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Abstract

This manuscript introduces new synchronization methods, viz., modified fractional and inverse matrices hybrid function pro-
jective difference synchronization based on active control method. The main advantage of this method lies in its comprising
of different synchronization schemes applicable componentwise, thereby strengthening the anti-attack capability in secure
communications. Numerical simulations have been performed on complex fractional Rikitake system, El-Nino system, and
generalized Lotka Volterra systems which verify the efficacy of the designed scheme by achieving quicker synchronization.
Comparison of results with some previous published results have been made and application of synchronized methods in

secure communication is made.

Keywords Modified fractional matrix hybrid function projective synchronization - Difference synchronization - Modified
inverse matrix hybrid function projective synchronization - Secure communication

Introduction

Ever since the first chaotic attractor was discovered (1963)
and the significant work of synchronization was established
by Pecora and Carroll [23] (1990), chaos theory and syn-
chronization has invoked huge interest among researchers.
The careful modeling of chaotic systems and designing of
various control techniques [18] have been done [33] such
as active control, sliding mode control, feedback control,
adaptive control, tracking control, etc., developing various
synchronization schemes such as complete synchronization,
anti-synchronization [6, 17], projective synchronization,
function projective synchronization, compound synchro-
nization [12], dislocated synchronization [15], and so on
[9-11, 13, 32, 34].

By synchronization [16], we mean that the trajectories of
two different chaotic systems take a common path. Where,
on one hand, synchronizing two chaotic systems [7] is
in itself a big challenge, to synchronize the different co-
ordinates of the systems by different synchronization tech-
niques adds to the complexity of the goal to be attained.
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Undoubtedly, achieving this modified synchronization [20]
would bring nightmares to the hackers as it would be very
difficult to predict the order in which different co-ordinates
have been synchronized. In other words, anti-attack resist-
ance of systems would increase which would be fruitful
in fields of secure communication, data encryption, cryp-
tography, etc. [8, 10, 14, 27-29]. Also, with the introduc-
tion of fractional-ordered systems [1, 5, 24], more accurate
modeling of chaotic systems is possible. One of the reasons
of the gaining popularity of fractional-ordered systems is
their ability to model memory properties in life models.
It is worth noting that most of the published literary work
includes the projective matrix as a scalar matrix or a diago-
nal matrix with constant elements [4]. However, in our work,
we have considered the projective matrix as non-diagonal
matrix with non-constant, time-variant entries too. Certainly,
not much work has been done using difference synchroniza-
tion [3] which happens to be an alternative to combination
synchronization.

The rest of manuscript is laid out as follows: Sect. 2
consists of some preliminaries and stability criterion. Sec-
tion 3 includes problem formulation of modified fractional
and inverse matrices hybrid function projective difference
synchronization scheme. In Sect. 4, we have described the
systems on which numerical simulations have been per-
formed. Section 5 consists of the discussions on numerical
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simulations and displays the results performed in MATLAB.
Section 6 compares the attained results with some previous
published results. Section 7 illustrates the synchronization
results in secure communication and Sect. 8 concludes the
article.

Preliminaries
Definition

Caputo Definition: [26]

1 * g (r)de
(n—a) " (.X _ T)a—n+1 i

Digx) = T

where 7 is integer, « is real number, (n — 1) < @ < n, and I'(.)
is the Gamma function.

Throughout our studies, Caputo’s version of fractional
derivative has been used.

Stability Criterion

(i) Consider the system:

Dlzi=hiz,2,....2,),0<g< Li=1,2,...,

where z; are the variables describing the system, then

the system is asymptotically stable at its equilibrium

point if all the eigenvalues of the Jacobi matrix J = ';l
fulfill the criterion |arg(eigen values)| > %. I

(ii) Lyapunov Boundedness Theorem: Let V be a function
satisfying the following properties:

(a) all sublevel sets of V are bounded.

