
Vol.:(0123456789)

SN Computer Science (2021) 2:185
https://doi.org/10.1007/s42979-021-00511-0

SN Computer Science

ORIGINAL RESEARCH

EvoCluster: An Open‑Source Nature‑Inspired Optimization Clustering
Framework

Raneem Qaddoura1 · Hossam Faris2 · Ibrahim Aljarah2 · Pedro A. Castillo3 

Received: 4 August 2020 / Accepted: 8 February 2021 / Published online: 31 March 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. part of Springer Nature 2021

Abstract
EvoCluster is an open source and cross-platform framework implemented in Python language, which includes the most well-
known and recent nature-inspired metaheuristic optimizers that are customized to perform partitional clustering tasks. This
paper is an extension to the existing EvoCluster framework in which it includes different distance measures for the objec-
tive function, different techniques of detecting the k value, and a user option to consider either supervised or unsupervised
datasets. The current implementation of the framework includes ten metaheuristic optimizers, thirty datasets, five objective
functions, twelve evaluation measures, more than twenty distance measures, and ten different ways for detecting the k value.
The source code of EvoCluster is publicly available at http://​evo-​ml.​com/​evocl​uster/.

Keywords  Clustering · Cluster analysis · Evolutionary computing · Framework · Python

Introduction

Clustering is an unsupervised learning task that is essential
in many applications. The main goal of clustering is to find
the similarities between every group of data to find com-
mon relationships between them. It is widely used in differ-
ent domains such as medical diagnosis [53], ransomeware

detection [54], customer segmentation [49], image process-
ing [33], dental radiography [48], and pattern recognition
[34].

Swarm intelligence (SI) and evolutionary algorithms
(EA) as nature-inspired metaheuristic algorithms are com-
monly utilized for performing partitional clustering tasks.
They are proven to be efficient for multiple scientific and
engineering domains [43]. The main advantage of using
these algorithms in clustering is the ability to explore and
search for better grouping of data to achieve high quality
clustering results [43]. In addition, they have reasonable run-
ning time [63], they can avoid falling in local optima [47],
and they can work with noisy data [25].

Metaheuristic algorithms use predefined objective func-
tion to lead the solution toward the optimal one [50]. The
objective function directly affects the quality of the results
[55]. Thus, considering the best objective function is very
important, and is not an easy task.

Nature-inspired algorithms include well-regarded opti-
mization algorithms such as Genetic algorithm (GA) [22],
Evolution strategy (ES) [9], Particle swarm optimization
(PSO) [27], and Ant colony optimization (ACO) [31].
While noticeable recent nature-inspired algorithms include
Cuckoo Search (CS) [73], Grey Wolf Optimizer (GWO) [7,
42], Multi-verse optimizer (MVO) [8, 41, 63], Moth-flame
optimization (MFO) [38], Whale Optimization Algorithm

This article is part of the topical collection “Evolution, the New
AI Revolution” guest edited by Anikó Ekárt and Anna Isabel
Esparcia-Alcázar.

 *	 Pedro A. Castillo
	 pacv@ugr.es

	 Raneem Qaddoura
	 rqaddoura@philadelphia.edu.jo
	 http://www.evo-ml.com

	 Hossam Faris
	 hossam.faris@ju.edu.jo
	 http://www.evo-ml.com

	 Ibrahim Aljarah
	 i.aljarah@ju.edu.jo
	 http://www.evo-ml.com

1	 Information Technology, Philadelphia University, Amman,
Jordan

2	 King Abdullah II School for Information Technology, The
University of Jordan, Amman, Jordan

3	 ETSIIT-CITIC, University of Granada, Granada, Spain

http://orcid.org/0000-0002-5258-0620
http://evo-ml.com/evocluster/
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00511-0&domain=pdf

	 SN Computer Science (2021) 2:185185  Page 2 of 12

SN Computer Science

(WOA) [40], Bat Algorithm (BAT) [72], Firefly Algorithm
(FFA) [71], and many others [2, 4–6].

EvoCluster is an open-source framework for partitional
clustering based on using nature-inspired metaheuristic opti-
mizers. It provides a set of nature-inspired optimizers for
performing the partitional clustering task to facilitate using
these algorithms by researchers and practitioners, It provides
a wide set of objective functions that are customized for
the partitional clustering task. It also facilitates the evalu-
ation process of clustering by including many well-known
evaluation measures for clustering and providing a set of
well-known data sets which are widely used for performing
experiments in clustering.

In this paper, we extend the current implementation of
EvoCluster to include the following:

•	 Different distance measures for the objective function
from the well-known scipy.spatial.distance package [66].

•	 A user option to run the framework on either supervised
or unsupervised datasets. Accordingly, different presenta-
tions of the results are held.

•	 Different ways to specify the k value; The user can deter-
mine a specific k value for each dataset, or choose the
automatic option. The automatic option includes auto-
matically deriving the k value from the true labels, or
applying different detection techniques such as the Elbow
method to automatically predict the k value for each data-
set.

The remainder of this paper is organized as follows: Sect. 2
presents the latest evolutionary and clustering frameworks
and libraries in the literature. Section 3 describes in detail
the components and functionalities of the framework includ-
ing the extended features. Sect. 4 displays the design of pop-
ulation and the framework components. Section 5 shows
some visual representation of some results and plots gener-
ated from the framework. Section 6 concludes the work and
gives further other possible extensions to the framework.

Related Work

Many frameworks and libraries can be found in the litera-
ture to perform the clustering tasks. Some popular exam-
ples are Weka [19], Elki [1] , and scikit-learn [45]. Some
other frameworks that are specific to clustering are clus-
terNOR [37] and ClustEval [70]. clusterNOR is a parallel
framework which includes nine clustering algorithms, while
ClustEval is a recent framework that includes around twenty
well-known algorithms and fourteen evaluation measures.
Other frameworks are specific to certain domains: Time-
Clust [35] is a clustering tool for gene expression time series

having four clustering algorithms. A recent framework was
developed in [57] named clusterExperiment for clustering
single-cell RNA-Seq data. These clustering frameworks
and libraries include the basic and traditional clustering
algorithms and most of them do not include nature-inspired
metaheuristic optimizers.

Since nature-inspired metaheuristic algorithms are com-
monly used in different applications, some general-purpose
frameworks and libraries were developed to facilitate their
use. EvoloPy [16] is one of the recent open-source Python
frameworks that includes well-known and recent nature-
inspired optimizing algorithms. It aims at facilitating the
use of the optimization algorithms by researchers and prac-
titioners for different problems. The framework is scalable
and can be customized to include additional algorithms and
benchmark functions as well as modifications to existing
implementation. It also provides numerical and graphical
representation of the results. Evolopy-FS [28] is another ver-
sion of Evolopy for feature selection.

