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Abstract
This paper presents knowledge-based reinforcement learning (KB-RL) as a method that combines a knowledge-based 
approach and a reinforcement learning (RL) technique into one method for intelligent problem solving. The proposed 
approach focuses on multi-expert knowledge acquisition, with the RL being applied as a conflict resolution strategy aimed 
at integrating the knowledge of multiple exerts into one knowledge base. The article describes the KB-RL approach in detail 
and applies the reported method to one of the most challenging problems of current artificial intelligence research, namely 
playing a strategy game. The results show that the KB-RL system is able to play and complete the full FreeCiv game, and 
to win against the computer players in various game settings. Moreover, with more games played, the system improves the 
gameplay by shortening the number of rounds that it takes to win the game. Overall, the reported experiment supports the 
idea that, based on human knowledge and empowered by RL, the KB-RL system can deliver a strong solution to the complex, 
multi-strategic problems, and, mainly, improve the solution with increased experience.

Keywords  Knowledge-based systems · Reinforcement learning · Multi-expert knowledge base · Conflict resolution

Introduction

Knowledge-based systems (KBS) have a long history in the 
field of AI. Even though they lost popularity in the last few 
decades, they have successful practical applications in many 
areas [1–3]. KBS make use of human knowledge and experi-
ence to automate problems by means of machine reasoning. 
They were widely researched throughout the 1950s–1990s, 
and many areas of AI and intelligent applications emerged 
from this field [3].

More recently, machine learning (ML) gained close atten-
tion and widespread acceptance among scientists, scholars 
and engineers as a promising technique for AI. Sub-fields 

such as neural networks, reinforcement learning and gen-
erative adversarial networks solve previously impossible 
problems and are very actively researched. It is no surprise 
that many studies investigate the possibility to fuse ML with 
other AI approaches aiming to achieve new breakthroughs. 
By combining different approaches, one attempts to over-
come the challenges of a particular technique and benefit 
from the mutual advantages of various methods.

The proposed KB-RL method incorporates reinforce-
ment learning into the knowledge-based system to handle 
conflicting or redundant knowledge. This allows the KBS 
to adopt multiple solutions for the same problem from mul-
tiple experts. The requirement of unambiguous knowledge 
imposes a restriction on the KBS and results in a costly 
human effort during knowledge engineering. Empowered 
by RL, the conflict resolution process can be automated and 
used to optimize the problem solution based on the experi-
ence gained by the KBS in solving such problems.

Playing various types of games is a common benchmark 
in artificial intelligence (AI) research. After AI systems beat 
the best human players at Chess [4], Atari [5], and then Go 
[6], strategy games have become the next level of complexity 
to challenge AI research. In 2019, DeepMind’s AlphaStar 
demonstrated a compelling performance, outplaying humans 
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in the real-time strategy game StarCraft [7]. The winning 
technique was deep reinforcement learning which fused deep 
neural networks and reinforcement learning, allowing the 
model to learn from the large amount of games.

We use the strategy game CIVILIZATION to showcase 
the capabilities of our KB-RL method. Particularly, the 
open-source version of the game FreeCiv was played by 
KB-RL agents. In addition to the complexity of the Free-
Civ game, we were motivated by the proximity of the game 
paradigm to real-world challenges.

Related Work

Nowadays, the field of KBS is highly heterogeneous and 
lacks coherent structure and clear formalism [3]. The most 
researched sub-domains of KBS are case-based reasoning, 
fuzzy systems, multi-agent systems, decision support sys-
tems, cognitive systems and intelligent software agents [3]. 
With the rise of machine learning methods, such as neural 
networks and reinforcement learning, it is not surprising 
that these techniques have been considered in application 
to KBS.

Considering the diversity of research on KBS, it is dif-
ficult to compare our work to other studies on KBS in com-
bination with RL, especially in application to broad prob-
lems such as managing complex environments like strategy 
games. Many researchers in the field of KBS used strategy 
games, and particularly FreeCiv, as a benchmark for their AI 
approaches. However, most of them focused on the specific 
elements of the game rather than playing the entire game. 
For instance, J. Jones, A. Goel, P. Ulam and their colleagues 
proposed a model-based reflection for self-adaptation for 
guiding reinforcement learning in the series of publications 
[8–11]. The authors demonstrated their methodology on 
the sub-elements of the FreeCiv game, such as building and 
defending cities. T.R. Hinrichs and K.D. Forbus studied how 
structural analogy in combination with qualitative reasoning 
can improve the prediction of population growth in Free-
Civ civilization [12, 13]. Outside of KBS, works [14, 15] 
explored the utilization of genetic algorithms for the opti-
mization of city placement and city development in FreeCiv.

For learning to win in the FreeCiv game, Branavan et al. 
[16] employed a Monte Carlo framework for analyzing the 
text manuals. Their work involved natural language process-
ing for text analysis and reinforcement learning for training 
the agent. As a result, the language-aware agent showed a 
significantly increased win rate (27–78%) in contrast to the 
agent not supported by the linguistic analysis. The games 
were played on a 36 × 24 map against one built-in computer 
player with the ‘NORMAL’ level of difficulty. Such game 
settings allowed completion of the game in less than 100 
rounds, facilitating efficient reinforcement learning. Our 

research is different to Branavan et al. in both the methodol-
ogy and the level of the game complexity.

Another endeavor to learn how to win strategy games 
was made by Molineaux [18] and Aha and Ponsen [17]. The 
authors employed case-based reasoning to learn winning the 
real-time strategy game Wargus. They proposed a case-based 
tactician system which learned to choose the best tactics, 
utilizing three different sources of domain knowledge: state 
lattice, set of tactics and state cases.

The most remarkable achievement in playing strategy 
games is the AlphaStar project [7]. Based on deep reinforce-
ment learning, the AlphaStar software won against two high 
ranked StarCraft II players.

The aim of this article is to address and describe the 
KB-RL approach in its present condition. The reported 
experiment shows that the KB-RL method can be used suc-
cessfully for large-scaled and sophisticated problems, such 
as playing strategy games by leveraging human heuristic 
knowledge and intelligent computer algorithms to reinforce 
learning.

KB‑RL Method

Knowledge‑Based System

A knowledge-based system is a software system that con-
tains a substantial amount of knowledge in an explicit, 
declarative form that is employed to reason about the prob-
lem matter [19]. In contrast to conventional software pro-
grams, KBS do not embed the knowledge as part of the 
program code. Instead, the knowledge is captured in small 
fragments of human expertise, data, and information about 
the problem domain. Hence, knowledge is manageable in 
a flexible way without the need to change and rebuild the 
system [3].

