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Abstract
Digital elevation model (DEM) is a critical data source for variety of applications such as road extraction, hydrological mod-
eling, flood mapping, and many geospatial studies. The usage of high-resolution DEMs as inputs in many application areas 
improves the overall reliability and accuracy of the raw dataset. The goal of this study is to develop a machine learning model 
that increases the spatial resolution of DEM without additional information. In this paper, a GAN based model (D-SRGAN), 
inspired by single image super-resolution methods, is developed and evaluated to increase the resolution of DEMs. The 
experiment results show that D-SRGAN produces promising results while constructing 3 feet high-resolution DEMs from 
50 feet low-resolution DEMs. It outperforms common statistical interpolation methods and neural network algorithms.This 
study shows that it is possible to use the power of artificial neural networks to increase the resolution of the DEMs. The study 
also demonstrates that approaches from single image super-resolution can be applied for DEM super-resolution.
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Introduction

Digital elevation models (DEMs) are visualization of ter-
rain’s surface powered by elevation data. Over the years, 
DEMs have served as input in many research studies 
including stream network extraction [1], flood risk and 
hazard mapping [2], and extracting urban features [3]. Due 
to a variety of application areas, the generation of DEMs 
has been studied in many fields with different techniques 
including LiDAR [4]. LiDAR is an optical remote-sensing 
technique that measures the distance between sensor and 
object, and reflected energy from the object. LiDAR data 
have been used as the primary source of high-resolution and 
accurate DEMs. Despite wide usage of LiDAR data, DEMs 

still contain issues and systematic errors [5, 6]. The pro-
cess of generating DEM consists of numerous steps includ-
ing data collection, data reduction, interpolation, and etc. 
Each of these steps contains some level of uncertainties and 
accumulation of these uncertainties has a plausible effect 
in revealing the desired quality level of DEM [7, 8]. The 
resolution and accuracy of DEM have a significant effect on 
the outcome of these analyses.

The resolution of DEM refers to the dimensions of the 
land that has been covered by a single grid cell. For exam-
ple, if the resolution of a DEM is 3 m, each grid cell in 
the DEM stores the elevation data for 3 m × 3 m area of 
land, and DEM resolution is very crucial for many appli-
cations. It is shown that the resolution and information 
content of DEM has a massive impact on the computed 
topographic indices [9]. Chaubey et  al. [10] examined 
the effect of DEM resolution on the predictions from the 
SWAT (Soil and Water Assessment Tool) model and they 
found a clear link between DEM resolution and accuracy 
of predicted stream network and sub-basin classification in 
the SWAT model. Similarly, several studies demonstrated 
that using high-resolution DEMs as inputs construct more 
accurate flood maps compared to low-resolution DEMs [11, 
12]. However, it should be noted that not all tasks require 
high-resolution DEMs to get better performance or solve 
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the current problem according to some studies. For exam-
ple, Zang and Montgomery [13] simulated geomorphic 
and hydrologic processes for two watersheds using 2–90 m 
DEMs and according to their results, 10 m DEMs provide 
substantial improvement over 30 or 90 m DEMs but 2–4 m 
DEMs provide only small improvements for the task. Claes-
sens et al. [14] used four different DEMs resolutions [10, 25, 
50 and 100 m] to analyze the effect of DEM resolution on 
determining the slope and catchment area of a region as well 
as the relative hazard for shallow land sliding. They claimed 
that there may not be “perfect” DEM resolution for shallow 
land sliding over a longer timeframe due to various failures 
in time and space. So, it should be highlighted that using 
higher resolution DEMs may not be applicable or optimal 
for some study areas.

Water resource management and hydrological modeling 
using physically based or data-driven (i.e. artificial neural 
networks) approaches [15–17] need high-resolution DEM 
for accurate hydrological predictions [18]. Besides advanced 
hydrological modeling, monitoring and geographic analy-
sis such as watershed delineation [19, 20] and stage height 
measurements [21] benefit from DEMs. In some cases, it is 
not feasible to use high-resolution DEM due to the limitation 
of computing systems or model run time. Even in such cases, 
resampling high-resolution DEM to lower one gives a bet-
ter result than the original coarse resolution DEM. Despite 
the importance of high-resolution DEM, many areas in the 
United States and the world do not have access to high-res-
olution DEMs due to technological limitations or the cost of 
the data collection process [22]. As an alternative, enhanc-
ing the resolution (super-resolution) of the existing datasets 
can be seen as the optimal approach to fill the gap. Super-
resolution is a widely studied topic in computer vision in 
which aims to generate high-resolution images with the help 
of one or multiple low-resolution images. DEM, denoted by 
a matrix, is highly similar to images in terms of denotation. 
DEM could be considered as an image in super-resolution 
application, since its planer coordinates and height values 
can be seen as the pixel position and corresponding color 
values, respectively [23].

