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Abstract
EvoCluster is an open source and cross-platform framework implemented in Python language, which includes the most well-
known and recent nature-inspired metaheuristic optimizers that are customized to perform partitional clustering tasks. This 
paper is an extension to the existing EvoCluster framework in which it includes different distance measures for the objec-
tive function, different techniques of detecting the k value, and a user option to consider either supervised or unsupervised 
datasets. The current implementation of the framework includes ten metaheuristic optimizers, thirty datasets, five objective 
functions, twelve evaluation measures, more than twenty distance measures, and ten different ways for detecting the k value. 
The source code of EvoCluster is publicly available at http:// evo- ml. com/ evocl uster/.
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Introduction

Clustering is an unsupervised learning task that is essential 
in many applications. The main goal of clustering is to find 
the similarities between every group of data to find com-
mon relationships between them. It is widely used in differ-
ent domains such as medical diagnosis [53], ransomeware 

detection [54], customer segmentation [49], image process-
ing [33], dental radiography [48], and pattern recognition 
[34].

Swarm intelligence (SI) and evolutionary algorithms 
(EA) as nature-inspired metaheuristic algorithms are com-
monly utilized for performing partitional clustering tasks. 
They are proven to be efficient for multiple scientific and 
engineering domains [43]. The main advantage of using 
these algorithms in clustering is the ability to explore and 
search for better grouping of data to achieve high quality 
clustering results [43]. In addition, they have reasonable run-
ning time [63], they can avoid falling in local optima [47], 
and they can work with noisy data [25].

Metaheuristic algorithms use predefined objective func-
tion to lead the solution toward the optimal one [50]. The 
objective function directly affects the quality of the results 
[55]. Thus, considering the best objective function is very 
important, and is not an easy task.

Nature-inspired algorithms include well-regarded opti-
mization algorithms such as Genetic algorithm (GA) [22], 
Evolution strategy (ES) [9], Particle swarm optimization 
(PSO) [27], and Ant colony optimization (ACO) [31]. 
While noticeable recent nature-inspired algorithms include 
Cuckoo Search (CS) [73], Grey Wolf Optimizer (GWO) [7, 
42], Multi-verse optimizer (MVO) [8, 41, 63], Moth-flame 
optimization (MFO) [38], Whale Optimization Algorithm 
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(WOA) [40], Bat Algorithm (BAT) [72], Firefly Algorithm 
(FFA) [71], and many others [2, 4–6].

EvoCluster is an open-source framework for partitional 
clustering based on using nature-inspired metaheuristic opti-
mizers. It provides a set of nature-inspired optimizers for 
performing the partitional clustering task to facilitate using 
these algorithms by researchers and practitioners, It provides 
a wide set of objective functions that are customized for 
the partitional clustering task. It also facilitates the evalu-
ation process of clustering by including many well-known 
evaluation measures for clustering and providing a set of 
well-known data sets which are widely used for performing 
experiments in clustering.

In this paper, we extend the current implementation of 
EvoCluster to include the following:

• Different distance measures for the objective function 
from the well-known scipy.spatial.distance package [66].

• A user option to run the framework on either supervised 
or unsupervised datasets. Accordingly, different presenta-
tions of the results are held.

• Different ways to specify the k value; The user can deter-
mine a specific k value for each dataset, or choose the 
automatic option. The automatic option includes auto-
matically deriving the k value from the true labels, or 
applying different detection techniques such as the Elbow 
method to automatically predict the k value for each data-
set.

The remainder of this paper is organized as follows: Sect. 2 
presents the latest evolutionary and clustering frameworks 
and libraries in the literature. Section 3 describes in detail 
the components and functionalities of the framework includ-
ing the extended features. Sect. 4 displays the design of pop-
ulation and the framework components. Section 5 shows 
some visual representation of some results and plots gener-
ated from the framework. Section 6 concludes the work and 
gives further other possible extensions to the framework.

