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Abstract
Developing an efficient solver for different NP-complete problems such as propositional satisfiability (SAT) is very compli-
cated and often takes a lot of time. A wide range of problems in different areas of computer science and artificial intelligence 
can be solved using SAT solvers. The SAT problem is defined as finding a logical assignment that satisfies all clauses in 
a Boolean formula. The recent developments of different stochastic local search (SLS) SAT solvers present various new 
heuristics and solving strategies. In this paper, we present an SLS-based SAT solver for structured instances that includes an 
efficient preprocessing technique along with a few other heuristics. We first remove all equivalence from the SAT formula 
and then perform searching. Experimental outcomes depict that our new solver can solve some unsolved instances of the 
state-of-the-art solver; for other benchmarks, our new one also responded quickly.

Keywords SAT · Configuration checking (CC) · Stochastic local search

Introduction

The Boolean Satisfiability problem (SAT) is a Constraint 
Satisfaction Problem (CSP) which is the problem of deter-
mining whether a Boolean formula can be satisfied by a logi-
cal (i.e. true, false) assignment of variables. In recent years, 
captivating improvements in SAT attract us to study further 
about this NP-complete problem. The attraction behind the 
SAT problem is the extensive application in real-world prob-
lems and theoretical aspects [1]. A framework of the SAT 
model is being used to solve many combinatorial problems. 
It is now routinely being used in bounded model checking 
(BMC) [2], circuit verification [3], test pattern generation 
and more specifically in checking complex circuits [4]. 
Recently, a good number of solvers have been programmed 
which have better run-time. Therefore, many complex prob-
lems can now be solved. In recent years, SAT solvers are 

successfully being used to solve different types of problems. 
Those solvers are now being used in artificial intelligence 
and optimization, more specifically in scheduling and plan-
ning problems [5], bioinformatics [6], probabilistic models, 
crypto-analysis [7], etc. Every year, new solvers with vari-
ous encouraging techniques are introduced. Also, the SAT 
community all over the world arranges SAT competitions1 
to share ideas and new solvers and benchmarks.

There are many popular solvers available for SAT. So far 
we have studied, these SAT solvers can be categorized into 
two popular types. The first one is the systematic approach 
solvers, e.g., Conflict Driven Clause Learning (CDCL) [8], 
Davis-Putnam-Logemann -Loveland (DPLL) [9], etc. Here, 
they use a complete search strategy to solve SAT. In contrast 
to procedural approaches, stochastic local search (SLS) solv-
ers are also preferred and it has a dominant performance over 
complete solvers on different SAT instances. It produces a 
better success rate in random SAT formulas. SLS solvers 
are mostly preferred for their speed and scalability. There-
fore, mighty research and influential efforts are going on to 
develop more efficient SAT solvers. There are both strengths 
and weaknesses of those approaches. Most of the modern 
solvers perform unit propagation as a preprocessing phase 
[10]. Few other variable and clause elimination techniques 
are also available [11–13]. Our approach is tantamount to 
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those techniques in the case of preprocessing. It can be seen 
as part of improving the performance of modern SAT solvers 
to accelerate computational power.

In this paper, an improved version of SLS-based SAT 
solver CCAnrEQ is presented. This solver is mainly inher-
ited from the state-of-the-art solver CCAnr [14], an SLS-
based solver. Our thesis aims to present a simplification 
technique that enhances the SAT solver performance. This 
simplification process is done by restoring the gate structure 
from the CNF [15, 16]. The extraction of gates gives us 
directions about how the CNF encodes from the SAT. And 
so, it helps to exploit the intrinsic properties and to research 
before performing the satisfaction of the CNF formula. Our 
observation is encoding and restoring the gates which are the 
reflection of one another. We simplify the CNF by restoring 
gates, because it eases the SAT solver to reduce rambling 
formulas. This process is much easier than encoding as it is 
domain independent. The simplification, further improve-
ments, and detailed experimental evaluation of our new 
solver help us to understand why the new method works.

As we describe above, our simplification technique can 
be employed during preprocessing. We focus on employing 
this reasoning as a preprocessor only. When restarts during 
SAT solving, the solver will use the simplified CNF always. 
We have added a rich literature review for SLS solvers along 
with CCAnr. Here, we present the local search strategy and 
the different shortcomings of the SAT solvers. The existing 
CCAnr solver performed very well in different SAT com-
petitions in various tracks. Therefore, we try to improve it. 
These are helpful to build our new solver CCAnrEQ. We 
empirically demonstrate in the experimental result section 
that our new solver performs better than the existing one in 
different outlooks on several structured SAT instances. More 
specifically, our new solver can solve some new instances 
that cannot be solved by CCAnr with a specific time cut-off. 
Therefore, in both success rate and time comparison, our 
demonstrated solver outperforms CCAnr. On the other hand, 
we have also tried different heuristics to reduce greediness 
along with this preprocessing. Those heuristics also produce 
several good results that are shown in “Experimental Result” 
section.

Our paper is organized in the following way. “Related 
Works” section provides a study related to our research. 
Here, we also describe different SLS solvers along with 
the background of the state-of-the-art solver. Based on the 
previous experience, we present the approaches and imple-
mentation technique of our new solver CCAnrEQ in “Our 
Approach” section. In “Experimental Result” section, we 
show the comparison between our solver and the State-of-
the-art solver. A general conclusion and an outlook on future 
works are added in “Conclusion” section.

