
Vol.:(0123456789)

SN Computer Science (2020) 1:78
https://doi.org/10.1007/s42979-020-0087-8

SN Computer Science

ORIGINAL RESEARCH

Playing a Strategy Game with Knowledge‑Based Reinforcement
Learning

Viktor Voss1 · Liudmyla Nechepurenko1 · Rudi Schaefer1 · Steffen Bauer1

Received: 2 January 2020 / Accepted: 27 February 2020 / Published online: 11 March 2020
© Springer Nature Singapore Pte Ltd 2020

Abstract
This paper presents knowledge-based reinforcement learning (KB-RL) as a method that combines a knowledge-based
approach and a reinforcement learning (RL) technique into one method for intelligent problem solving. The proposed
approach focuses on multi-expert knowledge acquisition, with the RL being applied as a conflict resolution strategy aimed
at integrating the knowledge of multiple exerts into one knowledge base. The article describes the KB-RL approach in detail
and applies the reported method to one of the most challenging problems of current artificial intelligence research, namely
playing a strategy game. The results show that the KB-RL system is able to play and complete the full FreeCiv game, and
to win against the computer players in various game settings. Moreover, with more games played, the system improves the
gameplay by shortening the number of rounds that it takes to win the game. Overall, the reported experiment supports the
idea that, based on human knowledge and empowered by RL, the KB-RL system can deliver a strong solution to the complex,
multi-strategic problems, and, mainly, improve the solution with increased experience.

Keywords Knowledge-based systems · Reinforcement learning · Multi-expert knowledge base · Conflict resolution

Introduction

Knowledge-based systems (KBS) have a long history in the
field of AI. Even though they lost popularity in the last few
decades, they have successful practical applications in many
areas [1–3]. KBS make use of human knowledge and experi-
ence to automate problems by means of machine reasoning.
They were widely researched throughout the 1950s–1990s,
and many areas of AI and intelligent applications emerged
from this field [3].

More recently, machine learning (ML) gained close atten-
tion and widespread acceptance among scientists, scholars
and engineers as a promising technique for AI. Sub-fields

such as neural networks, reinforcement learning and gen-
erative adversarial networks solve previously impossible
problems and are very actively researched. It is no surprise
that many studies investigate the possibility to fuse ML with
other AI approaches aiming to achieve new breakthroughs.
By combining different approaches, one attempts to over-
come the challenges of a particular technique and benefit
from the mutual advantages of various methods.

The proposed KB-RL method incorporates reinforce-
ment learning into the knowledge-based system to handle
conflicting or redundant knowledge. This allows the KBS
to adopt multiple solutions for the same problem from mul-
tiple experts. The requirement of unambiguous knowledge
imposes a restriction on the KBS and results in a costly
human effort during knowledge engineering. Empowered
by RL, the conflict resolution process can be automated and
used to optimize the problem solution based on the experi-
ence gained by the KBS in solving such problems.

Playing various types of games is a common benchmark
in artificial intelligence (AI) research. After AI systems beat
the best human players at Chess [4], Atari [5], and then Go
[6], strategy games have become the next level of complexity
to challenge AI research. In 2019, DeepMind’s AlphaStar
demonstrated a compelling performance, outplaying humans

 * Liudmyla Nechepurenko
 lnechepurenko@arago.co

 Viktor Voss
 vvoss@arago.co

 Rudi Schaefer
 rschaefer@arago.co

 Steffen Bauer
 sbauer@arago.co

1 arago GmbH, Frankfurt am Main, Germany

http://orcid.org/0000-0002-9830-3928
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-0087-8&domain=pdf

 SN Computer Science (2020) 1:7878 Page 2 of 16

SN Computer Science

in the real-time strategy game StarCraft [7]. The winning
technique was deep reinforcement learning which fused deep
neural networks and reinforcement learning, allowing the
model to learn from the large amount of games.

We use the strategy game CIVILIZATION to showcase
the capabilities of our KB-RL method. Particularly, the
open-source version of the game FreeCiv was played by
KB-RL agents. In addition to the complexity of the Free-
Civ game, we were motivated by the proximity of the game
paradigm to real-world challenges.

Related Work

Nowadays, the field of KBS is highly heterogeneous and
lacks coherent structure and clear formalism [3]. The most
researched sub-domains of KBS are case-based reasoning,
fuzzy systems, multi-agent systems, decision support sys-
tems, cognitive systems and intelligent software agents [3].
With the rise of machine learning methods, such as neural
networks and reinforcement learning, it is not surprising
that these techniques have been considered in application
to KBS.

Considering the diversity of research on KBS, it is dif-
ficult to compare our work to other studies on KBS in com-
bination with RL, especially in application to broad prob-
lems such as managing complex environments like strategy
games. Many researchers in the field of KBS used strategy
games, and particularly FreeCiv, as a benchmark for their AI
approaches. However, most of them focused on the specific
elements of the game rather than playing the entire game.
For instance, J. Jones, A. Goel, P. Ulam and their colleagues
proposed a model-based reflection for self-adaptation for
guiding reinforcement learning in the series of publications
[8–11]. The authors demonstrated their methodology on
the sub-elements of the FreeCiv game, such as building and
defending cities. T.R. Hinrichs and K.D. Forbus studied how
structural analogy in combination with qualitative reasoning
can improve the prediction of population growth in Free-
Civ civilization [12, 13]. Outside of KBS, works [14, 15]
explored the utilization of genetic algorithms for the opti-
mization of city placement and city development in FreeCiv.

For learning to win in the FreeCiv game, Branavan et al.
[16] employed a Monte Carlo framework for analyzing the
text manuals. Their work involved natural language process-
ing for text analysis and reinforcement learning for training
the agent. As a result, the language-aware agent showed a
significantly increased win rate (27–78%) in contrast to the
agent not supported by the linguistic analysis. The games
were played on a 36 × 24 map against one built-in computer
player with the ‘NORMAL’ level of difficulty. Such game
settings allowed completion of the game in less than 100
rounds, facilitating efficient reinforcement learning. Our

research is different to Branavan et al. in both the methodol-
ogy and the level of the game complexity.

Another endeavor to learn how to win strategy games
was made by Molineaux [18] and Aha and Ponsen [17]. The
authors employed case-based reasoning to learn winning the
real-time strategy game Wargus. They proposed a case-based
tactician system which learned to choose the best tactics,
utilizing three different sources of domain knowledge: state
lattice, set of tactics and state cases.

The most remarkable achievement in playing strategy
games is the AlphaStar project [7]. Based on deep reinforce-
ment learning, the AlphaStar software won against two high
ranked StarCraft II players.

The aim of this article is to address and describe the
KB-RL approach in its present condition. The reported
experiment shows that the KB-RL method can be used suc-
cessfully for large-scaled and sophisticated problems, such
as playing strategy games by leveraging human heuristic
knowledge and intelligent computer algorithms to reinforce
learning.

KB‑RL Method

Knowledge‑Based System

A knowledge-based system is a software system that con-
tains a substantial amount of knowledge in an explicit,
declarative form that is employed to reason about the prob-
lem matter [19]. In contrast to conventional software pro-
grams, KBS do not embed the knowledge as part of the
program code. Instead, the knowledge is captured in small
fragments of human expertise, data, and information about
the problem domain. Hence, knowledge is manageable in
a flexible way without the need to change and rebuild the
system [3].

There are two main components that are expectedly pre-
sent in knowledge-based systems: a knowledge base that
accommodates the domain-specific knowledge and the
problem-solving method (inference engine) which consists
of algorithms for manipulating the knowledge to solve the
presented problem [20].

Knowledge Base

The knowledge base contains two logically distinct compo-
nents. One is factual knowledge that describes the environ-
ment of the problem and holds concepts, their properties,
attributes and relationships. The second component is pro-
cedural (or inferential, or casual) knowledge that represents
the heuristic knowledge and the expertise of human experts.
In a rule-based KBS, inferential knowledge is presented in
the form of rules that have to follow a specific syntax called

SN Computer Science (2020) 1:78 Page 3 of 16 78

SN Computer Science

knowledge representation language [21]. The KB-RL sys-
tem described in this paper follows a rule-based approach,
described in detail below.