There are two main components that are expectedly pre-
sent in knowledge-based systems: a knowledge base that 
accommodates the domain-specific knowledge and the 
problem-solving method (inference engine) which consists 
of algorithms for manipulating the knowledge to solve the 
presented problem [20].

Knowledge Base

The knowledge base contains two logically distinct compo-
nents. One is factual knowledge that describes the environ-
ment of the problem and holds concepts, their properties, 
attributes and relationships. The second component is pro-
cedural (or inferential, or casual) knowledge that represents 
the heuristic knowledge and the expertise of human experts. 
In a rule-based KBS, inferential knowledge is presented in 
the form of rules that have to follow a specific syntax called 
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knowledge representation language [21]. The KB-RL sys-
tem described in this paper follows a rule-based approach, 
described in detail below.

The factual knowledge of the described approach is mod-
eled as a semantic network. A semantic network is a graph-
based knowledge formalism that provides a structural rep-
resentation of concepts, their properties and relationships 
in the domain of interest [22]. These concepts are modeled 
as nodes where node attributes hold the properties of the 
concept and the relationships are the arcs between the nodes.

The main benefit of semantic networks for knowledge 
representation is the possibility to translate arbitrary and 
unstructured information of human knowledge to a struc-
tured format that can be processed by the machine [22]. 
Moreover, semantic networks enable the model to carry 
the semantics of the modeled world. This fact supports the 
knowledge-based system in reasoning about the knowledge 
and helps to establish common understanding of the data 
between computers and humans [1, 23]. Furthermore, we 
chose a graph-based representation because, in contrast to 
other data storage technologies (such as relational databases 
or NoSQL), it allows us to incorporate a necessary trade-off 
between the structure-first and the data-first approaches: on 
the one hand, the data are semantically structured; on the 
other hand, it is still possible to store any type of information 
in the graph, as the knowledge is semi-structured.

Ontology

The design of the semantic network starts with defining an 
ontology. According to Gruber [24], an ontology is a formal 
specification of a shared conceptualization that owns high 
semantic expressiveness necessary for systems of increased 
complexity. Considering that the term “ontology” can be 
interpreted ambiguously [24–26], we explicitly emphasize 
here that the ontology, as used in the described approach, is 
not equal to the knowledge base or knowledge graph. Rather, 
the role of the ontology is to define the schema for the 
semantic network in order to establish the common vocabu-
lary and shared understanding of the data among people or 
software agents [27]. Having an agreement on terminology 
for all the concepts and their relationships facilitates knowl-
edge reuse and enables management of the information 
defined in the knowledge base [28]. Though the ontology 
can also hold the class instances, in KB-RL the instances are 
held only in semantic network, and the ontology is a meta 
level for formalizing the semantic network structure.

The ontology of KB-RL follows the Resource Description 
Format [29], specifically the Turtle-Syntax [30]. Without 
going into detail, we should note that KB-RL’s ontology 
is non-hierarchical and does not imply inheritance. In gen-
eral, all elements of the ontology are of one of the follow-
ing types: Entities represent concepts (nodes in the graph), 

Verbs are binary relations (edges) between two Entities 
and describe something an Entity does to or with another, 
Attributes are properties of the Entity that holds a scalar 
value, such as a string or an integer, or a list of scalar val-
ues. For more detailed information, see the Open Graph of 
IT [31].

Inference in KB‑RL

The process of deriving knowledge from a given knowledge 
base is known as inference [20], and the problem-solving 
component of a knowledge-based system is therefore called 
an inference engine. Generally speaking, an inference engine 
acts as an interpreter that analyzes and processes the knowl-
edge rules to derive a valid conclusion [32].

Different KBS offer various types of inference, where 
most state-of-the-art systems employ an inference method 
based on the resolution principle [20]. In our KB-RL system, 
abductive reasoning [33] is used to analyze the knowledge 
and derive the solution. Abductive reasoning seeks to form 
and evaluate the most likely hypothesis for the best possible 
explanation to the given problem based on the potentially 
incomplete evidence. One of the distinctive characteristics 
of abduction is the consideration of contextual knowledge 
in search of the solution [20]. For example, the faults of a 
device can be diagnosed by finding a typical combination 
of conditions of the state of the device and of the expert 
knowledge about possible problems. The device state pro-
vides contextual information (which can be incomplete), and 
based on the available expert knowledge the device failure 
can be explained to the best match between the state condi-
tions and expert knowledge. If the state changes, or new 
knowledge is available, the conclusion can change accord-
ingly with the updated information.

Issue Entity

In the KB-RL method, we distinguish between two kinds of 
contextual knowledge: one stems from the factual knowledge 
describing the environment and its state (e.g., the device is 
not responding), while the other characterizes the current 
situation of the given problem (e.g., reset command was 
sent, waiting for response). In KBS theory, this is called 
working memory [20]. For instance, this can be the informa-
tion on what has already been done on the task, what is the 
goal of the task, or the intermediate results in processing 
the task.

In our KB-RL method, we call the working memory an 
Issue. The Issue is an object that represents a task and holds 
contextual information about it. As an example, Fig. 1 shows 
an Issue object that is injected into the system to start play-
ing the FreeCiv game. Originally, it has only one attribute, 
StartPlaying, with value ‘FreeCiv’, which instructs the 
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inference engine to play the game. The Issue object is usu-
ally created from outside the system. Afterward, contextual 
information is only added and/or modified when the infer-
ence engine applies knowledge.

Rules in Our KB‑RL System

Procedural knowledge in the KB-RL system needs to be 
entered into the knowledge base by human experts in the 
form of rules. This process is called knowledge elicitation 
and usually involves two people: one with knowledge on the 
matter and another person who is familiar with the knowl-
edge representation language and can encode the knowledge 
into the knowledge base. In the described experiment, we 
used a protocol analysis [34] technique to acquire the knowl-
edge from human experts.

In our KB-RL, the term knowledge item (KI) is used to 
refer to a single rule of the knowledge base. Hence, we will 
use the term knowledge item or KI interchangeably with 
the term ‘rule’. The term KI derives from the principle 
that each rule is a single item of knowledge encoding an 
atomic action on the task. Essentially, we prefer to split 
the entire workflow on some task into granular steps in 
order to enable the reuse of the knowledge in similar but 
different tasks.

Technically, every knowledge item is a piece of code that 
contains the procedural knowledge and the context in which 
this knowledge is applicable. KIs are structured into four 
blocks:

ki—meta information about the rule,
on—conditions on the factual context,
when—conditions on the working memory,
do—procedure to execute.

