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Abstract
In this work, a fuzzy method for dynamic adjustment of parameters in galactic swarm optimization is presented. Galactic 
swarm optimization is based on the movement of stars and galaxies in the universe, as well as their attractive influence 
allowing the use of multiple cycles of exploration and exploitation to solve complex optimization problems. It has been 
observed in the literature that the utilization of fuzzy systems for dynamic adjustment of parameters in metaheuristic algo-
rithms produces good results when compared to using fixed parameters in the algorithms. In this work, the adjustment of 
the c3 and c4 parameters is made through the use of fuzzy systems because these parameters have a significant role in the 
operation of galactic swarm optimization. We tested the fuzzy approach with a set of benchmark mathematical functions 
and with the fuzzy controller of the water tank problem to measure the performance. Finally, a comparison of the results is 
presented among the proposed method and other metaheuristics.

Keywords Fuzzy method · Galactic swarm optimization · Mathematical functions · Adjustment of parameters · Fuzzy 
controller

Introduction

Optimization techniques that can produce solid performance 
in high-dimensional and multimodal functions have been of 
great interest to researchers. It is known that the classic search 
methods usually get stuck in local minima and do not behave 
well when faced with a high number of dimensions, such as 
particle swarm optimization (PSO), ant colony optimization 
(ACO), genetic algorithm (GA), among others [1–4].

Swarm intelligence originated from the study of colonies, 
swarms or flocks of social organisms and the study of the 
behavior of individuals in this type of groupings impelled 
the design of very efficient metaheuristic optimization 
algorithms [5, 6]. For example, the study of the flocks of 
birds helped the design of the particle swarm optimization 

algorithm and the study of the colonies of different group-
ings of organism gave origin to the bee colony algorithm and 
the ant colony optimization, among other existing optimiza-
tion algorithms that base their performance on the behavior 
of groupings of organisms [7–11].

Fuzzy logic and fuzzy sets were initially proposed by 
Zadeh [12]. Based on these concepts, fuzzy systems are 
built with if–then rules constructed through knowledge and 
heuristics that are based on human knowledge [13].

In fuzzy sets, each element can belong to a set with a 
degree of certainty, and fuzzy logic allows us to reason with 
inaccurate or uncertain facts to infer from them new facts with 
a degree of certainty associated with each particular event. 
This allows us to model the facts as they occur in real life [14].

Galactic swarm optimization proposed by Muthiah-
Nakarajan and Noel has shown to behave well when fac-
ing multimodal problems as well with a high number of 
dimensions, since it presents multiple cycles of exploration 
and exploitation, and this increases the chances of obtaining 
better solutions and not getting stuck in local minima [1, 2].

Galactic swarm optimization is based on the movement 
of stars and galaxies in the universe as well as their attrac-
tive influence, and the initial population is divided into sub-
populations where each solution is attracted towards the best 
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solutions within each subpopulation thus achieving a better 
exploration of the possible solutions giving rise to the pos-
sibility of solving more complex optimization problems [2].

Galactic swarm optimization (GSO) is described in its 
original form to appreciate which are the necessary equa-
tions to perform its operation and determine the parameters 
that we can adapt to achieve a better behavior of the galac-
tic swarm optimization. The study of galactic swarm opti-
mization performance is made to show the efficacy of the 
GSO algorithm to solve optimization problems, taking the 
original GSO as a basis for the modification of the galactic 
swarm optimization with dynamic adjustment of param-
eters. Normally to use the adaptation of parameters during 
execution of metaheuristic algorithms helps to obtain better 
results than when using fixed parameters [15–17].

The main contribution of this work is the use of fuzzy 
logic and fuzzy systems to help the galactic swarm optimi-
zation to automatically make the adjustment of the param-
eters without the need for the user to manually move the 
values of the parameters of the algorithm. In addition, it was 
used for the optimization of the fuzzy controller of the case 
study of the water tank control, expecting to obtain a better 
controller than the one used by traditional control methods.

In this approach, two different fuzzy systems were used 
to perform the dynamic adjustment of the c3 and c4 param-
eters of galactic swarm optimization. The first fuzzy system 
has one input variable and two output variables. The second 
fuzzy system has two input variables and two output vari-
ables. For both fuzzy systems the output variables are the 
c3 and c4 parameters, this with the idea of obtaining better 
results than those obtained when using fixed parameters. In 
the case of the study of the water tank controller, the fuzzy 
controller optimization is performed, dynamically adjusting 
the parameters of the membership functions to obtain differ-
ent and varied fuzzy controllers that can improve the results 
obtained with the original controller.

The paper is organized as follows: in “Basic Concepts”, 
a brief description of the concepts of metaheuristic algo-
rithms, fuzzy logic and fuzzy sets is presented. In “Galactic 
Swarm Optimization”, the galactic swarm optimization is 
described where we can observe the steps and necessary 
equations to carry out its operation. In “Fuzzy Approach in 
Galactic Swarm Optimization”, we can find the proposed 
fuzzy approach to perform the parameter adaptation in 
galactic swarm optimization. In “Mathematical Functions 
and the Benchmark Water Tank Problem for Testing the 
Galactic Swarm Optimization”, we can find the mathemati-
cal functions and the benchmark water tank problem used 
to test the proposed method. “Experiments and Comparison 
of Results” shows the results obtained from the execution 
of the galactic swarm optimization and the fuzzy approach 
to fuzzy galactic swarm optimization (FGSO), in addition 
to a statistical test to be able to confirm that significant 

improvements were obtained and finally “Conclusions” 
describes the conclusions.

Basic Concepts

Metaheuristic Algorithms

Metaheuristic algorithms are usually classified into three 
classes: evolutionary, based on physical laws and swarm 
intelligence. Evolutionary algorithms are inspired by the 
concept of evolution as it occurs in nature [18, 19], and 
one of the most popular evolutionary algorithms is the 
genetic algorithm [20] that emulates the concept of evo-
lution according to the theory of Darwin, which has been 
used in a large number of applications in the areas of engi-
neering, and industry, among others.

Physical-based algorithms try to imitate physical laws 
such as the gravitational force and the electromagnetic 
force, and some of these algorithms are the gravitational 
search algorithm, big bang–big crunch among others. In 
these algorithms, the agents communicate and move in the 
space search according to the rules of physics [21, 22].

