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Abstract
This manuscript introduces new synchronization methods, viz., modified fractional and inverse matrices hybrid function pro-
jective difference synchronization based on active control method. The main advantage of this method lies in its comprising 
of different synchronization schemes applicable componentwise, thereby strengthening the anti-attack capability in secure 
communications. Numerical simulations have been performed on complex fractional Rikitake system, El-Nino system, and 
generalized Lotka Volterra systems which verify the efficacy of the designed scheme by achieving quicker synchronization. 
Comparison of results with some previous published results have been made and application of synchronized methods in 
secure communication is made.

Keywords Modified fractional matrix hybrid function projective synchronization · Difference synchronization · Modified 
inverse matrix hybrid function projective synchronization · Secure communication

Introduction

Ever since the first chaotic attractor was discovered (1963) 
and the significant work of synchronization was established 
by Pecora and Carroll [23] (1990), chaos theory and syn-
chronization has invoked huge interest among researchers. 
The careful modeling of chaotic systems and designing of 
various control techniques [18] have been done [33] such 
as active control, sliding mode control, feedback control, 
adaptive control, tracking control, etc., developing various 
synchronization schemes such as complete synchronization, 
anti-synchronization [6, 17], projective synchronization, 
function projective synchronization, compound synchro-
nization [12], dislocated synchronization [15], and so on 
[9–11, 13, 32, 34].

By synchronization [16], we mean that the trajectories of 
two different chaotic systems take a common path. Where, 
on one hand, synchronizing two chaotic systems [7] is 
in itself a big challenge, to synchronize the different co-
ordinates of the systems by different synchronization tech-
niques adds to the complexity of the goal to be attained. 

Undoubtedly, achieving this modified synchronization [20] 
would bring nightmares to the hackers as it would be very 
difficult to predict the order in which different co-ordinates 
have been synchronized. In other words, anti-attack resist-
ance of systems would increase which would be fruitful 
in fields of secure communication, data encryption, cryp-
tography, etc. [8, 10, 14, 27–29]. Also, with the introduc-
tion of fractional-ordered systems [1, 5, 24], more accurate 
modeling of chaotic systems is possible. One of the reasons 
of the gaining popularity of fractional-ordered systems is 
their ability to model memory properties in life models. 
It is worth noting that most of the published literary work 
includes the projective matrix as a scalar matrix or a diago-
nal matrix with constant elements [4]. However, in our work, 
we have considered the projective matrix as non-diagonal 
matrix with non-constant, time-variant entries too. Certainly, 
not much work has been done using difference synchroniza-
tion [3] which happens to be an alternative to combination 
synchronization.

The rest of manuscript is laid out as follows: Sect. 2 
consists of some preliminaries and stability criterion. Sec-
tion 3 includes problem formulation of modified fractional 
and inverse matrices hybrid function projective difference 
synchronization scheme. In Sect. 4, we have described the 
systems on which numerical simulations have been per-
formed. Section 5 consists of the discussions on numerical 
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simulations and displays the results performed in MATLAB. 
Section 6 compares the attained results with some previous 
published results. Section 7 illustrates the synchronization 
results in secure communication and Sect. 8 concludes the 
article.

Preliminaries

Definition

Caputo Definition: [26]

where n is integer, � is real number, (n − 1) ≤ 𝛼 < n , and Γ(.) 
is the Gamma function.

Throughout our studies, Caputo’s version of fractional 
derivative has been used.

Stability Criterion

(i) Consider the system: 

 where zi are the variables describing the system, then 
the system is asymptotically stable at its equilibrium 
point if all the eigenvalues of the Jacobi matrix J =

�hi

�zi
 

fulfill the criterion |arg(eigen values)| > q𝜋

2
.

(ii) Lyapunov Boundedness Theorem: Let V be a function 
satisfying the following properties:

(a) all sublevel sets of V are bounded.
(b) ̇V(z) ≤ 0∀z . Then, all the trajectories are bounded, i.e., 

for each trajectory x there is an R, such that: 

 Here, the function V is the Lyapunov function proving 
that the trajectories are bounded.

Problem Formulation

We consider two master systems.
Master system I:

aD
�

x
g(x) =

1

Γ(n − �) ∫
x

a

g(n)(�)d�

(x − �)�−n+1
,

aD
q

t zi = hi(z1, z2,… , zn), 0 < q < 1, i = 1, 2,… ,

||x(t)|| ≤ R∀t ≥ 0.