Figure 2 shows the basic example of one knowledge item 
that performs building a city in the FreeCiv game. The ON 
condition specifies to which concept (an entity in the seman-
tic graph) the knowledge is relevant. Technically, it defines 
which node the inference engine needs to find in the graph 
in order to execute the procedure given in the DO block. The 
WHEN block defines the condition on the context of the 
working memory (Issue object). When both ON and WHEN 
block conditions are met, the DO block will be executed. 
The example in Fig. 2 can be read like the following: if 
there is a node of type settlers in the semantic graph, and 
it has attributes id, x, y, (‘civ/’ prefix points to the names-
pace, we will ignore it for the sake of simplicity), and the 
Issue object has the attribute Destination equal to the unit’s 
coordinates, then execute the command given in the action() 
function. The action() function is called an action handler 
and is explained below.

The example in Fig. 2 explains the main principle behind 
encoding the procedural knowledge into rules. Overall, KIs 
can be more complex than the given example, such as con-
ditioning the relationships between nodes, making queries, 
manipulating lists, and others.

Together, all KIs constitute a knowledge base that the 
inference engine searches for suitable rules as it processes 
the Issue. When the KI is found to match the context condi-
tions, it will be executed by the inference engine. As a result, 
the environment state and/or Issue object can change. For 
instance, after executing the KI given in Fig. 2, the new city 
will appear in the game (and in the graph as a new node), 
and the settler unit will disappear from the game and be 
removed from the semantic graph. Consequently, the KI in 
Fig. 2 will become irrelevant, while other KIs, for example, 
KIs for city development, will become applicable to the new 

Fig. 1   An example of the Issue object as a holder for working mem-
ory in KB-RL system. The example shows the content of the Issue 
object on its creation. As more knowledge is applied to the problem, 
the Issue object will hold all relevant contents in new attribute/value 
pairs

Fig. 2   An example of the 
knowledge item as a rule in 
KB-RL
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situation. In this fashion, the engine will apply KIs step-by-
step to play the game until it is finished.

Connector

While the KIs are entered into the system by knowledge 
engineers, the factual knowledge has to come from the envi-
ronment that is managed by the system. For this purpose, a 
special software module is usually implemented that com-
municates with the environment and creates/updates the 
information in the graph via the REST API. We call this 
module the connector. In the case of FreeCiv, the connector 
was implemented as a Python program that ran parallel to 
the game and monitored the FreeCiv client for updates in 
the player’s environment. With any change in the environ-
ment, e.g., when the turn ended or the unit moved, the con-
nector sent updates to the corresponding nodes and arcs in 
the graph, allowing the engine to work with the up-to-date 
information.

Action Handler

In order to execute commands to external services, such as 
the FreeCiv client for example, our KB-RL system has a 
dedicated module named action handler (AH). An action 
handler is a highly configurable component that can perform 
actions, such as executing local or remote command line 
commands, running scripts, sending and receiving HTTP 
requests, communicating over websocket and others. To send 
commands to a particular external service, the instance of 
the action handler has to be configured to specify the inter-
face between the inference engine and the external service. 
For example, in the case of the FreeCiv game, the action 
handler “FreeCiv” was configured to send commands to the 
FreeCiv client.

Without going into technical detail, the main idea behind 
the AH is that it is the way the KB-RL system interacts with 
the external environment and acts as an agent in respect to 
this environment. While the connector only monitors the 
environment and updates the corresponding information in 
the KB-RL graph database, the action handler manipulates 
the environment and can change its state. For example, in 
the FreeCiv game AH acts as a player the same way a human 
player would interact with the game.

Multi‑expert Knowledge Acquisition

The knowledge for a knowledge-based system can be 
acquired from one or multiple experts. Working with only 
one expert can make the knowledge acquisition process eas-
ier and smoother. However, obtaining the knowledge from 
a number of experts has certain advantages [35–37]. The 
group of experts can contribute to the improved quality of 

the knowledge base (its consistency, completeness, accuracy 
and relevance), achieving better productivity, addressing 
broader domains and more complex problems, and reduc-
ing the costs of knowledge access. Moreover, some problems 
cannot be solved by one expert but require the expertise of a 
team where each expert is highly knowledgeable about only 
a subset of the domain [38].

On the other hand, multi-expert knowledge acquisition 
presents a serious challenge of integrating the knowledge 
of many into the knowledge base without contradiction and 
inconsistency. It is very likely that different people have dif-
ferent backgrounds and their own perspectives of the prob-
lem, use different terminologies for the same concepts, and 
have their own methods for solving the problem [38, 39]. 
Therefore, eliciting knowledge from more than one expert 
can easily result in differing solutions for the problem, and 
consequently in alternative rules for it. Technically, it means 
that the inference engine will find more than one rule for 
the given problem context. This situation in KBS is called 
a knowledge conflict [40]. Traditionally, conflicts are attrib-
uted to the disagreement in knowledge and understood as 
mistakes. KBS require the knowledge to be unambiguous for 
their inference engines to work [40]. Therefore, the conflict 
resolution process has to take place before the engine can 
execute the conflicting rules [32].

Conflict Resolution

The conflict resolution can take place in different stages, 
such as during run time when the conflict directly occurs, 
or when inserting knowledge into the system, or during the 
knowledge elicitation phase. The simplest conflict resolution 
strategy at run time is based on the order in which the rules 
are found by the engine. For example, First in First Serve, or 
Last in First Serve [41]. More advanced techniques involve 
context-sensitive criteria, for example, Prioritization, Speci-
ficity, Recency [20]. While these methods can resolve con-
flicts automatically, the conflict resolution strategies in the 
knowledge engineering stage or in the knowledge elicitation 
stage mostly involve humans in the resolution process, for 
example [35, 39, 42–46].

Conflict resolution is considered to be a restricting fac-
tor for KBS [43]; therefore, it has been studied intensively, 
especially in multi-expert knowledge-based systems where 
conflicts are more likely to occur. In addition to the afore-
mentioned simple conflict resolution techniques, a number 
of more sophisticated methods have been proposed to sup-
port conflict resolution. Examples are an abductive device 
for conflict resolution [47], a multi-attribute support mecha-
nism [48], incorporating expert’s ranking [49], preferences 
and prioritized goals [43], leveraging matrix representa-
tions and classification [45], building statecharts for expert 
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collaboration [46], common conceptual model for conflict 
explanation [39] or employing multi-level hierarchical struc-
tures [50].