On the other hand, NiaPy [67] is a Python microframe-
work for building nature-inspired algorithms. Other pop-
ular frameworks include DEAP [18], ECJ [69], EO [26],
HeuristicLab [68], jMetal [15], and ParadisEO [10]. Some
frameworks are specific to certain domains: GEATbx [20]
is a framework in MATLAB having many variants of the
Genetic Algorithms and Genetic Programming. GAlib [36]
is a C++ library of genetic algorithm tools and operators for
parallel environments. These frameworks are used for opti-
mizing general problems which do not include clustering.

Since the clustering task can be approached by optimizing
the centroids for the clusters according to a predefined objec-
tive function, which needs special implementation, frame-
works and libraries can be implemented for this purpose. To
the best of our knowledge, we found only one framework
for clustering with evolutionary algorithms which is LEAC
[58]. LEAC is implemented using C++ which includes 23
Evolutionary Algorithms for partitional clustering. However,
most practitioners use other languages which have more
libraries and packages than C++ language. In addition, the
algorithms used in LEAC are only different variations of the
evolutionary operators for fixed and variable k-clusters and
do not include other algorithms. Thus, there is a need for a
framework of nature-inspired metaheuristic clustering opti-
mizers which is not specific to the evolutionary algorithms.

In this sense, EvoCluster [51] is a flexible framework that
includes several nature-inspired metaheuristic optimizers
for performing the clustering task. This framework allows
users’ customizations of the clustering algorithms, the objec-
tive functions, and the evaluation measures. EvoCluster is
an extension to the aforementioned EvoloPy framework
in which the algorithms are customized for the partitional
clustering task. It also considers multiple objective func-
tions for enhancing the performance of the population at

SN Computer Science (2021) 2:185	 Page 3 of 12  185

SN Computer Science

each iteration. Evaluation measures are also implemented for
evaluating the clustering results. To the best of our knowl-
edge, EvoCluster framework is the first framework in Python
language for clustering data using the selected metaheuris-
tic optimizers. It is implemented efficiently considering the
computation time and the quality of results.

In addition, the effect of the selected distance measure
and the technique used for specifying the number of clusters
in the framework should be investigated. Although the effect
of different distance measures was discussed and compared
in several works, some were specific to a certain domain
or application [17, 23, 44], others were based on a specific
algorithm [30, 52], and other were examined on a specific
type of datasets such as the ones with high dimensional-
ity [44, 52]. On the other hand, specifying the k value has
been discussed in several works [29, 32, 64] which include
the Elbow, gap analysis, Silhouette coefficient, Calinski-
Harabasz (CH), Davies-Bouldin (DB), and Bayesian Infor-
mation Criterion score (BIC) techniques. Therefore, due to
the importance of these parameters, both are covered in the
extended implementation of the framework.

Under this view, extending useful frameworks such as
EvoCluster with additional features gives researchers and
practitioners more possibilities and opportunities while
using the framework. Thus, we are extending the current
implementation of EvoCluster to include new different dis-
tance measures for the objective function, different ways of
specifying the k value, and a user option to consider either
supervised or unsupervised datasets.

Framework Overview

EvoCluster includes the most well-regarded nature-inspired
metaheuristic optimizers that are adopted for performing the
partitional clustering task with a very easy and useful inter-
face. The framework is constructed with six main compo-
nents which are described in the following sections:

The Optimizer

It serves as the main interface of the framework. Users can
select the set of optimizers, data sets, and objective functions
according to their preference for running the experiments.
They can also specify the main parameters that are common
for most optimizers which are the number of iterations and
the population size. The number of runs can also be deter-
mined through this interface. In addition, users select the
evaluation measures to evaluate the predicted labels gener-
ated from the framework.

The optimizer is further extended to include different dis-
tance measures from the well-known scipy.spatial.distance

package [66]. It includes braycurtis, canberra, chebyshev,
cityblock, correlation, cosine, dice, euclidean, hamming,
jaccard, jensenshannon, kulsinski, mahalanobis, match-
ing, minkowski, rogerstanimoto, russellrao, seuclidean,
sokalmichener, sokalsneath, sqeuclidean, and yule distance
measures [66].

The user is also allowed to run the framework on datasets
that are either unsupervised or supervised according to the
existence of the true labels in the datasets. In the case of
unsupervised datasets, results files do not include the evalu-
ation measures which depend on comparisons between the
true and predicted labels.

Another feature is added to the framework; the user can
specify the k value by different ways: first, the user can
determine specific k values for the datasets. The user passes
a list of k integer values corresponding to the list of datasets
provided to the framework. Second, the user can choose the
automatic option. The automatic option includes automati-
cally deriving the k value from the true labels if the user
provided supervised datasets, or applying different detection
techniques to automatically predict the k value for each data-
set. The detection techniques that are provided at the time
of writing this paper are: elbow, gap analysis, Silhouette
coefficient, Calinski–Harabasz (CH), Davies–Bouldin (DB),
and Bayesian Information Criterion score (BIC) techniques.
Other options include the minimum, maximum, median, and
majority k values calculated from the values predicted by all
these techniques.

Nature‑Inspired Metaheuristics

The implementation of each optimizer is visible as a separate
file in the framework. The optimizers that are available at the
time of writing this paper are as follows:

•	 Genetic algorithm (GA) [61]: It is inspired by biologi-
cal evolution. The algorithm evolves toward better solu-
tions based on four main operations: selection, crossover,
mutation, and elitism.

•	 Particle swarm optimization (PSO) [28, 62]: It is inspired
by the flocking behavior of birds and the schooling
behavior of fish. The algorithm evolves toward better
solutions based on a mathematical formula considering
the position and velocity of the particles. The movement
of the particle is influenced by its local best and the
global best positions.

•	 Salp swarm algorithm (SSA) [39]: It is inspired by the
swarming behavior of salps. The algorithm evolves
toward better solutions based on two mathematical mod-
els to update the position of leading and follower salps.

•	 Firefly algorithm (FFA) [71]: It is inspired by the flashing
behavior of fireflies. The algorithm evolves toward better
solutions by the attraction of fireflies based on the bright-

	 SN Computer Science (2021) 2:185185  Page 4 of 12

SN Computer Science

ness of other fireflies calculated by the inverse square
law.

•	 Gray Wolf optimizer (GWO) [42]: It is inspired by grey
wolves. The algorithm evolves toward better solutions
based on hunting, searching for prey, encircling prey, and
attacking prey.

•	 Whale optimization algorithm (WOA) [40]: It is inspired
by social behavior of humpback whales. The algorithm
evolves toward better solutions based on three opera-
tors to simulate the search for prey, encircling prey, and
bubble-net foraging behavior of humpback whales.