(1)
DqX

Dtq
= A1X + F1(X),

where X is the state vector, A1 is the coefficient matrix cor-
responding to the linear part of the first master system, and 
F1(X) is the remaining nonlinear part of the first master 
system.

Master system II:

where Y is the state vector, A2 is the coefficient matrix corre-
sponding to the linear part of the second master system, and 
F2(Y) is the remaining nonlinear part of the second master 
system. Next, we consider two slave systems.

Slave system I:

where Z is the state vector, B1 is the coefficient matrix cor-
responding to the linear part of the first slave system, G1(Z) 
is the remaining nonlinear part of the first slave system, and 
U is the controller which is to be constructed.

Slave System II:

where W is the state vector, B2 is the coefficient matrix cor-
responding to the linear part of the second-slave system, 
G2(W) is the remaining nonlinear part of the second-slave 
system, and V is the controller which is to be constructed.

Modified Fractional Matrix Hybrid Function 
Projective Difference Synchronization Scheme

We define the modified fractional matrix hybrid function 
projective difference synchronization error as:

where P is a non-constant, non-diagonal matrix.
Here, we choose the matrix P, such that the first co-

ordinates get completely synchronized, the second co-
ordinates get anti-synchronized, the third co-ordinates 
gets projectively synchronized, the fourth co-ordinates 
gets function projective anti-synchronized, the fifth and 
sixth co-ordinates are dislocated (disorderly)synchronized:

Using (1)–(4) in (5), we get:

(2)
DqY

Dtq
= A2Y + F2(Y),

(3)
DqZ

Dtq
= B1Z + G1(Z) + U,

(4)
DqW

Dtq
= B2W + G2(W) + V ,

(5)e = (Z −W) − P(X − Y),

(6)
Dqe = (DqZ − DqW) − Dq[P(X − Y)]

= (DqZ − Dq(PX)) − (DqW − Dq(PY)).



SN Computer Science (2021) 2:91 Page 3 of 13 91

SN Computer Science

We design the controllers U and V as follows:

Substituting (8) into (7),the error dynamics simplifies to:

Modified Inverse Matrix Hybrid Function Projective 
Difference Synchronization Scheme

We define the modified inverse matrix hybrid function pro-
jective difference synchronization error as:

where P is a non-constant, non-diagonal matrix.
Here, we choose the matrix P, such that the first co-ordi-

nates get completely synchronized, the second co-ordinates 
get anti-synchronized, the third co-ordinates get projectively 
synchronized, the fourth co-ordinates get function projective 
anti-synchronized [21, 22, 31], and the fifth and sixth co-
ordinates are dislocated synchronized:

Using (1)–(4) in (5), we get:

We design the controllers U and V as follows:

(7)

= [B1Z + G1(Z) + U − P.DqX − DqP.X]

− [B2W + G2(W) + V − P.DqY − DqP.Y]

= [(B1Z + G1(Z) + U) − P(A1X + F1(X) − DqP.X)]

− [(B2W + G2(W) + V) − P(A2Y + F2(Y) − DqP.Y)].

(8)

U = K1Z − (B1 + K1)PX + P[A1X + F1(X)]

− G1(Z) + DqP.X

V = K2W − (B2 + K2)PY

+ P[A2Y + F2(Y)] − G2(W) + DqP.Y

(B1 + K1)(Z − PX) − (B2 + K2)(W − PY)

(9)e = (X − Y) − P(Z −W),

(10)
Dqe = (DqX − DqY) − Dq[P(Z −W)]

= (DqX − Dq(PZ)) − (DqY − Dq(PW)).

(11)

= [A1X + F1(X) − P.DqZ − DqP.Z]

− [A2Y + F2(Y) − P.DqW − DqP.W]

= [(A1X + F1(X)) − P(B1Z + G1(Z) + U − DqP.Z)]

− [(A2Y + F2(Y)) − P(B2W + G2(W) − DqP.W)].

(12)

U = P−1[(A1 + K1)PZ − K1X + F1(X) − (DqP)Z] − B1Z − G1(Z)

V = P−1[(A2 + K2)PW − K2Y + F2(Y) − (DqP)W] − B2W − G2(W).