Related Work

Many frameworks and libraries can be found in the litera-
ture to perform the clustering tasks. Some popular exam-
ples are Weka [19], Elki [1] , and scikit-learn [45]. Some 
other frameworks that are specific to clustering are clus-
terNOR [37] and ClustEval [70]. clusterNOR is a parallel 
framework which includes nine clustering algorithms, while 
ClustEval is a recent framework that includes around twenty 
well-known algorithms and fourteen evaluation measures. 
Other frameworks are specific to certain domains: Time-
Clust [35] is a clustering tool for gene expression time series 

having four clustering algorithms. A recent framework was 
developed in [57] named clusterExperiment for clustering 
single-cell RNA-Seq data. These clustering frameworks 
and libraries include the basic and traditional clustering 
algorithms and most of them do not include nature-inspired 
metaheuristic optimizers.

Since nature-inspired metaheuristic algorithms are com-
monly used in different applications, some general-purpose 
frameworks and libraries were developed to facilitate their 
use. EvoloPy [16] is one of the recent open-source Python 
frameworks that includes well-known and recent nature-
inspired optimizing algorithms. It aims at facilitating the 
use of the optimization algorithms by researchers and prac-
titioners for different problems. The framework is scalable 
and can be customized to include additional algorithms and 
benchmark functions as well as modifications to existing 
implementation. It also provides numerical and graphical 
representation of the results. Evolopy-FS [28] is another ver-
sion of Evolopy for feature selection.

On the other hand, NiaPy [67] is a Python microframe-
work for building nature-inspired algorithms. Other pop-
ular frameworks include DEAP [18], ECJ [69], EO [26], 
HeuristicLab [68], jMetal [15], and ParadisEO [10]. Some 
frameworks are specific to certain domains: GEATbx [20] 
is a framework in MATLAB having many variants of the 
Genetic Algorithms and Genetic Programming. GAlib [36] 
is a C++ library of genetic algorithm tools and operators for 
parallel environments. These frameworks are used for opti-
mizing general problems which do not include clustering.

Since the clustering task can be approached by optimizing 
the centroids for the clusters according to a predefined objec-
tive function, which needs special implementation, frame-
works and libraries can be implemented for this purpose. To 
the best of our knowledge, we found only one framework 
for clustering with evolutionary algorithms which is LEAC 
[58]. LEAC is implemented using C++ which includes 23 
Evolutionary Algorithms for partitional clustering. However, 
most practitioners use other languages which have more 
libraries and packages than C++ language. In addition, the 
algorithms used in LEAC are only different variations of the 
evolutionary operators for fixed and variable k-clusters and 
do not include other algorithms. Thus, there is a need for a 
framework of nature-inspired metaheuristic clustering opti-
mizers which is not specific to the evolutionary algorithms.

In this sense, EvoCluster [51] is a flexible framework that 
includes several nature-inspired metaheuristic optimizers 
for performing the clustering task. This framework allows 
users’ customizations of the clustering algorithms, the objec-
tive functions, and the evaluation measures. EvoCluster is 
an extension to the aforementioned EvoloPy framework 
in which the algorithms are customized for the partitional 
clustering task. It also considers multiple objective func-
tions for enhancing the performance of the population at 
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each iteration. Evaluation measures are also implemented for 
evaluating the clustering results. To the best of our knowl-
edge, EvoCluster framework is the first framework in Python 
language for clustering data using the selected metaheuris-
tic optimizers. It is implemented efficiently considering the 
computation time and the quality of results.

In addition, the effect of the selected distance measure 
and the technique used for specifying the number of clusters 
in the framework should be investigated. Although the effect 
of different distance measures was discussed and compared 
in several works, some were specific to a certain domain 
or application [17, 23, 44], others were based on a specific 
algorithm [30, 52], and other were examined on a specific 
type of datasets such as the ones with high dimensional-
ity [44, 52]. On the other hand, specifying the k value has 
been discussed in several works [29, 32, 64] which include 
the Elbow, gap analysis, Silhouette coefficient, Calinski-
Harabasz (CH), Davies-Bouldin (DB), and Bayesian Infor-
mation Criterion score (BIC) techniques. Therefore, due to 
the importance of these parameters, both are covered in the 
extended implementation of the framework.

