.00 0.0122*** 0.0056 0.0080*** 0.0280*** 0.1389

10 100 − 0.75 0.0071*** 0.0076** 0.0066 0.0069*** 0.2063
0.00 0.0313*** 0.0182*** 0.0097 0.0319*** 0.0000

196 − 0.75 0.0112*** 0.0071*** 0.0063 0.0118*** –
0.00 0.0234*** 0.0208** 0.0153 0.0232*** –

3 Grid 5 100 − 0.75 0.0080 0.0155*** 0.0130*** 0.0206*** –
0.00 0.0261 0.0318*** 0.0297*** 0.0605*** –

196 − 0.75 0.0110 0.0174*** 0.0168*** 0.0257*** –
0.00 0.0280 0.0561*** 0.0445*** 0.0779*** –

10 100 − 0.75 0.0240 0.0237 0.0240*** 0.0348*** –
0.00 0.0342 0.0766*** 0.0751*** 0.0999*** –

196 − 0.75 0.0093 0.0255*** 0.0249*** 0.0384*** –
0.00 0.0328 0.0517*** 0.0549*** 0.1132*** –

Waxman 5 100 − 0.75 0.0165*** 0.0151*** 0.0111 0.0121*** –
0.00 0.0124*** 0.0084 0.0076 0.0173*** 0.2317

196 − 0.75 0.0116*** 0.0071*** 0.0044 0.0106*** 0.2754
0.00 0.0456*** 0.0157 0.0126 0.0329*** 0.2317

10 100 − 0.75 0.0063 0.0165*** 0.0118*** 0.0176*** 0.3053
0.00 0.0503** 0.0400 0.0371 0.0750*** 0.3919

196 − 0.75 0.0311*** 0.0169*** 0.0120 0.0233*** –
0.00 0.1160*** 0.0938** 0.0793 0.1148*** –

https://www.turing.ac.uk/people/researchers/jun-chen
https://www.turing.ac.uk/people/researchers/jun-chen
https://u.pcloud.link/publink/show?code=kZjt6zXZKNVrMOscFeff7e5Ou7X7auDrfwKX
https://u.pcloud.link/publink/show?code=kZjt6zXZKNVrMOscFeff7e5Ou7X7auDrfwKX
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