Swarm intelligence algorithms imitate the social behavior 
of herds, swarms, and groups of animals in nature, in these 
algorithms the search agents move and communicate using the 
social behavior of some type of animal species [20, 23]. The 
most popular swarm intelligence algorithm is the PSO [24] 
algorithm that is inspired by the behavior of a flock of birds.

Fuzzy Logic and Fuzzy Sets

Fuzzy logic is a branch of artificial intelligence that allows a 
system to analyze information from the real world on a scale 
of values between the false and the true. It supports vague 
concepts and allows the construction of heuristics capable 
of interpreting information difficult to define [15, 25].

Fuzzy logic has the virtue of better adapting to the real 
world and can even understand and function with every 
day or vague expressions such as “it is very hot”, “is very 
high” among some others. The key is that their adaptation 
to natural language is based on quality quantifiers to make 
our inferences. For every fuzzy set, there is a membership 
function associated with each of its elements that indicates 
to what extent the element forms part of that fuzzy set [26].

A fuzzy set is a generalization of the classical sets, the 
main difference lies in that in the theory of classical sets an 
element may or may not belong to a set and in the theory 
of fuzzy sets an element may belong to more than one set 
with different membership degrees. One of the qualities of a 
fuzzy set is the handling of ambiguous information [25, 26].

The application of fuzzy logic is to imitate human 
reasoning in computer programming, where traditional 
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computing can only manipulate strictly dual values, as 
true or false, yes or no, etc. In fuzzy logic, mathematical 
models are used to represent subjective notions, such as 
“high, low” or “cold, hot” for specific values that can be 
manipulated by computers. This paradigm has a special 
variable value with respect to time, since control systems or 
of other types may need feedback in a specific space of time 
since they may need previous data to perform an average 
evaluation of the situation in an earlier period of time [12].

Fuzzy logic is based on heuristic rules of if (anteced-
ent) then (consequent) form to represent knowledge that is 
imprecise and inaccurate in nature. This is achieved using 
linguistic variables that have the ability to express and work 
with observations and measures of uncertainty in addition to 
describing uncertain conditions. Linguistic variables facili-
tate the extraction and storage of knowledge in a simple way. 
In addition to providing a gradual transition of states [13].

Galactic Swarm Optimization

Galactic swarm optimization, proposed by Muthiah-Nakara-
jan and Noel, has shown to behave well when facing mul-
timodal problems and with a high number of dimensions, 
since it presents multiple cycles of exploration and exploita-
tion, which increases the chances of obtaining better solu-
tions and not getting stuck in local minima [1].

The way stars are attracted into a galaxy and a galaxy 
within a group of galaxies is emulated in galactic swarm 
optimization according to two levels of grouping. First, 
the population is divided into subpopulations, in level 1 all 
the subpopulations are attracted towards the best solution 
according to the particle swarm optimization (PSO) algo-
rithm. In level 2 each subpopulation will be represented by 
the best solution found in each subpopulation treating the 
best solutions as a super swarm, and they will move accord-
ing to the PSO algorithm. In this way, all individuals will be 
attracted towards the global best solution [1, 2].

PSO is a swarm intelligence metaheuristic that is based 
on the behavior of birds in nature, where each particle or 
individual has a position and a velocity with which it moves 
through the search space [27, 28]. In the real world the par-
ticles have an amount of inertia that maintains them in the 
direction in which they moved in the same way they have an 
acceleration or change of velocity that depends mainly on 
two characteristics [29, 30]:

1. Each particle is attracted to the best local position it has 
found also known as local best.

2. Each particle is attracted towards the best global position 
found in a set of particles or neighbourhood known as 
the global best.

In Fig. 1 we can find the factors that influence the move-
ment of the particles.

The force with which the particles are moving in each 
of these directions can be adjusted by the cognitive com-
ponent  c1 and the social component  c2 so that when the 
particles move away from the best positions the attraction 
force is greater [31, 32].

In Fig. 2 we observe how a set of randomly initialized 
particles perform their movement in which different fac-
tors influence how to update their position and velocity. 
This figure illustrates how the particles will move in par-
ticular space for a given problem.

In galactic swarm optimization, a set X represents a 
swarm that is formed of elements X(i)

j
 that consist of M 

partitions denominated subswarms Xi all of size N. All the 
elements of the swarm are initialized randomly in the 
search space [Xmax,Xmin]

D , where D represents the number 
of dimensions of the search space [2].

Fig. 1  Approximation of the particle position

Fig. 2  Movement of the particles in PSO
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Level 1
The intention of having several swarms exploring at the 

same time is to lead to a better exploration of possible solu-
tions, since each subswarm independently explores in the 
search space. The GSO algorithm begins the iterations by 
computing the position and velocity of the particles using 
the equations presented below [1, 2]:

Where the current velocity is v(i), p(i)
j

 is the personal best 
of particle x(i)

j
 , g(i) is the global best solution of subswarm Xi, 

 c1 and  c2 are constants that indicate the direction towards the 
best local and global solutions, weight of inertia is W1, r1 
and r2 are calculated by the following expressions [1]:

The current iteration is K ranging from 0 to I1, and r1 is 
used to obtain random numbers chosen from the range of 
− 1 to 1.

Level 2
In this level of grouping, the global best solutions are of 

great importance since they participate in the formation of 
the superclusters, we have a superswarm Y that is formed of 
the best solutions found in each subpopulation or subswarm 
Xi.

Similar to level 1, in this level the position and velocity 
of the particles are also computed taking as a basis the PSO 
algorithm [33], the equations show some slight modifica-
tions unlike those used in level 1, as shown below [2]:

In this level p(i) represents the personal best, g is the 
global best solution, c3 and c4 are the acceleration constants. 
W2, r3 and r4 are calculated with equations similar to those 
shown in level 1.

In the superswarm, we use the best solutions of each 
of the sub swarms and thus exploit the already calculated 
information. The individuals in the superswarm are more 
dispersed in comparison with the individuals of the sub-
swarms, reason why an independent exploration is not 

(1)v
(i)

j
← W1v

(i) + c1r1

(
p
(i)

j
− x

(i)

j

)
+ c2r2

(
g(i) − x

(i)

j

)

(2)x
(i)

j
← x

(i)

j
+ v

(i)

j
.

(3)W1 = 1 −
K

I1 + 1
,

(4)r1 = ∪ (− 1, 1).