•	 Multi-verse optimizer (MVO) [41]: It is inspired by the
theory of multi-verse in physics. The algorithm evolves
toward better solutions based on mathematical models of
the white hole, black hole, and worm hole which reflect
exploration, exploitation, and local search, respectively.

•	 Moth flame optimizer (MFO) [38]: It is inspired by the
death behavior of moths. The algorithm evolves toward
better solutions based on logarithmic spiral update mech-
anism of moths.

•	 Bat algorithm (BAT) [72]: It is inspired by the echolo-
cation behavior of bats. The algorithm evolves toward
better solutions based on the pulse of loudness and pulse
rate.

•	 Cuckoo search algorithm (CS) [73]: It is inspired by the
brood parasitism of some cuckoo species. The algorithm
evolves toward better solutions based on three idealized
rules where the bird decides whether it throws the eggs
away or abandons its nest and creates a new one.

Objective Functions

This component consists of the implementation of the objec-
tive functions that are used to optimize the individuals at
each iteration. The list of objective functions which are used
with the data sets having k clusters of N points, available at
the time of writing this paper, are as follows:

•	 Sum of squared error (SSE) [11]:

where dnc is the Euclidean distance between the centroid
and the point. By minimizing SSE, we obtain better
results.

•	 Total within cluster variance (TWCV) [46]:

(1)
N∑

n=1

d2
nc

(2)TWCV =

N∑

n=1

F∑

f=1

p2
nf
−

K∑

k=1

1

|pk|

F∑

f=1

(
∑

pkf)
2

where F is the number of features, pnf is feature f of
the point n, pkf is feature f of the point k, and |pk| is the
number of points in cluster k. By minimizing TWCV, we
obtain better results.

•	 Silhouette coefficient (SC) [13, 46]:

where a is the average distance between a point and the
other points in the same predicted cluster, and b is the
average distance between a point and the other points in
the next nearest cluster. By maximizing SC, we obtain
better results. We normalize the values of SC to the inter-
val [0, 1], and then use the reversed value of the normal-
ized SC (1 − norm(SC)) in the objective function.

•	 Davies–Bouldin (DB) index [14]:

where sk is the average distance between a point and the
cluster center, and dkj is the distance between the centroid
of cluster k and the centroid of cluster j. By minimizing
DB, we obtain better results.

•	 Dunn Index (DI) [13, 21]:

where dmin is the minimal distance between two points
in different clusters, and dmax is the maximal distance
between the farthest two points in a cluster. By maxi-
mizing DI, we obtain better results. Thus, we use the
reversed value of DI (1 − DI) in the objective function.

The extended feature, which considers different distance
measures, is only effective for SSE, SC, and Dunn index.

Evaluation Measures

The framework includes a set of evaluation measures to
evaluate the results obtained from running the framework.
Given T as the true classes of N points and P as the predicted
clusters of these points. The evaluation measures that are
available at the time of writing this paper are as follows:

•	 Purity (P) [6]:

(3)SC =

∑�K�
k=1

((b − a)∕max(a, b)))

N

(4)DB =
1

|k|

|K|∑

k=1

maxk≠j

(
sk + sj

dkj

)

(5)DI =
dmin

dmax

,

(6)Purity =
1

N

k∑

j=1

maxi(|Ti ∩ Pj|)

SN Computer Science (2021) 2:185	 Page 5 of 12  185

SN Computer Science

where Pj represents the points assigned to cluster j, k is
the number of clusters, and Ti is the true assignments of
points in cluster i.

•	 Entropy (E) [6]:

where E(Pj ) is the individual entropy of a cluster. Indi-
vidual cluster entropy is calculated by Eq. (8):

•	 Homogeneity score (HS) [60]:

where H(T) is the classes Entropy and H(T|P) is the
classes conditional Entropy. H(T) and H(T|P) are calcu-
lated as follows [60]:

where nt and np are the number of points of the true class
t and the predicted cluster p, respectively. npt is the num-
ber of points of the true class t which are clustered to the
predicted cluster p.

•	 Completeness Score (CS) [60]:

where H(P) is the cluster Entropy and H(P|T) is the clus-
ters conditional Entropy. H(P) and H(P|T) are calculated
as follows [60]:

•	 V-measure (VM) [60]:

•	 Adjusted mutual information (AMI) [65]:

(7)Entropy =

k∑

j=1

(|Pj|)
n

E(Pj)

(8)E(Pj) = −
1

logk

k∑

i=1

|Pj ∩ Ti|
Pj

log

(|Pj ∩ Ti|
Pj

)

(9)HS = 1 −
H(T|P)
H(T)

(10)H(T) = −

|T|∑

t=1

nt

N
⋅ log

(nt
N

)

(11)H(T|P) = −

|P|∑

p=1

|T|∑

t=1

npt

N
⋅ log

(
npt

np

)
,

(12)CS = 1 −
H(P|T)
H(P)

,

(13)H(P) = −

|P|∑

p=1

np

N
⋅ log

(
np

N

)

(14)H(P|T) = −

|T|∑

t=1

|P|∑

p=1

npt

N
⋅ log

(
npt

nt

)
.

(15)VM = 2 ⋅
HS ⋅ CS

HS + CS

where H(P) and and H(T) are the cluster Entropy (Eq. 13)
and the class entropy (Eq. 10). MI is the Mutual Index
which is calculated by [65]:

E[MI] is the Expected Mutual Index which is calculated
by [59, 65]:

•	 Adjusted Rand Index (ARI) [24]:

where RI is the Rand Index, E[RI] is the Expected Rand
Index, and max[RI] is the Maximum Rand Index. RI,
E[RI], and max[RI] are calculated by Eqs. (20), (21),
and (22) [24, 56], respectively:

where a is the number of pair of points located in the
same true class t and clustered at the same predicted clus-
ter p. b is the number of pair of points located in a differ-
ent true class t and clustered at a different predicted clus-
ter p.

(
N

2

)
 is the number of pair of points.

•	 Sum of squared error (SSE) [11]
•	 Total within cluster variance (TWCV) [46]
•	 Silhouette coefficient (SC) [13, 46]
•	 Davies–Bouldin (DB) index [14]
•	 Dunn Index (DI) [13, 21]

(16)AMI =
MI − E[MI]

max(H(P),H(T)) − E[MI]

(17)MI =

|P|∑

p=1

|T|∑

t=1

npt

N
log

(npt

N
np

N
.
nt

N

)

(18)

E(MI) =

|P|∑

p=1

|T|∑

t=1

min(np,nt)∑

npt=max(0,np+nt−N)

npt

N
log

(
N.npt

npnt

)

×
(np!nt!(N − np)!(N − nt)!

N!npt!(np − npt)!(nt − npt)!(N − np − nt + npt)!

)
.