More recently, conflict resolution has been intensively 
studied in multi-agent systems (MAS). The field of MAS 
grew out of the knowledge-based systems umbrella [3], since 
the system that can perceive the environment and act in it is 
defined as an autonomous agent [51]. Furthermore, a multi-
agent system is defined as a “loosely coupled network of 
problem-solving” agents [51]. Though conflict resolution 
in MAS is named the same as in KBS, it is not the same 
problem. In MAS, a conflict emerges between the agents 
that have conflicting interests. Thus, the agents can have a 
potentially fragmented view of the current system that may 
be inconsistent with the other agent’s view, and may be out-
dated [40]. For the conflict resolution in MAS, it is criti-
cal to maintain communication between agents to be able 
to negotiate or arbitrate on their goals. Contrary to MAS, 
the conflict in KBS appears in the knowledge rules for one 
agent that views the environment from a single perspective 
and does not need communication or negotiation between 
different entities.

Traditionally, knowledge engineers seek to develop a con-
sensus on conflicting rules and apply algorithms to single 
out one rule for the engine to proceed. However, such an 
approach in multi-expert systems potentially restricts the 
acquired knowledge due to filtering out the inconsisten-
cies and introducing a consensual yet altered behavior of 
the experts [37]. Though there is much research on dealing 
with multi-expert knowledge, little attention has been given 
to the possibility of preserving the knowledge of several 
experts in one knowledge base and turning conflicts into 
an advantage rather than seeing them as mistakes. Holding 
multiple solutions to one problem can be beneficial in many 
cases. For example, there are numerous marketing strate-
gies that can be successful for a single business, or various 
process structures that are comparably effective in achieving 
the same organizational goals.

Let us consider a simplified example to demonstrate this 
idea. A computer hard drive often becomes full and requires 
freeing disk space. When asking different IT experts, one 
can suggest to first check the temporary files, while the 
other can point to the log files first. Both actions may solve 
the problem if tried. The recommendation depends on the 
expert’s experience and may work for some systems and not 
be optimal for others.

Projecting this elementary example to a more complex 
problem, such as playing FreeCiv, there is more than one 
strategy to win the game. Moreover, the game was designed 
to be well balanced between different strategies [52]. As 
such, boosting research and developing the economy can 
be as successful as aggressively fighting the opponents; 

building a small number of cities on limited territory can be 
as advantageous as settling on an entire continent.

The examples above illustrate that on the scale of auto-
mating processes, such as business processes, where prob-
lems are complex and the environments are diversified, it 
can be beneficial to acquire knowledge from different experts 
and to employ diverse strategies within one system for the 
same task. From this perspective, traditional KBS present a 
limitation due to the requirement of consistent knowledge. In 
order to overcome this limitation, we insist that KBS need a 
refined conflict resolution approach that is capable of intel-
ligent evaluation of the available knowledge and selecting 
the most advantageous knowledge for the assigned task. We 
propose to employ reinforcement learning as a conflict reso-
lution strategy in the knowledge-based system. We suggest 
that this technique enables multi-tactic solutions for various 
kinds of problems and allows learning an improved strategy 
for an assigned task. We have demonstrated our findings in 
the example of playing the empire-building multi-strategy 
game FreeCiv.

Reinforcement Learning

Reinforcement learning is a ML approach that involves 
learning an agent’s optimal behavior toward a predefined 
goal from the trial and error experience in the agent’s envi-
ronment. One of the most well-known sources of the RL 
definition and its detailed discussion can be found in [53]. 
Here, we briefly note the main elements of RL.

RL is often defined as a Markov decision process (MDP) 
< S,A,R, T > where S is a set of possible states and A is 
a space of legal actions. Each state has a reward R(s) ∈ ℝ 
associated with it that can be implicitly provided by the 
environment. T is often given as a transition distribution 
p(s�|s, a) between states considering taken actions. Here, s′ is 
the state following state s after an action a was executed. The 
transition distribution describes the dynamics of the environ-
ment and is called the model of environment. The model in 
RL systems is an optional element that can be used, if avail-
able, for planning possible future situations before they are 
actually encountered. In contrast, model-free RL methods 
interact with the environment to learn about its dynamics.

The policy � is a mapping or distribution from state space 
to action space S → A that can be deterministic or stochastic. 
A stochastic policy can be described as a probability distri-
bution of taking the action a in state s parameterized by an 
n-dimensional vector � ∈ ℝ

n , denoted as ��(a|s) ∶ S → A 
[54]. At each agent’s step, a policy �0(s, a) is calculated from 
the distribution parameters, for example ��(s) and ��(s) in 
normal distribution.

Consider the agent with policy � that starts from state s0 , 
chooses an action a0 , receives the reward r0 = R(s0, a0) , then 
commutes to the next state s1 and repeats this process. This 
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will generate a sequence � = s0, a0, s1, a1, ..., that is called a 
trajectory of the agent. At some point in time, the agent will 
stop in some state send . This process of starting in state s0 
and arriving to the end state send is called an episode. Each 
episode delivers a so-called return of the episode that is 
denoted G and defined as discounted cumulative reward over 
the episode: G = r0 + �r1 + �2r2 +⋯ , where � is a discount 
factor in range between 0 and 1.

Running episodes one after another, the RL algorithm 
aims to learn an optimal policy �∗ that maximizes the 
expected return. To estimate the policy � for a given state s, 
a state-value function V�(s) = ��[r

�

0
|s0 = s] is defined as the 

expected return for the state s when following the policy � . 
Alternatively, the action-value function Q�(s, a) can be used 
for learning the optimal policy � , where Q�(s, a) describes 
the value of the expected return starting from the state s, 
taking the action a, and following � thereafter.

Many approaches in RL take advantage of the Bellman 
equation that expresses the recursive relationships between 
the value of a state and the values of its successor states. 
Likewise, the Bellman optimality equation is generally used 
to derive the optimal policy from either the optimal value 
function or the optimal action-value function. For more 
detailed information, refer to [53].

Monte Carlo Methods

There are many kinds of RL algorithms for different types of 
RL problems: dynamic programming, Monte Carlo methods 
and temporal difference learning, to name a few. All of them 
have their own flavor in terms of how they operate on the 
state-value or action-value functions, update policies, accu-
mulate returns, optimize parameters, etc. For the KB-RL 
approach of the reported project, the Monte Carlo methods 
were used to learn the optimal policy for conflict resolution 
strategy. Monte Carlo methods are based on averaging over 
the sample returns. For the episodic tasks, the returns are 
averaged after every episode for each state visited in the 
episode. The idea behind Monte Carlo methods is that with 
more returns observed, the average should converge to the 
expected value.