The factual knowledge of the described approach is mod-
eled as a semantic network. A semantic network is a graph-
based knowledge formalism that provides a structural rep-
resentation of concepts, their properties and relationships
in the domain of interest [22]. These concepts are modeled
as nodes where node attributes hold the properties of the
concept and the relationships are the arcs between the nodes.

The main benefit of semantic networks for knowledge
representation is the possibility to translate arbitrary and
unstructured information of human knowledge to a struc-
tured format that can be processed by the machine [22].
Moreover, semantic networks enable the model to carry
the semantics of the modeled world. This fact supports the
knowledge-based system in reasoning about the knowledge
and helps to establish common understanding of the data
between computers and humans [1, 23]. Furthermore, we
chose a graph-based representation because, in contrast to
other data storage technologies (such as relational databases
or NoSQL), it allows us to incorporate a necessary trade-off
between the structure-first and the data-first approaches: on
the one hand, the data are semantically structured; on the
other hand, it is still possible to store any type of information
in the graph, as the knowledge is semi-structured.

Ontology

The design of the semantic network starts with defining an
ontology. According to Gruber [24], an ontology is a formal
specification of a shared conceptualization that owns high
semantic expressiveness necessary for systems of increased
complexity. Considering that the term “ontology” can be
interpreted ambiguously [24–26], we explicitly emphasize
here that the ontology, as used in the described approach, is
not equal to the knowledge base or knowledge graph. Rather,
the role of the ontology is to define the schema for the
semantic network in order to establish the common vocabu-
lary and shared understanding of the data among people or
software agents [27]. Having an agreement on terminology
for all the concepts and their relationships facilitates knowl-
edge reuse and enables management of the information
defined in the knowledge base [28]. Though the ontology
can also hold the class instances, in KB-RL the instances are
held only in semantic network, and the ontology is a meta
level for formalizing the semantic network structure.

The ontology of KB-RL follows the Resource Description
Format [29], specifically the Turtle-Syntax [30]. Without
going into detail, we should note that KB-RL’s ontology
is non-hierarchical and does not imply inheritance. In gen-
eral, all elements of the ontology are of one of the follow-
ing types: Entities represent concepts (nodes in the graph),

Verbs are binary relations (edges) between two Entities
and describe something an Entity does to or with another,
Attributes are properties of the Entity that holds a scalar
value, such as a string or an integer, or a list of scalar val-
ues. For more detailed information, see the Open Graph of
IT [31].

Inference in KB‑RL

The process of deriving knowledge from a given knowledge
base is known as inference [20], and the problem-solving
component of a knowledge-based system is therefore called
an inference engine. Generally speaking, an inference engine
acts as an interpreter that analyzes and processes the knowl-
edge rules to derive a valid conclusion [32].

Different KBS offer various types of inference, where
most state-of-the-art systems employ an inference method
based on the resolution principle [20]. In our KB-RL system,
abductive reasoning [33] is used to analyze the knowledge
and derive the solution. Abductive reasoning seeks to form
and evaluate the most likely hypothesis for the best possible
explanation to the given problem based on the potentially
incomplete evidence. One of the distinctive characteristics
of abduction is the consideration of contextual knowledge
in search of the solution [20]. For example, the faults of a
device can be diagnosed by finding a typical combination
of conditions of the state of the device and of the expert
knowledge about possible problems. The device state pro-
vides contextual information (which can be incomplete), and
based on the available expert knowledge the device failure
can be explained to the best match between the state condi-
tions and expert knowledge. If the state changes, or new
knowledge is available, the conclusion can change accord-
ingly with the updated information.

Issue Entity

In the KB-RL method, we distinguish between two kinds of
contextual knowledge: one stems from the factual knowledge
describing the environment and its state (e.g., the device is
not responding), while the other characterizes the current
situation of the given problem (e.g., reset command was
sent, waiting for response). In KBS theory, this is called
working memory [20]. For instance, this can be the informa-
tion on what has already been done on the task, what is the
goal of the task, or the intermediate results in processing
the task.

In our KB-RL method, we call the working memory an
Issue. The Issue is an object that represents a task and holds
contextual information about it. As an example, Fig. 1 shows
an Issue object that is injected into the system to start play-
ing the FreeCiv game. Originally, it has only one attribute,
StartPlaying, with value ‘FreeCiv’, which instructs the

 SN Computer Science (2020) 1:7878 Page 4 of 16

SN Computer Science

inference engine to play the game. The Issue object is usu-
ally created from outside the system. Afterward, contextual
information is only added and/or modified when the infer-
ence engine applies knowledge.

Rules in Our KB‑RL System

Procedural knowledge in the KB-RL system needs to be
entered into the knowledge base by human experts in the
form of rules. This process is called knowledge elicitation
and usually involves two people: one with knowledge on the
matter and another person who is familiar with the knowl-
edge representation language and can encode the knowledge
into the knowledge base. In the described experiment, we
used a protocol analysis [34] technique to acquire the knowl-
edge from human experts.

In our KB-RL, the term knowledge item (KI) is used to
refer to a single rule of the knowledge base. Hence, we will
use the term knowledge item or KI interchangeably with
the term ‘rule’. The term KI derives from the principle
that each rule is a single item of knowledge encoding an
atomic action on the task. Essentially, we prefer to split
the entire workflow on some task into granular steps in
order to enable the reuse of the knowledge in similar but
different tasks.

Technically, every knowledge item is a piece of code that
contains the procedural knowledge and the context in which
this knowledge is applicable. KIs are structured into four
blocks:

ki—meta information about the rule,
on—conditions on the factual context,
when—conditions on the working memory,
do—procedure to execute.

Figure 2 shows the basic example of one knowledge item
that performs building a city in the FreeCiv game. The ON
condition specifies to which concept (an entity in the seman-
tic graph) the knowledge is relevant. Technically, it defines
which node the inference engine needs to find in the graph
in order to execute the procedure given in the DO block. The
WHEN block defines the condition on the context of the
working memory (Issue object). When both ON and WHEN
block conditions are met, the DO block will be executed.
The example in Fig. 2 can be read like the following: if
there is a node of type settlers in the semantic graph, and
it has attributes id, x, y, (‘civ/’ prefix points to the names-
pace, we will ignore it for the sake of simplicity), and the
Issue object has the attribute Destination equal to the unit’s
coordinates, then execute the command given in the action()
function. The action() function is called an action handler
and is explained below.

The example in Fig. 2 explains the main principle behind
encoding the procedural knowledge into rules. Overall, KIs
can be more complex than the given example, such as con-
ditioning the relationships between nodes, making queries,
manipulating lists, and others.

Together, all KIs constitute a knowledge base that the
inference engine searches for suitable rules as it processes
the Issue. When the KI is found to match the context condi-
tions, it will be executed by the inference engine. As a result,
the environment state and/or Issue object can change. For
instance, after executing the KI given in Fig. 2, the new city
will appear in the game (and in the graph as a new node),
and the settler unit will disappear from the game and be
removed from the semantic graph. Consequently, the KI in
Fig. 2 will become irrelevant, while other KIs, for example,
KIs for city development, will become applicable to the new

Fig. 1 An example of the Issue object as a holder for working mem-
ory in KB-RL system. The example shows the content of the Issue
object on its creation. As more knowledge is applied to the problem,
the Issue object will hold all relevant contents in new attribute/value
pairs

Fig. 2 An example of the
knowledge item as a rule in
KB-RL

SN Computer Science (2020) 1:78 Page 5 of 16 78

SN Computer Science

situation. In this fashion, the engine will apply KIs step-by-
step to play the game until it is finished.

Connector

While the KIs are entered into the system by knowledge
engineers, the factual knowledge has to come from the envi-
ronment that is managed by the system. For this purpose, a
special software module is usually implemented that com-
municates with the environment and creates/updates the
information in the graph via the REST API. We call this
module the connector. In the case of FreeCiv, the connector
was implemented as a Python program that ran parallel to
the game and monitored the FreeCiv client for updates in
the player’s environment. With any change in the environ-
ment, e.g., when the turn ended or the unit moved, the con-
nector sent updates to the corresponding nodes and arcs in
the graph, allowing the engine to work with the up-to-date
information.