(19)ARI =
RI − E[RI]

max(RI) − E[RI]
,

(20)RI =
a + b�
N

2

� =

∑
p,t

�
npt
2

�

�
N

2

�

(21)

E(RI) =E

�
�

p,t

�
npt
2

��
=

∑�P�
p=1

�
np
2

�
∑�T�

t=1

�
nt
2

�

�
N

2

�

(22)max[RI] =
1

2

[|P|∑

p=1

(
np
2

)
+

|T|∑

t=1

(
nt
2

)]

	 SN Computer Science (2021) 2:185185  Page 6 of 12

SN Computer Science

The last five measures are discussed in the previous sec-
tion and are used as evaluation measures. These five meas-
ures are the only ones considered if the user provided unsu-
pervised datasets having no true labels.

Benchmark Data Sets

Most common and well-known data sets used for clustering
can be found in the framework in which it can be extended
to include other data sets. The list of the data sets that are
available at the time of writing this paper are summarized in
Table 1. As observed from the table, the data sets have dif-
ferent number of points, features, and clusters. The data sets
are either real-world or artificial synthetic data sets. They are

gathered from scikit learn,1 UCI machine learning reposi-
tory,2 School of Computing at University of Eastern Fin-
land,3 ELKI,4 KEEL,5 and Naftali Harris Blog.6 These data
sets are extensively found in the literature for solving the
clustering problem [12]. The selected data sets have varying
number of points allowing different experiments to be per-
formed on different volume of data. Different dimensionality
of the data sets are also available, which is a critical issue in
machine learning problems.

Datasets are available in the framework in two repre-
sentations: supervised and unsupervised, where supervised

Table 1   Data sets properties
showing the name, number
of clusters, number of points,
number of features, data set
type, and source

ID Data set k # points # features Type Source

1 Aggregation 7 788 2 Artificial University of Eastern Finland3

2 Aniso 3 1500 2 Artificial scikit learn1

3 Appendicitis 2 106 7 Real KEEL5

4 Balance 3 625 4 Real UCI2

5 Backnote 2 1372 4 Real UCI2

6 Blobs 3 1500 2 Artificial scikit learn1

7 Blood 2 748 4 Real UCI2

8 Circles 2 1500 2 Artificial scikit learn1

9 Diagnosis II 2 120 6 Real UCI2

10 Ecoli 5 327 7 Real UCI2

11 Flame 2 240 2 Artificial University of Eastern Finland3

12 Glass 6 214 9 Real UCI2

13 Heart 2 270 13 Real UCI2

14 Iris 3 150 4 Real UCI2

15 Iris 2D 3 150 2 Real UCI2

16 Ionosphere 2 351 344 Real UCI2

17 Jain 2 373 2 Artificial University of Eastern Finland3

18 Liver 2 345 7 Real UCI2

19 Moons 2 1500 2 Artificial scikit learn1

20 Mouse 3 490 2 Artificial ELKI4

21 Pathbased 3 300 2 Artificial University of Eastern Finland3

22 Seeds 3 210 7 Real UCI2

23 Smiley 4 500 2 Artificial naftaliharris6

24 Sonar 2 208 60 Real UCI2

25 Varied 3 1500 2 Artificial scikit learn1

26 Vary Density 3 150 2 Artificial ELKI4

27 Vertebral2 2 310 6 Real UCI2

28 Vertebral3 3 310 6 Real UCI2

29 WDBC 2 569 30 Real UCI2

30 Wine 3 178 13 Real UCI2

1  http://​scikit-​learn.​org/​stable/​datas​ets/​index.​html.

2  https://​archi​ve.​ics.​uci.​edu/​ml/.
3  http://​cs.​uef.​fi/​sipu/​datas​ets/.
4  https://​elki-​proje​ct.​github.​io/​datas​ets/.
5  https://​sci2s.​ugr.​es/​keel/​datas​ets.​php.
6  https://​www.​nafta​lihar​ris.​com/​blog/​visua​lizing-​K-​means-​clust​
ering/.

http://scikit-learn.org/stable/datasets/index.html
https://archive.ics.uci.edu/ml/
http://cs.uef.fi/sipu/datasets/
https://elki-project.github.io/datasets/
https://sci2s.ugr.es/keel/datasets.php
https://www.naftaliharris.com/blog/visualizing-K-means-clustering/
https://www.naftaliharris.com/blog/visualizing-K-means-clustering/

SN Computer Science (2021) 2:185	 Page 7 of 12  185

SN Computer Science

datasets contain the expected labels in the last column of the
file, while unsupervised datasets do not contain this column.

Results Management

The results obtained by running the framework are gathered
in three types of CSV files and two types of plots:

•	 Average results file: This file gives average results of the
runs for performing each combination of an optimizer,
objective function, and data set. Each item in the CSV
file includes the average execution time, the average
value of each external measure, and the average objective
function value for each iteration. This file is important
for two reasons: first, it shows how well the optimizers
are performing. Second, it shows how the optimizer is
enhancing the results by converging towards the optimal
solution.

•	 Detailed results file: This file gives detailed results for
each run. Each item in the CSV file includes the execu-
tion time, the value of each external measure, and the
value for each iteration. Practitioners and researchers find
this file useful as it allows them to compare the results of
different runs for the same combination of an optimizer,
objective function, and data sets.

•	 Best individual labels file: This file includes the values
of the labels obtained from the best individual at the last
iteration for each run. It is useful for the practitioners and
researchers as it provides the final solution to the prob-
lem, which is the ultimate goal of using the framework
for optimizing the clustering task.

•	 Convergence curve plot: Plots are generated for the con-
vergence curves for each selected data sets, optimizers,
and objective functions. Each plot represents the con-
vergence curves for multiple optimizers having the val-
ues of the objective function at each iteration. This plot

C1F2C1F2C1F1C1F1C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2......

C1F2C1F2C1F1C1F1C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2......

C1F2C1F2C1F1C1F1C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2......

C1F2C1F2C1F1C1F1C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2......

C1F2C1F2C1F1C1F1C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2......

C1F2C1F2C1F1C1F1C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2......

Centroid 1 Centroid 2 Centroid k

...