The benefit of Monte Carlo methods is that they do not 
necessarily need a model of the environment, but learn from 
the observed experience. In the case of model-free learn-
ing, the action-value function is used for policy estimation 
rather than the state-value function. The challenge here is 
that by learning only from the interaction with the environ-
ment, we learn only encountered states, and unseen states 
remain unknown. To make sure that the agent learns about 
new states, every state-action pair has to have a nonzero 
chance to be visited. This is a general problem of exploration 
versus exploitation in reinforcement learning, and in KB-RL 
we employ an �-greedy policy with respect to the current 

state-action values to ensure that the exploration will be 
maintained. The policy is constructed for each action-state 
pair based on the state-action values following the normal 
distribution. Then, most of the time the action is taken based 
on the constructed policy; however, with probability � the 
action is instead selected at random. Section “Rules in Our 
KB‑RL System” gives a detailed description of policy con-
struction on the example of the FreeCiv game.

To summarize, the KB-RL approach employs the on-pol-
icy model-free Monte Carlo method for conflict resolution, 
averaging over the state-action values and using an �-greedy 
policy that is maximized on each iteration with regard to the 
action-value function.

Experiment Setup

This section provides the details of applying the KB-RL 
method for playing the strategy game FreeCiv.

Game Ontology

As with any other problem to solve in KB-RL, playing 
FreeCiv started with outlining the game concepts and their 
relationships that would be instanced in the semantic net-
work. In other words, we started by defining an ontology as 
a schema for the semantic graph. FreeCiv is an open-source 
empire-building strategy game that simulates the history 
of human civilization. The main concepts in the game are: 
the game itself, players, units, cities and the map. Accord-
ingly, the ontology defined these concepts as Entities of the 
respective types. Figure 3 illustrates the ontology developed 
for the FreeCiv game. The FreeCiv map was constructed 
from the grid of discrete squares named tiles. Therefore, 
we introduced to the ontology an Entity of the type Tile, 
and the map in the semantic network was represented by 
multiple instances of this type with corresponding relation-
ships among them. The attributes of the entity exhibited the 
properties of the respective concept.

Connector and Action Handler

The purpose of the connector was to recreate a problem 
environment in the KB-RL semantic graph database and to 
keep it up-to-date throughout the game. FreeCiv is a turn-
based game; thus, all changes in the game happen on the 
round basis.1 The client application saves the state of the 
game automatically to a dedicated file on each turn. This file 
holds the full information on the game for a given player in 

1  Except the unit moves that have to be handled on the notification 
basis.
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a given turn. Therefore, the auto-saved files were a perfect 
source for us to recreate the game state in the graph data-
base. The auto-saved file is a text file that follows a specific 
structure encoding the characteristics of the game and their 
values. The connector monitored the game and, on the crea-
tion of a new auto-saved file, parsed it and saved the changes 
to the graph database using the REST API. In this manner, 
the game environment was available to the inference engine 
to process the task of playing the FreeCiv game. For the sake 
of fairness, we used only client auto-saved files, as it would 
be the same for a human player. The universal information 
about the game that is saved in the server’s auto-saved files 
was unavailable to the agent.

Another service needed for the KB-RL system to play 
the game was the action handler that sent the player’s com-
mands to the FreeCiv client. For example, if the rule was 
instructing the unit to build a city, the command ‘unit id; 
press b’ would be transmitted by the action handler to the 
game client ( id is the numerical identifier of the unit). In the 
case of FreeCiv, the action handler was simply configured to 
write the commands to a dedicated local file. As FreeCiv is 
an open-source software, we added the function to the client 
code that monitored the dedicated file and read the com-
mands as they would have been given by a player through 
the dialog form.

Game Configuration

FreeCiv is a highly configurable game, down to the spe-
cific rules. Players can choose between wide range of set-
tings such as scenario, skill level, number of opponents, 
a map, nations, etc. We chose to play one of the default 
scenarios called Earth (classic/small) that had an 80 × 50 
map (4000 tiles) and the ‘normal’ skill level for all players 
including AI computer players. We also left the Barbarians 

on the ‘normal’ level of difficulty. For the given scenario, 
5 different setups with the map of size 80 × 50 and fixed 
starting positions were taken to play the games. The reason 
for having fixed maps and fixed starting positions rather 
than random ones was to enforce specific characteristics of 
the gameplay. Even though FreeCiv offers the game con-
figuration with a random start, after careful consideration, 
we decided to keep the maps and starting positions fixed. 
We played several games with random starts and con-
cluded that, due to the randomness, the games were very 
asymmetric for the different KB-RL agents with different 
knowledge bases. Therefore, it was very hard to separate 
the game conditions from the objective evaluation of the 
knowledge base performance when analyzing the game 
results. The fixed starting positions were defined by the 
nation of each player. The 5 setups were as follows:

Default a map with a predesigned classic topology that 
mimics the Earth (Fig. 4a). This map was played by 4 
players: two KB-RL agents and 2 embedded AI players. 
The KB-RL agents played for the Roman and Hunnic 
nations, while the embedded AI played for Aztec and 
Zulu. On this map, both KB-RL players were within a 
relatively short distance of each other, not separated by 
the ocean. Therefore, the players would establish the 
contact with each other early and could exchange the 
technologies and be engaged in the trade. Good rela-
tionships potentially encouraged collaboration in the 
Space Colonization race. Thus, the diplomacy was a 
critical aspect here.
USA the same as default map except the nations for 
KB-RL agents were American and Russian, and there 
were 4 embedded AI players: Brazilian, Chinese, Arab, 
and German. In this setup, the KB-RL players were very 
remote from each other, yet in close distance with the 

Fig. 3   Ontology of the FreeCiv 
game as the representation 
of the game model for the 
semantic network within our 
KB-RL system. For the sake of 
simplicity, the properties lists 
are not exhaustive, but rather 
illustrative
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embedded AI players. The closeness of embedded AI 
players demanded early investment in the defense and 
military with no opportunity to ally with the other KB-RL 
agent until the sea exploration was developed. Such con-
ditions forced the KB-RL players to follow other deci-
sions than in the default setup. Diplomacy was not as 
relevant as before.
Small Islands the same map as in default, except the 
nations for KB-RL agents were British and Japanese, and 
3 computer players were Maori, Cuban and Malagasy. 
All nations had to start on the very small islands with the 
land limited to a maximum of 2 cities. That implied the 
urgency for the sea exploration to access the big land. 
The focus on production was unavoidable as settlement 
expansion was not possible. Being out of reach for the 
opponents conveyed a peaceful start.
Medium Islands the map of 80 × 50 tiles was customized 
to create several medium-size islands instead of Earth-
like continents (Fig. 4b). The nations for KB-RL agents 
were Bahamian and Jamaican, and for the embedded AI 
they were ‘Antiguan and Barbudan’ and ‘Trinidadian and 
Tobagonian’. The agents had a largely peaceful time to 
begin the civilization. The size of the islands allowed 
them to have a comfortable number of cities to build a 
strong nation and to be well protected from the enemies. 
However, further expansion was challenging. This map 
offered a choice for the players in the second phase of 
the game: develop a limited number of powerful highly 
populated cities or go overseas and build many small cit-
ies capturing more territory.
Chaos a customized map with two huge islands and 
only two KB-RL players without any embedded AI 
players (Fig. 4c). This map offered the players marginal 
land to settle, however, with relatively poor resources. 
The remoteness of the islands left the players isolated 
for a long time before they would discover each other. 
The absence of computer players allowed the players to 
focus on the economical development and prosperity of 
the nation, encouraging space colonization in favor of 
warfare.