With recent developments in graphical processing units 
(GPU) and novel algorithms, deep learning techniques have 
become attractive to researchers in geoscience and hydrol-
ogy domain [24] for their performance in learning features 
in different fields including super-resolution. Convolutional 
neural networks (CNNs), a deep neural network algorithm, 
based single-image super-resolution (SRCNN) demonstrated 
the effectiveness of CNNs in image enhancement [25]. Tak-
ing advantage of the similarity between DEM datasets and 
images, D-SRCNN is developed in this study to increase 
the resolution of DEMs with similar approaches in SRCNN 
[26]. Alongside the success of CNN, new deep neural 
network algorithms like generative adversarial networks 

(GANs) have been started to gain attention in super-reso-
lution literature. GANs are the special types of structures 
that consists with opposing two neural networks working 
simultaneously to beat each other. SRGAN, one of the 
early successful examples of GANs in super-resolution, has 
achieved to increase the resolution of an image up to four 
times upscaling factor with high performance [27].

In this paper, the performance of GANs is explored to 
develop a deep neural network model, D-SRGAN, that aims 
to convert provided low-resolution DEMs into high-resolu-
tion ones without additional information. More specifically, 
the model is designed to increase the resolution of 50 feet 
DEMs to 3 feet DEMs and it is trained and tested with the 
data collected from Wake and Guilford counties in North 
Carolina via North Carolina Floodplain Mapping Program*.1 
The performance of D-SRGAN is compared with traditional 
interpolation methods such as bicubic and bilinear as well as 
the two neural networks [26, 28] to understand the effective-
ness of the approach.

Main contributions of this paper are: (a) proposing a new 
generative adversarial network (D-SRGAN) based approach 
for increasing the resolution of 50-feet DEMs to the resolu-
tion of 3-feet DEMs, (b) showing that techniques used in the 
single image super-resolution can be used for DEM super-
resolution as well as a result of the similarity between DEM 
and image data.

The paper is organized as follows: Sect. “Related Work” 
reviews the relevant research in image super-resolution and 
DEM super-resolution. Section 3 gives details about our net-
work design and the general concept. Also, experimental 
data are provided in Sect. 3. Section 4 covers the detailed 
results of the proposed method and related discussion. The 
paper finalized with conclusions and possible future research 
paths.

Related Work

Super-resolution is a process of producing a high-resolution 
image from one or more low-resolution images and it is one 
of the active fields in computer science. Super-resolution can 
be classified into two groups: multi-frame super-resolution 
and single image super-resolution (SISR) [29, 30]. Multi 
frame super-resolution combines information from differ-
ent low- resolution images to produce a higher resolution 
image by employing various techniques such as iterative 
back projection or probabilistic approaches [31–33]. Since 
our concept focuses on single image super-resolution, we 
will not provide further information about multi-frame 
super-resolution. Over the years, various approaches have 

1  https​://sdd.nc.gov.

https://sdd.nc.gov
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been proposed on SISR. Interpolation-based methods such 
as linear, bicubic or Lanczos have been applied with the 
power of predefined mathematical formulation without the 
training phase. Despite the performance of these methods, 
they underperform at high- frequency regions due to the 
tendency of smoothness [30, 34]. Reconstruction-based 
methods take advantage of prior knowledge to generate 
high-resolution images. Various approaches have been used 
in reconstruction-based methods such as steering kernel 
regression (SKR) [35] or non-local means (NLMs) [36]. 
Alongside the success of preserving edges and suppressing 
artifacts, reconstruction-based methods are not successful 
in producing super-resolution images at large magnification 
factors [37, 38]. Learning or example-based methods aim to 
gather insight information from paired low and high-resolu-
tion images to understand missing details in low-resolution 
images. Numerous approaches have been proposed as learn-
ing or example-based methods such as neighbor embedding 
[39], sparse coding [40] and regression methods [41, 42]. 
One of the crucial elements for these methods is the training 
set. Quality of the training set can lead to capture redundant 
or erroneous features and reduce the effectiveness of the 
methods dramatically [29, 30, 38].