(5)Y (i) = g(i).

(6)v(i) ← W2v
(i) + c3r3

(
p(i) − y(i)

)
+ c4r4

(
g − y(i)

)
,

(7)y(i) ← y(i) + v(i).

realized since it focuses on exploiting the solutions found 
by the subswarms. In galactic swarm optimization, feedback 
is avoided to help retain the diversity in the solutions and the 
global search capability.

In the GSO algorithm the movement of the subswarms 
in level 1 consists mainly in a phase of exploration and in 
level 2 it is a phase of exploitation, in this way the algorithm 
alternates between the exploration and the exploitation [1, 
2]. The operation of the galactic swarm optimization can be 
summarized in the pseudocode presented below.

Pseudocode GSO

Fuzzy Approach in Galactic Swarm 
Optimization

Fuzzy logic and fuzzy sets were initially proposed by Zadeh 
[8]. In this case, fuzzy systems are constructed based on 
if–then rules representing the knowledge and heuristics that 
are based on human knowledge [12, 17].

In fuzzy sets, each element can be part of a set with a 
degree of certainty, and fuzzy logic allows us to reason with 
inaccurate or uncertain facts to infer from them new facts 
with a degree of certainty associated with each particular 
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event. This allows us to model the facts as they occur in real 
life [13, 14].

According to the literature [7, 29] the recommended 
values for the c3 cognitive component and c4 social com-
ponent are in the range of 0.5–2.5. On the other hand, it is 
suggested that the dynamic adjustment of the parameters 
during the execution can produce better results. It has been 
observed that measures such as the iteration and diversity of 
the swarm should be taken into consideration for the execu-
tion of the algorithm, since it has been demonstrated in other 
studies [15, 29] that the use of these measures helps to con-
trol the parameters of the metaheuristic algorithms during 
the execution.

The optimal values of the parameters in a fuzzy system 
help the algorithms to find better solutions, and the objec-
tive of our proposal is to dynamically find these values with 
an adaptation of the parameters utilizing fuzzy logic as a 
means to achieve this and in this way get better performance 
of galactic swarm optimization (GSO). The general idea of 
the proposed approach is illustrated in Fig. 3.

After performing different tests a decision was made about 
using the c3 and c4 parameters from Eqs. (6) and (7) presented 
in “Basic Concepts”, since they are of great importance 
for finding the position and velocity of the particles in the 
second level of the galactic swarm optimization, and there-
fore, they become the fuzzy parameters that are dynamically 
adapted. In GSO the c3 parameter is the cognitive component 

that measures the performance of the particle with respect 
to its previous positions; its objective is that the particles are 
attracted towards the best positions, in the same way that the 
individuals return to situations or places where they were pre-
viously better. The social component is c4 that measures the 
performance of the particle in relation to a group of particles, 
the importance of the social component c3 lies in that each 
particle is grouped into the best position found in a neighbor-
hood or in its search space [8, 33].

The main difference of using the dynamic adjustment of 
parameters with respect to using fixed parameters is that the 
selected parameters used as fuzzy parameters are modified 
as the iterations are being performed in galactic swarm opti-
mization, and this way in each iteration we are dynamically 
changing the values of the parameters with the idea of finding 
better solutions.

In this work, everything previously mentioned has been 
taken into account for the design of fuzzy systems that dynam-
ically adapt the c3 and c4 parameters during the execution of 
galactic swarm optimization. In this case, these parameters 
are fuzzy values that are defined as shown in expressions (8) 
and (9) [17]:

(8)C3 =

∑rc3
i=1

�
C3

i

�
C3i

�
∑rc3

i=1
�
C3

i

,

Fig. 3  Proposed FGSO
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where rc3 is the total number of rules for the fuzzy system, 
the output result for rule i is represented by C3i and �C

3

i
 is the 

membership function associated to rule i

where rc4 is the total number of rules for the fuzzy system, 
the output result for rule i is represented by C4i and �C4

i
 is the 

membership function associated to rule i.
The design of the FGSO1 fuzzy system was based on 

our previous work [2] since it was our first proposal of the 
dynamic adjustment of parameters using fuzzy logic in 
galactic swarm optimization. Given that a good behavior was 
observed in relation to mathematical functions, the decision 
was made to propose a variant of the FGSO1 fuzzy system, 
therefore, the FGSO2 fuzzy system is proposed in which 
diversity has been added as an input variable expecting to 
obtain significant improvements.

The fuzzy system design is illustrated in Figs. 4 and 5, 
the fuzzy systems are of Mamdani type, where in the first 
fuzzy system the iteration is used as an input variable and 
as outputs we have the c3 and c4 parameters. In the second 
fuzzy system, we used the iteration and the diversity as input 
variables and c3 and c4 as output variables.

(9)C4 =

∑rc4
i=1

�
C4

i

�
C4i

�
∑rc4

i=1
�
C4

i

,

The input variables are divided into three triangular mem-
bership functions labeled as “low”, “medium” and “high” in 
a range from 0 to 1 for both fuzzy systems as can be noticed 
in Figs. 6 and 7. A triangular membership function is repre-
sented by three parameters a, b, and c as shown below [8]:

In this case, the parameters a, b and c with a < b and b < c 
are the coordinates of the three corners of the triangular 
membership function.

For the first fuzzy system, the output variables are granu-
lated into three triangular functions of the same type as “low”, 
“medium” and “high” with a range of 0–3 as shown in Figs. 8 
and 9, and for the second fuzzy system the output variables are 
granulated into five triangular membership functions “low”, 
“medium low”, “medium”, “medium high”, and “high” in a 
range from 0 to 3 as shown in Figs. 10 and 11, respectively.

The iteration is normalized to obtain a percentage of the 
current iteration for the total number of iterations, the diver-
sity represents the mean of the Euclidean distance between 
all the particles and the best particle found, in other words, 

(10)triangle (x; a, b, c) =

⎧
⎪⎪⎨⎪⎪⎩

0, x ≤ a
x−a

b−a
a ≤ x ≤ b

c−x

c−b
b ≤ x ≤ c

0, c ≤ x

.

Fig. 4  Fuzzy system FGSO1
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it measures the degree of dispersion of the particles, and the 
expressions used to obtain the iteration and the diversity are 
presented below [15, 30]:

(11)Iteration =
Current Iteration

Total of Iterations
, where the population of the GSO is represented by S, the 

size of the population is n, D is the number of dimensions 
in which the population moves, xij is the solution i in the 
dimension j and x̄j is the best solution found in dimension 
j [30].