Under this view, extending useful frameworks such as 
EvoCluster with additional features gives researchers and 
practitioners more possibilities and opportunities while 
using the framework. Thus, we are extending the current 
implementation of EvoCluster to include new different dis-
tance measures for the objective function, different ways of 
specifying the k value, and a user option to consider either 
supervised or unsupervised datasets.

Framework Overview

EvoCluster includes the most well-regarded nature-inspired 
metaheuristic optimizers that are adopted for performing the 
partitional clustering task with a very easy and useful inter-
face. The framework is constructed with six main compo-
nents which are described in the following sections:

The Optimizer

It serves as the main interface of the framework. Users can 
select the set of optimizers, data sets, and objective functions 
according to their preference for running the experiments. 
They can also specify the main parameters that are common 
for most optimizers which are the number of iterations and 
the population size. The number of runs can also be deter-
mined through this interface. In addition, users select the 
evaluation measures to evaluate the predicted labels gener-
ated from the framework.

The optimizer is further extended to include different dis-
tance measures from the well-known scipy.spatial.distance 

package [66]. It includes braycurtis, canberra, chebyshev, 
cityblock, correlation, cosine, dice, euclidean, hamming, 
jaccard, jensenshannon, kulsinski, mahalanobis, match-
ing, minkowski, rogerstanimoto, russellrao, seuclidean, 
sokalmichener, sokalsneath, sqeuclidean, and yule distance 
measures [66].

The user is also allowed to run the framework on datasets 
that are either unsupervised or supervised according to the 
existence of the true labels in the datasets. In the case of 
unsupervised datasets, results files do not include the evalu-
ation measures which depend on comparisons between the 
true and predicted labels.

Another feature is added to the framework; the user can 
specify the k value by different ways: first, the user can 
determine specific k values for the datasets. The user passes 
a list of k integer values corresponding to the list of datasets 
provided to the framework. Second, the user can choose the 
automatic option. The automatic option includes automati-
cally deriving the k value from the true labels if the user 
provided supervised datasets, or applying different detection 
techniques to automatically predict the k value for each data-
set. The detection techniques that are provided at the time 
of writing this paper are: elbow, gap analysis, Silhouette 
coefficient, Calinski–Harabasz (CH), Davies–Bouldin (DB), 
and Bayesian Information Criterion score (BIC) techniques. 
Other options include the minimum, maximum, median, and 
majority k values calculated from the values predicted by all 
these techniques.

Nature‑Inspired Metaheuristics

The implementation of each optimizer is visible as a separate 
file in the framework. The optimizers that are available at the 
time of writing this paper are as follows:

• Genetic algorithm (GA) [61]: It is inspired by biologi-
cal evolution. The algorithm evolves toward better solu-
tions based on four main operations: selection, crossover, 
mutation, and elitism.

• Particle swarm optimization (PSO) [28, 62]: It is inspired 
by the flocking behavior of birds and the schooling 
behavior of fish. The algorithm evolves toward better 
solutions based on a mathematical formula considering 
the position and velocity of the particles. The movement 
of the particle is influenced by its local best and the 
global best positions.

• Salp swarm algorithm (SSA) [39]: It is inspired by the 
swarming behavior of salps. The algorithm evolves 
toward better solutions based on two mathematical mod-
els to update the position of leading and follower salps.

• Firefly algorithm (FFA) [71]: It is inspired by the flashing 
behavior of fireflies. The algorithm evolves toward better 
solutions by the attraction of fireflies based on the bright-
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ness of other fireflies calculated by the inverse square 
law.

• Gray Wolf optimizer (GWO) [42]: It is inspired by grey 
wolves. The algorithm evolves toward better solutions 
based on hunting, searching for prey, encircling prey, and 
attacking prey.