Substituting (12) into (11), the error dynamics simplifies to:

System Description

Complex Fractional Rikitake System

The first master system is taken as the complex Rikitake 
system of fractional order [19] given by:

Substituting:

Segregating the real and imaginary parts, we get:

The system (13) exhibits chaotic attractor for parameter val-
ues a = 5, b = 2, initial conditions ( −4,−0.7, 2.5, 0.7, 2, 0.77 ), 
and fractional order q = 0.987 (Fig. 1).

Complex Fractional El‑Nino System

The second master system is chosen as the complex fractional-
order El-Nino system [2] given by:

(A1 + K1)(X − PZ) − (A2 + K2)(Y − PW).

dqx�
1

dtq
= − ax�

1
+ x�

2
x�
3

dqx�
2

dtq
= − ax�

2
+ x�

1
(x�

3
− b)

dqx�
3

dtq
= 1 − x�

1
x�
2
.

x�
1
= x1 + ix2, x

�

2
= x3 + ix4, x

�

3
= x5 + ix6.

(13)

dqx1

dtq
= − ax1 + x3x5 − x4x6

dqx2

dtq
= − ax2 + x4x5 + x3x6

dqx3

dtq
= − ax3 + x1(x5 − b) − x2x6

dqx4

dtq
= − ax4 + x1x6 + x2(x5 − b)

dqx5

dtq
= 1 − x1x3 + x2x4

dqx6

dtq
= − x2x3 − x1x4.
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Substituting:

dqy�
1

dtq
= 𝜇�(y�

2
− y�

3
) − b�y�

1

dqy�
2

dtq
= y�

1
y�
3
− y�

2
+ c�y�

1

dqy�
3

dtq
= − y�

3
− c�y�

1

−
1

2
(y�

1
ȳ�
2
+ ȳ�

1
y�
2
).

y�
1
= y1 + iy2, y

�

2
= y3 + iy4, y

�

3
= y5 + iy6.

Segregating the real and imaginary parts, we get:

(14)

dqy1

dtq
= �y3 − �y5 − b�y1

dqy2

dtq
= �y4 − �y6 − b�y2

dqy3

dtq
= y1y5 − y2y6 − y3 + c�y1

dqy4

dtq
= y2y5 + y1y6 − y4 + c�y2

dqy5

dtq
= − y5 − c�y1 − y1y3 + y2y4

dqy6

dtq
= − y6 − c�y2 − y2y3 − y1y4.
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Fig. 1  Phase portraits of the complex fractional-order a Rikitake chaotic system, b El-Nino chaotic system, c G.L.V. system-I, and d G.L.V. 
system-II
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The system (14) displays chaotic attractor for parameter val-
ues �� = 83.6, b� = 10, c� = 12 , initial conditions (5, 1, 3, 
0.4, 4, 0.1), and fractional order q = 0.987.

Complex Fractional Generalized Lotka Volterra 
System‑I

The first slave system is chosen as the complex fractional-
order Generalized Lotka Volterra system [25, 30] given by:

Substituting:

Segregating the real and imaginary parts, we get:

The system (15) illustrates chaotic attractor for parameter 
values ā = 5.1, b̄ = 7.4, c̄ = 20.8 , initial conditions (1.2, 
0.112, 1.2, 0, 1.2, 0), and fractional order q = 0.987.

dqz�
1

dtq
= z�

1
− z�

1
z�
2

+ c̄z�
1

2
− āz�

1

2
z�
3

dqz�
2

dtq
= − z�

2

+
1

2
(z�

1
z̄�
2
+ z̄�

1
z�
2
)

dqz�
3

dtq
= − b̄z�

3
+ āz�

1

2
z�
3
.

z�
1
= z1 + iz2, z

�

2
= z3 + iz4, z

�

3
= z5 + iz6.

(15)

dqz1

dtq
= z1 − z1z3 + z2z4

+ c̄z1
2 − c̄z2

2

− āz1
2z5 + āz2

2z5

+ 2āz1z2z6

dqz2

dtq
= z2 − z1z4 − z2z3 + 2c̄z1z2

− 2āz1z2z5 − āz1
2z6

+ āz2
2z6

dqz3

dtq
= − z3 + z1z3 − z2z4

dqz4

dtq
= − z4 + z2z3 + z1z4

dqz5

dtq
= − b̄z5 + āz1

2z5

− āz2
2z5 − 2āz1z2z6

dqz6

dtq
= − b̄z6 + 2āz1z2z5

+ āz1
2z6 − āz2

2z6.