(12)Diversity (S(t)) =
1

n

n∑
i=1

√√√√ D∑
j=1

(
xij(t)

)2
−
(
x̄j(x)

)2
,

Fig. 5  Fuzzy system FGSO2

Fig. 6  Input iteration Fig. 7  Input diversity
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In Figs. 12 and 13 we can find an example of the behav-
ior of the c3 and c4 parameters as the iterations are exe-
cuted, in addition, in Fig. 14 we illustrate the diversity that 
exists between the individuals of galactic swarm optimiza-
tion and how it varies as the iterations pass.

The rules of the FGSO1 fuzzy system were designed 
with the idea that c3 is increasing and c4 is decreasing in 
this way aiming at achieving that when the algorithm is 
in the initial iterations it can explore and when it is in the 
last iterations it can exploit [2, 13].

Rules of the FGSO1 fuzzy system:

1. If (Iteration is Low) then (c3 is Low) and (c4 is High)
2. If (Iteration is Medium) then (c3 is Medium) and (c4 is 

Medium)
3. If (Iteration is High) then (c3 is High) and (c4 is Low)

Fig. 8  Output c3 of FGSO1

Fig. 9  Output c4 of FGSO1

Fig. 10  Output c3 of FGSO2

Fig. 11  Output c4 of FGSO2

Fig. 12  Behavior of the c3 parameter
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Taking into account the diversity as input variable used 
in the second fuzzy system along with the iteration input 
variable, the FGSO2 fuzzy system rules are designed in 
such a way that when the diversity is low, the particles 
are too close together then we need to explore and when 
we have a high diversity we need to exploit. The idea of 
the rule design is very similar to those used in the FGSO1 
fuzzy system, since when we are in the initial iterations we 
need to explore and when we are in the final stage of the 
execution of the algorithm then we need to exploit [29].

Rules of the FGSO2 fuzzy system:

1. If (Iteration is Low) and (Diversity is Low) then (c3 is 
Low) (c4 is High)

2. If (Iteration is Low) and (Diversity is Medium) then (c3 
is MediumLow) (c4 is MediumHigh)

3. If (Iteration is Low) and (Diversity is High) then (c3 is 
Medium) (c4 is High)

4. If (Iteration is Medium) and (Diversity is Low) then (c3 
is MediumLow) (c4 is MediumHigh)

5. If (Iteration is Medium) and (Diversity is Medium) then 
(c3 is Medium) (c4 is Medium)

6. If (Iteration is Medium) and (Diversity is High) then (c3 
is MediumHigh) (c4 is MediumLow)

7. If (Iteration is High) and (Diversity is Low) then (c3 is 
MediumHigh) (c4 is MediumLow)

8. If (Iteration is High) and (Diversity is Medium) then (c3 
is MediumHigh) (c4 is Medium)

9. If (Iteration is High) and (Diversity is High) then (c3 is 
High) (c4 is Low)

Mathematical Functions and the Benchmark 
Water Tank Problem for Testing the Galactic 
Swarm Optimization

Water Tank Controller Problem

Most optimization problems in the real world require a lot 
of computational cost for the evaluation of their possible 
solutions, and given the limitations of computational or time 
resources, specialized optimization algorithms are usually 
required in industrial applications. In the last years, several 
methods of computational optimization have been proposed 
to deal with problems where too much computational cost 
is required and with these methods good results have been 
obtained [2, 15].

To test the proposed fuzzy approach of the fuzzy galactic 
swarm optimization with parameter adaptation we use a set 
of 20 mathematical functions found in [19, 20], where their 
mathematical representation is presented as well as their 
search space and their global minimum. We also tested the 
proposed method with the problem of the water controller, 
which is described in more detail below. The main idea of 
our proposed method is to search for the minimum of the 
benchmark mathematical functions, as well as the best fuzzy 
controller for the plant of the water tank [34, 35]. In Table 1 
we can find the mathematical functions used to test the pro-
posed approach and the original GSO algorithm.

In Table 1 we can find the set of mathematical functions 
used to measure the performance of the GSO algorithm and 
the proposed fuzzy GSO approach, in addition to the range 
of the search space and its global minimum.

Water Tank Controller Problem

The fuzzy controller for the benchmark water tank problem 
refers to controlling the water level in a tank, therefore, it 
is necessary to know the water level in the tank and with 
this be able to establish the opening of the valve. To evalu-
ate the opening of the valve in an accurate way, we rely on 

Fig. 13  Behavior of the c4 parameter

Fig. 14  Behavior of the diversity parameter
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Table 1  Benchmark 
mathematical functions

Function

f1(x) =
n∑

1=1

x2
i

Search space xj ∈ [− 5.12, 5.12] and f (x∗) = 0

f2(x) =
n∑
i=1

��xi�� +
n∏
i=1

��xi��
Search space xj ∈ [− 10, 10] and f (x∗) = 0

f3(x) =
n∑
i=1

�
i∑

j−1

xj

�2

Search space xj ∈ [− 100, 100] and f (x∗) = 0

f4(x) = maxi
{||xi||, 1 ≤ i ≤ n

}
Search space xj ∈ [− 100, 100] and f (x∗) = 0

f5(x) =
n−1∑
i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2�

Search space xj ∈ [− 30, 30] and f (x∗) = 0

f6(x) =
n∑
i=1

��
xi + 0.5

��2

Search space xj ∈ [− 100, 100] and f (x∗) = 0

f7(x) =
n∑
i=1

ix4
i
+ random [0, 1]