• Whale optimization algorithm (WOA) [40]: It is inspired 
by social behavior of humpback whales. The algorithm 
evolves toward better solutions based on three opera-
tors to simulate the search for prey, encircling prey, and 
bubble-net foraging behavior of humpback whales.

• Multi-verse optimizer (MVO) [41]: It is inspired by the 
theory of multi-verse in physics. The algorithm evolves 
toward better solutions based on mathematical models of 
the white hole, black hole, and worm hole which reflect 
exploration, exploitation, and local search, respectively.

• Moth flame optimizer (MFO) [38]: It is inspired by the 
death behavior of moths. The algorithm evolves toward 
better solutions based on logarithmic spiral update mech-
anism of moths.

• Bat algorithm (BAT) [72]: It is inspired by the echolo-
cation behavior of bats. The algorithm evolves toward 
better solutions based on the pulse of loudness and pulse 
rate.

• Cuckoo search algorithm (CS) [73]: It is inspired by the 
brood parasitism of some cuckoo species. The algorithm 
evolves toward better solutions based on three idealized 
rules where the bird decides whether it throws the eggs 
away or abandons its nest and creates a new one.

Objective Functions

This component consists of the implementation of the objec-
tive functions that are used to optimize the individuals at 
each iteration. The list of objective functions which are used 
with the data sets having k clusters of N points, available at 
the time of writing this paper, are as follows:

• Sum of squared error (SSE) [11]: 

where dnc is the Euclidean distance between the centroid 
and the point. By minimizing SSE, we obtain better 
results.

• Total within cluster variance (TWCV) [46]: 

(1)
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where F is the number of features, pnf  is feature f of 
the point n, pkf  is feature f of the point k, and |pk| is the 
number of points in cluster k. By minimizing TWCV, we 
obtain better results.

• Silhouette coefficient (SC) [13, 46]: 

where a is the average distance between a point and the 
other points in the same predicted cluster, and b is the 
average distance between a point and the other points in 
the next nearest cluster. By maximizing SC, we obtain 
better results. We normalize the values of SC to the inter-
val [0, 1], and then use the reversed value of the normal-
ized SC (1 − norm(SC)) in the objective function.

• Davies–Bouldin (DB) index [14]: 

where sk is the average distance between a point and the 
cluster center, and dkj is the distance between the centroid 
of cluster k and the centroid of cluster j. By minimizing 
DB, we obtain better results.

• Dunn Index (DI) [13, 21]: 

where dmin is the minimal distance between two points 
in different clusters, and dmax is the maximal distance 
between the farthest two points in a cluster. By maxi-
mizing DI, we obtain better results. Thus, we use the 
reversed value of DI (1 − DI) in the objective function.

The extended feature, which considers different distance 
measures, is only effective for SSE, SC, and Dunn index.

Evaluation Measures

The framework includes a set of evaluation measures to 
evaluate the results obtained from running the framework. 
Given T as the true classes of N points and P as the predicted 
clusters of these points. The evaluation measures that are 
available at the time of writing this paper are as follows:

• Purity (P) [6]: 
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where Pj represents the points assigned to cluster j, k is 
the number of clusters, and Ti is the true assignments of 
points in cluster i.

• Entropy (E) [6]: 

where E(Pj ) is the individual entropy of a cluster. Indi-
vidual cluster entropy is calculated by Eq. (8): 

• Homogeneity score (HS) [60]: 

where H(T) is the classes Entropy and H(T|P) is the 
classes conditional Entropy. H(T) and H(T|P) are calcu-
lated as follows [60]: 

where nt and np are the number of points of the true class 
t and the predicted cluster p, respectively. npt is the num-
ber of points of the true class t which are clustered to the 
predicted cluster p.