Related Works

In this section, we first describe the basic notations related to 
the SAT problem. Then, a few definitions and terminologies 
related to this problem. After that, various existing tech-
niques related to local search and SAT are described.

SAT Definitions

Given a set of propositional variables V = {x1, x2, x3, ..., xn} , 
where a literal can be either positive (the variable itself xi ) 
or negative (negation of a variable is ¬xi ). We say, for each 
variable, the domain size is fixed which is {true,  false}. 
There are many formats to represent a SAT formula. Among 
all format, Conjunctive Normal Form (CNF) is very much 
familiar. A CNF is called clausal formula as it is a conjunc-
tion ( ∧ ) of a set of clauses {C1,C2, .....,Cn} . A clause is a 
disjunction ( ∨ ) of literals. If we say l as a literal, a clause Ci 
can be written as Ci = l1 ∨ l2 ∨ .... ∨ ln and l ≥ 1 . Therefore, 
a CNF formula is written as F = C1 ∧ C2 ∧ ... ∧ Cn . For a 
given SAT formula F, a SAT problem can be evaluated as 
checking whether every clause can be satisfied by consider-
ing some assignments of truth values to each variable. To 
satisfy the formula F, every clause Ci needs to be true.

Let V(F) be the set of all variables. A structure 
S ∶ V(F) → {0, 1} is an assignment. At local search, S maps 
all variables of F to a Boolean value. That is why it is called 
a complete assignment. In other words, S is a true assign-
ment of 1,0 {true, false} of each variable contained in V. 
If there exists any structure S such that S(F) = 1 then the 
clausal formula F is called satisfiable. A CNF will be a tau-
tology if F(S) = 1 for every structure of S. There may be 
some clauses that contain only a literal, which are called a 
unit clause . A CNF is unsatisfiable if two unit clauses appear 
as li and ¬li.

A SAT problem consists of m variables and n clauses (i.e. 
|V| = m, |C| = n ). The clause-to-variable ratio r is defined as 
r = n∕m (e.g. r = 2.00001 means each clause has two literals 
on average). The variables can be the neighbor of each other. 
A variable will be the neighbor of another variable if both 
appear in at least one clause. Let a and b be two variables. 
The neighborhood of variable a is defined as N(a) ={b|b 
appears in any clause simultaneously with a}, where N(a) 
contains all neighbors of a. In this paper, we use all those 
terms as required.

Local Search Solvers

From the early ’90s, SAT is becoming much more popu-
lar because of its various practical applications. Therefore, 
many state-of-the-art solvers are found from that time. 
Every year, the SAT community celebrates an idea-sharing 
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competition where a lot of solvers compete. That gives 
more opportunities to find more solvers and to enhance the 
solver’s performance. There are many complete solvers [8, 
17–20] that are mainly tree-based method to solve the SAT. 
In this paper, we prefer to go ahead with local search solvers 
[14, 21–28] only as it is much more scalable. Solvers that use 
a pre-processor [12, 29, 30] also perform well.

GSAT [22] is the first stochastic local search (SLS) solver. 
SLS solvers start with a random complete assignment that 
is called the initialization phase. After that, it performs the 
basic local search approach. It continually takes a variable 
to be flipped and does this until an intended assignment is 
found or some other terminating conditions (e.g. time out, 
maximum iteration, etc.) is reached. Selecting the variable to 
be flipped is a crucial issue and many heuristics are applied 
here. In GSAT, a variable with the highest score, see Defini-
tion 1, is picked. As SLS solvers start with complete assign-
ments, it is more scalable than the complete solver. But it 
can not guarantee whether the SAT formula can be satisfied.

Definition 1 score :  The score of a variable is the difference 
between make and break after flipping it. The break is the 
count of clauses that become unsatisfied if that variable is 
flipped. On the other hand, the make is the number of clauses 
that become satisfied if that variable is flipped.

Other types of solvers are based on WalkSAT [27, 28, 
31]. As GSAT is a completely greedy approach, WalkSAT 
introduced noise parameters that reduce some greediness. 
It is always challenging to set the noise parameters and to 
tie-breaking in the variable selection phase.

The cycling problem is one of the greatest problems in 
local search [32] and it hinders search performance. Sev-
eral strategies (e.g. Tabu [33]) are proposed to assuage it. 
It is also a big concern in the field of SAT. A novel strategy 
named configuration checking (CC), see Definition 2, is suc-
cessfully applied in different problems [34, 35]. This is also 
applied in different SAT solvers named CCASat [25], swcc 
[36], CCAnr [14]. Similarity checking, one of our previous 
works, is applied to reduce the problem [37]. This approach 
is not integrated into this paper as it does not perform well 
after removing equivalence.

Definition 2 configuration checking (CC) ∶ it is a way to pre-
vent a variable to be flipped until one of its neighbor vari-
ables is changed (flipped) since the last flip of that variable.

The CCAnr Solver

At CCAnr [14], two types of variables are introduced. One 
is CCD variable, see Definition 3, and another is SD vari-
able, see Definition 4. A pickVar function in CCAnr returns 
a variable to be flipped. According to Algorithm 1, it checks 

first whether a CCD variable exists and if it is found then 
returns the one that has the highest score. Then, it checks 
again whether a SD variable exists and does the same pro-
cess. Here, searching for a SD variable can be described as 
an aspiration technique in local search. This is called CCA 
heuristic in CCAnr.