(b) V(z) < 0Vz. Then, all the trajectories are bounded, i.e.,

for each trajectory x there is an R, such that:
[[x(®)|] < RVt > 0.

Here, the function V is the Lyapunov function proving
that the trajectories are bounded.
Problem Formulation

We consider two master systems.
Master system I:

DX
T =AX+F (0, (1)
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where X is the state vector, A, is the coefficient matrix cor-
responding to the linear part of the first master system, and
F,(X) is the remaining nonlinear part of the first master
system.

Master system 11:

q

B =AY + Fo) @
where Y is the state vector, A, is the coefficient matrix corre-
sponding to the linear part of the second master system, and
F,(Y) is the remaining nonlinear part of the second master
system. Next, we consider two slave systems.

Slave system I:

DZ

Dt =B, Z+G(Z2)+ U, 3)

where Z is the state vector, B is the coefficient matrix cor-
responding to the linear part of the first slave system, G,(Z)
is the remaining nonlinear part of the first slave system, and
U is the controller which is to be constructed.

Slave System II:

DIW
D4

=B,W+G,(W)+V, “

where W is the state vector, B, is the coefficient matrix cor-
responding to the linear part of the second-slave system,
G,(W) is the remaining nonlinear part of the second-slave
system, and V is the controller which is to be constructed.

Modified Fractional Matrix Hybrid Function
Projective Difference Synchronization Scheme

We define the modified fractional matrix hybrid function
projective difference synchronization error as:

e=Z-W)-PX-Y), ®

where P is a non-constant, non-diagonal matrix.

Here, we choose the matrix P, such that the first co-
ordinates get completely synchronized, the second co-
ordinates get anti-synchronized, the third co-ordinates
gets projectively synchronized, the fourth co-ordinates
gets function projective anti-synchronized, the fifth and
sixth co-ordinates are dislocated (disorderly)synchronized:

Die = (D'Z — D'W) — DU[P(X — Y)]

= (DZ — DY(PX)) — (DIW — DI(PY)). ©

Using (1)—(4) in (5), we get:
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= [B,Z+ G,(Z)+ U — P.DX — D'P.X]
— [B,W + G,(W) + V — P.D7Y — DP.Y]
= [(B,Z+ G,(Z) + U) — P(A,X + F,(X) — D'P.X)]
— [(B,W + G,(W) + V) = P(A,Y + F,(Y) — DIP.Y)].

(7
We design the controllers U and V as follows:
U=K,Z—-B;+K)PX+PAX+F (X)]
-G,2)+DPX
(3)

V=KW — (B, +K,)PY
+ P[A,Y + Fy(Y)] = Go(W) + DYP.Y

Substituting (8) into (7),the error dynamics simplifies to:

(B, + K\)(Z = PX) — (B, + K,)(W — PY)

Modified Inverse Matrix Hybrid Function Projective
Difference Synchronization Scheme

We define the modified inverse matrix hybrid function pro-
jective difference synchronization error as:

e=X-Y)-PZ-W), ©))

where P is a non-constant, non-diagonal matrix.

Here, we choose the matrix P, such that the first co-ordi-
nates get completely synchronized, the second co-ordinates
get anti-synchronized, the third co-ordinates get projectively
synchronized, the fourth co-ordinates get function projective
anti-synchronized [21, 22, 31], and the fifth and sixth co-
ordinates are dislocated synchronized:

Die = (DX — DY) — DI[P(Z — W)]

= (DX — D1(PZ)) — (DY — DY(PW)). (10)
Using (1)-(4) in (5), we get:
=[AX+F X)) -PDIZ-DIPZ]
—[A,Y + F,(Y) — P.D'W — DIP.W] a

= [(A,X + F,(X)) - P(B,Z + G,(Z) + U — D'P.Z)]
— [(A,Y + Fy(Y)) = P(B,W + Go(W) — D'P.W)].