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Individual s

Fig. 1   Population of individuals at a specific iteration

Solu�onSolu�on

__init__(self)

MeasuresMeasures

HS(labelsTrue, labelsPred)

CPSOCPSO

PSO(objf,lb,ub,dim,PopSize,iters, k, points)

AMI(labelsTrue, labelsPred)

CS(labelsTrue, labelsPred)

Fmeasure(labelsTrue, labelsPred)

VM(labelsTrue, labelsPred)

TWCV(individual, labelsPred, k, points)

ARI(labelsTrue, labelsPred)

DI(points, labelsPred)

stdev(individual, labelsPred, k, points)

SC(points, labelsPred)

SSE(individual, labelsPred, k, points)

DB(points, labelsPred)

purity(labelsTrue,labelsPred)
entropy(labelsTrue,labelsPred)

Objec�vesObjec�ves

SSE(startpts, points, k)

DB(startpts, points, k)

TWCV(startpts, points, k)
SC(startpts, points, k)

DI(startpts, points, k)

getFunc�onDetails(a)
getLabelsPred(startpts, points, k)

CWOACWOA

WOA(objf,lb,ub,dim,SearchAgents_no,Max
_iter,k,points)

CMFOCMFO

MFO(objf,lb,ub,dim,N,Max_itera�on,k,poin
ts)

CGWOCGWO

GWO(objf,lb,ub,dim,SearchAgents_no,Max
_iter, k, points)

CBATCBAT

BAT(objf,lb,ub,dim,N,Max_itera�on, k,
points)

CGACGA

muta�on(offspring, individualLength, lb,
ub)

pairSelec�on(popula�on, scores, popSize)

clearDups(Popula�on, lb, ub)
calculateCost(objf, popula�on, dim,
popSize, lb, ub, k, points)

roule�eWheelSelec�onId(scores, popSize)

crossover(individualLength, parent1,
parent2)

eli�sm(popula�on, scores, bestIndividual,
bestScore)

mutatePopulaton(popula�on, popSize,
muta�onProbability, keep, lb, ub)

crossoverPopulaton(popula�on, scores,
popSize, crossoverProbability, keep)

sortPopula�on(popula�on, scores)

GA(objf,lb,ub,dim,popSize,iters, k, points)

CCSCCS

get_cuckoos(nest,best,lb,ub,n,dim

empty_nests(nest,pa,n,dim)

get_best_nest(nest,labelsPred,
newnest,fitness,n,dim,objf, k, points)

CS(objf,lb,ub,dim,n,N_IterTotal,k,points)

CFFACFFA

alpha_new(alpha,NGen)

FFA(objf,lb,ub,dim,n,MaxGenera�on, k,
points)

CMVOCMVO

Roule�eWheelSelec�on(weights)

normr(Mat)
randk(t)

MVO(objf,lb,ub,dim,N,Max_�me, k, points)

Uses

Evaluate

Finds

Uses

CSSACSSA

SSA(objf,lb,ub,dim,N,Max_itera�on, k,
points)

Op�mizerOp�mizer

selector(algo,func_details, k, f,
popSize,Iter, points)
run(op�mizer, objec�vefunc,
dataset_List, NumOfRuns, params,
export_flags, auto_cluster, n_clusters,
labels_exist, metric)

Fig. 2   Class diagram of EvoCluster

	 SN Computer Science (2021) 2:185185  Page 8 of 12

SN Computer Science

is important as it shows how the solution is enhancing
through different iterations.

•	 Box plot: Plots are generated to represent the evaluation
measures for each data set for several runs of the frame-
work. Each box in a plot represents one of the selected
optimizers. The interquartile range, best value, and worst
value are represented as the box, the upper whiskers, and
the lower whiskers, respectively [3]. This file helps in
identifying the stability of the optimizer and showing
the differences of the evaluation values between different
runs.

Design Issues

The nature-inspired metaheuristic optimizers, which are
included in the framework, use a population of individuals
(s) at each iteration. Each individual represents one of the
optimizers suggested clustering solution of centroids. Thus,
consisting of the features (f) of each centroid for (k) clusters.
Figure 1 shows how a population at a certain iteration is
formed. For each individual in the group of s individuals

in the population, there are k centroids having f features for
each centroid.

In EvoCluster, populations are defined using the
Numpy open-source Python package which is based on the
N-dimensional array data structure. The metrics
module of the sklearn package are used for the evalua-
tion measures for HS, CS, VM, AMI, ARI, FM, SC, and
DB. Distance measures are calculated using scipy.spa-
tial.distance package. In addition, the normalize
function of the preprocessing module in the sklearn
package is used to normalize the values of the features for a
data set to the interval [0, 1], to give similar weights to the
features of the points. Each individual of a population in a
certain iteration generates a corresponding vector of pre-
dicted labels which represents the cluster number for each
point of the data set. This vector is evaluated using a selected
objective function in the framework.

EvoCluster components and their relationships are illus-
trated as a class diagram in Fig. 2. EvoCluster contains four-
teen classes which include ten classes for the metaheuristic
algorithms and four other main classes. The main classes
are Optimizer , Solution , Objectives , and

Fig. 3   Convergence curve plots for PSO, GA, GWO, FFA, and CS
using SSE objective function and Elbow method for a aggregation
with Euclidean distance; b aggregation with CityBlock/Manhattan

distance; c Iris with Euclidean distance; and d Iris with CityBlock/
Manhattan distance

SN Computer Science (2021) 2:185	 Page 9 of 12  185

SN Computer Science

Measures. The Optimizer class solves the partitional
clustering task by using one of the metaheuristic algorithm
which finds a Solution using an Objective function.
This generates the global solution of the best clustering
labels. The Optimizer then evaluates the labels using
the Measures class.

Experiments and Visualizations

In this section, we show some examples of conducting some
experiments using EvoCluster. The framework is run 10
times using a population size of 50 and iterations value of
100.

Figure 3 shows the convergence curve for selected opti-
mizers which are PSO, GA, GWO, FFA, and CS using the
SSE objective function for Aggregation and Iris datasets
for different distance measures which are Euclidean and
Manhattan. The convergence curve represents the values
of the objective function over the course of iterations. The
convergence curve shows the progress of the optimizers

toward the optimal solution by minimizing the value of
the objective function. As observed from the figure, the
optimizers show different behaviors. In addition, the
same algorithm behaves differently for different data sets
and with different distance measures. Figure 4 shows the
box plot for the selected optimizers which are PSO, GA,
GWO, FFA, and CS using the SSE objective function for
the Aggregation data set for Purity and Entropy evaluation
measures for Euclidean and Manhattan distance measures.
The box plot represents the range of values of different
runs. It also shows the max, min, and mean values of the
evaluation measure.

The experiments in this section show that EvoCluster
framework facilitates the work of the practitioners and
researchers by performing comparisons between different
metaheuristic algorithms based on different configurations
and evaluation metrics. In addition, the end-point results
are also provided in EvoCluster in various formats includ-
ing results files and plots, which allows practitioners and
researchers observe different views of the results and helps
them evaluate their choice of the optimizers and configura-
tion settings.