If none of these variables are found, then it performs a 
focused random walk as diversification mode. Here, a clause 
weighting technique is applied to diversify the search. The 
core idea is to increase the weight of the falsified clause, 
while in a stagnant situation to diversify search. At CCAnr, 
first, it increases the weight of every unsatisfied clause by 
one. After that, the average clause weight w is calculated. 
If w is greater than a specific threshold � , then all clause 
weights are smoothed as w(ci) ∶= ⌊� ⋅ w(ci)⌋ + ⌊(1 − �)w⌋ . 
Here, � and � are the threshold parameter and the factor 
parameter respectively. Finally, it picks a random unsatisfied 
clause and returns the most aged variable.

CCAnr is a two-mode SLS solver. One is a greedy mode 
where CCD or SD variables are searched and another one 
is diversification mode. Some other two-mode SLS solvers 
can be found in [21, 38, 39]. At CCAnr, unit propagation is 
included only as preprocessing. It takes a little amount of 
time to preprocess. Therefore, the overall solver performance 
is not degraded. Now, the performance can be improved by 
executing efficient preprocessing. In our paper, we have 
selected the CCAnr to make further improvements.

Definition 3 configuration changed decreasing (CCD) ∶ It 
is the variable whose configuration has been changed (i.e. 
not locked by CC) and it has a positive score (i.e. make is 
greater than break).

Definition 4 significant decreasing (SD) ∶ A variable v that 
configuration is not changed (i.e. locked by CC) but has a 
significant score where score(v) > w . The average clause 
weight is w.
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Further Study

Path-Relinking (PR) [40], an intensification strategy, is 
another efficient technique and performs well in MAX-SAT 
[41]. Since path-relinking is well known for the different 
optimization problems, it cannot be applied directly in MAX-
SAT. A greedy randomized adaptive technique is incorporated 
with path-relinking to improve search in MAX-SAT [42, 43]. 
IPBMR (Iterated Path-Breaking with Mutation and Restart) 
is another well-known mechanism that outperforms different 
popular solvers [44]. Here, the difficulties of incorporating 
path-relinking directly to MAX-SAT are described. Recent 
work suggests that parallel portfolio based local search works 
very well and the intensification and diversification states are 
controlled by path-relinking [45]. To the best of our knowl-
edge, it has not been applied to structured instances of SAT. 
Therefore, we decide to implement a new strategy similar to 
PR but not in an exact way to check the efficiency of it. A 
basic idea of PR is described in Definition 5.

Definition 5 Path-Relinking (PR): A strategy to find new 
quality solutions by connecting two high-quality solutions: 
one is a guiding solution and another is an initial solution.

In the local search method, greediness is a very common 
phenomenon here. A lot of sequences of operations are done 
greedily. But the search performs better at the beginning but 
falls later. This is a typical scenario in the max–min search. 
Therefore, while performing the search greedily, it goes to a 
local optimum in a short time. But most of the time, it becomes 
stuck to reach the global optimum. Therefore, many strate-
gies are applied here (e.g. simulated annealing [46], clause 

weighting scheme [14, 38] variable weighting [47], etc.). The 
study of the greedy method on SAT can be found on [48]. 
Therefore, adding some randomness is a solution to reduce 
complete greediness. Monte–Carlo method [49] is a useful 
method to solve different problems class like optimization. It 
uses randomness to solve the problem. First, the basic trend of 
this method is to generate inputs randomly from a set of possi-
ble inputs using a probability distribution. Second, it performs 
a deterministic calculation on the inputs. At last, the results of 
these calculations are combined to get the overall result.

Our Approach

In this section, we describe how to detect and remove 
equivalence from the CNF. Then, some other heuristics are 
described that can improve the solver performance.

Equivalence Removal

Suppose that, we have the following two clauses:

Now, to satisfy clause C1 , we can put a = 1 or b = 0 . But if 
we take a = 1 then b must be true to satisfy C2 . Similarly, we 
can also satisfy both clause C1 and C2 by putting a = 0 and 
b = 0 . Therefore, both two variables take the same value and 
we tell them as equivalent variables. To find the equivalent 
variables, we can consider only the clauses whose size = 2 . 
Algorithm 2 describes how to get those variables and the 
more about this algorithm can be found in [15].

C1 ∶ a ∨ ¬b

C2 ∶ ¬a ∨ b

Algorithm 2 Equivalent Detection

1: Q = ∅
2: for each clause Ci in C where |Ci| = 2 do
3: if Ci is marked then
4: continue
5: else
6: l1= Ci[0]
7: l2= Ci[1]
8: x1= V [Ci[0]] //First variable of Ci

9: x2= V [Ci[1]] //Second variable of Ci

10: if both literals (l1,l2) are negative or positive then
11: continue
12: S1= { Cp ∈ C where |Cp| = 2 & x1 ∈ Cp}
13: S2= { Cq ∈ C where |Cq | = 2 & x2 ∈ Cq}
14: S3 = S1 ∩ S2 //find common clauses
15: for each Clause Cj in S3 do
16: m1= Cj [0]
17: m2= Cj [1]
18: if (¬l1 = m1 and ¬l2 = m2) or (¬l1 = m2 and ¬l2 = m1) then
19: mark(Cj)
20: Found two variables of V [Ci] are equivalent
21: Enqueue(Q, (x1, x2)) //record for future
22: break
23: mark(Ci)