We design the controllers U and V as follows:

U= P '[(A, +K,)PZ - KX + F/(X) - (D‘P)Z] — B,Z — G,(Z)
V =P '[(A, + Ky)PW — K,Y + F,(Y) = (DP)W] — B,W — G,(W).
(12)

Substituting (12) into (11), the error dynamics simplifies to:

A, + KX - PZ) — (A, + K,)(Y — PW).

System Description
Complex Fractional Rikitake System

The first master system is taken as the complex Rikitake
system of fractional order [19] given by:

dqx,l / /!
— = —ax; +xx

dtq 1+ 273

q./
& = —ax, +x/(x; = b)
dtq 2 1 3
dqxg /!
—=1-xx,.

dre 172
Substituting:

/

; / . / .
X =X+ 11Xy, Xy = X3 + 11Xy, X3 = X5 + 1Xg.

Segregating the real and imaginary parts, we get:

d?x,

G = —ax; + X3X5 — X4 Xg

dx,

W = - ax2 + )C4x5 + X3x6

d?x,

P + x; (x5 — b) — xx¢

dx (13)
4

il + x,x6 + X,(x5 — b)

d?x;

i 1 —x1x3 + x,%4

d?x;

F = T XpX3 — XXy

The system (13) exhibits chaotic attractor for parameter val-
ues a =5, b =2, initial conditions (—4, —0.7,2.5,0.7,2,0.77),
and fractional order ¢ = 0.987 (Fig. 1).

Complex Fractional El-Nino System

The second master system is chosen as the complex fractional-
order El-Nino system [2] given by:
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Complex Fractional Order Rikitake System Complex Fractional Order EI-Nino System
20 20
15
3 =
0
5
20
10 20
10
0 0
-10
xz(t) 10 -20 X, ®
(a) (b)
Complex Generalized Lotka-Volterra System-| Complex Fractional Order G.L.V. System-Il
3 1.2
1.1
2
N 3
1
0.9
0 0.8
2 0.1
0 5 8 0.05 12 18
-2 5 4 0 1 12
0 0.8
zz(t) 4 2 z, ) wz(t) -0.05 06 w, )
(c) (d)
Fig. 1 Phase portraits of the complex fractional-order a Rikitake chaotic system, b El-Nino chaotic system, ¢ G.L.V. system-I, and d G.L.V.
system-11
d7y’ Segregating the real and imaginary parts, we get:
1 _ ey ! ’
0 /4())2_)73)_by1
dre dty,
qy,/ _— = — — b/
dy2= 'y + Y dre HYs = HYs N1
d TN Y1 dty,
4y —2 =y, — pye = b
(:1y3 Y dra HYs — HYs Y2
dra 3 Y1 d?y, /
1,4 =, s T YYe m Y3t ey
— 50y ). dy (14)
4
o T = s TYe Vet 'y,
Substituting: dqt
y5 2
. . . —_— - —C —_— +
V= V1 iy Yy = 3 vy = Vs + v dre Y5 T O TN 20
dqy6 _ 2
e — V6 —CY2 = Y2V3 — V1Ya-

SN Computer Science
A SPRINGER NATURE journal



SN Computer Science (2021) 2:91

Page50f13 91

The system (14) displays chaotic attractor for parameter val-
ues ' =83.6,b' =10, ¢’ = 12, initial conditions (5, 1, 3,
0.4, 4, 0.1), and fractional order g = 0.987.

Complex Fractional Generalized Lotka Volterra
System-I

The first slave system is chosen as the complex fractional-
order Generalized Lotka Volterra system [25, 30] given by:

q./
d Zl )
d T MR
— 12 — 12
+Cz” —az 7
q.!
g
dra 2
1 ,- -
+ E(z'lz’2 +7,2)
di7
3 _ T =12
ke —bz3 +az, " z;.
Substituting:

=2y iz, 2y =23 + 124,25 = 25 + iz

Segregating the real and imaginary parts, we get:

diz;
T AT uan + 2,24
+0z72 -z’
- a21215 + 5122215
+2a7,2,24
d?z, _
T =2, — 1% — 2% + 26212
—287,2p25 — 5121216
+ le22Z6
@z, (15)
i +2123 — 2524
diz,
FrE + 2,23 + 2124
q
% = —bzs +az,’z;
— az2215 — 207,252
q
% = — bzg +2az,2,25

+ az12Z6 - c‘zz2216.