Search space xj ∈ [− 1.28, 1.28] and f (x∗) = 0

f8(x) =
n∑
i−1

−xi sin

����xi��
�

Search space xj ∈ [−500, 500] and f (x∗) = − 418.9829

f9(x) =
n∑
i=1

�
x2
i
− 10 cos

�
2�xi

�
+ 10

�

Search space xj ∈ [− 5.12, 5.12] and f (x∗) = 0

f10(x) = − 20 exp

�
− 0.2

�
1

n

n∑
i=1

x2
i

�
− exp

�
1

n

n∑
i=1

cos
�
2�xi

��
+ 20 + e

Search space xj ∈ [− 32, 32] and f (x∗) = 0

f11(x) =
1

400

n∑
i=1

x2
i
−

n∏
i=1

cos
�

xi√
i

�
+ 1

Search space xj ∈ [− 600, 600] and f (x∗) = 0

f12(x) =
�

n

�
10 sin

�
�y1

�
+

n−1∑
i=1

�
yi − 1

�2�
1 + 10 sin2

�
�yi+1

��
+
�
yn − 1

�2
�

+
n∑
i=1

u
�
xi, 10, 100, 4

�

yi = 1 +
xi+1

4
Search space xj ∈ [− 50, 50] and f (x∗) = 0

f13(x) = 0.1

�
sin2

�
3�x1

�
+

n∑
i=1

�
xi − 1

�2�
1 + sin2

�
3�xi + 1

��
+
�
xn − 1

�2�
1 + sin2

�
2�xn

���
+

n∑
i=1

u
�
xi, 5, 100, 4

�

Search space xj ∈ [− 50, 50] and f (x∗) = 0

Rosenbrock (x) =
n−1∑
i=1

�
100

�
xi + x2

i

�2
+
�
xi−1

�2�

Search space xj ∈ [− 5, 10] and f (x∗) = 0

SumSquares (x) =
n∑
i=1

ix2
i

Search space xj ∈ [− 10, 10] and f (x∗) = 0

Zakharov (x) =
n∑
i=1

x2
i
+

�
n∑
i=1

0.5ixi

�2

+

�
n∑
i=1

0.5ixi

�4

Search space xj ∈ [− 5, 10] and f (x∗) = 0

Shubert (x) =

�
5∑
i=1

i cos
�
(i + 1)x1 + i

���
5∑
i=1

i cos
�
(i + 1)x2 + i

��

Search space xj ∈ [− 10, 10] and f (x∗) = − 186.7309
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fuzzy logic, which we implement as a fuzzy controller for 
the water level and how quickly it is introduced to maintain 
the water level in the tank.

The filling of the water tank is represented by a differ-
ential equation for the water level of the tank, H, as shown 
below, and Fig. 15 shows a representation of the water tank 
model [34]:

where the variable H is the level of the water in the tank, 
Vol is the volume of water contained in the tank and V is the 
voltage that is applied to the pump.

Parameter A is the cross-sectional area of the tank, b is a 
constant associated with the flow of water to the tank and a 
is a constant associated to the outflow of the tank [35].

Fuzzy System for the Fuzzy Controller of the Water Tank 
Problem

The fuzzy system of the water tank controller is of the Mam-
dani type and composed of two input variables and one out-
put variable [35]: the first input variable is Level, which is 
composed of three Gaussian membership functions labeled 
High, Okay and Low. The second input variable is Rate, 

(13)
d

dt
Vol = A

dH

dt
= bV − a

√
H,

which has three Gaussian membership functions labeled 
Negative, None, and Positive.

The output is Valve (Tank Fill Valve), which is composed 
of five triangular membership functions labeled as Close_
fast, Close_slow, No_change, Open_slow, and Open_fast.

In Fig. 16 we can find the fuzzy system of the fuzzy con-
troller for the water tank, where the input and output vari-
ables are displayed graphically.

The rules of the fuzzy system of the water tank help main-
tain control of the opening of the valve and thus the water 
level in the tank.

Rules for the fuzzy system of the water tank controller:

1. If (level is okay) then (valve is no_change)
2. If (level is low) then (valve is open_fast)
3. If (level is high) then (valve is close_fast)
4. If (level is okay) and (rate is positive) then (valve is 

close_slow)
5. If (level is okay) and (rate is negative) then (valve is 

open_slow)

Experiments and Comparison of Results

To test and compare the proposed method with the original 
GSO algorithm, we used 20 benchmark mathematical func-
tions and the fuzzy controller for the water tank controller 
presented in “Fuzzy Approach in Galactic Swarm Optimi-
zation”. In this work, each metaheuristic algorithm is tested 
with 30 independently performed tests to obtain greater con-
fidence on the obtained results in the simulations.

The c3 and c4 parameters are fixed for the results obtained 
with the original GSO algorithm and in our proposal c3 and 
c4 are dynamically adjusted using fuzzy systems to perform 
the adaptation of the parameters.

The results presented in Tables 3, 4 and 5 are separated 
by the number of dimensions ranging from 10, 30 and 50 
dimensions. The parameters used during the simulations are 
presented below in Table 2, so that a fair comparison for the 
tests is performed with the same parameters.

The nomenclature used in the tables is summarized 
below:

Table 1  (continued) Function

Baele (x) =
(
1.5 − x1 + x1x2

)2
+
(
2.25 − x1 + x1x

2
2

)2
+
(
2.625 − x1 + x1x

3
2

)2
Search space xj ∈ [− 4.5, 4.5] and f (x∗) = 0

Booth (x) =
(
x1 + 2x2 − 7

)2
+
(
2x1 + x2 − 5

)2
Search space xj ∈ [− 10, 10] and f (x∗) = 0

Dixon - Price (x) =
�
x1 − 1

�2
+

n∑
i=2

i
�
2x2

i
− xi−1

�2

Search space xj ∈ [− 10, 10] and f (x∗) = 0

Fig. 15  Water tank model
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GSO: is the original galactic swarm optimization.
FGSO1: is the first proposed fuzzy system with iteration 

as the input variable and c3 and c4 as the output variables.
FGSO2: is the second proposed fuzzy system with itera-

tion and diversity as the input variables and c3 and c4 as the 
output variables.

In Table 3 we can find the averages for each of the 20 
mathematical functions used to measure the performance of 
GSO and FGSO after 30 runs for 10 dimensions.

In Table 3 we can find the averages for each of the 20 
mathematical functions used to measure the performance 
of GSO and FGSO after 30 runs for 10 dimensions. Where 
it is observed that the original galactic swarm optimization 
has better performance than the proposed FGSO1 approach 

in functions f5, f6, f7 and f8, and the FGSO1 approach 
manages to improve the performance in Rosenbrock, Baele 
and Dixon-price functions. The FGSO2 approach shows 
improvements in Rosenbrock, Baele, Dixon-price and f8 
functions, but lowers the performance in functions f5, f6, 
f7, f12 and f13, and in the remaining functions the proposed 
approach manages to reach the global minimum for each of 
the functions.