SN Computer Science (2021) 2:105 Page 5 of 14 105

SN Computer Science

To find the equivalences, only two literal clauses are con-
sidered in our approach. An example of two literal clauses is 
described before. As per example, from lines 2 to 4, Algo-
rithm 2 considers only unmarked clauses (e.g. a clause is 
marked when the variables of that clause are equal, while 
finding equivalence and that clause will not be used in the 
future) from all clauses that have two literals only. When-
ever two variables are found to be equal, two corresponding 
clauses will be marked so that those two can not appear for 
future detection. If it is found any unmarked clause, line 6 
and line 7 will store those two literals, respectively. At line 
10, it checks whether two literals l1 and l2 are positive or 
negative as we need only different literals. At line 12, S1 is 
the set of all clauses which has only two literals and a literal 
of variable x1 and line 13 does the same for the variable x2 . 
Therefore, if an intersection is performed here then it pro-
duces a set that will contain the clause numbers which have 
both literals of variables x1 and x2 . And at line 14, S3 is such 
a set of common clauses. Now, if the clause Ci has the two 
literals (¬l1, l2) then a second clause Cj with literals (l1,¬l2) is 
required to treat them as equivalent. Similarly, if the clause 
Ci is (l1,¬l2) then a second clause Cj with literals (¬l1, l2) is 
needed. The searching for such kind of the second clause is 
done from lines 15 to 20. At line 18, the second such clause 
is searched, and once found then Cj will be marked. Once we 
confirm equality, both variables will be pushed into a queue 
as a pair to find equivalent sets.

A lot of variables can be equivalent to each other. For 
example, if we have two equalities x1 = x2 and x2 = x3 , then 
we can deduce that x1 = x3 . This is the transitive property 
of equality. It is written as follows:

If a = b and b = c , then a = c.
Finding transitive equivalence is the key to remove equiv-

alence from the CNF. We use a new data structure to find 
the equivalence chain. Algorithm 3 describes more to find 
transitive equivalence. At first, we set the parent of a variable 
as the variable itself. At line 4 and line 5, the first equivalent 
variable is popped from the queue. Two equivalent variables 
should have the same parent and they belong to the same set. 
Here, parent_u and parent_v at line 7 and line 8 stores the 
parent of two variables u and v, respectively. Now, if both 
the parents are not equal, then we will check for all variables 

parent. From all variables, if the parent of a variable is the 
same as parent_v then we will replace it with parent_u . And 
therefore, we will get the same parents for all variables that 
belong to the same set. Algorithm 3 is time-consuming as 
all variable’s parents are checked at line 10–12 when two 
variables are dequeued from the queue. Here, an efficient 
algorithm can be used to reduce the equivalent set finding. 
The disjoint set concept, one of the best ways to find disjoint 
sets, can be used here as an alternative to our algorithm.

Algorithm 3 Find Equivalent Sets(Q)
1: for each variable vi ∈ V do
2: parent[vi] = vi

3: while Q not empty do
4: u = Q.top().first
5: v = Q.top().second
6: dequeue(Q)
7: parent u = parent[u]
8: parent v = parent[v]
9: if parent u �= parent v then
10: for i = 1 to |V | do
11: if parent v = parent[i] then
12: parent[i] = parent u

In this research, removing equivalent variables before 
searching for the solution is the key point. There are many 
cases to remove equivalence from the CNF. Those cases are 
pointed bellow:

Case 1: If two-variable (e.g., a, b ) are equal and a clause 
is (¬a, b) or (a, ¬b) , then we can delete the clause. Because 
if we put b = a in the clause then the clause looks like 
(¬a, a) which is always true. Similarly, a clause, of size 
larger than 2, that contains (a, ¬a) is also true.

Case 2: Let us consider a clause, size 2, is (a, b) or 
(¬a, ¬b) . Now if we put b = a in that clause then it looks 
like (a, a) or (¬a, ¬a) which results in a unit clause. As 
(a, a) = a , we can select that clause as a unit clause for 
unit_propagation.

Case 3: When two variables are equivalent but Case 1 
and Case 2 does not occur, Case 3 is introduced here. Here, 
the second variable is replaced with the first one and clause 
size is reduced by one.
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Algorithm 4 RemoveEquivalence
1: for each vi in V do
2: if vi = parent[vi] then
3: continue
4: eq var = vi
5: replace var = parent[vi]
6: for each clause ci in C & eq var ∈ ci do
7: if delete(ci) then
8: continue
9: position of eq var = −1
10: for j = 0 to |ci| do
11: if ci[j] = eq var then
12: position of eq var = j
13: break
14: isReplace var = false
15: for j = 0 to |ci| do
16: if ci[j] = replace var then
17: isReplace var = true
18: if polarity(ci[j]) �= polarity(eq var) then //a -a is found
19: delete[ci]
20: else
21: remove(ci[j])
22: if |ci| = 1 then
23: unitClause(ci)
24: break
25: if isReplace var = false then // no replace variable
26: ci[position of eq var] = replace var

Algorithm 4 describes how to remove equivalence from 
the CNF. At line 6–8, it checks whether a clause, that con-
tains equivalent variable eq_var , is deleted or not. If clause 
ci is not deleted then the position of eq_var is picked by per-
forming lines 10–13. At line 16, it checks whether a replace 
variable is also contained in ci that means both eq_var and 
replace_var is present in ci . Case 1 and Case 2 are intro-
duced at line 18–19 and line 20–23, respectively. From lines 
25 to 26, Case 3 is applied.