Complex Fractional Generalized Lotka Volterra 
System‑II

The second-slave system is chosen as the complex fractional-
order Generalized Lotka Volterra system given by:

Substituting:

Separating into real and imaginary parts, we obtain the sys-
tem as:

The plots (16) show chaotic attractor for parameter vales 
A = 2.9851,B = 3,C = 2 , initial conditions (1.2, 0, 1.2, 0, 
1.2, 0.112), and fractional order q = 0.987.

Numerical Simulations and Discussion

We consider here the complex fractional Rikitake (13) (the 
Earth’s magnetic field system) and El-Nino system (14) (the 
weather system) as the drive system and the complex frac-
tional Generalize Lotka Volterra systems (15) and (16) (the 

dqw�
1

dtq
= w�

1
− w�

1
w�

2

+ Cw�

1

2
− Aw�

1

2
w�

3

dqw�
2

dtq
= − w�

2

+
1

2
(w�

1
w̄�
2
+ w̄�

1
w�

2
)

dqw�
3

dtq
= − Bw�

3
+ Aw�

1

2
w�

3
.

w�

1
= w1 + iw2,w

�

2
= w3 + iw4,w

�

3
= w5 + iw6.

(16)

dqw1

dtq
= w1 − w1w3 + w2w4 + Cw1

2

− Cw2
2 − Aw1

2w5 + Aw2
2w5 + 2Aw1w2w6

dqw2

dtq
= w2 − w1w4 − w2w3 + 2Cw1w2 − 2Aw1w2w5

− Aw1
2w6 + Aw2

2w6

dqw3

dtq
= − w3 + w1w3 − w2w4

dqw4

dtq
= − w4 + w2w3 + w1w4

dqw5

dtq
= − Bw5 + Aw1

2w5 − Aw2
2w5

− 2Aw1w2w6

dqw6

dtq
= − Bw6

+ 2Aw1w2w5 + Aw1
2w6 − Aw2

2w6.
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predator–prey system) as the slave systems. The numerical 
simulations are performed on the above models.

Modified Fractional Matrix Hybrid Function 
Projective Difference Synchronization Scheme

Taking the projective matrix:

The error from (5) can be described as:

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0

0 − 1 0 0 0 0

0 0 2 0 0 0

0 0 0 − t 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

e1 = (z1 − w1) − (x1 − y1)

e2 = (z2 − w2) + (x2 − y2)

e3 = (z3 − w3) − 2(x3 − y3)

e4 = (z4 − w4) + t(x4 − y4)

e5 = (z5 − w5) − (x6 − y6)

e6 = (z6 − w6) − (x5 − y5).

Then, the error dynamics is:

Note:

Now, choosing suitable controller gain matrix elements:

and designing controllers as in (8), we have the following:

Dqe1 = Dqz1 − Dqw1 − Dqx1 + Dqy1

Dqe2 = Dqz2 − Dqw2 + Dqx2 − Dqy2

Dqe3 = Dqz3 − Dqw3 − 2Dqx3 + 2Dqy3

Dqe4 = Dqz4 − Dqw4 + Dq[t(x4 − y4)]

Dqe5 = Dqz5 − Dqw5 − Dqx6 + Dqy6

Dqe6 = Dqz6 − Dqw6 − Dqx5 + Dqy5.

Dq[t(x4 − y4)] = Dqt.(x4 − y4) + t(Dqx4 − Dqy4)

= 1.00739t.013x4 − 1.00739t.013y4

+ tDqx4 − tDqy4,

k11 = − 5, k12 = −5, k13 = −1,

k14 = − 1, k15 = 2.4, k16 = 2.4

k21 = − 5, k22 = −5, k23 = −1,

k24 = − 1, k25 = −2, k26 = −2

u1 = − 5z1 − x1 + x3x5 − x4x6 + z1z3 − z2z4 − 20.8z1
2 + 20.8z2

2 + 5.1z1
2z5 − 5.1z2

2z5 − 10.2z1z2z6

u2 = − 5z2 − x2 − x4x5 − x3x6 + z1z4 + z2z3 − 41.6z1z2 + 10.2z1z2z5 + 5.1z1
2z6 − 5.1z2