• Completeness Score (CS) [60]: 

where H(P) is the cluster Entropy and H(P|T) is the clus-
ters conditional Entropy. H(P) and H(P|T) are calculated 
as follows [60]: 

• V-measure (VM) [60]: 

• Adjusted mutual information (AMI) [65]: 
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where H(P) and and H(T) are the cluster Entropy (Eq. 13) 
and the class entropy (Eq. 10). MI is the Mutual Index 
which is calculated by [65]: 

E[MI] is the Expected Mutual Index which is calculated 
by [59, 65]: 

• Adjusted Rand Index (ARI) [24]: 

where RI is the Rand Index, E[RI] is the Expected Rand 
Index, and max[RI] is the Maximum Rand Index. RI, 
E[RI], and max[RI] are calculated by Eqs. (20), (21), 
and (22) [24, 56], respectively: 

where a is the number of pair of points located in the 
same true class t and clustered at the same predicted clus-
ter p. b is the number of pair of points located in a differ-
ent true class t and clustered at a different predicted clus-
ter p. 
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• Sum of squared error (SSE) [11]
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The last five measures are discussed in the previous sec-
tion and are used as evaluation measures. These five meas-
ures are the only ones considered if the user provided unsu-
pervised datasets having no true labels.

Benchmark Data Sets

Most common and well-known data sets used for clustering 
can be found in the framework in which it can be extended 
to include other data sets. The list of the data sets that are 
available at the time of writing this paper are summarized in 
Table 1. As observed from the table, the data sets have dif-
ferent number of points, features, and clusters. The data sets 
are either real-world or artificial synthetic data sets. They are 

gathered from scikit learn,1 UCI machine learning reposi-
tory,2 School of Computing at University of Eastern Fin-
land,3 ELKI,4 KEEL,5 and Naftali Harris Blog.6 These data 
sets are extensively found in the literature for solving the 
clustering problem [12]. The selected data sets have varying 
number of points allowing different experiments to be per-
formed on different volume of data. Different dimensionality 
of the data sets are also available, which is a critical issue in 
machine learning problems.

Datasets are available in the framework in two repre-
sentations: supervised and unsupervised, where supervised 

Table 1  Data sets properties 
showing the name, number 
of clusters, number of points, 
number of features, data set 
type, and source

ID Data set k # points # features Type Source

1 Aggregation 7 788 2 Artificial University of Eastern Finland3

2 Aniso 3 1500 2 Artificial scikit learn1

3 Appendicitis 2 106 7 Real KEEL5

4 Balance 3 625 4 Real UCI2

5 Backnote 2 1372 4 Real UCI2

6 Blobs 3 1500 2 Artificial scikit learn1

7 Blood 2 748 4 Real UCI2

8 Circles 2 1500 2 Artificial scikit learn1

9 Diagnosis II 2 120 6 Real UCI2

10 Ecoli 5 327 7 Real UCI2

11 Flame 2 240 2 Artificial University of Eastern Finland3

12 Glass 6 214 9 Real UCI2

13 Heart 2 270 13 Real UCI2

14 Iris 3 150 4 Real UCI2

15 Iris 2D 3 150 2 Real UCI2

16 Ionosphere 2 351 344 Real UCI2

17 Jain 2 373 2 Artificial University of Eastern Finland3

18 Liver 2 345 7 Real UCI2

19 Moons 2 1500 2 Artificial scikit learn1

20 Mouse 3 490 2 Artificial ELKI4

21 Pathbased 3 300 2 Artificial University of Eastern Finland3

22 Seeds 3 210 7 Real UCI2

23 Smiley 4 500 2 Artificial naftaliharris6

24 Sonar 2 208 60 Real UCI2

25 Varied 3 1500 2 Artificial scikit learn1

26 Vary Density 3 150 2 Artificial ELKI4

27 Vertebral2 2 310 6 Real UCI2

28 Vertebral3 3 310 6 Real UCI2

29 WDBC 2 569 30 Real UCI2

30 Wine 3 178 13 Real UCI2

1 http:// scikit- learn. org/ stable/ datas ets/ index. html.