Action Handler

In order to execute commands to external services, such as
the FreeCiv client for example, our KB-RL system has a
dedicated module named action handler (AH). An action
handler is a highly configurable component that can perform
actions, such as executing local or remote command line
commands, running scripts, sending and receiving HTTP
requests, communicating over websocket and others. To send
commands to a particular external service, the instance of
the action handler has to be configured to specify the inter-
face between the inference engine and the external service.
For example, in the case of the FreeCiv game, the action
handler “FreeCiv” was configured to send commands to the
FreeCiv client.

Without going into technical detail, the main idea behind
the AH is that it is the way the KB-RL system interacts with
the external environment and acts as an agent in respect to
this environment. While the connector only monitors the
environment and updates the corresponding information in
the KB-RL graph database, the action handler manipulates
the environment and can change its state. For example, in
the FreeCiv game AH acts as a player the same way a human
player would interact with the game.

Multi‑expert Knowledge Acquisition

The knowledge for a knowledge-based system can be
acquired from one or multiple experts. Working with only
one expert can make the knowledge acquisition process eas-
ier and smoother. However, obtaining the knowledge from
a number of experts has certain advantages [35–37]. The
group of experts can contribute to the improved quality of

the knowledge base (its consistency, completeness, accuracy
and relevance), achieving better productivity, addressing
broader domains and more complex problems, and reduc-
ing the costs of knowledge access. Moreover, some problems
cannot be solved by one expert but require the expertise of a
team where each expert is highly knowledgeable about only
a subset of the domain [38].

On the other hand, multi-expert knowledge acquisition
presents a serious challenge of integrating the knowledge
of many into the knowledge base without contradiction and
inconsistency. It is very likely that different people have dif-
ferent backgrounds and their own perspectives of the prob-
lem, use different terminologies for the same concepts, and
have their own methods for solving the problem [38, 39].
Therefore, eliciting knowledge from more than one expert
can easily result in differing solutions for the problem, and
consequently in alternative rules for it. Technically, it means
that the inference engine will find more than one rule for
the given problem context. This situation in KBS is called
a knowledge conflict [40]. Traditionally, conflicts are attrib-
uted to the disagreement in knowledge and understood as
mistakes. KBS require the knowledge to be unambiguous for
their inference engines to work [40]. Therefore, the conflict
resolution process has to take place before the engine can
execute the conflicting rules [32].

Conflict Resolution

The conflict resolution can take place in different stages,
such as during run time when the conflict directly occurs,
or when inserting knowledge into the system, or during the
knowledge elicitation phase. The simplest conflict resolution
strategy at run time is based on the order in which the rules
are found by the engine. For example, First in First Serve, or
Last in First Serve [41]. More advanced techniques involve
context-sensitive criteria, for example, Prioritization, Speci-
ficity, Recency [20]. While these methods can resolve con-
flicts automatically, the conflict resolution strategies in the
knowledge engineering stage or in the knowledge elicitation
stage mostly involve humans in the resolution process, for
example [35, 39, 42–46].

Conflict resolution is considered to be a restricting fac-
tor for KBS [43]; therefore, it has been studied intensively,
especially in multi-expert knowledge-based systems where
conflicts are more likely to occur. In addition to the afore-
mentioned simple conflict resolution techniques, a number
of more sophisticated methods have been proposed to sup-
port conflict resolution. Examples are an abductive device
for conflict resolution [47], a multi-attribute support mecha-
nism [48], incorporating expert’s ranking [49], preferences
and prioritized goals [43], leveraging matrix representa-
tions and classification [45], building statecharts for expert

 SN Computer Science (2020) 1:7878 Page 6 of 16

SN Computer Science

collaboration [46], common conceptual model for conflict
explanation [39] or employing multi-level hierarchical struc-
tures [50].

More recently, conflict resolution has been intensively
studied in multi-agent systems (MAS). The field of MAS
grew out of the knowledge-based systems umbrella [3], since
the system that can perceive the environment and act in it is
defined as an autonomous agent [51]. Furthermore, a multi-
agent system is defined as a “loosely coupled network of
problem-solving” agents [51]. Though conflict resolution
in MAS is named the same as in KBS, it is not the same
problem. In MAS, a conflict emerges between the agents
that have conflicting interests. Thus, the agents can have a
potentially fragmented view of the current system that may
be inconsistent with the other agent’s view, and may be out-
dated [40]. For the conflict resolution in MAS, it is criti-
cal to maintain communication between agents to be able
to negotiate or arbitrate on their goals. Contrary to MAS,
the conflict in KBS appears in the knowledge rules for one
agent that views the environment from a single perspective
and does not need communication or negotiation between
different entities.

Traditionally, knowledge engineers seek to develop a con-
sensus on conflicting rules and apply algorithms to single
out one rule for the engine to proceed. However, such an
approach in multi-expert systems potentially restricts the
acquired knowledge due to filtering out the inconsisten-
cies and introducing a consensual yet altered behavior of
the experts [37]. Though there is much research on dealing
with multi-expert knowledge, little attention has been given
to the possibility of preserving the knowledge of several
experts in one knowledge base and turning conflicts into
an advantage rather than seeing them as mistakes. Holding
multiple solutions to one problem can be beneficial in many
cases. For example, there are numerous marketing strate-
gies that can be successful for a single business, or various
process structures that are comparably effective in achieving
the same organizational goals.

Let us consider a simplified example to demonstrate this
idea. A computer hard drive often becomes full and requires
freeing disk space. When asking different IT experts, one
can suggest to first check the temporary files, while the
other can point to the log files first. Both actions may solve
the problem if tried. The recommendation depends on the
expert’s experience and may work for some systems and not
be optimal for others.

Projecting this elementary example to a more complex
problem, such as playing FreeCiv, there is more than one
strategy to win the game. Moreover, the game was designed
to be well balanced between different strategies [52]. As
such, boosting research and developing the economy can
be as successful as aggressively fighting the opponents;

building a small number of cities on limited territory can be
as advantageous as settling on an entire continent.

The examples above illustrate that on the scale of auto-
mating processes, such as business processes, where prob-
lems are complex and the environments are diversified, it
can be beneficial to acquire knowledge from different experts
and to employ diverse strategies within one system for the
same task. From this perspective, traditional KBS present a
limitation due to the requirement of consistent knowledge. In
order to overcome this limitation, we insist that KBS need a
refined conflict resolution approach that is capable of intel-
ligent evaluation of the available knowledge and selecting
the most advantageous knowledge for the assigned task. We
propose to employ reinforcement learning as a conflict reso-
lution strategy in the knowledge-based system. We suggest
that this technique enables multi-tactic solutions for various
kinds of problems and allows learning an improved strategy
for an assigned task. We have demonstrated our findings in
the example of playing the empire-building multi-strategy
game FreeCiv.

Reinforcement Learning

Reinforcement learning is a ML approach that involves
learning an agent’s optimal behavior toward a predefined
goal from the trial and error experience in the agent’s envi-
ronment. One of the most well-known sources of the RL
definition and its detailed discussion can be found in [53].
Here, we briefly note the main elements of RL.

RL is often defined as a Markov decision process (MDP)
< S,A,R, T > where S is a set of possible states and A is
a space of legal actions. Each state has a reward R(s) ∈ ℝ
associated with it that can be implicitly provided by the
environment. T is often given as a transition distribution
p(s�|s, a) between states considering taken actions. Here, s′ is
the state following state s after an action a was executed. The
transition distribution describes the dynamics of the environ-
ment and is called the model of environment. The model in
RL systems is an optional element that can be used, if avail-
able, for planning possible future situations before they are
actually encountered. In contrast, model-free RL methods
interact with the environment to learn about its dynamics.

The policy � is a mapping or distribution from state space
to action space S → A that can be deterministic or stochastic.
A stochastic policy can be described as a probability distri-
bution of taking the action a in state s parameterized by an
n-dimensional vector � ∈ ℝ

n , denoted as ��(a|s) ∶ S → A
[54]. At each agent’s step, a policy �0(s, a) is calculated from
the distribution parameters, for example ��(s) and ��(s) in
normal distribution.