In Table 4 we can find the averages for each of the 20 
mathematical functions used to measure the performance 
of GSO and FGSO after 30 runs for 30 dimensions. Where 
it is observed that the original galactic swarm optimization 
has better performance than the proposed FGSO1 approach 
in functions f5, f6, f7 and f8, and the FGSO1 approach 
manages to improve the performance in Rosenbrock, Baele 
and Dixon-price functions. The FGSO2 approach shows 
improvements in Rosenbrock, Baele, Dixon-price and f8 
functions, but lowers the performance in functions f5, f6, 
f7, f12 and f13, and in the remaining functions the proposed 
approach manages to reach the global minimum for each of 
the functions.

In Table 5 we can find the averages for each of the 20 
mathematical functions used to measure the performance of 
GSO and FGSO after 30 runs for 50 dimensions. In this case, 
it is observed that the original galactic swarm optimization 
has better performance than the proposed FGSO1 approach 
in functions f7 and f8, and the FGSO1 approach manages to 

Fig. 16  Fuzzy system for the tank

Table 2  Parameters for the simulations

Parameter Value Value Value

Dimensions 10 30 50
Population 5 5 5
Subpopulation 10 20 20
Iteration 1 100 150 250
Iteration 2 1000 1500 1500
No epochs 5 5 9
c1 and  c2 2 2 2
c3 and c4 2 2 2
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improve the performance in Rosenbrock, Baele and Dixon-
price functions. The FGSO2 approach shows improvements 
in Rosenbrock, Baele, Dixon-price and f8 functions, but 

lowers the performance in functions f7, f12 and f13, and in 
the remaining functions the proposed approach manages to 
reach the global minimum for each of the functions.

Table 3  Experimental results 
with GSO and FGSO for ten 
dimensions

Function GSO FGSO1 FGSO2

Average Std Average Std Average Std

f1 0 0 0 0 0 0
f2 0 0 0 0 0 0
f3 0 0 0 0 0 0
f4 0 0 0 0 0 0
f5 0 0 5.710E−06 2.419E−05 1.937E−03 8.830E−03
f6 0 0 4.810E−06 9.248E−06 6.196E−05 1.128E−04
f7 0 0 1.350 0.133 1.348 0.151
f8 − 4067.029 92.873 − 4102.303 128.559 − 4040.478 118.381
f9 0 0 0 0 0 0
f10 0 0 0 0 0 0
f11 0 0 0 0 0 0
f12 0 0 0 0 1.052E−04 2.032E−04
f13 0 0 0 0 8.140E−05 1.348E−04
Rosenbrock 6.670E−07 1.037E−06 7.510E−12 2.705E−11 3.150E−08 1.034E−07
Sumsquare 0 0 0 0 0 0
Zakharov 0 0 0 0 0 0
Shubert − 186.731 0 − 186.731 0 − 186.731 0
Baele 3.000E−21 9.201E−21 1.910E−24 7.060E−24 2.057E−23 6.924E−23
Booth 0 0 0 0 0 0
Dixon-Price 7.725E−02 3.195E−02 0 0 0 0

Table 4  Experimental results 
with GSO and FGSO for 30 
dimensions

Function GSO FGSO1 FGSO2

Average Std Average Std Average Std

f1 0 0 0 0 0 0
f2 0 0 0 0 0 0
f3 0 0 0 0 0 0
f4 0 0 0 0 0 0
f5 0 0 3.930E−07 2.052E−06 7.687E−03 2.110E−02
f6 0 0 6.450E−07 1.385E−06 5.334E−05 1.044E−04
f7 0 0 7.911 0.305 7.962 0.337
f8 − 11,366.043 456.361 − 11,580.548 560.526 − 10,959.443 477.883
f9 0 0 0 0 0 0
f10 0 0 0 0 0 0
f11 0 0 0 0 0 0
f12 0 0 0 0 0.128 0.122
f13 0 0 0 0 1.877E−02 4.163E − 02
Rosenbrock 4.910E−07 1.420E−06 3.210E−08 1.748E−07 0 0
Sumsquare 0 0 0 0 0 0
Zakharov 0 0 0 0 0 0
Shubert − 186.731 0 − 186.731 0 − 186.731 0
Baele 0 0 0 0 0 0
Booth 0 0 0 0 0 0
Dixon-Price 0.667 1.841E−08 0 0 0 0
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To clearly observe the behavior of our proposal and 
be able to test it, a toolbox was designed to run functions 
f1–f13 presented in “Mathematical Functions and the 
Benchmark Water Tank Problem for Testing the Galactic 
Swarm Optimization”, and below the link to access the 
FGSO toolbox is provided https ://www.dropb ox.com/s/
z3epf nx857 wrtro /FGSO.rar?dl=0.

The results obtained after performing the parameter 
optimization of the membership functions of the fuzzy 
controller for the water tank were performed by dynami-
cally adapting the c3 and c4 parameters of the GSO algo-
rithm, as well as with the original GSO algorithm.

In this case, the expression to calculate the fitness value 
of each particle is replaced by the expression to calcu-
late the mean squared error (MSE) and thus in this way 
measure the efficiency of the fuzzy controller obtained by 
galactic swarm optimization, and the expression of the 
mean squared error (MSE) is the following [35, 36]:

where MSE is the sum of squared errors, that is, the differ-
ence between the estimator and what is being estimated, Xi 
represents the reference value and Yi represents the value 
produced by the system.

(14)MSE =
1

n

n∑
i=1

(
Xi − Yi

)2
,

The parameters used for the tests performed with the 
fuzzy controller of the water tank problem are the follow-
ing (Table 6).