2 https:// archi ve. ics. uci. edu/ ml/.
3 http:// cs. uef. fi/ sipu/ datas ets/.
4 https:// elki- proje ct. github. io/ datas ets/.
5 https:// sci2s. ugr. es/ keel/ datas ets. php.
6 https:// www. nafta lihar ris. com/ blog/ visua lizing- K- means- clust 
ering/.

http://scikit-learn.org/stable/datasets/index.html
https://archive.ics.uci.edu/ml/
http://cs.uef.fi/sipu/datasets/
https://elki-project.github.io/datasets/
https://sci2s.ugr.es/keel/datasets.php
https://www.naftaliharris.com/blog/visualizing-K-means-clustering/
https://www.naftaliharris.com/blog/visualizing-K-means-clustering/
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datasets contain the expected labels in the last column of the 
file, while unsupervised datasets do not contain this column.

Results Management

The results obtained by running the framework are gathered 
in three types of CSV files and two types of plots:

• Average results file: This file gives average results of the 
runs for performing each combination of an optimizer, 
objective function, and data set. Each item in the CSV 
file includes the average execution time, the average 
value of each external measure, and the average objective 
function value for each iteration. This file is important 
for two reasons: first, it shows how well the optimizers 
are performing. Second, it shows how the optimizer is 
enhancing the results by converging towards the optimal 
solution.

• Detailed results file: This file gives detailed results for 
each run. Each item in the CSV file includes the execu-
tion time, the value of each external measure, and the 
value for each iteration. Practitioners and researchers find 
this file useful as it allows them to compare the results of 
different runs for the same combination of an optimizer, 
objective function, and data sets.

• Best individual labels file: This file includes the values 
of the labels obtained from the best individual at the last 
iteration for each run. It is useful for the practitioners and 
researchers as it provides the final solution to the prob-
lem, which is the ultimate goal of using the framework 
for optimizing the clustering task.

• Convergence curve plot: Plots are generated for the con-
vergence curves for each selected data sets, optimizers, 
and objective functions. Each plot represents the con-
vergence curves for multiple optimizers having the val-
ues of the objective function at each iteration. This plot 

C1F2C1F2C1F1C1F1 ......C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2...... ...... ......

C1F2C1F2C1F1C1F1 ......C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2...... ...... ......

C1F2C1F2C1F1C1F1 ......C1FfC1Ff CkF1CkF1 CkFfCkFfC2F1C2F1 C2F2C2F2 C2FfC2Ff CkF2CkF2...... ...... ......
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Fig. 1  Population of individuals at a specific iteration
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Fig. 2  Class diagram of EvoCluster
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is important as it shows how the solution is enhancing 
through different iterations.

• Box plot: Plots are generated to represent the evaluation 
measures for each data set for several runs of the frame-
work. Each box in a plot represents one of the selected 
optimizers. The interquartile range, best value, and worst 
value are represented as the box, the upper whiskers, and 
the lower whiskers, respectively [3]. This file helps in 
identifying the stability of the optimizer and showing 
the differences of the evaluation values between different 
runs.

Design Issues

The nature-inspired metaheuristic optimizers, which are 
included in the framework, use a population of individuals 
(s) at each iteration. Each individual represents one of the 
optimizers suggested clustering solution of centroids. Thus, 
consisting of the features (f) of each centroid for (k) clusters. 
Figure 1 shows how a population at a certain iteration is 
formed. For each individual in the group of s individuals 

in the population, there are k centroids having f features for 
each centroid.

In EvoCluster, populations are defined using the 
Numpy open-source Python package which is based on the 
N-dimensional array data structure. The metrics 
module of the sklearn package are used for the evalua-
tion measures for HS, CS, VM, AMI, ARI, FM, SC, and 
DB. Distance measures are calculated using scipy.spa-
tial.distance package. In addition, the normalize 
function of the preprocessing module in the sklearn 
package is used to normalize the values of the features for a 
data set to the interval [0, 1], to give similar weights to the 
features of the points. Each individual of a population in a 
certain iteration generates a corresponding vector of pre-
dicted labels which represents the cluster number for each 
point of the data set. This vector is evaluated using a selected 
objective function in the framework.