Consider the agent with policy � that starts from state s0 ,
chooses an action a0 , receives the reward r0 = R(s0, a0) , then
commutes to the next state s1 and repeats this process. This

SN Computer Science (2020) 1:78 Page 7 of 16 78

SN Computer Science

will generate a sequence � = s0, a0, s1, a1, ..., that is called a
trajectory of the agent. At some point in time, the agent will
stop in some state send . This process of starting in state s0
and arriving to the end state send is called an episode. Each
episode delivers a so-called return of the episode that is
denoted G and defined as discounted cumulative reward over
the episode: G = r0 + �r1 + �2r2 +⋯ , where � is a discount
factor in range between 0 and 1.

Running episodes one after another, the RL algorithm
aims to learn an optimal policy �∗ that maximizes the
expected return. To estimate the policy � for a given state s,
a state-value function V�(s) = ��[r

�

0
|s0 = s] is defined as the

expected return for the state s when following the policy � .
Alternatively, the action-value function Q�(s, a) can be used
for learning the optimal policy � , where Q�(s, a) describes
the value of the expected return starting from the state s,
taking the action a, and following � thereafter.

Many approaches in RL take advantage of the Bellman
equation that expresses the recursive relationships between
the value of a state and the values of its successor states.
Likewise, the Bellman optimality equation is generally used
to derive the optimal policy from either the optimal value
function or the optimal action-value function. For more
detailed information, refer to [53].

Monte Carlo Methods

There are many kinds of RL algorithms for different types of
RL problems: dynamic programming, Monte Carlo methods
and temporal difference learning, to name a few. All of them
have their own flavor in terms of how they operate on the
state-value or action-value functions, update policies, accu-
mulate returns, optimize parameters, etc. For the KB-RL
approach of the reported project, the Monte Carlo methods
were used to learn the optimal policy for conflict resolution
strategy. Monte Carlo methods are based on averaging over
the sample returns. For the episodic tasks, the returns are
averaged after every episode for each state visited in the
episode. The idea behind Monte Carlo methods is that with
more returns observed, the average should converge to the
expected value.

The benefit of Monte Carlo methods is that they do not
necessarily need a model of the environment, but learn from
the observed experience. In the case of model-free learn-
ing, the action-value function is used for policy estimation
rather than the state-value function. The challenge here is
that by learning only from the interaction with the environ-
ment, we learn only encountered states, and unseen states
remain unknown. To make sure that the agent learns about
new states, every state-action pair has to have a nonzero
chance to be visited. This is a general problem of exploration
versus exploitation in reinforcement learning, and in KB-RL
we employ an �-greedy policy with respect to the current

state-action values to ensure that the exploration will be
maintained. The policy is constructed for each action-state
pair based on the state-action values following the normal
distribution. Then, most of the time the action is taken based
on the constructed policy; however, with probability � the
action is instead selected at random. Section “Rules in Our
KB-RL System” gives a detailed description of policy con-
struction on the example of the FreeCiv game.

To summarize, the KB-RL approach employs the on-pol-
icy model-free Monte Carlo method for conflict resolution,
averaging over the state-action values and using an �-greedy
policy that is maximized on each iteration with regard to the
action-value function.

Experiment Setup

This section provides the details of applying the KB-RL
method for playing the strategy game FreeCiv.

Game Ontology

As with any other problem to solve in KB-RL, playing
FreeCiv started with outlining the game concepts and their
relationships that would be instanced in the semantic net-
work. In other words, we started by defining an ontology as
a schema for the semantic graph. FreeCiv is an open-source
empire-building strategy game that simulates the history
of human civilization. The main concepts in the game are:
the game itself, players, units, cities and the map. Accord-
ingly, the ontology defined these concepts as Entities of the
respective types. Figure 3 illustrates the ontology developed
for the FreeCiv game. The FreeCiv map was constructed
from the grid of discrete squares named tiles. Therefore,
we introduced to the ontology an Entity of the type Tile,
and the map in the semantic network was represented by
multiple instances of this type with corresponding relation-
ships among them. The attributes of the entity exhibited the
properties of the respective concept.

Connector and Action Handler

The purpose of the connector was to recreate a problem
environment in the KB-RL semantic graph database and to
keep it up-to-date throughout the game. FreeCiv is a turn-
based game; thus, all changes in the game happen on the
round basis.1 The client application saves the state of the
game automatically to a dedicated file on each turn. This file
holds the full information on the game for a given player in

1 Except the unit moves that have to be handled on the notification
basis.

 SN Computer Science (2020) 1:7878 Page 8 of 16

SN Computer Science

a given turn. Therefore, the auto-saved files were a perfect
source for us to recreate the game state in the graph data-
base. The auto-saved file is a text file that follows a specific
structure encoding the characteristics of the game and their
values. The connector monitored the game and, on the crea-
tion of a new auto-saved file, parsed it and saved the changes
to the graph database using the REST API. In this manner,
the game environment was available to the inference engine
to process the task of playing the FreeCiv game. For the sake
of fairness, we used only client auto-saved files, as it would
be the same for a human player. The universal information
about the game that is saved in the server’s auto-saved files
was unavailable to the agent.

Another service needed for the KB-RL system to play
the game was the action handler that sent the player’s com-
mands to the FreeCiv client. For example, if the rule was
instructing the unit to build a city, the command ‘unit id;
press b’ would be transmitted by the action handler to the
game client (id is the numerical identifier of the unit). In the
case of FreeCiv, the action handler was simply configured to
write the commands to a dedicated local file. As FreeCiv is
an open-source software, we added the function to the client
code that monitored the dedicated file and read the com-
mands as they would have been given by a player through
the dialog form.

Game Configuration

FreeCiv is a highly configurable game, down to the spe-
cific rules. Players can choose between wide range of set-
tings such as scenario, skill level, number of opponents,
a map, nations, etc. We chose to play one of the default
scenarios called Earth (classic/small) that had an 80 × 50
map (4000 tiles) and the ‘normal’ skill level for all players
including AI computer players. We also left the Barbarians

on the ‘normal’ level of difficulty. For the given scenario,
5 different setups with the map of size 80 × 50 and fixed
starting positions were taken to play the games. The reason
for having fixed maps and fixed starting positions rather
than random ones was to enforce specific characteristics of
the gameplay. Even though FreeCiv offers the game con-
figuration with a random start, after careful consideration,
we decided to keep the maps and starting positions fixed.
We played several games with random starts and con-
cluded that, due to the randomness, the games were very
asymmetric for the different KB-RL agents with different
knowledge bases. Therefore, it was very hard to separate
the game conditions from the objective evaluation of the
knowledge base performance when analyzing the game
results. The fixed starting positions were defined by the
nation of each player. The 5 setups were as follows:

Default a map with a predesigned classic topology that
mimics the Earth (Fig. 4a). This map was played by 4
players: two KB-RL agents and 2 embedded AI players.
The KB-RL agents played for the Roman and Hunnic
nations, while the embedded AI played for Aztec and
Zulu. On this map, both KB-RL players were within a
relatively short distance of each other, not separated by
the ocean. Therefore, the players would establish the
contact with each other early and could exchange the
technologies and be engaged in the trade. Good rela-
tionships potentially encouraged collaboration in the
Space Colonization race. Thus, the diplomacy was a
critical aspect here.
USA the same as default map except the nations for
KB-RL agents were American and Russian, and there
were 4 embedded AI players: Brazilian, Chinese, Arab,
and German. In this setup, the KB-RL players were very
remote from each other, yet in close distance with the

Fig. 3 Ontology of the FreeCiv
game as the representation
of the game model for the
semantic network within our
KB-RL system. For the sake of
simplicity, the properties lists
are not exhaustive, but rather
illustrative