Table 5  Experimental results 
with GSO and FGSO for 50 
dimensions

Function GSO FGSO1 FGSO2

Average Std Average Std Average Std

f1 0 0 0 0 0 0
f2 0 0 0 0 0 0
f3 0 0 0 0 0 0
f4 0 0 0 0 0 0
f5 0 0 0 0 0 0
f6 0 0 0 0 0 0
f7 0 0 15.561 0.359 15.419 0.457
f8 − 18,626.611 806.593 − 18,964.119 895.925 − 17,992.640 768.958
f9 0 0 0 0 0 0
f10 0 0 0 0 0 0
f11 0 0 0 0 0 0
f12 0 0 0 0 0.437 0.276
f13 0 0 0 0 3.545E−02 0.105
Rosenbrock 4.400E−09 2.232E−08 3.690E−12 1.968E−11 0 0
Sumsquare 0 0 0 0 0 0
Zakharov 0 0 0 0 0 0
Shubert − 186.731 0 − 186.731 0 − 186.731 0
Baele 0 0 0 0 0 0
Booth 0 0 0 0 0 0
Dixon-Price 0.667 2.314E−08 0 0 0 0

Table 6  Configuration 
parameters for GSO and FGSO 
applied to the water tank 
problem

Parameter Value

Population (N) 10
Subpopulation (M) 5
Iteration 1 (I1) 50
Iteration 2 (I2) 100
No. of epochs 5
c1 and  c2 2
c3 and c4 2

Table 7  Experimental results for GSO and FGSO applied to the 
water tank problem

GSO FGSO

MSE RMSE MSE RMSE

Best 7.603E−02 0.276 1.348E−02 0.116
Worst 7.875E−02 0.281 7.893E−02 0.281
Average 7.801E−02 0.279 4.515E−02 0.202
STD 5.758E−04 1.034E−03 2.722E−02 6.614E−02

https://www.dropbox.com/s/z3epfnx857wrtro/FGSO.rar?dl=0
https://www.dropbox.com/s/z3epfnx857wrtro/FGSO.rar?dl=0
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In Table 7 we can find the best, worst, average and stand-
ard deviation of the fuzzy controller of the water tank used 
to measure the performance of the GSO algorithm and the 
proposed FGSO after 30 runs.

For this case study, the proposed approach manages to 
obtain improvements with respect to the original GSO algo-
rithm. In Fig. 17, we can find the best simulation of the fuzzy 
controller obtained by the proposed fuzzy galactic swarm 
optimization (FGSO), where the red line represents the ref-
erence data, and the blue line represents the data obtained 
by the fuzzy controller developed to follow the reference.

After analyzing the results of the fuzzy controller of the 
water tank problem, we decided to perform a statistical test 
between the fuzzy galactic swarm optimization (FGSO) and 
the galactic swarm optimization to obtain more evidence of 
the improvements obtained with the proposed method. The 
statistical test used for the comparison is the z test [3, 34] 
with the following characteristics:

• �1 = Mean of fuzzy galactic swarm optimization (FGSO).
• �2 = Mean of galactic swarm optimization (GSO).

• H0 = �1 ≥ �2.

• Ha = 𝜇1 < 𝜇2 (claim).

• Claim: the average of the FGSO is lower than the average 
of the GSO (claim).

• Confidence level = 95%.
• ∝= 0.05.

Table 8 shows the averages, standard deviations and the 
value of the statistical z test for fuzzy galactic swarm opti-
mization (FGSO) and galactic swarm optimization (GSO) 
applied to the fuzzy controller of the water tank problem.

The statistical z test for the fuzzy controller of the water 
tank problem was performed with a confidence level of 95%, 
alpha 0.05, where Ha states that the average of the FGSO 
is lower than the average of the GSO. Ho states that the 
average of the FGSO is greater than or equal to the average 
of the GSO, with a critical value of − 1.645. The resulting 
value confirms that there is sufficient evidence to reject Ho, 
therefore, Ha is accepted, indicating that the average of the 
fuzzy galactic swarm optimization is lower than the average 
of the galactic swarm optimization.

Statistical Comparison of Fuzzy Galactic Swarm 
Optimization and the Modified Grey Wolf Optimizer

The fuzzy galactic swarm optimization (FGSO) and modi-
fied grey wolf optimizer are compared with 7 benchmark 
functions with 30, 64 and 128 dimensions, the results 

Fig. 17  Best simulation of fuzzy controller for water tank problem

Table 8  Results of z test for FGSO and GSO for the water tank prob-
lem

FGSO GSO Value of Z

Average Std Average Std

4.515E−02 2.722E−02 7.801E−02 5.758E−04 − 6.612
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obtained by the fuzzy galactic swarm optimization and mod-
ified grey wolf optimizer are presented in different tables 
according to the number of dimensions.

With the intention that the statistical comparison was 
as fair as possible, we aimed at having a similar number 
of evaluations between fuzzy galactic swarm optimization 
(FGSO) and the modified GWO. To obtain the number of 
evaluations of FGSO, first, the number of evaluations of the 
first level is obtained by multiplying the number of subpopu-
lations, the size of the population and the number of itera-
tions of the first level in the following way (M × N × I1). In 
the second level, the number of subpopulations is multiplied 
by the number of iterations of the second level (M × I2), then 
the number of evaluations of the first level and those of the 
second level are added, and finally, it is multiplied by the 
number of predefined epochs [1].

The parameters of fuzzy galactic swarm optimization and 
the modified grey wolf optimizer are given in Table 9.

A statistical test was performed between the fuzzy galac-
tic swarm optimization and modified grey wolf optimizer. 
The statistical test that was used is the z test [3] with the 
following characteristics:

• �1 = Mean of the fuzzy galactic swarm optimization

(FGSO)

• �2 = Mean of the Modified Grey Wolf Optimizer.

• H0 = �1 ≥ �2.

• Ha = 𝜇1 < 𝜇2 (claim).

• Claim: the average of the FGSO is lower than the average 
of the modified grey wolf optimizer (claim).

• Confidence level = 95%.
• ∝= 0.05.

• Critical value Z0 = − 1.645.

Table 10 shows the averages, standard deviations and the 
values of the statistical z test for the Sphere, Rosenbrock, 
Quartic, Schwefel, Rastrigin, Ackley and Griewank func-
tions for 30 dimensions.

In Table 11 we can find the averages, standard deviations 
and the values of the statistical z test for the Sphere, Rosen-
brock, Quartic, Schwefel, Rastrigin, Ackley and Griewank 
functions for 64 dimensions.

In Table 12 we can find the averages, standard deviations 
and the values of the statistical z test for the Sphere, Rosen-
brock, Quartic, Schwefel, Rastrigin, Ackley and Griewank 
functions for 128 dimensions.

A statistical z test is applied, with a confidence level of 
95%, an alpha value of 0.05, where Ha states that the average 
of the FGSO is lower than the average modified grey wolf 
optimizer and Ho states that the average of FGSO is greater 
than or equal to the average modified grey wolf optimizer, 
with a critical value of − 1.645. The results support that for 
the Sphere, Rosenbrock, Quartic, Schwefel, Rastrigin, Ack-
ley and Griewank functions there is sufficient evidence to 
reject Ho, therefore, Ha is accepted, stating that the average 
of FGSO is lower than the average of the modified grey wolf 
optimizer according to the results shown in Table 10 for 
experiments with 30 dimensions.