Overall, we aimed to configure the maps for encouraging the 
peaceful win and collaboration between the players rather 
than hostility. The maps and details of the discussed setups 
can be examined on the published online game replays [55].

Knowledge Engineering

After the semantic network was modeled (ontology), and the 
communication between the FreeCiv client and the KB-RL 
agent was set up (connector and action handler), the next 
step was to engineer the knowledge. At first, we encoded 
the game’s essential knowledge, such as starting the game, 
finishing the turn, exploring the land, building and defending 
cities, producing units, making buildings and wonders and 
building a spaceship. These knowledge rules did not contain 
any strategic decisions for playing the game, but rather the 
game basics. We refer to this knowledge base as the common 
knowledge base.

As our next step, we invited experienced players to share 
their game know-how and to teach us their strategies. The 
protocol analysis method was used in collaboration with 
the expert players to acquire their knowledge. The experts 
were asked to play the game and think aloud while doing 
so. The knowledge engineer was following the game over 
the shared video stream and could ask the player to com-
ment and explain any aspect of the play. After the game was 
finished, the knowledge engineer had notes on the player’s 
strategy written down and the history of the game in the 
form of the auto-saved files, so the game could be reviewed 
at any later time. We asked each player to play 2 games on 
the map of the default setup for 2 different nations that were 
planned for KB-RL agents.

Overall, we approached 18 people for their expertise in 
playing FreeCiv. After observing them play, we chose 11 
players who showed strong gameplay and confidently won 
the game against the embedded AI. Their knowledge regard-
ing game strategy was encoded in the additional rule sub-
sets for each player, respectively. Joined with the common 
knowledge base, expert subsets created 11 different expert 

Fig. 4   Map topology used in the game setups. a Map topology for default, small islands and USA setups; b map topology for chaos setup; c map 
topology for medium islands setup. The color marks the terrain type of the tile



	 SN Computer Science (2020) 1:7878  Page 10 of 16

SN Computer Science

knowledge bases, for each player’s strategy correspondingly. 
We call them expert KI sets. In general, the strategies dif-
fered greatly in such leading decisions as winning by space 
colonization or by taking over other nations, peaceful or 
combative behavior, democracy or dictatorship, research 
or production, and control over population among others. 
Accordingly, the expert knowledge rules encoded such 
macro-decisions.

The number of rules in the knowledge base grew gradu-
ally throughout the project. The first KB-RL agent that com-
pleted the game (despite losing), operated on the knowl-
edge base of around 250 KIs. As the project progressed, 
the knowledge engineers were continually adding new KIs 
to the knowledge base. By the time the expert KI sets were 
implemented, the common knowledge base contained 440 
rules. Meanwhile, each expert KI set had various numbers 
of knowledge items to cover the expert knowledge. Table 1 
shows the number of KIs for expert KI sets. It has to be 
noted that the number of rules in the knowledge base is 
rather indicative. It can be compared to the lines of code 
(LOC) metric for software development in the respect that 
LOC is considered by many to be a very inaccurate metric. 
For instance, refer to [56]. For the same reason, the reader 
must keep in mind that the number of KIs can only be an 
approximate estimation of the knowledge base complexity 
and human effort.

Tournament Phase

Having 11 expert knowledge bases, we engaged them in 
combat against each other. In total, there were 550 games 
played. Each game was played by two KB-RL agents pro-
vided with two different expert knowledge bases. Each KI 
set was used in 100 games: 2 games against each of the 
10 opponent KI sets on 5 of the maps; these 2 games were 

played for each of the 2 nations as described in Sect. “Ontol-
ogy”. For example, Alex KI set played once for the Romans 
and once for the Hunnic on the default map against 10 other 
KI sets—20 games in total. The same was true for 4 other 
setups that together constituted 100 games. After the tourna-
ment, we had collected the records of 1100 games played by 
KB-RL agent (two clients in each of the 550 games).

The tournament stage of the project provided us with the 
evaluation of the performance for the created expert knowl-
edge bases. It showed that all of them were strong play-
ers winning against computer players. It also demonstrated 
that the game could be successfully played with different 
strategies. Our next concern was to combine the knowledge 
of all experts into one multi-expert knowledge base and let 
reinforcement learning support the conflict resolution in the 
inference process.

Reinforcement Learning for Conflict Resolution

The FreeCiv’s state space for the RL algorithm needed 
special consideration. The excessive state space is often a 
challenge for AI problems such as playing strategy games. 
For example, the chosen FreeCiv configuration has 4000 
(80 × 50) board positions, where each position can have 
dozens of states. Each tile has a terrain type, can have an 
improvement like a road, or rail, or irrigation, or special 
resource; city can be built there, or units can stay on it. The 
city can have a set of buildings and wonders. The tile can 
produce different amounts of resources of different types 
depending on the current government and rates. This list 
is not exhaustive, but the example illustrates how difficult 
it would be to account for all possible permutations of the 
map grid in the FreeCiv game as its state space. A common 
practice in playing complex games is adoption of a state 
reduction technique in order to scale the state space to a 
manageable number of states [57]. In our KB-RL approach, 
we applied clustering to segment the game’s state space into 
a finite number of clusters.