SN Computer Science (2020) 1:78 Page 9 of 16 78

SN Computer Science

embedded AI players. The closeness of embedded AI
players demanded early investment in the defense and
military with no opportunity to ally with the other KB-RL
agent until the sea exploration was developed. Such con-
ditions forced the KB-RL players to follow other deci-
sions than in the default setup. Diplomacy was not as
relevant as before.
Small Islands the same map as in default, except the
nations for KB-RL agents were British and Japanese, and
3 computer players were Maori, Cuban and Malagasy.
All nations had to start on the very small islands with the
land limited to a maximum of 2 cities. That implied the
urgency for the sea exploration to access the big land.
The focus on production was unavoidable as settlement
expansion was not possible. Being out of reach for the
opponents conveyed a peaceful start.
Medium Islands the map of 80 × 50 tiles was customized
to create several medium-size islands instead of Earth-
like continents (Fig. 4b). The nations for KB-RL agents
were Bahamian and Jamaican, and for the embedded AI
they were ‘Antiguan and Barbudan’ and ‘Trinidadian and
Tobagonian’. The agents had a largely peaceful time to
begin the civilization. The size of the islands allowed
them to have a comfortable number of cities to build a
strong nation and to be well protected from the enemies.
However, further expansion was challenging. This map
offered a choice for the players in the second phase of
the game: develop a limited number of powerful highly
populated cities or go overseas and build many small cit-
ies capturing more territory.
Chaos a customized map with two huge islands and
only two KB-RL players without any embedded AI
players (Fig. 4c). This map offered the players marginal
land to settle, however, with relatively poor resources.
The remoteness of the islands left the players isolated
for a long time before they would discover each other.
The absence of computer players allowed the players to
focus on the economical development and prosperity of
the nation, encouraging space colonization in favor of
warfare.

Overall, we aimed to configure the maps for encouraging the
peaceful win and collaboration between the players rather
than hostility. The maps and details of the discussed setups
can be examined on the published online game replays [55].

Knowledge Engineering

After the semantic network was modeled (ontology), and the
communication between the FreeCiv client and the KB-RL
agent was set up (connector and action handler), the next
step was to engineer the knowledge. At first, we encoded
the game’s essential knowledge, such as starting the game,
finishing the turn, exploring the land, building and defending
cities, producing units, making buildings and wonders and
building a spaceship. These knowledge rules did not contain
any strategic decisions for playing the game, but rather the
game basics. We refer to this knowledge base as the common
knowledge base.

As our next step, we invited experienced players to share
their game know-how and to teach us their strategies. The
protocol analysis method was used in collaboration with
the expert players to acquire their knowledge. The experts
were asked to play the game and think aloud while doing
so. The knowledge engineer was following the game over
the shared video stream and could ask the player to com-
ment and explain any aspect of the play. After the game was
finished, the knowledge engineer had notes on the player’s
strategy written down and the history of the game in the
form of the auto-saved files, so the game could be reviewed
at any later time. We asked each player to play 2 games on
the map of the default setup for 2 different nations that were
planned for KB-RL agents.

Overall, we approached 18 people for their expertise in
playing FreeCiv. After observing them play, we chose 11
players who showed strong gameplay and confidently won
the game against the embedded AI. Their knowledge regard-
ing game strategy was encoded in the additional rule sub-
sets for each player, respectively. Joined with the common
knowledge base, expert subsets created 11 different expert

Fig. 4 Map topology used in the game setups. a Map topology for default, small islands and USA setups; b map topology for chaos setup; c map
topology for medium islands setup. The color marks the terrain type of the tile

 SN Computer Science (2020) 1:7878 Page 10 of 16

SN Computer Science

knowledge bases, for each player’s strategy correspondingly.
We call them expert KI sets. In general, the strategies dif-
fered greatly in such leading decisions as winning by space
colonization or by taking over other nations, peaceful or
combative behavior, democracy or dictatorship, research
or production, and control over population among others.
Accordingly, the expert knowledge rules encoded such
macro-decisions.

The number of rules in the knowledge base grew gradu-
ally throughout the project. The first KB-RL agent that com-
pleted the game (despite losing), operated on the knowl-
edge base of around 250 KIs. As the project progressed,
the knowledge engineers were continually adding new KIs
to the knowledge base. By the time the expert KI sets were
implemented, the common knowledge base contained 440
rules. Meanwhile, each expert KI set had various numbers
of knowledge items to cover the expert knowledge. Table 1
shows the number of KIs for expert KI sets. It has to be
noted that the number of rules in the knowledge base is
rather indicative. It can be compared to the lines of code
(LOC) metric for software development in the respect that
LOC is considered by many to be a very inaccurate metric.
For instance, refer to [56]. For the same reason, the reader
must keep in mind that the number of KIs can only be an
approximate estimation of the knowledge base complexity
and human effort.

Tournament Phase

Having 11 expert knowledge bases, we engaged them in
combat against each other. In total, there were 550 games
played. Each game was played by two KB-RL agents pro-
vided with two different expert knowledge bases. Each KI
set was used in 100 games: 2 games against each of the
10 opponent KI sets on 5 of the maps; these 2 games were

played for each of the 2 nations as described in Sect. “Ontol-
ogy”. For example, Alex KI set played once for the Romans
and once for the Hunnic on the default map against 10 other
KI sets—20 games in total. The same was true for 4 other
setups that together constituted 100 games. After the tourna-
ment, we had collected the records of 1100 games played by
KB-RL agent (two clients in each of the 550 games).

The tournament stage of the project provided us with the
evaluation of the performance for the created expert knowl-
edge bases. It showed that all of them were strong play-
ers winning against computer players. It also demonstrated
that the game could be successfully played with different
strategies. Our next concern was to combine the knowledge
of all experts into one multi-expert knowledge base and let
reinforcement learning support the conflict resolution in the
inference process.

Reinforcement Learning for Conflict Resolution

The FreeCiv’s state space for the RL algorithm needed
special consideration. The excessive state space is often a
challenge for AI problems such as playing strategy games.
For example, the chosen FreeCiv configuration has 4000
(80 × 50) board positions, where each position can have
dozens of states. Each tile has a terrain type, can have an
improvement like a road, or rail, or irrigation, or special
resource; city can be built there, or units can stay on it. The
city can have a set of buildings and wonders. The tile can
produce different amounts of resources of different types
depending on the current government and rates. This list
is not exhaustive, but the example illustrates how difficult
it would be to account for all possible permutations of the
map grid in the FreeCiv game as its state space. A common
practice in playing complex games is adoption of a state
reduction technique in order to scale the state space to a
manageable number of states [57]. In our KB-RL approach,
we applied clustering to segment the game’s state space into
a finite number of clusters.

The clustering dataset was created based on 1100 game
replays from the tournament phase with the selected game
features. We started with the analysis of the game features
and their correlation with the won/lost outcome of the
games. Features that showed the strongest relationships
between their values and the result of the game were added
to the dataset. Overall, 33 features were selected: game
score; population size; rates for tax, luxury, and science;
amount of generated resources per turn such as gold, produc-
tion, science; accumulated natural resources such as gold,
production, science; number of explored, owned and owned
by enemy tiles; number of ocean tiles; sum of defense and
attack points for all the units; diplomacy state; number of
players; maximum, minimum and average of the number of
cities in the dataset; maximum, minimum and average of the

Table 1 The number of rules in
expert KI sets

The expert KI sets are named by
the human player usernames

Expert KI set Number
of rules

Sentry 486
Alex 606
Bernhard Niessl 605
Tatamo 724
Martin Kirsch 613
Mirex 615
Magnus Wuttke 604
Bitsquid 523
Jasper 577
Suomi 755
Lemurman 684

SN Computer Science (2020) 1:78 Page 11 of 16 78

SN Computer Science

game score throughout the dataset; maximum, minimum and
average of the number of learned technologies in the dataset;
nation; government type; number of learned global tech-
nologies; number of learned technologies by given player;
and learned technologies. Weights were applied to the fea-
ture vector based on how strong the correlation between
the feature values and the won/lost output was. Essentially,
the game score, population size and the number of learned
technologies (both global and national) were weighted the
highest, while the type of learned technologies influenced
the winning/losing rate the least, and was therefore weighted
lowest. Other features received moderate weights to achieve
the best clustering accuracy. The collected dataset had
386,895 entries.