Despite the fact that the root of convolutional neural net-
works goes back [43, 44], CNNs are starting to reach its true 
potential with the help of recent developments on modern 
GPUs (graphic processing units). Several novel approaches 
have been used in different tasks such as image classifica-
tion [45], face recognition [46], and super-resolution [47]. 
In the literature regarding SISR, Dong et al. [25] have pro-
posed a method namely super-resolution convolutional 
neural network (SRCNN) to learn a mapping end to end 
between the low and high-resolution images. The method 
starts with bicubic interpolation of low-resolution image 
followed by overlapping patch extraction and representa-
tion as high-dimensional vector, then non-linearly maps the 
high- dimensional vector to another high-dimensional vec-
tor, finally it reconstructs the high-resolution image from 
these vectors. Fast Super-Resolution Convolutional Neural 
Network (FSR- CNN) has been developed by Dong et al. 
[47] to increase speed of current SRCNN. In the FSRCNN, 
deconvolutional layer has been chosen over bicubic interpo-
lation and single mapping layer replaced with four mapping 
layers and an expanding layer. Kim et al. [48] constructed 
a network powered by 20 convolutional layers with a high 
learning rate and the result of that network is considerably 
better in comparison to the methods at that time. Deep-recur-
sive convolutional network (DRCN) [49] is powered by deep 
recursive layers. Accuracy of the model can be increased 
with more iteration and it does not require introducing new 
parameters for additional convolutional layers. DRCN pro-
posed two methods to enhance learning procedure, namely 
supervision of recursions and skip- connection. Shi et al. 

[50] introduced the first convolutional neural network (CNN) 
capable of real-time SR of 1080p videos on a single K2 
GPU. The network consists of L layers. First L-1 layers, 
feature maps are extracted at low-resolution (LR) space. 
The final layer, sub-pixel convolutional layer, upscales LR 
feature maps to high-resolution (HR) output. The study dem-
onstrated that working on the LR space dramatically reduces 
computational and memory-wise complexity. Lim et al. 
[51] developed a deep neural network with removing the 
batch normalization layers and all activation layer outside 
the residual block in SRResNet [27] and won NTIRE2017 
Super-Resolution Challenge. Zhang et al. [52] proposed to 
use residual dense block (RDB) to extract abundant local 
features via dense convolutional layers. It performs the skip 
connections for ahead of each block.

Alongside CNNs, new promising approaches have been 
explored in super-resolution applications such as generative 
adversarial networks (GAN). GANs can be considered as a 
framework that consists of two neural networks designed 
to defeat each other in a zero-sum game [53]. After it was 
proposed, numerous variations of GANs have been tested 
for various tasks such as image to image translation [54] 
or image editing [55]. SRGAN (super-resolution generative 
adversarial network) is one of the first implementation of 
GAN designed to achieve SISR. The generator of SRGAN 
starts with taking the power of deep residual blocks with 
skip-connections. At the end of the network, the resolution 
of the image is increased with two sub-pixel convolutional 
layers. SRGAN uses perceptual loss that consists of adver-
sarial and content losses. Instead of using pixel-wise MSE 
(mean square error), the content loss is calculated from fea-
ture maps of VGG network (pretrained network by Oxford’s 
Visual Geometry Group) [27]. The design of ProGanSR has 
been influenced by curriculum learning, which proposes the 
direction of learning should be from small upscaling factors 
to large upscaling factors. ProGanSR uses the asymmetric 
pyramids structure to obtain efficiency. Each pyramid con-
sists of Dense Compression Units followed by sub-pixel 
convolution layers to increase the resolution of input by two 
times [56]. Mahapatra et al. proposed local saliency maps, 
which define the importance of each pixel, to use in the GAN 
loss function over classical MSE [57]. Wang et al. [58] pro-
pose the ESRGAN which removes the batch normalization 
layers from the SRGAN and uses the residual-in-residual 
dense block (RRDB) instead of regular residual blocks in 
SRGAN in order to improve efficiency.