The system (15) illustrates chaotic attractor for parameter
values @ = 5.1,b = 7.4,¢ = 20.8, initial conditions (1.2,
0.112, 1.2, 0, 1.2, 0), and fractional order g = 0.987.

Complex Fractional Generalized Lotka Volterra
System-I|

The second-slave system is chosen as the complex fractional-
order Generalized Lotka Volterra system given by:

diw'
1 _ W/ _ W/ W/
dtq - 1 1 2
2 2
+Cw)” —Aw| "W,
q..,
d WZ _ W/
dre 2
1 W] o
+ E(wlw2 +wiw,)
q..,
d W3 ' 12
= —Bw3 + Aw| wi.
dra
Substituting:
! . ' . , R
Wi =W+ 1wy, Wy = W3 + Wy, Wy = W5 + IWg.

Separating into real and imaginary parts, we obtain the sys-
tem as:

dw, )
el Wy —wiwz +wow, + Cw,
— Cwy? — Aw 2ws + Awy ws + 24w, wywy
dw,
T W2 T WiWa W +2Cw wy — 2Aw wyws
— Aw,?wg + Awy g
dw,
e = — W3+ Wiw; — Wowy
16)
dfw,
w Wy + Wows + wiwy
d?ws ) )
ke — Bws + Aw;"ws — Aw, ws
— 24w wyWe
dwe
am - BV

+ 24w, wyws + Aw Pwg — Aw, .

The plots (16) show chaotic attractor for parameter vales
A =2.9851,B = 3, C = 2, initial conditions (1.2, 0, 1.2, 0,
1.2,0.112), and fractional order g = 0.987.

Numerical Simulations and Discussion

We consider here the complex fractional Rikitake (13) (the
Earth’s magnetic field system) and El-Nino system (14) (the
weather system) as the drive system and the complex frac-
tional Generalize Lotka Volterra systems (15) and (16) (the
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predator—prey system) as the slave systems. The numerical
simulations are performed on the above models. Then, the error dynamics is:

q — q —_ N4 — N4 q
Modified Fractional Matrix Hybrid Function Dle; = Dizy = D'w, = Dlx; + D'y

Projective Difference Synchronization Scheme Die, = D7z — Dw, + Dx, — D%y,
qu3 = DqZ3 - DqW3 - 2qu3 + 2qu3
Taking the projective matrix: Die, = DIz, — Diw, + D[t(x, — y,)]
[1 0 0 0 00] Dies = Dzs — Dfws — Dxq + D7yq
0-10 0 00 Dies = Dz — DIwg — Dx5 + D7ys.
p= 00 2000
100 0-r00| Note:
00 0001 D1y = y3)] = DIt.0xy = y3) + 1D, = Dy)
000010 013 013
- . = 1.00739¢"""x, — 1.00739¢" "y,
The error from (5) can be described as: + tDx, — tDy,,
ey = (g —wp) = —yp) Now, choosing suitable controller gain matrix elements:

e = (2 —wy) + (% — ¥,)
e3 = (23 = w3) = 2(x3 — y3)
ey = (24 —wy) + (x4 — yy)
es = (z5 — ws) — (X6 — ¥6)

e = (26 — We) — (x5 — ys).

kl= —5k2=-5k3=-1,
kid= —1,k5=24,k6=24
kol = —5,k2=-5k3=—1,
kod = —1,k5 = —2,k)6 = -2

and designing controllers as in (8), we have the following:

U = — 5z = X; + X3Xs — XuX + 2123 — 2024 — 20.82,% +20.82,2 + 5.12, %25 — 5.12,%25 — 10.22,2,7¢
Uy = — 525 — X, — XuXs5 — X3Xg + 2124 + 223 — 41.62,2, + 10.22, 2,25 + 5.1z, %25 — 5.12,%2¢