2z6

u3 = − z3 + 4x3 − 4x1 − 10x3 − 2x2x6 + 2x1x5 − z1z3 + z2z4

u4 = − z4 + 3tx4 − tx1x6 − tx2x5 + 2tx2 − z2z3 − z1z4 − 1.00739t.013x4

u5 = 2.4z5 + 5x6 − x2x3 − x1x4 − 5.1z1
2z5 + 5.1z2

2z5 + 10.2z1z2z6

u6 = 2.4z6 + 5x5 + 1 − x1x3 + x2x4 − 10.2z1z2z5 − 5.1z1
2z6 + 5.1z2

2z6

v1 = − 5w1 − 6y1 + 83.6y3 − 83.6y5 + w1w3 − w2w4 − 2w1
2 + 2w2

2 + 2.9851w1
2w5 − 2.9851w2

2w5 − 5.9702w1w2w6

v2 = − 5w2 + 6y2 − 83.6y4 + 83.6y6 + w1w4 + w2w3 − 4w1w2 + 5.9702w1w2w5

+ 2.9851w1
2w6 − 2.9851w2

2w − 6

v3 = − w3 + 4y3 + 24y1 − 2y3 + 2y1y5 − 2y2y6 − w1w3 + w2w4

v4 = − w4 − ty4 − ty2y5 − ty1y6 − 12ty2 − w2w3 − w1w4 − 1.00739t.013y4

v5 = − 2w5 + 4y6 − 12y2 − y2y3 − y1y4 − 2.9851w1
2w5 + 2.9851w2

2w5 + 5.9702w1w2w6

v6 = − 2w6 + 4y5 − 12y1 − y1y3 + y2y4 − 5.9702w1w2w5 − 2.9851w1
2w6 + 2.9851w2

2w6.
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Fig. 2  Modified fractional 
matrix hybrid function projec-
tive difference synchronized 
trajectories and error plot
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Thus, the error dynamics simplifies to:

The eigenvalues of the er ror system (17) are 
−4,−4,−2,−2,−5,−5 which satisfy the above stability 
condition (i), i.e., the argument of the obtained eigenvalues 
satisfies the condition |arg(eigen values)| > q𝜋

2
 . Hence, the 

system is asymptotically stable about its equilibrium point. 
Also, the error converges to zero, implying that the modi-
fied fractional matrix hybrid function projective difference 
synchronization is achieved.

Simulation Results

The initial conditions of the complex fractional Rikitake 
system and complex fractional El-Nino system have been 
taken as ( −4,−0.7, 2.5, 0.7, 2, 0.77 ) and (5, 1, 3, 0.4, 4, 
0.1), respectively. Also, the initial conditions for the com-
plex fractional G.L.V.-I and G.L.V.-II have been taken as 
(1.2, 0.112, 1.2, 0, 1, 2, 0) and (1.2, 0, 1.2, 0, 1.2, 0.112). 
Thereby, the initial conditions of the Modified Fractional 
Matrix Hybrid Function Projective Difference Synchroni-
zation Error are ( 9,−1.588, 1, 0,−0.67, 1.888 ) for fractional 
order 0.987. Numerical simulations have been performed in 
MATLAB. The synchronized trajectories and the simultane-
ous error plot are displayed in Fig. 2.

Modified Inverse Matrix Hybrid Function Projective 
Difference Synchronization Scheme

Taking the projective matrix:

(17)

Dqe1 = − 4e1

Dqe2 = − 4e2

Dqe3 = − 2e3

Dqe4 = − 2e4

Dqe5 = − 5e5

Dqe6 = − 5e6.

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0

0 − 1 0 0 0 0

0 0 2 0 0 0

0 0 0 − et 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, P is an invertible matrix with its inverse as:

The error from (9) can be described as:

Therefore, the error dynamics so obtained is:

Note:

Now, choosing suitable controller gain matrix elements:

and designing controllers as in (12), we have the following:

P−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0

0 − 1 0 0 0 0

0 0
1

2
0 0 0

0 0 0 − e−t 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

e1 = (x1 − y1) − (z1 − w1)

e2 = (x2 − y2) + (z2 − w2)

e3 = (x3 − y3) − 2(z3 − w3)

e4 = (x4 − y4) + et(z4 − w4)

e5 = (x5 − y5) − (z6 − w6)

e6 = (x6 − y6) − (z5 − w5).