The clustering dataset was created based on 1100 game 
replays from the tournament phase with the selected game 
features. We started with the analysis of the game features 
and their correlation with the won/lost outcome of the 
games. Features that showed the strongest relationships 
between their values and the result of the game were added 
to the dataset. Overall, 33 features were selected: game 
score; population size; rates for tax, luxury, and science; 
amount of generated resources per turn such as gold, produc-
tion, science; accumulated natural resources such as gold, 
production, science; number of explored, owned and owned 
by enemy tiles; number of ocean tiles; sum of defense and 
attack points for all the units; diplomacy state; number of 
players; maximum, minimum and average of the number of 
cities in the dataset; maximum, minimum and average of the 

Table 1   The number of rules in 
expert KI sets

The expert KI sets are named by 
the human player usernames

Expert KI set Number 
of rules

Sentry 486
Alex 606
Bernhard Niessl 605
Tatamo 724
Martin Kirsch 613
Mirex 615
Magnus Wuttke 604
Bitsquid 523
Jasper 577
Suomi 755
Lemurman 684
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game score throughout the dataset; maximum, minimum and 
average of the number of learned technologies in the dataset; 
nation; government type; number of learned global tech-
nologies; number of learned technologies by given player; 
and learned technologies. Weights were applied to the fea-
ture vector based on how strong the correlation between 
the feature values and the won/lost output was. Essentially, 
the game score, population size and the number of learned 
technologies (both global and national) were weighted the 
highest, while the type of learned technologies influenced 
the winning/losing rate the least, and was therefore weighted 
lowest. Other features received moderate weights to achieve 
the best clustering accuracy. The collected dataset had 
386,895 entries.

The k-means algorithm was used to conduct the cluster-
ing on the normalized dataset. Particularly Lloyd’s algo-
rithm with a maximum of 300 iterations was applied, and 
185 clusters were defined as a result of experimenting with 
various possible numbers of clusters. A total of 185 clusters 
represented the generalized game states with respect to the 
feature parameters, and they composed the state space for 
the FreeCiv game in KB-RL. To map the game situation 
to the cluster during the gameplay, the feature vector was 
constructed from the current parameters and the distance to 
the cluster centers was calculated for every turn. The closest 
cluster (minimal distance) was assigned as the game state in 
the current turn. From now on, when using the term ‘state,’ 
we will refer to the cluster that was assigned to the game in 
the given turn.

Usually, the game remained in one cluster for more than 
one turn. We defined the cluster turn as the mean of all turns 
that were assigned to the given cluster. Thus, if the game had 
been in the cluster C in all turns from a to b, the cluster turn 
was then TC =

∑b

i=a
i∕(b − a + 1) . For instance, if the game 

had been in the cluster C in turns from 7 to 19, then TC = 13 . 
Across multiple games, the cluster turn was averaged again, 
so during training every cluster was given a number, referred 
as cluster turn, indicating the mean turn for the game to be 
in this state. The cluster turn was used to determine the state 
return with respect to the defined goal.

Foremost, for learning the optimal behavior the RL 
needed an outlined goal in regard to its state in the envi-
ronment. In the FreeCiv game, it is not enough to just win 
the game, but the winner has to race with other players to 
accomplish the game before other opponents. Intuitively, the 
players seek to minimize the number of rounds it takes to 
win the game, making shorter play time an indication of the 
player’s proficiency and competence. The same conclusion 
was drawn from the analysis of 1100 games derived from the 
tournament phase. The longer it took for the player to learn 
technologies, build a spacecraft and reach Alpha Centauri, 
the less likely that the game was won. Therefore, the reward 
function for the RL agent was chosen to be based on the 

number of turns the game lasted, with the objective of mini-
mizing the game rounds to win. The defined reward function 
returned − 1 for each turn played in the game, and we did not 
discount the return. Consequently, for each winning episode, 
its return was defined as G = −N , where N is the last turn 
of the game. Starting from state s, the return for the state 
was defined as Gs = −(N − t) , where t is the cluster turn of 
the state s. In essence, Gs indicated the expected number 
of turns that the agent would need from the current state to 
finish the game. According to the Monte Carlo method, the 
state-action function for the given policy was then derived 
from averaging the sampled returns for the given state-action 
pairs.

There are two possible outcomes for the agent: winning or 
losing. If the game was won, the return was defined as dis-
cussed above. If the game was lost, however, the return had 
to indicate that the result of the episode was not desired. For 
the lost games, we also distinguished between the way they 
were lost: either the opponent reached Alpha Centauri first, 
or the player’s nation was destroyed in war. We preferred 
to teach the agent a peaceful course of the game. Losing in 
space colonization was punished less than being destroyed 
because it was interpreted as the player being sufficiently 
strong to withstand the opponents’ attacks and only lack-
ing the time to reach the remote star. Therefore, for the first 
case, the episode’s return was given as G = −N ∗ 2 , while 
for the later, the return was set as G = 1000 − N (the earlier 
the player was destroyed, the lower was the return). For the 
state s, the return was calculated as Gs = −(N ∗ 2 − t) or 
Gs = −(1000 − N + t) , respectively.

The action space for the trained agent was composed of 
all the knowledge items of the multi-expert knowledge base, 
so that every KI was considered as an action a ∈ A . In every 
situation when the inference engine encountered a conflict, 
the learned policy was applied to the conflict set and one 
selected KI was executed. After every episode, the state-
action values were calculated, and the policy was improved 
based on the new values for the next episode.

The RL algorithm for playing the FreeCiv game used 
the stochastic policy that followed the normal distribution. 
Normal distribution is defined by two parameters: the mean 
�(s) and the standard deviation �(s) . The parameters � and 
� were constructed after each episode for each state-action 
pair based on the state-action values and the expected return 
of the given state.

Firstly, for every cluster the state-action values were 
scaled between 0 and 1 following min–max normalization. 
The normalized state-action values were then taken as the 
mean �a

s
 parameter for the action a in the state s. The stand-

ard deviation �a
s
 was calculated as in Eq. 1
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where Gs is the return of the specific cluster s in which the 
action a occurred and Gs is the expected return of the cluster 
s.

While the parameters � and � were calculated for every 
state-action pair after each episode, the probabilities for 
choosing action a in state s were calculated at the time 
when the inference engine encountered a conflict and the 
conflict set underwent resolution. Then, the probabilities 
were calculated for each action of the conflict set, and the 
action was selected according to these probabilities. The 
probabilities were calculated as follows. The probability 
density function for each KI of the conflict set had been 
drawn with the parameters �a

s
 and �a

s
 , where a is a KI and s 

is the cluster. The highest value of � ( �max ) and the standard 
deviation of this action ( �max ) were taken to form a limit 
L = �max − �max . The probabilities were then acquired as 
the normalized areas under the curve on the right from the 
limit L line. Figure 5 illustrates this algorithm in the case of 
three KIs in the conflict set. While � indicated that for the 
higher values there would be a better outcome for the given 
action, the parameter � can be interpreted as a confidence 
in the acquired state-action values. The more times action a 
was tried, the closer � was to the value � . The closer � was 
to � , the more separated the bell curves were for the actions, 
and consequently, a higher probability was given to the best 
action, and smaller probabilities remained for other actions, 
as shown in Fig. 6.