In applying the statistical z test, with a confidence level of 
95%, an alpha value of 0.05, where Ha states that the average 
of the FGSO is lower than the average modified grey wolf 
optimizer and Ho states that the average of FGSO is greater 
than or equal to the average modified grey wolf optimizer, 
with a critical value of − 1.645. The results support that for 
the Sphere, Rosenbrock, Quartic, Schwefel, Rastrigin, Ack-
ley and Griewank functions there is sufficient evidence to 

Table 9  Parameters of FGSO and the modified GWO

FGSO Modified GWO [3]

Parameter Value Parameter Value

Population (N) 10 Wolves 30
Subpopulation (M) 5 a[0.5–2.5] Dynamic
Iteration 1 (I1) 50 Iteration 500
Iteration 2 (I2) 500 No. of evaluations 15,000
No. of epoch 3
No. of evaluations 15,000

Table 10  Results of the z test 
for FGSO and modified GWO 
with 30 dimensions

30 Dimensions

Function FGSO1 Modified GWO [3] Value of Z

Average Std Average Std

Sphere 0 0 5.610E−43 1.020E−42 − 3.012
Rosenbrock 2.142E−03 7.112E−03 27.274 0.772 − 193.555
Quartic 0 0 1.500E−03 8.470E−04 − 9.700
Schwefel − 7705.048 682.176 − 4258.280 440.440 23.250
Rastrigin 0 0 0.384 1.462 − 1.438
Ackley 0 0 1.500E−14 2.380E−15 − 34.520
Griewank 0 0 3.400E−03 8.000E−03 − 2.328
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reject Ho, therefore, Ha is accepted, stating that the average 
of FGSO is lower than the average of the modified grey wolf 
optimizer according to the results shown in Table 11 for 
experiments with 64 dimensions.

Once the statistical z test was performed, with a confi-
dence level of 95%, an alpha value of 0.05, where Ha states 
that the average of the FGSO is lower than the average of the 
modified grey wolf optimizer and Ho states that the average 
of FGSO is greater than or equal to the average modified 
grey wolf optimizer, with a critical value of -1.645. The 
results support that for the Sphere, Rosenbrock, Quartic, 
Rastrigin, Ackley and Griewank functions there is sufficient 
evidence to reject Ho, therefore, Ha is accepted, stating that 
the average of FGSO is lower than the average of the modi-
fied grey wolf optimizer according to the results shown in 
Table 12 for experiments with 128 dimensions.

Conclusions

The galactic swarm optimization has been shown to behave 
well in the face of multimodal problems and with a high 
number of dimensions, since it presents several cycles of 
exploration and exploitation, which increases the chances 

of obtaining better solutions and not getting stuck in local 
minima.

This work proposes a modification to the galactic swarm 
optimization, which consists of dynamically adjusting the 
parameters using fuzzy logic. In this case, the adjustment 
of the parameters was tested with two different fuzzy sys-
tems, which were validated with a set of 20 mathematical 
functions. Another case was also considered with a fuzzy 
controller and was also tested to observe how our proposed 
method behaves for parameter optimization of the mem-
bership functions of the fuzzy controller of the water tank. 
We statistically compared the proposed approach with the 
modified grey wolf optimizer where fuzzy logic was also 
used to adjust the parameters, and this comparison was made 
to measure the performance of our proposal versus other 
metaheuristics that exists in the literature.

We can conclude that the adjustment of the parameters 
using fuzzy logic in galactic swarm optimization applied 
to mathematical functions is a good option since competi-
tive results were obtained. It was observed that in some 
mathematical functions where the original algorithm does 
not perform well, the proposed approach obtains signifi-
cant improvements. It is also observed that as the number 
of dimensions increases the galactic swarm optimization 

Table 11  Results of the z test 
for FGSO and modified GWO 
with 64 dimensions

64 Dimensions

Function FGSO1 Modified GWO [3] Value of Z

Average STD Average STD

Sphere 0 0 1.540E−26 1.820E−26 − 4.635
Rosenbrock 4.272E−02 7.941E−02 61.736 0.745 − 450.949
Quartic 0 0 3.000E−03 1.420E−03 − 11.572
Schwefel − 11,322.755 844.075 − 6424.990 882.538 21.967
Rastrigin 0 0 3.322 6.532 − 2.785
Ackley 0 0 8.760E−14 1.280E−14 − 37.485
Griewank 0 0 2.900E−03 7.200E−03 − 2.206

Table 12  Results of the z test 
for FGSO and modified GWO 
with 128 dimensions

128 Dimensions

Function FGSO1 Modified GWO [3] Value of Z

Average STD Average STD

Sphere 0 0 1.720E−17 1.830E−17 − 5.148
Rosenbrock 0.253 0.303 125.884 0.663 − 943.980
Quartic 0 0 6.800E−03 3.100E−03 − 12.015
Schwefel − 16,650.884 1425.982 − 9000.040 1179.718 22.643
Rastrigin 0 0 8.337 10.175 − 4.487
Ackley 0 0 3.650E−10 1.770E−10 − 11.295
Griewank 0 0 5.930E−03 1.180E−02 − 2.753
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continues to present competitive results, in the case of the 
study of the fuzzy controller of the water tank, it has been 
possible to gradually improve the results using our proposed 
method to optimize the fuzzy controller. All supported by 
the results shown in the tables in “Experiments and Com-
parison of Results”.

Galactic swarm optimization is a metaheuristic of 
recent creation, therefore, it is proposed as future work of 
the following tasks to study more thoroughly its operation 
and thus to obtain a better performance of galactic swarm 
optimization.

• Consider type-2 fuzzy systems for the adaptation of the 
parameters in GSO.

• Optimize the rules of the fuzzy systems.
• Apply GSO with fuzzy logic for control problems (eleva-

tors, washing machines, etc.).
• Apply GSO with fuzzy logic for image processing.
• Apply GSO with fuzzy logic for medical diagnosis.
• Apply GSO with fuzzy logic for systems automation.
• Adapt the GSO algorithm for use with other metaheuris-

tics.
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