Dqe1 = Dqx1 − Dqy1 − Dqz1 + Dqw1

Dqe2 = Dqx2 − Dqy2 + Dqz2 − Dqw2

Dqe3 = Dqx3 − Dqy3 − 2Dqz3 + 2Dqw3

Dqe4 = Dqx4 − Dqy4 + Dq[et(z4 − w4)]

Dqe5 = Dqx5 − Dqy5 − Dqz6 + Dqw6

Dqe6 = Dqx6 − Dqy6 − Dqz5 + Dqw5

Dq[et(x4 − y4)] = Dqet.(x4 − y4)

+ et(Dqx4 − Dqy4)

= et.(x4 − y4) + et(Dqx4 − Dqy4).

k11 = − 45, k12 = −45, k13 = −45,

k14 = − 46, k15 = −50, k16 = −50

k21 = − 40, k22 = −40, k23 = −49,

k24 = − 50, k25 = −49, k26 = −49,
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Thus, the error dynamics simplifies to:

We now consider the Lyapunov function:

Using the error dynamics as in (18), we obtain:

u1 = − 51z1 + 45x1 + x3x5 − x4x6 + z1z3 − z2z4 − 20.8z1
2

+ 20.8z2
2 + 5.1z1

2z5 − 5.1z2
2z5 − 10.2z1z2z6

u2 = − 50z2 − 45x2 − x4x5 − x3x6 − z2 + z1z4

+ z2z3 − 41.6z1z2 + 10.2z1z2z5

+ 5.1z1
2z6 − 5.1z2

2z6

u3 = − z1 − 50z3 +
45

2
x3 +

1

2
x1x5

−
1

2
x2x6 + z3 − z1z3 + z2z4

u4 = − 2e−tz2 − 51z4 − 45e−tx4 − e−tx1x6

− e−tx2x5 + z4 − z2z3 − z1z4

u5 = − 42.6z5 + 50x6 − x2x3 − x1x4 − 5.1z1
2z5

+ 5.1z2
2z5 + 10.2z1z2z6

u6 = − 42.6z6 + 50x5 + 1 − x1x3 + x2x4 − 10.2z1z2z5

− 5.1z1
2z6 + 5.1z2

2z6

v1 = − 51w1 + 167.2w3 − 83.6w6 + 40y1

+ w1w3 − w2w4 − 2w1
2 + 2w2

2

+ 2.9851w1
2w5 − 2.9851w2

2w5 − 5.9702w1w2w6

v2 = − 51w2 + 83.6etw4 + 83.6w5 − 40y2 + w1w4 + w2w3 − 4w1w2

+ 5.9702w1w2w5 + 2.9851w1
2w5 − 2.9851w2

2w6

v3 = 6w1 − 49w3 +
49

2
y3 +

1

2
y1y5

−
1

2
y2y6 − w1w3 + w2w4

v4 = 12e−tw2 − 50w4 − 49e−ty4 − e−ty2y5

− e−ty1y6 − w2w3 − w1w4

v5 = 12w2 − 47w5 + 49y6 − y2y3 − y1y4 − 2.9851w1
2w5

+ 2.9851w2
2w5 + 5.9702w1w2w6

v6 = − 12w1 − 47w6 + 49y5 − y1y3

+ y2y4 − 5.9702w1w2w5

− 2.9851w1
2w6 + 2.9851w2

2w6.

(18)

Dqe1 = − 50e1 − 83.6(y3 − 2w3) + 83.6(y5 − w6))

Dqe2 = − 50e2 − 83.6(y4 + etw4) + 83.6(y6 − w5)

Dqe3 = − 50e3 − 2(x1 − z1) − 12(y1 − w1)

Dqe4 = − 50e4 − 2(x2 + z2)

− 12(y2 + w2) − 100(y4 + etw4)))

Dqe5 = − 50e5 + 12(y1 − w1)

Dqe6 = − 50e6 + 12(y2 + w2).

V(e(t)) =
1

2
(e1

2 + e2
2

+ e3
2 + e4

2 + e5
2 + e6

2)

⟹ ̇V(e(t) = e1ė1 + e2ė2 + e3ė3

+ e4ė4 + e5ė5 + e6ė6.

Therefore, by Lyapunov Boundedness Theorem, the error 
becomes bounded.

Simulation Results

The initial conditions for the complex fractional G.L.V.-
I and G.L.V.-II have been taken as (1.2, 0.112, 1.2, 0, 1, 
2, 0) and (1.2, 0, 1.2, 0, 1.2, 0.112). Also, the initial con-
ditions of the complex fractional Rikitake system and 
complex fractional El-Nino system have been taken as 
( −4,−0.7, 2.5, 0.7, 2, 0.77 ) and (5, 1, 3, 0.4, 4, 0.1), respec-
tively. Therefore, the initial conditions of the modified 
inverse matrix hybrid function projective difference syn-
chronization error are ( −9,−1.588,−0.5, 0,−1.888, 0.67 ) 
for fractional order 0.987. Numerical simulations have been 
performed in MATLAB. The synchronized trajectories and 
the simultaneous error plot are displayed in Fig. 3.