The k-means algorithm was used to conduct the cluster-
ing on the normalized dataset. Particularly Lloyd’s algo-
rithm with a maximum of 300 iterations was applied, and
185 clusters were defined as a result of experimenting with
various possible numbers of clusters. A total of 185 clusters
represented the generalized game states with respect to the
feature parameters, and they composed the state space for
the FreeCiv game in KB-RL. To map the game situation
to the cluster during the gameplay, the feature vector was
constructed from the current parameters and the distance to
the cluster centers was calculated for every turn. The closest
cluster (minimal distance) was assigned as the game state in
the current turn. From now on, when using the term ‘state,’
we will refer to the cluster that was assigned to the game in
the given turn.

Usually, the game remained in one cluster for more than
one turn. We defined the cluster turn as the mean of all turns
that were assigned to the given cluster. Thus, if the game had
been in the cluster C in all turns from a to b, the cluster turn
was then TC =

∑b

i=a
i∕(b − a + 1) . For instance, if the game

had been in the cluster C in turns from 7 to 19, then TC = 13 .
Across multiple games, the cluster turn was averaged again,
so during training every cluster was given a number, referred
as cluster turn, indicating the mean turn for the game to be
in this state. The cluster turn was used to determine the state
return with respect to the defined goal.

Foremost, for learning the optimal behavior the RL
needed an outlined goal in regard to its state in the envi-
ronment. In the FreeCiv game, it is not enough to just win
the game, but the winner has to race with other players to
accomplish the game before other opponents. Intuitively, the
players seek to minimize the number of rounds it takes to
win the game, making shorter play time an indication of the
player’s proficiency and competence. The same conclusion
was drawn from the analysis of 1100 games derived from the
tournament phase. The longer it took for the player to learn
technologies, build a spacecraft and reach Alpha Centauri,
the less likely that the game was won. Therefore, the reward
function for the RL agent was chosen to be based on the

number of turns the game lasted, with the objective of mini-
mizing the game rounds to win. The defined reward function
returned − 1 for each turn played in the game, and we did not
discount the return. Consequently, for each winning episode,
its return was defined as G = −N , where N is the last turn
of the game. Starting from state s, the return for the state
was defined as Gs = −(N − t) , where t is the cluster turn of
the state s. In essence, Gs indicated the expected number
of turns that the agent would need from the current state to
finish the game. According to the Monte Carlo method, the
state-action function for the given policy was then derived
from averaging the sampled returns for the given state-action
pairs.

There are two possible outcomes for the agent: winning or
losing. If the game was won, the return was defined as dis-
cussed above. If the game was lost, however, the return had
to indicate that the result of the episode was not desired. For
the lost games, we also distinguished between the way they
were lost: either the opponent reached Alpha Centauri first,
or the player’s nation was destroyed in war. We preferred
to teach the agent a peaceful course of the game. Losing in
space colonization was punished less than being destroyed
because it was interpreted as the player being sufficiently
strong to withstand the opponents’ attacks and only lack-
ing the time to reach the remote star. Therefore, for the first
case, the episode’s return was given as G = −N ∗ 2 , while
for the later, the return was set as G = 1000 − N (the earlier
the player was destroyed, the lower was the return). For the
state s, the return was calculated as Gs = −(N ∗ 2 − t) or
Gs = −(1000 − N + t) , respectively.

The action space for the trained agent was composed of
all the knowledge items of the multi-expert knowledge base,
so that every KI was considered as an action a ∈ A . In every
situation when the inference engine encountered a conflict,
the learned policy was applied to the conflict set and one
selected KI was executed. After every episode, the state-
action values were calculated, and the policy was improved
based on the new values for the next episode.

The RL algorithm for playing the FreeCiv game used
the stochastic policy that followed the normal distribution.
Normal distribution is defined by two parameters: the mean
�(s) and the standard deviation �(s) . The parameters � and
� were constructed after each episode for each state-action
pair based on the state-action values and the expected return
of the given state.

Firstly, for every cluster the state-action values were
scaled between 0 and 1 following min–max normalization.
The normalized state-action values were then taken as the
mean �a

s
 parameter for the action a in the state s. The stand-

ard deviation �a
s
 was calculated as in Eq. 1

 SN Computer Science (2020) 1:7878 Page 12 of 16

SN Computer Science

where Gs is the return of the specific cluster s in which the
action a occurred and Gs is the expected return of the cluster
s.

While the parameters � and � were calculated for every
state-action pair after each episode, the probabilities for
choosing action a in state s were calculated at the time
when the inference engine encountered a conflict and the
conflict set underwent resolution. Then, the probabilities
were calculated for each action of the conflict set, and the
action was selected according to these probabilities. The
probabilities were calculated as follows. The probability
density function for each KI of the conflict set had been
drawn with the parameters �a

s
 and �a

s
 , where a is a KI and s

is the cluster. The highest value of � (�max) and the standard
deviation of this action (�max) were taken to form a limit
L = �max − �max . The probabilities were then acquired as
the normalized areas under the curve on the right from the
limit L line. Figure 5 illustrates this algorithm in the case of
three KIs in the conflict set. While � indicated that for the
higher values there would be a better outcome for the given
action, the parameter � can be interpreted as a confidence
in the acquired state-action values. The more times action a
was tried, the closer � was to the value � . The closer � was
to � , the more separated the bell curves were for the actions,
and consequently, a higher probability was given to the best
action, and smaller probabilities remained for other actions,
as shown in Fig. 6.

(1)�a
s
=

�∑
(Gs − Gs)

2

na

We ran the training algorithm for 600 episodes. One
full game lasted approximately 8–12 h, therefore present-
ing a challenge to run extra episodes. During the training
phase, the game was set up with 4 players where one was
a KB-RL agent with the multi-expert knowledge base,
one KB-RL agent was taken either with the multi-expert
knowledge base or with one of the expert knowledge bases,
and 2 embedded AI players. The training phase was termi-
nated after 600 games, and we set the trained agent to play
against each expert knowledge base to explore the result.

Fig. 5 The probabilities for the
KIs (actions) of the conflict
set derived as an area under
the curve on the right to the
limit line L. The KI 1 has the
highest action-value; thus, �
and � parameters calculated for
KI 1 are taken to form the limit
L = �max − �max

Fig. 6 The probabilities later in the training. As it can be seen from
the picture, the probability of the KI 1 increased significantly as a
result of more experience and high return. On the contrary, the prob-
ability for the KI 3 diminished due to low return

SN Computer Science (2020) 1:78 Page 13 of 16 78

SN Computer Science

The trained agent played 2 games in each of the 5 setups
against each expert knowledge base as it was arranged
in the tournament phase discussed above. The next sec-
tion discusses the results of this contest and of the overall
experiment.

Results

The described experiment shows that the KB-RL approach
can be successfully applied to solve complex tasks such
as playing a strategy game, particularly FreeCiv. At first,
with limited and imperfect knowledge, and without rein-
forcement learning, the agent was able to finish all games,
though mostly lost. Such an agent can be compared to a
human player at the beginner level. Its knowledge was elic-
ited from our team members who are software engineers
rather than well-experienced players. Without sophisti-
cated strategic decisions inserted, the results of playing
with the common knowledge base were poor.

Next, by adding expert knowledge to the common
knowledge base, the solution was extended to 11 differ-
ent solutions, where each of them represented a particular
strategy of a human player. These solutions demonstrated
significantly stronger play in contrast to the agent with the
common knowledge base. Each of the expert knowledge
bases could already win against embedded AI players in

the majority of the games. Figure 7 (all players except
the trained agent) shows the results table of the combat
between expert knowledge bases. There was only one
game (Martin versus Alex DrKaffee in the USA setup)
won by the computer player, while the rest of the games
were won by one of the KB-RL agents equipped with the
particular expert knowledge base.

While the above results were achieved with just the knowl-
edge-based approach, the main result of the discussed KB-RL
method derives from reinforcement learning. Reinforcement
learning was deployed as a conflict resolution strategy to be
able to combine the knowledge of multiple experts in one
knowledge base. In alignment with the outlined goal, the
KB-RL system learned to win the game, on average, in fewer
turns compared to the agents with the expert knowledge bases.
As seen in Fig. 8, the trained agent needed on average 287
turns to win, while for the expert knowledge bases the best
average number of turns was 291 for the Tatamo expert knowl-
edge base. This advantage allowed the trained agent to win
every game played against expert knowledge bases as shown
in Fig. 7.