Uy = — 23+ 4xy — 4x; — 10x3 — 20,06 + 2X,X5 — 2123 + 202

Uy = =24+ 30xy — 100X — D0pXs + 200, — 2523 — 27274 — 10073910,

us = 2.425 + S5xg — Xox3 — x,%, — 5.12,°25 + 5.12,%25 + 10.22,2,7¢

g = 2426 + 5x5 + 1 — x,23 + x,x, — 10.22,2,25 — 5.12,%2¢ + 5.12,%2¢

V) = — 5w, — 6y, + 83.6y; — 83.6y5 +w wy — wowy — 2w, + 2w, + 2.9851w,2ws — 2.9851w,%ws — 5.9702w, wowe
Vo = = 5w, + 6y, — 83.6y, + 83.6y¢ + wyw, + wows — 4w w, + 5.9702w wyws

+2.9851w,%wg — 2.9851w,%w — 6
V3 = —ws +4y; + 24y, — 25 + 2y, V5 — 29,56 — W W3 + Wowy

Vi = = Wy — Iy — 19y)s — 1Y — 126y, — wows — wywy — 1.007390%y,
vs = —2ws +4ye — 12y, — Yoy — V1 Vs — 2.9851w12w5 +2.9851w,?ws + 5.9702w, w,yw,
Ve = —2we +4ys — 12y, — 13 + Yoy4 — 5.9702w, wyws — 2.9851w 2w + 2.985 1w, 2 wy.
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Fig.2 Modified fractional
matrix hybrid function projec-
tive difference synchronized
trajectories and error plot
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Thus, the error dynamics simplifies to:

Die, = —4e,
Diey, = —4e,
Dies = —2e,
Diey = —2e¢, an
Dies = — Ses
Dies = — Seq.

The eigenvalues of the error system (17) are
—4,—-4,-2,-2,-5,-5 which satisfy the above stability
condition (i), i.e., the argument of the obtained eigenvalues
satisfies the condition |arg(eigen values)| > %. Hence, the
system is asymptotically stable about its equilibrium point.
Also, the error converges to zero, implying that the modi-
fied fractional matrix hybrid function projective difference
synchronization is achieved.

Simulation Results

The initial conditions of the complex fractional Rikitake
system and complex fractional EI-Nino system have been
taken as (—4,-0.7,2.5,0.7,2,0.77) and (5, 1, 3, 0.4, 4,
0.1), respectively. Also, the initial conditions for the com-
plex fractional G.L.V.-I and G.L.V.-II have been taken as
(1.2,0.112,1.2,0, 1, 2,0) and (1.2, 0, 1.2, 0, 1.2, 0.112).
Thereby, the initial conditions of the Modified Fractional
Matrix Hybrid Function Projective Difference Synchroni-
zation Error are (9, —1.588, 1,0, —0.67, 1.888) for fractional
order 0.987. Numerical simulations have been performed in
MATLAB. The synchronized trajectories and the simultane-
ous error plot are displayed in Fig. 2.

Modified Inverse Matrix Hybrid Function Projective
Difference Synchronization Scheme

Taking the projective matrix:

SO O OO~

SN Computer Science
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Here, P is an invertible matrix with its inverse as:

1 0 0 0 00
0-10 0 00
P_lzooé 0 00
00 0-e'00
000 0 01
000 0 10

The error from (9) can be described as:

ep = —yp)— (g —w)
ey = (X =yp) + (23 —wy)
e3 = (x3 —y3) — 2(z3 — w3)
e, = (xg—yy) +e(zg—wy)
es = (x5 — ys) — (25 — W)

eq = (Xg — Vo) — (25 — Ws).