Step Re‑linking

Path relinking (PR) strategy is a well-known concept in 
many problems, especially in MAX-SAT. This strategy is 
mainly used to intensify the search to obtain new trajectories 
by connecting two local minima. Those saved local minima, 
found previously by performing different search strategies 
(e.g. Tabu, Simulated Annealing, etc.), are called elite solu-
tions. Two elite solutions, named initial and guiding, are 
picked randomly and perform path relinking. Therefore, 
if the distance between those solutions is bigger then we 
can conclude that a lot of space has been ignored and path 
relinking tries to relink two solutions that produce a new 
solution that may be better. At the relinking process, only 
uncommon elements are considered and tried to change. In 
this paper, we have tried to implement a new strategy named 
step relinking (SR) which is inspired by PR. Here, we save 

the local minima as elite solutions. When the search falls in 
local minima or stagnant situation, we try to diversify the 
search. But at that time, most of the clauses are satisfied 
and it is a draconian task to find the best assignment. Here, 
when the search steps into diversification state, we save the 
solution, and after a certain number of steps if the search 
cannot get rid of that state, we perform a relinking to get a 
better solution. Now, we describe how this strategy is added 
to CCAnr and differs from the typical way to implement it.

As PR is applied between two solutions, we first say how 
elite solutions are picked during the search. Algorithm 5 
describes the procedure of adding solutions in an elite 
array. We save the current solution along with the step or 
iteration number while our search is stuck. The elite_pointer 
indicates the last solution index elite array and we save few 
recent local minima always. At line 1, if elite_pointer is 
at max_elite_pointer , the highest number of solutions we 
want to save as elite solution, then we confirm that we have 
enough solutions. The elite_memory_full is made true when 
we have stored the maximum number of solutions. To save 
the most recent local minima, we start elite_pointer from 
0 or begin like a circular queue. Now, it will replace the 
most aged elite solutions. At line 6–7, the solution is saved 
at elite array. An elite_iteration array, at line 8, saves the 
current iteration number of the saved solution. We need to 
save the iteration number, because we do not want to save 
all stagnant solutions.
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Algorithm 5 add solution(cur soln[ ])
1: if elite pointer == max elite pointer then
2: elite pointer = 0
3: elite memory full = true
4: else
5: elite pointer ++
6: for each v in |V | do
7: elite[elite pointer][v] = cur soln[v]
8: elite iteration[elite pointer] = step // ’step’ indicates the iteration number

Table 1  The detailed description of benchmarks

Serial Instance type Num-
ber of 
instances

1 parity_games 11
2 parity16 5
3 QuasiGroup (QG) 4
4 BMC 4

Now, we describe how the SR algorithm works and 
Algorithm 6 describes the main procedure. The previous 
solutions named initial and a guiding solution are needed to 
relink. We call cur_soln as the initial solution and a guiding 
solution is picked randomly from the elite array. At line 1, if 
we have fewer solutions than the maximum number of solu-
tions then we pick a solution randomly within that range. 
Otherwise, at line 4, we pick randomly from all solutions. 
While performing the relinking process, first we save the 

solution. After that, a solution from the elite_array is picked 
randomly to perform relinking with the current one. There-
fore, a randomly picked solution can be the current one that’s 
why line 5–6 is introduced. Now we check all variables of 
the initial and guiding solution and pick only uncommon 
variables value as the PR strategy. Hence, if a variable has 
no similar value, then we check the score of that variable. 
After checking all the variables, we return a variable that 
has the highest score. 

Algorithm 6 step relinking()
1: if !elite memory full then
2: guideSoln = rand()%(elite pointer)
3: else
4: guideSoln = rand()%(max elite pointer)
5: while elite iteration[guideSoln] = step do // step indicates current iteration number
6: guideSoln = rand()%(max elite pointer)
7: max score = −1
8: best var = 0
9: for each v in V do
10: if elite[guideSoln][v] �= cur soln[v] then
11: if score[v] > max score then
12: max score = score[v]
13: best var = v
14: return best var

SR approach with CCAnr is described in Algorithm 7. 
Before that, adding solutions to the elite_array and the SR 
process is described. Here, we perform the SR approach dur-
ing diversification state (e.g. focused random-walk mode). 
At line 6, it checks an interval of last saved solutions to avoid 
every stagnant solution. SR can not be performed without 
enough elite solutions. That is why line 8 is introduced. As 
the SR approach is a time-consuming task, we do not per-
form it in every step of the diversification state. After at least 
� iterations, we perform it.
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Algorithm 7 pickV ar fuction in CCAnr+SR
1: if CCD variable is found then
2: return a CCD variable with the highest score

3: if SD variable is found then
4: return a SD variable with the highest score

5: update clause weight()
/*Focused random-walk mode*/

6: if step− elite iteration[elite pointer] > γ then
7: add solution(cur soln[ ])
8: if elite pointer > 0 or elite memory full then
9: best var = step relinking()
10: return best var
11: else
12: pick a random unsatisfied clause c
13: return the variable with the highest score in c