Fig. 4   Box plots of a purity with Euclidean distance; b purity with
CityBlock/Manhattan distance; c entropy with Euclidean distance;
and d entropy with CityBlock/Manhattan distance for PSO, GA,

GWO, FFA, and CS using SSE objective function and Elbow method
for the aggregation data set

	 SN Computer Science (2021) 2:185185  Page 10 of 12

SN Computer Science

Conclusion and Future Work

EvoCluster is an open-source framework implemented in
Python language which provides so-far ten nature-inspired
metaheuristic optimizers that are customized to solve par-
titional clustering tasks. EvoCluster provides the ability
to select one of five well-known objective functions and
twelve well-known evaluation measures. The framework is
designed in a flexible way so that developers and researchers
can customize it by implementing other optimizers, objec-
tive functions, and evaluation measures. In this paper, we
extend EvoCluster framework with different distance meas-
ures for the objective function, different ways to specify the
k value, and a user option to consider either supervised or
unsupervised datasets. We also show some visualizations
that are automatically generated based on the results of
the conducted experiments using the extended EvoCluster
framework in the form of the convergence curves and box
plots. As future work, it is planned to support the frame-
work with more well-regarded and recent metaheuristics.
In addition, the framework will be supported with differ-
ent initialization mechanisms that can support the perfor-
mance of the optimizers, and other encoding mechanisms
and problem formulations. Further, EvoCluster framework
can be upgraded to work on parallel architectures for han-
dling larger datasets and speeding up the performance of the
metaheuristic algorithms.

Acknowledgements  This work has been supported in part by: Minis-
terio español de Economía y Competitividad under project TIN2017-
85727-C4-2-P (UGR-DeepBio).

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Achtert E, Kriegel HP, Zimek A. Elki: a software system for eval-
uation of subspace clustering algorithms. In: International confer-
ence on scientific and statistical database management. Springer.
2008. p. 580–585.

	 2.	 Al-Madi N., Aljarah I, Ludwig SA. Parallel glowworm swarm
optimization clustering algorithm based on MapReduce. 2014
IEEE Symposium on Swarm Intelligence, Orlando, FL, USA,
2014. pp. 1–8. https://​doi.​org/​10.​1109/​SIS.​2014.​70117​94.

	 3.	 Aljarah I, Ala’M AZ, Faris H, Hassonah MA, Mirjalili S,
Saadeh H. Simultaneous feature selection and support vector
machine optimization using the grasshopper optimization algo-
rithm. Cogn Comput. 2018;10(3):478–495.

	 4.	 Aljarah I, Ludwig SA. Parallel particle swarm optimization
clustering algorithm based on MapReduce methodology. 2012
Fourth World Congress on Nature and Biologically Inspired

Computing (NaBIC), Mexico City, Mexico, 2012, pp. 104–111.
https://​doi.​org/​10.​1109/​NaBIC.​2012.​64022​47.

	 5.	 Aljarah I, Ludwig SA. MapReduce intrusion detection system
based on a particle swarm optimization clustering algorithm.
2013 IEEE Congress on evolutionary computation, Cancun,
Mexico, 2013, pp. 955–962. https://​doi.​org/​10.​1109/​CEC.​2013.​
65576​70.

	 6.	 Aljarah I, Ludwig SA. A new clustering approach based on
Glowworm Swarm Optimization. 2013 IEEE congress on evo-
lutionary computation, cancun, Mexico, 2013, pp. 2642–2649.
https://​doi.​org/​10.​1109/​CEC.​2013.​65578​88.

	 7.	 Aljarah I, Mafarja M, Heidari AA, Faris H, Mirjalili S. Cluster-
ing analysis using a novel locality-informed grey wolf-inspired
clustering approach. Knowl Inf Syst. 2020;62(2):507–539.

	 8.	 Aljarah I, Mafarja M, Heidari AA, Faris H, Mirjalili S. Multi-
verse optimizer: theory, literature review, and application in
data clustering. In: Nature-inspired optimizers. Springer; 2020.
p. 123–141.

	 9.	 Beyer HG, Schwefel HP. Evolution strategies: a comprehensive
introduction. Nat Comput. 2002;1(1):3–52. https://​doi.​org/​10.​
1023/A:​10150​59928​466.

	10.	 Cahon S, Melab N, Talbi EG. Paradiseo: a framework for the
reusable design of parallel and distributed metaheuristics. J
Heuristics. 2004;10(3):357–80. https://​doi.​org/​10.​1023/B:​
HEUR.​00000​26900.​92269.​ec.

	11.	 Chang DX, Zhang XD, Zheng CW. A genetic algorithm with
gene rearrangement for k-means clustering. Pattern Recognit.
2009;42(7):1210–22.

	12.	 Chang S, Shihong Y, Qi L. Clustering Characteristics of UCI
Dataset. 2020 39th Chinese Control Conference (CCC), Shen-
yang, China, 2020, pp. 6301–6306. https://​doi.​org/​10.​23919/​
CCC50​068.​2020.​91895​07.

	13.	 Chowdhury K, Chaudhuri D, Pal AK. A novel objective function
based clustering with optimal number of clusters. In: Methodolo-
gies and application issues of contemporary computing frame-
work. Springer, Singapore; 2018; pp. 23–32.

	14.	 Davies DL, Bouldin DW. A cluster separation measure. IEEE
Trans Pattern Anal Mach Intell. 1979;2:224–7.

	15.	 Durillo JJ, Nebro AJ. jmetal: a java framework for multi-objective
optimization. Adv Eng Softw. 2011;42:760–71.

	16.	 Faris H, Aljarah I, Mirjalili S, Castillo P, Merelo J. EvoloPy: an
Open-source Nature-inspired optimization framework in python.
In: 2020 Proceedings of the 8th international joint conference
on computational intelligence - Volume 3: ECTA, (IJCCI 2016)
pp. 171–177. ISBN: 978-989-758-201-1. https://​doi.​org/​10.​5220/​
00060​48201​710177.

	17.	 Finch H. Comparison of distance measures in cluster analysis with
dichotomous data. J Data Sci. 2005;3(1):85–100.

	18.	 Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C.
DEAP: evolutionary algorithms made easy. J Mach Learn Res.
2012;13:2171–5.

	19.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten
IH. The weka data mining software: an update. ACM SIGKDD
Explor Newsl. 2009;11(1):10–8.

	20.	 Hartmut Pohlheim: Geatbx: the genetic and evolutionary algo-
rithm toolbox for matlab (2006). http://​www.​geatbx.​com/.
Accessed 28 Feb 2021.

	21.	 Hassani M, Seidl T. Using internal evaluation measures to vali-
date the quality of diverse stream clustering algorithms. Viet-
nam J Comput Sci. 2017;4(3):171–83.