The dominance of the trained agent in respect of the expert
knowledge bases can also be seen in other aspects of the game,
such as the amount of generated resources and the game score
(Figs. 9, 10).

Analyzing the results of the trained agent in contrast to the
expert agents, it was found that the trained agent picked up the
fragments from different expert knowledge bases to make up
its own strategy. For instance, the Tatamo agent kept the num-
ber of cities strictly under 10 to maintain control over the citi-
zens. The Suomi agent had a rule to stop building cities after
the first 30–40 cities, while other agents did not control the
number of cities. The trained agent combined the control of the
city number into a new strategy: in the first phase of the game,
the agent followed Tatamo strategy and had 11 cities; how-
ever, later it switched to the Suomi strategy and increased the
number of cities to above 30 and again changed its strategy to

Fig. 7 The result table for the tournament between expert rule sets
and the trained agent. The expert rule sets are named by the username
of the human player whose strategy was encoded in the particular rule
set. Each cell has to be read as follows. The player in the row label
played 10 games against the player in the column label. The number
shows the difference in the number of wins for the player given in
a row label. For example, Alex DrKaffee played against Bernhard
Niessl. Alex DrKaffee won 3 games, while Bernhard Niessl won 7
games. Alex DrKaffee’ advantage is − 4, while Bernhard Niessl holds
the advantage 4. The table is almost symmetrical except the results
for Martin versus Alex DrKaffee: one of their games was lost by both
KB-RL agents

Fig. 8 Average number of turns that the agents needed to win the
game. The results are calculated for the games played in the tourna-
ment

 SN Computer Science (2020) 1:7878 Page 14 of 16

SN Computer Science

Fig. 9 Summed final scores for
the agents of the tournament.
As all agents played the same
number of games, the averaged
final score would reveal the
same trend

Fig. 10 Generated natural
resources over the full game for
the agents of the tournament.
As all agents played the same
number of games, the aver-
aged numbers for the generated
natural resources would reveal
the same trend

Fig. 11 Number of cities for the
trained agent and the expert rule
sets on the example of single
games. The picture illustrates
how the trained agent adopts the
strategies of different experts in
one game

Fig. 12 The population rate for
the trained agent and the expert
agents that corresponds to the
data in Fig. 11. The trained
agent was able to grow the
population above other expert
players

SN Computer Science (2020) 1:78 Page 15 of 16 78

SN Computer Science

unrestricted settling in the final stage of the game. Figures 11
and 12 illustrate the given pattern on the exemplified games.

Discussion

This paper describes the KB-RL approach as a knowledge-
based method combined with reinforcement learning in
order to deliver a system that leverages the knowledge of
multiple experts, and learns to optimize the problem solu-
tion with respect to the defined goal. RL is employed as a
conflict resolution strategy for the multi-expert knowledge
base with excessive knowledge for a particular problem
solution. The method is demonstrated by the example of
playing a complex strategy game such as FreeCiv. The
knowledge and skills of several game experts were com-
bined into one knowledge base and set up to play incre-
mentally, learning to win the game in the minimal number
of turns. The results show that RL can improve the perfor-
mance of the agent by learning to recombine the elements
of single strategies into a new solution stimulated by the
outlined objective.

The proposed approach leaves much room for future work
and further research. Overall, the described experiment sup-
ports the idea of bringing together different AI approaches
for more intelligent and better automated systems that can
utilize human knowledge and learn from its own experience
in complex problem solving.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

 Ethical approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards.
This article does not contain any studies with animals performed by
any of the authors.

References

 1. Abdullah MS, Kimble C, Benest I, Paige R. Knowledge-based
systems: a re-evaluation. J Knowl Manag. 2006;10(3):127–42.
https ://doi.org/10.1108/13673 27061 06709 02.

 2. Oravec JA. Expert systems and knowledge-based engineering
(1984–1991). Int J Des Learn. 2014;7:11. https ://doi.org/10.14434
/ijdl.v5i2.12891 .

 3. Avram G. Empirical study on knowledge based systems. Electron
J Inf Syst Eval. 2005;8:11–20.

 4. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A,
Lanctot M, Sifre L, Kumaran D, Graepel T, Lillicrap T. Mastering

chess and shogi by self-play with a general reinforcement learning
algorithm. CoRR. 2017. arXiv :abs/1712.01815 .

 5. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wier-
stra D, Riedmiller M. Playing atari with deep reinforcement learn-
ing. 2013. ArXiv, arXiv :abs/1312.5602.

 6. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V,
Lanctot M, Dieleman S. Mastering the game of go with deep
neural networks and tree search. Nature. 2016;529:484–9.

 7. AlphaStar: Mastering the real-time strategy game StarCraft II.
https ://deepm ind.com/blog/alpha star-maste ring-real-time-strat
egy-game-starc raft-ii/. Accessed 21 July 2019.

 8. Jones J, Goel AK. Metareasoning for adaptation of classification
knowledge. In: AAMAS. 2009.

 9. Jones J, Parnin C, Sinharoy A, Rugaber S, Goel AK. Adapting
game-playing agents to game requirements. In: Proceedings of
fifth AAAI conference on artificial intelligence and interactive
digital entertainment (AIIDE-09). 2009. p. 148–153.

 10. Jones J, Goel A. Knowledge organization and structural credit
assignment. In: Proceedings IJCAI-05 workshop on reasoning,
representation and learning in computer games. Edinburgh;
2005.

 11. Ulam P, Goel A, Jones J, Murdock W. Using model-based
reflection to guide reinforcement learning. In: Fourth AAAI
conference on AI in interactive digital entertainment. 2008.

 12. Hinrichs T, Forbus K. Toward higher-order qualitative repre-
sentations. In: Proceedings of QR 2012. 2012.

 13. Hinrichs Thomas R, Forbus Kenneth D. Analogical learning in
a turn-based strategy game. IJCAI international joint conference
on artificial intelligence. 2007. p. 853–858.

 14. Arnold F, Horvat B, Sacks A. Freeciv learner: a machine learn-
ing project utilizing genetic algorithms, Interim Report, The
University of Auckland, Game AI Group, 2005.

 15. Arnold F, Horvat B, Sacks A. Freeciv learner: a machine learn-
ing project utilizing genetic algorithms. Georgia Institute of
Technology, Atlanta, 2004.

 16. Branavan SRK, Silver D, Barzilay R. Learning to win by reading
manuals in a Monte-Carlo framework. CoRR. arXiv :1401.5390
(2014).

 17. Molineaux M, Aha DW, Ponsen MJV. Defeating novel oppo-
nents in a real-time strategy game. In: ICCBR. 2012.

 18. Aha DW, Molineaux M, Ponsen M. Learning to win: case-based
plan selection in a real-time strategy game. In: Proceedings
of the 6th international conference on case-based reasoning
research and development, ICCBR’05. Berlin: Springer; 2015.
p. 5–20.

 19. Speel PH, Schreiber AT, Van Joolingen W, Van Heijst G, Bei-
jer GJ. Conceptualmodels for knowledge-based systems, Ency-
clopedia of Computer Science and Technology. New York, NY:
MarcelDekker Inc.; 2001.

 20. Lucas P. Expert systems. In: Kok JN, editor. Encyclopedia of
life support systems (EOLSS). Paris: Eolss Publishers; 2009. p.
328–356.

 21. Curtis G, Cobham DP. Business information systems: analysis,
design, and practice. Financial timesUpper Saddle River: Prentice
Hall; 2002.

 22. Lehmann F. Semantic networks. Comput Math Appl.
1992;23(2–5):1–50.

 23. Sowa JF. Semantic networks. In: Nadel L, editor. Encyclopedia of
cognitive science. Hoboken: Wiley; 2006.

 24. Gruber TR. A translation approach to portable ontology specifica-
tions. Knowl Acquis. 1993;5:199–220.

 25. Ehrlinger L, Wöß W. Towards a definition of knowledge graphs.
In: SEMANTiCS (Posters, Demos, SuCCESS). 2016.

 26. Guarino N, Giaretta P. Ontologies and knowledge bases: towards
a terminological clarification. In: Towards very large knowledge

https://doi.org/10.1108/13673270610670902
https://doi.org/10.14434/ijdl.v5i2.12891
https://doi.org/10.14434/ijdl.v5i2.12891
http://arxiv.org/abs/abs/1712.01815
http://arxiv.org/abs/abs/1312.5602
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
http://arxiv.org/abs/1401.5390

 SN Computer Science (2020) 1:7878 Page 16 of 16

SN Computer Science

bases: knowledge building and knowledge sharing. IOS Press;
1995. p. 25–32.