(1)�a
s
=

�∑
(Gs − Gs)

2

na

We ran the training algorithm for 600 episodes. One 
full game lasted approximately 8–12 h, therefore present-
ing a challenge to run extra episodes. During the training 
phase, the game was set up with 4 players where one was 
a KB-RL agent with the multi-expert knowledge base, 
one KB-RL agent was taken either with the multi-expert 
knowledge base or with one of the expert knowledge bases, 
and 2 embedded AI players. The training phase was termi-
nated after 600 games, and we set the trained agent to play 
against each expert knowledge base to explore the result. 

Fig. 5   The probabilities for the 
KIs (actions) of the conflict 
set derived as an area under 
the curve on the right to the 
limit line L. The KI 1 has the 
highest action-value; thus, � 
and � parameters calculated for 
KI 1 are taken to form the limit 
L = �max − �max

Fig. 6   The probabilities later in the training. As it can be seen from 
the picture, the probability of the KI 1 increased significantly as a 
result of more experience and high return. On the contrary, the prob-
ability for the KI 3 diminished due to low return
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The trained agent played 2 games in each of the 5 setups 
against each expert knowledge base as it was arranged 
in the tournament phase discussed above. The next sec-
tion discusses the results of this contest and of the overall 
experiment.

Results

The described experiment shows that the KB-RL approach 
can be successfully applied to solve complex tasks such 
as playing a strategy game, particularly FreeCiv. At first, 
with limited and imperfect knowledge, and without rein-
forcement learning, the agent was able to finish all games, 
though mostly lost. Such an agent can be compared to a 
human player at the beginner level. Its knowledge was elic-
ited from our team members who are software engineers 
rather than well-experienced players. Without sophisti-
cated strategic decisions inserted, the results of playing 
with the common knowledge base were poor.

Next, by adding expert knowledge to the common 
knowledge base, the solution was extended to 11 differ-
ent solutions, where each of them represented a particular 
strategy of a human player. These solutions demonstrated 
significantly stronger play in contrast to the agent with the 
common knowledge base. Each of the expert knowledge 
bases could already win against embedded AI players in 

the majority of the games. Figure 7 (all players except 
the trained agent) shows the results table of the combat 
between expert knowledge bases. There was only one 
game (Martin versus Alex DrKaffee in the USA setup) 
won by the computer player, while the rest of the games 
were won by one of the KB-RL agents equipped with the 
particular expert knowledge base.

While the above results were achieved with just the knowl-
edge-based approach, the main result of the discussed KB-RL 
method derives from reinforcement learning. Reinforcement 
learning was deployed as a conflict resolution strategy to be 
able to combine the knowledge of multiple experts in one 
knowledge base. In alignment with the outlined goal, the 
KB-RL system learned to win the game, on average, in fewer 
turns compared to the agents with the expert knowledge bases. 
As seen in Fig. 8, the trained agent needed on average 287 
turns to win, while for the expert knowledge bases the best 
average number of turns was 291 for the Tatamo expert knowl-
edge base. This advantage allowed the trained agent to win 
every game played against expert knowledge bases as shown 
in Fig. 7.

The dominance of the trained agent in respect of the expert 
knowledge bases can also be seen in other aspects of the game, 
such as the amount of generated resources and the game score 
(Figs. 9, 10).

Analyzing the results of the trained agent in contrast to the 
expert agents, it was found that the trained agent picked up the 
fragments from different expert knowledge bases to make up 
its own strategy. For instance, the Tatamo agent kept the num-
ber of cities strictly under 10 to maintain control over the citi-
zens. The Suomi agent had a rule to stop building cities after 
the first 30–40 cities, while other agents did not control the 
number of cities. The trained agent combined the control of the 
city number into a new strategy: in the first phase of the game, 
the agent followed Tatamo strategy and had 11 cities; how-
ever, later it switched to the Suomi strategy and increased the 
number of cities to above 30 and again changed its strategy to 

Fig. 7   The result table for the tournament between expert rule sets 
and the trained agent. The expert rule sets are named by the username 
of the human player whose strategy was encoded in the particular rule 
set. Each cell has to be read as follows. The player in the row label 
played 10 games against the player in the column label. The number 
shows the difference in the number of wins for the player given in 
a row label. For example, Alex DrKaffee played against Bernhard 
Niessl. Alex DrKaffee won 3 games, while Bernhard Niessl won 7 
games. Alex DrKaffee’ advantage is − 4, while Bernhard Niessl holds 
the advantage 4. The table is almost symmetrical except the results 
for Martin versus Alex DrKaffee: one of their games was lost by both 
KB-RL agents

Fig. 8   Average number of turns that the agents needed to win the 
game. The results are calculated for the games played in the tourna-
ment
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Fig. 9   Summed final scores for 
the agents of the tournament. 
As all agents played the same 
number of games, the averaged 
final score would reveal the 
same trend

Fig. 10   Generated natural 
resources over the full game for 
the agents of the tournament. 
As all agents played the same 
number of games, the aver-
aged numbers for the generated 
natural resources would reveal 
the same trend

Fig. 11   Number of cities for the 
trained agent and the expert rule 
sets on the example of single 
games. The picture illustrates 
how the trained agent adopts the 
strategies of different experts in 
one game

Fig. 12   The population rate for 
the trained agent and the expert 
agents that corresponds to the 
data in Fig. 11. The trained 
agent was able to grow the 
population above other expert 
players
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unrestricted settling in the final stage of the game. Figures 11 
and 12 illustrate the given pattern on the exemplified games.

Discussion

This paper describes the KB-RL approach as a knowledge-
based method combined with reinforcement learning in 
order to deliver a system that leverages the knowledge of 
multiple experts, and learns to optimize the problem solu-
tion with respect to the defined goal. RL is employed as a 
conflict resolution strategy for the multi-expert knowledge 
base with excessive knowledge for a particular problem 
solution. The method is demonstrated by the example of 
playing a complex strategy game such as FreeCiv. The 
knowledge and skills of several game experts were com-
bined into one knowledge base and set up to play incre-
mentally, learning to win the game in the minimal number 
of turns. The results show that RL can improve the perfor-
mance of the agent by learning to recombine the elements 
of single strategies into a new solution stimulated by the 
outlined objective.

The proposed approach leaves much room for future work 
and further research. Overall, the described experiment sup-
ports the idea of bringing together different AI approaches 
for more intelligent and better automated systems that can 
utilize human knowledge and learn from its own experience 
in complex problem solving.
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