Therefore, the error dynamics so obtained is:
Die, = D — D7y, — Dz, + Dw,
Die, = Dx, — Dy, + Dz, — Diw,
Diey = Dixy — Dly; — 2D, + 2D%w;,
Die, = Dix, — D%y, + D[ (z4 — wy)]
qus = quS - qus - DqZ6 + DqW6
Dieg = Dixg — D7yg — D25 + Diws
Note:
Dile'(xy — yy)] = Dl .(x, — y,)
+ €'(Dx, — D%y,)
= e'.(xy — yy) + €(Dxy — Dy,).
Now, choosing suitable controller gain matrix elements:
ki1 = —45,k2 =—-45,k;3 = —45,
k4= —46,k;5=-50,k6 =-50
k,1 = —40,k,2 = —40,k,3 = 49,
ky4 = —50,k,5 = —49,k,6 = —49,

and designing controllers as in (12), we have the following:
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U = —5lz; +45x; + x3X5 — XX + 2123 — 2024 — 20.82,2

+20.82,% + 5.12,%25 — 5.12,%25 — 10.22, 226
uy = —50z) —45x) — XyX5 — X3Xg — 2 + 2124
+ 2523 — 41.62;2, + 10.27, 2,25

+5.12,%2¢ — 5.12,°2¢

45 1
uy = —z; —50z3 + % + 3%1%

1
TNt BT UL T 0y
u, = —2e 'z =51z, —45¢7'xy — e xg
— e X5+ 24— 223 — 212
us = —42.675 + 50xg — xo005 — x4 — 5.12,%25

+5.12y%25 4+ 10.22, 2,7

ug = —42.6z5 + 50x5 + 1 —x x5 +x,x4 — 10.22/2,25
—5.12,%2¢ + 5.12,72¢
vy = = 51w + 167.2w; — 83.6wg + 40y,

+ W w3 — wywy — 2w 2 + 2w,2
+2.9851w,>ws — 2.9851w,% w5 — 5.9702w, wyw,

vy, = — 51w, + 83.6¢'w, + 83.6ws — 40y, + w w, + wows — 4w w,
+5.9702w, wyws + 2.9851w, >ws — 2.985 1w, w,

49 1
vy = 6w, —49w; + 7y3 + 5)’1)’5

- %yﬂe — Wiws + WoWy
vy = 127w, — 50w, — 49¢7"y, — €'y,
— €'Y Ve = Waws — Wiwy
vs = 12wy — 47ws + 49y — vo3 — ¥y V4 — 2.9851w, 2w
+2.9851w,%ws + 5.9702w, w,we
Ve = — 12w, —47we +49ys — y,y;
+¥,y4 — 5.9702w w,ows
—2.9851w,*wg + 2.9851w, wg.

Thus, the error dynamics simplifies to:

Die; = —50e; — 83.6(y; — 2w3) + 83.6(y5 — wg))

Dley, = —50e, — 83.6(y, + €'wy) + 83.6(ys — ws)

Diey= —50e3 —2(x; —z;) — 12(y; — wy)

Die, = —50e, — 2(x, + 2,) (13)
— 12(y, 4+ wy) — 100(y, + €'w,)))

Dies = —50es + 12(y, — w))

Dieg = —50eq + 12(y, + wy).

We now consider the Lyapunov function:

1
Vie(t)) = 5(el2 +e,’
+ 632 + 642 + 652 + 862)
= V(e(t) = e,€, + e,¢, + e3¢,

+eu€, + e5€s + el

Using the error dynamics as in (18), we obtain:

< —50e,% = 50e,% — 50e;% — 50e,>
— 50e5% — 50e4% + 50| e, e5]
+ 50]e es| + 50]eye,| + 50]e,eq4]
< —25[e,% + e3? —2lejes]]
—25[ey% + e, = 2]eye, ]
—25[e, + es> —2|e;es]]
—25[e, + eg> — 2leseq]
—25¢,%] — 25¢,%] — 25e5%] — 25¢4> < 0.

Therefore, by Lyapunov Boundedness Theorem, the error
becomes bounded.