	22.	 Holland J. Genetic algorithms. New York: Scientific American;
1992. p. 66–72.

	23.	 Huang A. Similarity measures for text document clustering.
In: Proceedings of the sixth New Zealand computer science
research student conference (NZCSRSC2008), vol. 4. New Zea-
land: Christchurch; 2008. pp. 9–56.

https://doi.org/10.1109/SIS.2014.7011794
https://doi.org/10.1109/NaBIC.2012.6402247
https://doi.org/10.1109/CEC.2013.6557670
https://doi.org/10.1109/CEC.2013.6557670
https://doi.org/10.1109/CEC.2013.6557888
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://doi.org/10.23919/CCC50068.2020.9189507
https://doi.org/10.23919/CCC50068.2020.9189507
https://doi.org/10.5220/0006048201710177
https://doi.org/10.5220/0006048201710177
http://www.geatbx.com/

SN Computer Science (2021) 2:185	 Page 11 of 12  185

SN Computer Science

	24.	 Hubert L, Arabie P. Comparing partitions. J Classif.
1985;2(1):193–218.

	25.	 Hughes EJ. Evolutionary multi-objective ranking with uncer-
tainty and noise. In: International conference on evolutionary
Multi-Criterion optimization. Springer, Berlin, Heidelberg;
2001. pp. 329–343.

	26.	 Keijzer M, Merelo, JJ, Romero G, Schoenauer M. Evolving
objects: a general purpose evolutionary computation library.
In: International conference on artificial evolution (Evolution
Artificielle). Springer, Berlin, Heidelberg; 2001. pp. 231–242.

	27.	 Kennedy J, Eberhart R. Particle swarm optimization. Proceed-
ings of ICNN’95 - International conference on neural networks.
Perth, WA, Australia. 1995. pp. 1942–1948. https://​doi.​org/​10.​
1109/​ICNN.​1995.​488968.

	28.	 Khurma RA, Aljarah I, Sharieh A, Mirjalili S. Evolopy-fs: An
open-source nature-inspired optimization framework in python for
feature selection. In book: Evolutionary machine learning tech-
niques. Springer, Singapore. 2020. pp. 131–173.

	29.	 Kingrani SK, Levene M, Zhang D. Estimating the number of clus-
ters using diversity. Artif Intell Res. 2018;7(1):15–22.

	30.	 Klawonn F, Keller A. Fuzzy clustering based on modified distance
measures. In: International symposium on intelligent data analy-
sis. Springer; 1999. p. 291–301.

	31.	 Korošec P, Šilc JA. distributed ant-based algorithm for numeri-
cal optimization. In: Proceedings of the 2009 workshop on Bio-
inspired algorithms for distributed systems-BADS 09. Association
for computing machinery (ACM). 2009. p. 37–44. https://​doi.​org/​
10.​1145/​15552​84.​15552​91.

	32.	 Krishna TS, Babu AY, Kumar RK. Determination of optimal
clusters for a Non-hierarchical clustering paradigm K-Means
algorithm. In: Proceedings of international conference on com-
putational intelligence and data engineering; Springer, Singapore.
2018. pp. 301–316.

	33.	 Kumar S, Pant M, Kumar M, Dutt A. Colour image segmen-
tation with histogram and homogeneity histogram differ-
ence using evolutionary algorithms. Int J Mach Learn Cybern.
2018;9(1):163–183.

	34.	 Liu A, Su Y, Nie W, Kankanhalli MS. Hierarchical clustering
multi-task learning for joint human action grouping and recogni-
tion. IEEE Trans Pattern Anal Mach Intell. 2017;39(1):102–14.

	35.	 Magni P, Ferrazzi F, Sacchi L, Bellazzi R. Timeclust: a clus-
tering tool for gene expression time series. Bioinformatics.
2007;24(3):430–2.

	36.	 Matthew Wall: Galib: A c++ library of genetic algorithm com-
ponents (1996). http://​lancet.​mit.​edu/​ga/. Accessed 28 Feb 2021.

	37.	 Mhembere D, Zheng D, Priebe CE, Vogelstein JT, Burns R. clus-
ternor: a numa-optimized clustering framework. 2019. arXiv pre-
print arXiv:​1902.​09527

	38.	 Mirjalili S. Moth-flame optimization algorithm: a novel nature-
inspired heuristic paradigm. Knowl Based Syst. 2015;89:228–49.
https://​doi.​org/​10.​1016/j.​knosys.​2015.​07.​006.

	39.	 Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mir-
jalili SM. Salp swarm algorithm: a bio-inspired optimizer for
engineering design problems. Adv Eng Softw. 2017;114:163–91.

	40.	 Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng
Softw. 2016;95:51–67.

	41.	 Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer:
a nature-inspired algorithm for global optimization. Neural
Comput Appl. 2016;27(2):495–513. https://​doi.​org/​10.​1007/​
s00521-​015-​1870-7.

	42.	 Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng
Softw. 2014;69:46–61.

	43.	 Nanda SJ, Panda G. A survey on nature inspired metaheuris-
tic algorithms for partitional clustering. Swarm Evol Comput.
2014;16:1–18.

	44.	 Paukkeri MS, Kivimäki I, Tirunagari S, Oja E, Honkela T. Effect
of dimensionality reduction on different distance measures in doc-
ument clustering. In: International conference on neural informa-
tion processing. Springer; 2011. p. 167–176.

	45.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et
al. Scikit-learn: machine learning in python. J Mach Learn Res.
2011;12(Oct):2825–30.

	46.	 Peng P, Addam O, Elzohbi M, Özyer ST, Elhajj A, Gao S, Liu Y,
Özyer T, Kaya M, Ridley M, et al. Reporting and analyzing alter-
native clustering solutions by employing multi-objective genetic
algorithm and conducting experiments on cancer data. Knowl
Based Syst. 2014;56:108–22.

	47.	 Prakash J, Singh PK. Particle swarm optimization with k-means
for simultaneous feature selection and data clustering. In: 2015
second international conference on soft computing and machine
intelligence (ISCMI). IEEE; 2015. p. 74–78.

	48.	 Qaddoura R, Al Manaseer W, Abushariah MA, Alshraideh MA.
Dental radiography segmentation using expectation-maximiza-
tion clustering and grasshopper optimizer. Multimed Tools Appl.
2020;79:22027–45.

	49.	 Qaddoura R, Faris H, Aljarah I. An efficient clustering algorithm
based on the k-nearest neighbors with an indexing ratio. Int J
Mach Learn Cybern. 2020;11(3):675–714.

	50.	 Qaddoura R, Faris H, Aljarah I. An efficient evolutionary algo-
rithm with a nearest neighbor search technique for clustering
analysis. J Ambient Intell Humaniz Comput. 2020;1–26.

	51.	 Qaddoura R, Faris H, Aljarah I, Castillo PA. Evocluster: an
open-source nature-inspired optimization clustering framework
in python. In: International conference on the applications of evo-
lutionary computation (Part of EvoStar). Springer; 2020. p. 20–36.

	52.	 Qaddoura R, Faris H, Aljarah I, Merelo J, Castillo P. Empirical
evaluation of distance measures for nearest point with indexing
ratio clustering algorithm. In: Proceedings of the 12th Interna-
tional joint conference on computational intelligence - Vol 1.
NCTA, pp. 430-438. ISBN 978-989-758-475-6 2020. https://​doi.​
org/​10.​5220/​00101​21504​300438.