 27. Noy NF, Mcguinness DL. Ontology development 101: a guide to
creating your first ontology. Technical report, 2001.

 28. Davies J, Duke A, Sure Y. Ontoshare: an ontology-based knowl-
edge sharing system for virtual communities of practice. J Univers
Comput Sci. 2004;10(3):262–83.

 29. RDF 1.1 concepts and abstract syntax, 2014. https ://www.w3.org/
TR/2014/REC-rdf11 -conce pts-20140 225/. Visited on 05 Aug
2019.

 30. RDF 1.1 Turtle, 2014. https ://www.w3.org/TR/2014/REC-turtl
e-20140 225/. Visited on 05 Aug 2019.

 31. Open graph of IT ontology. https ://githu b.com/arago /OGIT/wiki.
Visited on 05 Aug 2019.

 32. Akerkar R, Sajja P. Knowledge-based systems. 1st ed. Burlington:
Jones and Bartlett Publishers Inc; 2009.

 33. Douven I. Abduction. In: Zalta EN, editor. The Stanford encyclo-
pedia of philosophy, summer 2017 edition. Metaphysics Research
Lab, Stanford University; 2017.

 34. Shadbolt NR. Eliciting expertise. In: Wilson JR, Corlett NE, edi-
tors. Evaluation of human work. Abingdon: Taylor and Francis
Ltd; 2005.

 35. O’Leary D. Knowledge acquisition from multiple experts: an
empirical study. Manag Sci. 1998;44:1049–58. https ://doi.
org/10.1287/mnsc.44.8.1049.

 36. Hamilton DM, Breslawski S. Knowledge acquisition for multiple
site, related domain expert systems: Delphi process and applica-
tion. Expert Syst Appl. 1996;11:377–89. https ://doi.org/10.1016/
S0957 -4174(96)00052 -8.

 37. Easterbrook S. Handling conflict between domain descriptions
with computer-supported negotiation. Knowl Acquis. 1991;3:255–
89. https ://doi.org/10.1016/1042-8143(91)90007 -A.

 38. Mittal S, Dym CL. Knowledge acquisition from multiple experts.
AI Mag. 1985;6(2):32–6.

 39. Shaw MLG, Gaines B. Comparing conceptual structures: con-
sensus, conflict, correspondence and contrast. Knowl Acquis.
2000;1:341–63. https ://doi.org/10.1016/S1042 -8143(89)80010 -X.

 40. Khalil KM, Abdel-Aziz M, Nazmy TT, Salem ABM. Intelligent
techniques for resolving conflicts of knowledge in multi-agent
decision support systems. 2014. ArXiv, arXiv :abs/1401.4381.

 41. Pakiarajah V, Crowther P, Hartnett J. Conflict resolution tech-
niques for expert systems used to classify remotely sensed satel-
lite images. 2000. http://www.geoco mputa tion.org/2000/GC025 /
Gc025 .htm. Accessed 3 Aug 2019.

 42. Clark P. Representing knowledge as arguments: applying expert
system technology to judgemental problem-solving. Res Dev
Expert Syst VII. 1990;3:147–59.

 43. Cyras K, Oliveira T. Resolving conflicts in clinical guidelines
using argumentation. In: Proceedings of the 18th international
conference on autonomous agents and multiagent systems,

AAMAS ’19. Richland: International Foundation for Autonomous
Agents and Multiagent Systems; 2019. p. 1731–1739.

 44. Dieng R, Giboin A, Tourtier P-A, Corby O. Knowledge acquisi-
tion for explainable, multi-expert, knowledge-based design sys-
tems. In: EKAW. 1992. p. 298–317. https ://doi.org/10.1007/3-
540-55546 -3_47.

 45. Mateu AV, i Reventós VT. Knowledge acquisition from multiple
experts. 2004.

 46. Léger B, Naud O. Experimenting statecharts for multiple
experts knowledge elicitation in agriculture. Expert Syst Appl.
2009;36(8):11296–303.

 47. Menzies T. Expert systems inference = modeling conflicts. In:
Proceedings of the ECAI ’96 workshop on modelling conflicts in
AI. 1996.

 48. Ahn BS. Conflict resolution in a knowledge-based system
using multiple attribute decision-making. Expert Syst Appl.
2009;36(9):11552–8.

 49. Kaikova H, Terziyan V. Temporal knowledge acquisition from
multiple experts. In: Proceedings of NGITS’97, Neve Ilan, June
30 - July 3. 1997. p. 44–55.

 50. Puuronen S, Terziyan VY. Knowledge acquisition from multiple
experts based on semantics of concepts. In: Proceedings of the
11th European workshop on knowledge acquisition, modeling and
management, EKAW ’99. London: Springer; 1999. p. 259–273.

 51. Glavic M. Agents and multi-agent systems: a short introduction
for power engineers. Tech. rep., University of Liege Electrical
Engineering and Computer Science Department, 2006.

 52. Newheiser M. Playing fair: a look at competition in gaming. 2009.
http://stran gehor izons .com/non-ficti on/artic les/playi ng-fair-a-
look-at-compe titio n-in-gamin g/. Accessed 29 Aug 2019.

 53. Sutton RS, Barto AG. Reinforcement learning: an introduction.
2nd ed. Cambridge: MIT Press; 2018.

 54. Chou P-W. The beta policy for continuous control reinforcement
learning. Master’s thesis. Pittsburgh: Carnegie Mellon University;
2017.

 55. Voss V, Nechepurenko L. FreeCiv games played by knowledge-
based reinforcement learning. 2019. https ://doi.org/10.5281/zenod
o.32666 24.

 56. Jones C. Software metrics: good, bad and missing. Computer.
1994;27:98–100. https ://doi.org/10.1109/2.31205 5.

 57. Sykora O. State-space dimensionality reduction in Markov deci-
sion processes. In: Proceedings of contributed papers, WDS’08.
2008. p. 165–170.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://github.com/arago/OGIT/wiki
https://doi.org/10.1287/mnsc.44.8.1049
https://doi.org/10.1287/mnsc.44.8.1049
https://doi.org/10.1016/S0957-4174(96)00052-8
https://doi.org/10.1016/S0957-4174(96)00052-8
https://doi.org/10.1016/1042-8143(91)90007-A
https://doi.org/10.1016/S1042-8143(89)80010-X
http://arxiv.org/abs/abs/1401.4381
http://www.geocomputation.org/2000/GC025/Gc025.htm
http://www.geocomputation.org/2000/GC025/Gc025.htm
https://doi.org/10.1007/3-540-55546-3_47
https://doi.org/10.1007/3-540-55546-3_47
http://strangehorizons.com/non-fiction/articles/playing-fair-a-look-at-competition-in-gaming/
http://strangehorizons.com/non-fiction/articles/playing-fair-a-look-at-competition-in-gaming/
https://doi.org/10.5281/zenodo.3266624
https://doi.org/10.5281/zenodo.3266624
https://doi.org/10.1109/2.312055

	Playing a Strategy Game with Knowledge-Based Reinforcement Learning
	Abstract
	Introduction
	Related Work
	KB-RL Method
	Knowledge-Based System
	Knowledge Base
	Ontology
	Inference in KB-RL
	Issue Entity
	Rules in Our KB-RL System
	Connector
	Action Handler
	Multi-expert Knowledge Acquisition
	Conflict Resolution
	Reinforcement Learning
	Monte Carlo Methods

	Experiment Setup
	Game Ontology
	Connector and Action Handler
	Game Configuration
	Knowledge Engineering
	Tournament Phase
	Reinforcement Learning for Conflict Resolution

	Results
	Discussion
	References