14: else
15: pick a random unsatisfied clause c
16: return the variable with the highest score in c

*select the least flipped one for tie breaking

Random Sampling (RS) Approach

As mentioned earlier, in pickVar function returns a variable 
to be flipped, it first checks whether a CCD variable exists. If 
CCD variables exist, it returns the variable that has the high-
est score. Therefore, a variable is selected greedily from the 
pickVar function. Here, we want to introduce some random-
ness rather than selecting a variable greedily as the greedy 
approach does not guarantee to reach an optimal solution. As 
a lot of CCD variables can exist during the search, we will 
take a random sample within a certain probability. And this 
method is related to the Monte Carlo method [49] where a 

Table 2  Effects of Equivalence 
Removal

FV fixed variables, DC deleted clauses

Instance Vars Clauses After unit Prop. After Eq. remove Fixed % after 
EQ.

FV DC FV DC FV % FC%

par16-1.cnf 1015 3310 408 1466 273 546 44.98 29.61
par16-2.cnf 1015 3374 383 1416 265 530 41.93 27.07
par16-3.cnf 1015 3344 395 1440 272 544 43.87 28.57
par16-4.cnf 1015 3324 396 1442 278 556 44.91 29.54
par16-5.cnf 1015 3358 388 1426 268 536 42.74 27.74
bmc-ibm-1.cnf 9685 55870 2600 20437 722 1451 10.19 4.09
bmc-ibm-2.cnf 2810 11683 1666 8357 348 704 30.41 21.16
bmc-ibm-5.cnf 9396 41207 4533 24457 1286 2580 26.44 15.40
bmc-ibm-7.cnf 8710 39774 4844 25388 911 1830 23.56 12.72
qg5-11.cnf 1331 64054 507 35566 76 152 9.22 0.53
qg6-09.cnf 729 21844 340 14191 18 36 4.62 0.47
qg7-09.cnf 729 22060 395 16222 28 56 8.38 0.95
qg7-13.cnf 2197 97072 785 51105 48 96 3.39 0.20
n3_i3_pp_ci_ce.cnf 525 2336 – – 136 399 25.9 17.08
n3_i3_pp.cnf 525 2276 – – 120 339 22.85 14.89
n4_i4_pp_ci_ce.cnf 1572 9175 – – 363 1092 23.09 11.90
n4_i4_pp.cnf 1572 9007 – – 318 924 20.22 10.25
n5_i5_pp.cnf 3655 726264 – – 655 1940 17.90 7.38
n5_i6_pp_ci_ce.cnf 4380 3198 – – 900 2764 20.54 8.64
n5_i6_pp.cnf 4380 31540 – – 784 2324 17.89 7.36
n6_i6_pp_ci_ce.cnf 7278 63935 – – 1342 4164 18.43 6.51
n6_i6_pp.cnf 7278 63275 – – 1167 3504 16.03 5.54
n6_i7_pp_ci_ce.cnf 8484 7464 – – 1564 4863 18.434 6.51
n6_i7_pp.cnf 8484 73860 – – 1359 4083 16.01 5.52

Table 3  Time required to 
remove equivalence from CNF

Instance type Remov-
ing time 
(s)

parity_games 0.06
BMC 0.08
parity16 0.006
QuasiGroup (QG) 0.075
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random sample is taken from the set of all CCD variables. 
Now, we will describe how the RS method is co-related with 
the Monte Carlo method [49].

(a) (b)

Fig. 1  Time comparison in parity games instances with equivalence removal

Fig. 2  Time comparison in parity16 instances with equivalence 
removal

Fig. 3  Time comparison in BMC instances with equivalence removal

Algorithm 8 pickV ar fuction in CCAnr+RS
1: if CCD variable is found then
2: if within certain probability then
3: Take α random CCD variables
4: return the variable with the highest score from α
5: else
6: return a CCD variable with the highest score

*select the least flipped one for tie breaking

Although the Monte Carlo method varies with each 
problem, it follows a basic pattern always. First, it defines 
a set of possible inputs and at Algorithm 8, CCD variables 
are the inputs. Second, a random sample is taken from the 
full probability distribution and it checks a probability to 
take the random set. After that, it performs a deterministic 
approach to get the result. We have done this also after tak-
ing � random variables. We select the variable which holds 
the highest score.

Experimental Result

We have chosen C + + to implement all of our algorithms 
that are described earlier and then compiled with g + + 
with −O3 options. All of our experiments are performed 
on a GNU/Linux machine, having four cores of intel i7 
@2.40GHz and 8 GByte RAM. We run each of the instances 
ten times with a time cut-off of 1000 s. All of our searching 
time, shown in the figure or table, is considered as the aver-
age of ten runs.
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The Benchmarks

Here, we work with four different types of benchmarks 
to evaluate our algorithms. The first type, parity_games, 
is taken from SAT 2010 competition.2 The other types of 
instances are collected from SATLIB.3 Table 1 shows the 
number of instances of each type. Here, the instances which 
contained equivalent gates are mostly preferred for the dis-
cussion. We have presented the instances that the State-of-
Art solver, named CCAnr [14], or our new solvers can solve.

Evaluation of Equivalence Removal

In this subsection, we will first describe the effect of equiva-
lence removal, explained in “Equivalence Removal” section, 
of a CNF. After that, the effect of other methods, described 
in subsection 3.3 and 3.2, will be shown as well.