Simulation Results

The initial conditions for the complex fractional G.L.V.-
I and G.L.V.-II have been taken as (1.2, 0.112, 1.2, 0, 1,
2,0)and (1.2,0, 1.2, 0, 1.2, 0.112). Also, the initial con-
ditions of the complex fractional Rikitake system and
complex fractional EI-Nino system have been taken as
(—4,-0.7,2.5,0.7,2,0.77) and (5, 1, 3, 0.4, 4, 0.1), respec-
tively. Therefore, the initial conditions of the modified
inverse matrix hybrid function projective difference syn-
chronization error are (-9, —1.588,—-0.5,0,—1.888,0.67)
for fractional order 0.987. Numerical simulations have been
performed in MATLAB. The synchronized trajectories and
the simultaneous error plot are displayed in Fig. 3.

The main disadvantage of the obtained results is the
complex nature of the controllers designed. Also in case of
Inverse Matrix Hybrid Function Projective Difference Syn-
chronization, the error could only be bounded. Therefore, in
future, better controllers can be designed to make the error
converge to zero.

Comparison with Previously Published
Literature

In [4], Jinman He et al. have studied fractional matrix and
inverse matrix projective synchronization between two sys-
tems of dimension four. For the case of fractional matrix
projective synchronization, they have achieved the errors
tending to zero, one at 1 unit and other at 5 units. In our
study, while performing the modified fractional matrix
hybrid function projective difference synchronization among
four chaotic systems of dimension six, we have 4 errors tend-
ing to zero at 1 unit and two errors tending to zero at 2
units, respectively. This clearly indicates the efficacy of our
designed controllers as on increasing the number of sys-
tems, and hence, the complexity the synchronization time
is reduced.
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Fig.3 Modified inverse matrix
hybrid function projective dif-

ference synchronized trajecto-

ries and error plot
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The modified fractional inverse matrix hybrid function
projective synchronization in our paper has been achieved
using Lyapunov Boundedness Theorem, where the constant
bounded behavior is achieved after 2 units, whereas in [4],
the errors reach zero at 0.1, 1, 1.5, and 5 units, respectively.

Application in Secure Communication

Chaos synchronization finds application in various science
and engineering fields such as secure communication, con-
trol systems, etc. Many synchronization techniques have
been developed to increase the diverseness in the possible
synchronization schemes applicable. With the increasing
cashless economy trend in the countries, the number of

online purchases/transactions is increasing without bounds.
Therefore, it is the demand of the hour to keep the com-
municated information safe, i.e., security of transmission of
information is must to grow in this direction. The introduced
techniques in this paper would strengthen secure communi-
cation manifolds as now all the components of the system
are differently synchronized, and it is difficult for the hackers
to predict the order and type of synchronization applicable
to each component of the system.

It is based on the idea of hiding the information signal
among the chaotic signals. Then, the original signals are
recovered only after performed synchronization.

Lllustration Let the information signal be r(t) = sin(4t).
We mix it with the chaotic signals x,(¢) — y,(¢) and transmit.
The recovered signal r,(¢) is obtained after performing the

SN Computer Science
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required synchronization. A comparison of the information
signal and recovered signal is also displayed in Fig. 4.

Conclusions

In this paper, modified fractional and inverse matrices hybrid
function projective difference synchronization theory has
been developed and implemented on a study of bio-diversity.
Here, synchronization has been achieved between complex
fractional Rikitake system (model for earth’s magnetic field),
El-Nino system (weather model), and Generalized Lotka
Volterra system (biological predator-prey models). Particu-
larly, the co-ordinates have undergone complete synchro-
nization, anti-synchronization, projective synchronization,
function projective anti-synchronization, and dislocated
synchronization. These synchronizations methods increases
the anti-attack capability in case of secure communications
because of random existence of synchronization methods
between the components of the system.

This study can also be extended to on systems interrupted
by model uncertainties and external disturbances.
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