	53.	 Qaddoura R, Aljarah I, Faris H, Mirjalili S. A grey Wolf-Based
clustering algorithm for medical diagnosis problems. In: Alja-
rah I, Faris H, Mirjalili S. (eds) Evolutionary data clustering:
algorithms and applications. Algorithms for intelligent systems.
Springer, Singapore. 2021. pp. 73–87. https://​doi.​org/​10.​1007/​
978-​981-​33-​4191-3_3.

	54.	 Qaddoura R, Aljarah I, Faris H, Almomani I. A. classification
approach based on evolutionary clustering and its application for
ransomware detection. In: Aljarah I, Faris H, Mirjalili S. (eds)
Evolutionary data clustering: algorithms and applications. Algo-
rithms for intelligent systems. Springer, Singapore. 2021. pp.
237–248. https://​doi.​org/​10.​1007/​978-​981-​33-​4191-3_​11.

	55.	 Raitoharju J, Samiee K, Kiranyaz S, Gabbouj M. Particle swarm
clustering fitness evaluation with computational centroids. Swarm
Evol Comput. 2017;34:103–118.

	56.	 Rand WM. Objective criteria for the evaluation of clustering
methods. J Am Stat Assoc. 1971;66(336):846–50.

	57.	 Risso D, Purvis L, Fletcher RB, Das D, Ngai J, Dudoit S, Purdom
E. clusterexperiment and rsec: a bioconductor package and frame-
work for clustering of single-cell and other large gene expression
datasets. PLoS Comput Biol. 2018;14(9):e1006378.

	58.	 Robles-Berumen H, Zafra A, Fardoun HM, Ventura S. Leac:
an efficient library for clustering with evolutionary algorithms.
Knowl Based Syst. 2019;179:117–9.

	59.	 Romano S, Vinh NX, Bailey J, Verspoor K. Adjusting for
chance clustering comparison measures. J Mach Learn Res.
2016;17(1):4635–66.

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1145/1555284.1555291
https://doi.org/10.1145/1555284.1555291
http://lancet.mit.edu/ga/
http://arxiv.org/abs/1902.09527
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.5220/0010121504300438
https://doi.org/10.5220/0010121504300438
https://doi.org/10.1007/978-981-33-4191-3_3
https://doi.org/10.1007/978-981-33-4191-3_3
https://doi.org/10.1007/978-981-33-4191-3_11

	 SN Computer Science (2021) 2:185185  Page 12 of 12

SN Computer Science

	60.	 Rosenberg A, Hirschberg J. V-measure: a conditional entropy-
based external cluster evaluation measure. EMNLP-CoNLL.
2007;7:410–20.

	61.	 Sheikh RH, Raghuwanshi MM, Jaiswal AN. Genetic algorithm
based clustering: a survey. In: First international conference on
emerging trends in engineering and technology. IEEE; 2008. p.
314–319.

	62.	 Shi Y, Eberhart R. A modified particle swarm optimizer. In: 1998
IEEE international conference on evolutionary computation pro-
ceedings. IEEE world congress on computational intelligence
(Cat. No. 98TH8360). IEEE; 1998. p. 69–73.

	63.	 Shukri S, Faris H, Aljarah I, Mirjalili S, Abraham A. Evolutionary
static and dynamic clustering algorithms based on multi-verse
optimizer. Eng Appl Artif Intell. 2018;72:54–66.

	64.	 Vergara VM, Salman M, Abrol A, Espinoza FA, Calhoun VD.
Determining the number of states in dynamic functional con-
nectivity using cluster validity indexes. J Neurosci Methods.
2020;337:108651.

	65.	 Vinh NX, Epps J, Bailey J. Information theoretic measures for
clusterings comparison: Variants, properties, normalization and
correction for chance. J Mach Learn Res. 2010;11(Oct):2837–54.

	66.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,
Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J,
van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N,
Nelson ARJ, Jones E, Kern R, Larson E, Carey C, Polat İ, Feng Y,
Moore EW, ErPlas JV, Laxalde D, Perktold J, Cimrman R, Hen-
riksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH,
Pedregosa F, van Mulbregt P, Contributors S. SciPy 1.0: funda-
mental algorithms for scientific computing in Python. Nat Meth-
ods. 2020;17:261–72. https://​doi.​org/​10.​1038/​s41592-​019-​0686-2.

	67.	 Vrbančič G, Brezočnik L, Mlakar U, Fister D, Fister I Jr. Niapy:
Python microframework for building nature-inspired algorithms.
J Open Sour Softw. 2018;3:613.

	68.	 Wagner S, Affenzeller M. The heuristiclab optimization environ-
ment. Tech. rep., University of Applied Sciences Upper Austria
(2004). http://​dev.​heuri​sticl​ab.​com/​trac.​fcgi/. Accessed 28 Feb
2021.

	69.	 Wilson GC, Mc Intyre A, Heywood MI. Resource review: three
open source systems for evolving programs-lilgp, ecj and gram-
matical evolution. Genet Program Evol Mach. 2004;5(1):103–5.

	70.	 Wiwie C, Baumbach J, Röttger R. Comparing the performance of
biomedical clustering methods. Nat Methods. 2015;12(11):1033.

	71.	 Yang XS. Firefly algorithm, stochastic test functions and design
optimisation. Int J Bioinspired Comput. 2010;2(2):78–84. https://​
doi.​org/​10.​1504/​IJBIC.​2010.​032124.

	72.	 Yang XS. A new metaheuristic bat-inspired algorithm. In:
González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N, editors.
Nature inspired cooperative strategies for optimization (NICSO
2010). Berlin: Springer; 2010. p. 65–74. https://​doi.​org/​10.​1007/​
978-3-​642-​12538-6_6.

	73.	 Yang XS, Deb S. Cuckoo search via levy flights. In: World con-
gress on nature biologically inspired computing, NaBIC; Coim-
batore, India; 2009. p. 210–214. https://​doi.​org/​10.​1109/​NABIC.​
2009.​53936​90

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41592-019-0686-2
http://dev.heuristiclab.com/trac.fcgi/
https://doi.org/10.1504/IJBIC.2010.032124
https://doi.org/10.1504/IJBIC.2010.032124
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1109/NABIC.2009.5393690

	EvoCluster: An Open-Source Nature-Inspired Optimization Clustering Framework
	Abstract
	Introduction
	Related Work
	Framework Overview
	The Optimizer
	Nature-Inspired Metaheuristics
	Objective Functions
	Evaluation Measures
	Benchmark Data Sets
	Results Management

	Design Issues
	Experiments and Visualizations
	Conclusion and Future Work
	Acknowledgements
	References