When we remove equivalence from a CNF, a lot of 
clauses and variables are removed or fixed. A variable is 
fixed means no further calculation or assignment is needed 
for that variable while searching. A clause is fixed means 
that we need not satisfy that clause while employing the 
search. The number of equivalence gates is mainly problem-
specific. Not in every CNF, an equal number of equivalence 
gates may be found.

Table 2 shows the effect of equivalence removal from 
a CNF. Let, we have � variables in a CNF. Now, suppose 
after Unit_propagation , U� variables are removed from the 
CNF. Therefore, the number of remaining variables will be 

Fig. 4  Time comparison in QG instances with equivalence removal

Table 4  Success rate and time comparison of different types of 
instances

Instance CCAnr CCAnrEQ

Success 
rate (%)

Time 
(avg)s

Success 
rate (%)

Time 
(avg)s

parity_games 45 633.32 100 437.98
BMC 75 290.10 100 61.08
parity16 100 94.30 100 55.76
QuasiGroup 

(QG)
100 23.801 100 0.37

Fig. 5  Number of solutions 
found within time interval

2 https ://www.satco mpeti tion.org/.
3 https ://www.cs.ubc.ca/hoos/SATLI B/bench m.html.

https://www.satcompetition.org/
https://www.cs.ubc.ca/hoos/SATLIB/benchm.html
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� − U� . Again, after performing equivalence_removal , sup-
pose E� amount of more variables are reduced. The percent-
age of total fixed variables can be derived by Eq. 1.

For example, let us consider the instance par16-1.cnf, 
the total number of variables is 1015. After performing 
Unit_propagation , the number of variables fixed is 408. The 
remaining variables are 1015 − 408 = 607. Next employing 
the equivalence_removal , about 273 more variables can 
be fixed from 607 variables. Therefore, the percentage of 
equivalence variable reduction is 44.98%. The percentage 
of fixed variables (FV%) is done concerning the number of 
variables reduced after performing Unit_propagation . But 
if we consider parity_games instances, we will see that no 
variable was reduced after Unit_propagation . A similar cal-
culation is applied for clause reduction also.

Table 3 depicts the average time required to remove 
the equivalence from a CNF of the specific type. Here, we 
can see that a very negligible amount of time is needed to 
remove equivalence. Therefore, if we add before starting the 
search, this will not take so much time from the total time. 
This time can be larger for big formulas. A lot of techniques 
with efficient data structures can be applied here.

Comparing EQ with the State‑of‑the‑Art Solver

In this subsection, we show the comparison of equivalence 
removal (EQ) with the State-of-the-Art solver CCAnr [14].

On Parity Games Instances Figure 1 depicts the aver-
age time comparison of parity games instances when all 

(1)FV =
(� − U�) − E�

(� − U�)
× 100%

equivalences are removed from the CNF. Here, among 11 
instances our new solver can solve all the instances whereas 
CCAnr can solve only 5 instances. Therefore, after removing 
equivalence, our solver can solve 55% more instances than 
CCAnr. Figure 1a presents the average time, in logarithmic 
scale, needs to solve the instances by both solvers. Here, to 
solve instance number 5, the CCAnr takes 733s whereas our 
new one takes only 100. Therefore, for instance 5, our solver 
performs 87% better. We also find that it takes less time in 
instance 1 and 3. For other instances, our solver is tanta-
mount to the CCAnr. Figure 1b shows the average time taken 
to solve the instances that are not solvable by CCAnr within 
the time cut-off. Therefore, it is clear that our new solver 
CCAnrEQ outperforms CCAnr in this type of instance.

On Parity16 Instances There are five instances at par-
ity16 and the average time comparison is shown in Fig. 2. 
Here, our solver performs better than CCAnr in the case of 
time for every instance. In instance 5, CCAnr takes 155s to 
solve and our new solver takes only 40s which is 75% less 
time needed. Our solver takes maximum time of 82s to solve 
instance 3, whereas CCAnr takes 110s. Therefore, it takes 
25% less time in case of the worst one. As a result, we can 
deduce that if we remove equivalence from the problem then 
the result improves a lot for many instances.

On BMC Instances Figure 3 shows time comparison 
in logarithmic scale for BMC instances. Here, instance 3 
needed 160 s to solve by CCAnr whereas our new solver 
can solve it within a second. That means our new method 
takes 99% less time. On the other hand, CCAnr alone can 
not solve instance 1 anyway within a certain time cutoff. 

Table 5  Comparison with other 
approaches

Instance CCAnr RS SR

Success rate 
(%)

Time (avg)s Success rate 
(%)

Time (avg)s Success rate 
(%)

Time 
(avg)s

parity_games 45 193.09 45 247.02 45 201.14
BMC 75 53.44 75 43.15 75 77.58
parity16 100 94.3034 100 145.19 100 145.66
QuasiGroup(QG) 100 23.8 100 23.01 100 32.81

Table 6  Time comparison of RS with equivalence removal

Instance EQ EQ+RS

Success 
rate (%)

Time 
(avg)s

Success 
rate (%)

Time 
(avg)s

parity_games 100 437.98 100 442.19
BMC 100 61.08 100 60.01
parity16 100 55.76 100 70.16
QuasiGroup(QG) 100 0.37 100 0.11

Fig. 6  Time comparison in parity games instances with EQ and RS
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But after removing equivalence, it can be solved within 200 
s. In other instances, our solver is also comparable as those 
instances need less than a second.