The main disadvantage of the obtained results is the 
complex nature of the controllers designed. Also in case of 
Inverse Matrix Hybrid Function Projective Difference Syn-
chronization, the error could only be bounded. Therefore, in 
future, better controllers can be designed to make the error 
converge to zero.

Comparison with Previously Published 
Literature

In [4], Jinman He et al. have studied fractional matrix and 
inverse matrix projective synchronization between two sys-
tems of dimension four. For the case of fractional matrix 
projective synchronization, they have achieved the errors 
tending to zero, one at 1 unit and other at 5 units. In our 
study, while performing the modified fractional matrix 
hybrid function projective difference synchronization among 
four chaotic systems of dimension six, we have 4 errors tend-
ing to zero at 1 unit and two errors tending to zero at 2 
units, respectively. This clearly indicates the efficacy of our 
designed controllers as on increasing the number of sys-
tems, and hence, the complexity the synchronization time 
is reduced.

≤ − 50e1
2 − 50e2

2 − 50e3
2 − 50e4

2

− 50e5
2 − 50e6

2 + 50|e1e3|
+ 50|e1e5| + 50|e2e4| + 50|e2e6|

≤ − 25[e1
2 + e3

2 − 2|e1e3|]

− 25[e2
2 + e4

2 − 2|e2e4|]

− 25[e1
2 + e5

2 − 2|e1e5|]

− 25[e2
2 + e6

2 − 2|e2e6|]

− 25e3
2] − 25e4

2] − 25e5
2] − 25e6

2 ≤ 0.
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Fig. 3  Modified inverse matrix 
hybrid function projective dif-
ference synchronized trajecto-
ries and error plot
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The modified fractional inverse matrix hybrid function 
projective synchronization in our paper has been achieved 
using Lyapunov Boundedness Theorem, where the constant 
bounded behavior is achieved after 2 units, whereas in [4], 
the errors reach zero at 0.1, 1, 1.5, and 5 units, respectively.

Application in Secure Communication

Chaos synchronization finds application in various science 
and engineering fields such as secure communication, con-
trol systems, etc. Many synchronization techniques have 
been developed to increase the diverseness in the possible 
synchronization schemes applicable. With the increasing 
cashless economy trend in the countries, the number of 

online purchases/transactions is increasing without bounds. 
Therefore, it is the demand of the hour to keep the com-
municated information safe, i.e., security of transmission of 
information is must to grow in this direction. The introduced 
techniques in this paper would strengthen secure communi-
cation manifolds as now all the components of the system 
are differently synchronized, and it is difficult for the hackers 
to predict the order and type of synchronization applicable 
to each component of the system.

It is based on the idea of hiding the information signal 
among the chaotic signals. Then, the original signals are 
recovered only after performed synchronization.

Illustration Let the information signal be r(t) = sin(4t) . 
We mix it with the chaotic signals x1(t) − y1(t) and transmit. 
The recovered signal r1(t) is obtained after performing the 
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Fig. 4  a Original signal. b Transmitted signal. c Recovered signal. d Comparison of the signals



 SN Computer Science (2021) 2:9191 Page 12 of 13

SN Computer Science

required synchronization. A comparison of the information 
signal and recovered signal is also displayed in Fig. 4.

Conclusions

In this paper, modified fractional and inverse matrices hybrid 
function projective difference synchronization theory has 
been developed and implemented on a study of bio-diversity. 
Here, synchronization has been achieved between complex 
fractional Rikitake system (model for earth’s magnetic field), 
El-Nino system (weather model), and Generalized Lotka 
Volterra system (biological predator-prey models). Particu-
larly, the co-ordinates have undergone complete synchro-
nization, anti-synchronization, projective synchronization, 
function projective anti-synchronization, and dislocated 
synchronization. These synchronizations methods increases 
the anti-attack capability in case of secure communications 
because of random existence of synchronization methods 
between the components of the system.

This study can also be extended to on systems interrupted 
by model uncertainties and external disturbances.
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