EvoCluster components and their relationships are illus-
trated as a class diagram in Fig. 2. EvoCluster contains four-
teen classes which include ten classes for the metaheuristic 
algorithms and four other main classes. The main classes 
are Optimizer , Solution , Objectives , and 

Fig. 3  Convergence curve plots for PSO, GA, GWO, FFA, and CS 
using SSE objective function and Elbow method for a aggregation 
with Euclidean distance; b aggregation with CityBlock/Manhattan 

distance; c Iris with Euclidean distance; and d Iris with CityBlock/
Manhattan distance
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Measures. The Optimizer class solves the partitional 
clustering task by using one of the metaheuristic algorithm 
which finds a Solution using an Objective function. 
This generates the global solution of the best clustering 
labels. The Optimizer then evaluates the labels using 
the Measures class.

Experiments and Visualizations

In this section, we show some examples of conducting some 
experiments using EvoCluster. The framework is run 10 
times using a population size of 50 and iterations value of 
100.

Figure 3 shows the convergence curve for selected opti-
mizers which are PSO, GA, GWO, FFA, and CS using the 
SSE objective function for Aggregation and Iris datasets 
for different distance measures which are Euclidean and 
Manhattan. The convergence curve represents the values 
of the objective function over the course of iterations. The 
convergence curve shows the progress of the optimizers 

toward the optimal solution by minimizing the value of 
the objective function. As observed from the figure, the 
optimizers show different behaviors. In addition, the 
same algorithm behaves differently for different data sets 
and with different distance measures. Figure 4 shows the 
box plot for the selected optimizers which are PSO, GA, 
GWO, FFA, and CS using the SSE objective function for 
the Aggregation data set for Purity and Entropy evaluation 
measures for Euclidean and Manhattan distance measures. 
The box plot represents the range of values of different 
runs. It also shows the max, min, and mean values of the 
evaluation measure.

The experiments in this section show that EvoCluster 
framework facilitates the work of the practitioners and 
researchers by performing comparisons between different 
metaheuristic algorithms based on different configurations 
and evaluation metrics. In addition, the end-point results 
are also provided in EvoCluster in various formats includ-
ing results files and plots, which allows practitioners and 
researchers observe different views of the results and helps 
them evaluate their choice of the optimizers and configura-
tion settings.

Fig. 4  Box plots of a purity with Euclidean distance; b purity with 
CityBlock/Manhattan distance; c entropy with Euclidean distance; 
and d entropy with CityBlock/Manhattan distance for PSO, GA, 

GWO, FFA, and CS using SSE objective function and Elbow method 
for the aggregation data set
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Conclusion and Future Work

EvoCluster is an open-source framework implemented in 
Python language which provides so-far ten nature-inspired 
metaheuristic optimizers that are customized to solve par-
titional clustering tasks. EvoCluster provides the ability 
to select one of five well-known objective functions and 
twelve well-known evaluation measures. The framework is 
designed in a flexible way so that developers and researchers 
can customize it by implementing other optimizers, objec-
tive functions, and evaluation measures. In this paper, we 
extend EvoCluster framework with different distance meas-
ures for the objective function, different ways to specify the 
k value, and a user option to consider either supervised or 
unsupervised datasets. We also show some visualizations 
that are automatically generated based on the results of 
the conducted experiments using the extended EvoCluster 
framework in the form of the convergence curves and box 
plots. As future work, it is planned to support the frame-
work with more well-regarded and recent metaheuristics. 
In addition, the framework will be supported with differ-
ent initialization mechanisms that can support the perfor-
mance of the optimizers, and other encoding mechanisms 
and problem formulations. Further, EvoCluster framework 
can be upgraded to work on parallel architectures for han-
dling larger datasets and speeding up the performance of the 
metaheuristic algorithms.
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