On QG Instances For QG instances, the average time 
comparison in the logarithmic scale is shown in Fig. 4. 
Here, if we look at instance number 4 then we can get that 
our solver takes only a second to solve this whereas CCAnr 
alone takes 100s. The new one also performs better on 
instance 1. For other instances, it takes the almost same time 
to solve those instances.

We want to show here that if we remove equivalence, 
the search improves a lot as many clauses and variables are 
reduced. In total, after removing equivalence, our solver can 
solve 7 more new instances that can not be solved by CCAnr 
alone, and in other instances, our search performs better in 
case of time.

Table 4 refers to the success rate and time comparison of 
different types of instances by both solvers. Here, we can see 
that after removing equivalence, all those instances can be 
solved 100%. Most importantly, at parity games instances, 
the solver performs a huge improvement. Here, our solver 
solves 100% instances, whereas the CCAnr can solve only 
45% of instances. In the case of average time, in seconds, 
comparison, our solver can solve those instances more 
quickly. Therefore, our solver outperforms in both the suc-
cess rate and average time.

Figure 5 depicts the total number of instances that can 
be solved for different time cutoffs. Here, for every type of 
instance, we see that our new solver is better regarding any 
time cutoff. In Fig. 5a, if we give a time cutoff of one second 
then our solver can solve 75% instances whereas CCAnr 
can 50%. After that, for a time cutoff of 300 s, the new one 
can solve 100% instances but CCAnr can not solve it yet. 
Again, in Fig. 5b, if a time cutoff of 300 s is set then the new 
one can solve 55% instances whereas CCAnr can solve 36% 
only. And again, CCAnr can not solve any more instances 
although more than 800 s is given. In Fig. 5c, for parity16 
instances, our solver takes only 100 seconds to solve 100% 
instances, whereas the other one can solve 60% instances at 
that time. For a time cutoff of 1 s, our solver can solve 100% 
instances and CCAnr can solve 75% only.

Further Methods

In this subsection, we explain the impact of some further 
methods added in the CCAnr [14]. Here, those methods 
are part of our future improvement. We have added those 
methods to ensure that it can improve the performance of 
the solver. We carry out our experiments to evaluate those 
methods in the same benchmarks.

The RS and SR Methods

The Random Sampling (RS) and the Step Relinking (SR) 
are described in subsection 3.3 and 3.2, respectively. Those 
are two alternatives to the greedy heuristics of CCAnr. The 
comparative results are shown in Table 5. Here, the result 
table shows the average time in seconds and success rates. 
In the case of the success rate, both approaches are equal to 
CCAnr. But in timing constraints, SR is not performing so 
well. It is taking more time than the other two. Therefore, 
we have decided not to go further with this approach. On 
the other hand, if we perform RS, then sometimes it returns 
a good outcome. Table 5 shows that the RS approach takes 
lower time in the case of BMC and QG instances.

As we have found that the RS approach performs bet-
ter in different instances, we have tried it with equivalence 
removal. Table 6 shows the effect of adding RS with equiva-
lence removal in the case of solving time. Here, we observe 
that the performance of RS with EQ is better in BMC and 
QG instances.

Figure 6 presents a time comparison on parity games 
instances. It is described as the time required to solve the 
instance after running it several times. In our case, the mini-
mum time needed to solve while running those instances ten 
times. Here, we observe that in every instance, RS with EQ 
gets the solution more quickly than EQ. Although in the case 
of average time comparison EQ with RS is not better, at this 
point, it is far better. The comparison for other instances of 
parity games is not shown here, because the time required 
to solve those instances is very small.

There are two parameters used in SR: the number of 
elite solutions to be saved or the size of the elite array as 
max_elite_pointer and the number of iterations as � . We set 
the parameter max_elite_pointer = 40 and � = 100 . On the 
other hand, we take � = 20 numbers of random CCD vari-
ables in RS.

In summary, the experimental results demonstrate that if 
we remove equivalence from the problem, not only a lot of 
variables and clauses are removed only but also the search 
performs better. The CCAnr solver has a unit processing 
before performing local search approach. Now, we want 
to add an equivalence removal option here to improve the 
CCAnr.

Conclusion

In conclusion, this paper proposes a binary equivalence 
removal technique for SAT which works with the input file 
to reduce the volume of a CNF. To implement the idea, here 
two different algorithms, namely equivalence detection , and 
equivalence removal are added. The equivalence detection 
part is used to detect whether any equivalent variables exist 
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and the other part removes those equivalences. This tech-
nique effectively removes many variables from the CNF 
and produces a reduced input. Thus, a lot of variables are 
exempted from assigning during the search.

We examined the performance comparison for different 
structured SAT instances. Based on this technique, our new 
solver CCAnrEQ can solve many hard structured instances 
that were unsolved by the existing state-of-the-art solver 
CCAnr. In addition, for other instances, our solver performs 
significantly faster than its original version.

As a part of future work, we would like to implement 
equivalence removal for all clauses rather than binary 
clauses only. An efficient preprocessing can lead to solver 
performances many times. Therefore, we believe, by extract-
ing other gates (e.g., AND, OR, NAND , etc.) and calculating 
the value of those gates, this solver can perform better.
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