The literature on single DEM super-resolution, Xu 
et al. proposed a non-local algorithm that searches similar 
patches over the training set with a predefined equation, then 
increases the resolution of target DEM with weights calcu-
lated through the searching phase [23]. D-SRCNN is a CNN 
based method that aims to increase the resolution of given 
DEM with similar architecture in SRCNN and it performs 
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better than the non-local based method [26]. Alongside 
D-SRCNN, Xu et al. [28] also proposed a CNN based model 
that is broadly derived from EDSR (enhanced deep super-
resolution network) [51]. The network is pre-trained with 
natural images in order to obtain high-resolution gradient 
maps which will be fine-tuned with high-resolution DEMs 
in the next process. In addition to deep learning methods, 
traditional interpolation approaches such as bicubic, krig-
ing, inverse distance weighting can be used for single DEM 
super-resolution. Nevertheless, these statistical models tend 
to produce more smooth terrains [59]. Also, it is possible 
to use additional data in order to increase the resolution of 
DEMs. Argudo et al. [59] proposes a fully convolutional 
neural network that accepts the low-resolution DEM and its 
high-resolution orthophoto to produce the high-resolution 
of DEM. Yu et al. [60] introduces a regularized framework 
that enables the combining of multiple data for correspond-
ing DEM to reconstruct a higher resolution DEM. Despite 
the importance of DEM, the research on single DEM super-
resolution is still limited. Recent methods in image super-
resolution can be applied to DEM image enhancements with 
the help of the similarity between DEM and image data.

Methods

Generative adversarial networks (GANs) have been used 
by many researchers from various fields since they were 
first proposed by Ian Goodfellow et al. [53]. GANs con-
sist of two adversarial components, namely generator 

and discriminator, which aim to compete in a minimax 
game. Generator aims to capture data distribution and 
produce realistic samples to convince discriminator as 
fabricated ones are real. On the other hand, discrimina-
tor intents to determine the source of incoming samples. 
The cost of each network is directly related to the success 
of the opposing component, and the general process can 
be expressed by the following formulation (Eq. 1) where 
discriminator and generator try to beat one another with 
value function V(G, D).

 where D(x) is the discriminator’s estimate of the probability 
that real data instance x is real, G(z) is the generator’s out-
put when given noise z, D(G(z)) is the discriminator’s esti-
mate of the probability that a fake instance is real, Ex− the 
expected value over all real data instances, Ez is the expected 
value over all random inputs to the generator.

In our study, the goal is generating a high-resolution DEM 
from a low-resolution DEM. The low-resolution DEMs are 
accepted by the generator in order to produce high-resolu-
tion DEMs. Discriminator of the network takes fabricated or 
real high-resolution DEM as input and guesses the origin of 
input. There are two different losses in the system to regulate 
weights of the networks, content and adversarial, namely. 
The discriminator is only affected by the adversarial loss 
during the training phase. On the other hand, content loss of 
fabricated high-resolution DEMs is used in the manipulation 
of the generative network’s weights alongside the adversarial 

(1)
min
G

max
D

V(D,G) = Ex

[
logD(x)

]
+ Ez

[
log (1 − D(G(z)))

]

Fig. 1   General structure of the GAN training process
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loss. The general structure of the GAN training process is 
represented in Fig. 1.

As can be seen in Fig. 1, generator takes low-resolution 
DEMs and converts to high-resolution DEMs. The discrimi-
nator compares the generated and real high-resolution DEMs 
to predict whether they are real or fake. The adversarial loss 
is calculated based on the success of the discriminator and 
weights of the both discriminator and generator are updated. 
At the same time, the content loss is calculated according to 
pixel-wise difference between the generated and real high-
resolution DEMs to feedback the generator.

Network Architectures

Our network design consists of two opposing components 
(i.e. generator, discriminator). The architecture of compo-
nents is based on the SRGAN [27] and EDSR models [51]. 
The generator of our network takes the low-resolution DEMs 
as input and passes it to a convolution layer with 64 feature 
maps, then passes it to residual blocks. The generator has 
twenty residual blocks with duplicated design. Each residual 
block is created with two convolutional layers with 3 × 3 
kernel and 64 feature maps. Between the two convolutional 
layers, ReLU [61] is used as an activation layer. Inside each 
residual block, there is a connection (skip connections) 
between incoming data from the predecessor component 
and the last phase of the current residual block which aims 
to gather low-level features in order to improve the perfor-
mance of the generator [49, 62]. A similar link between 
input data and the output of the final residual block is also 
established. The next components of the generator are two 
upsampling blocks which are used to increase the resolution. 
Upsampling blocks are obtained with a convolutional layer 
with 256 feature maps followed by sub-pixel convolutional 
layers [50]. In the end, the output of the upsampling blocks 

is passed to a convolutional layer prior to getting out the 
generator. The visual representation of the generator is pro-
vided in Fig. 2.

The discriminator of the network has nine convolutional 
layers with 3 × 3 filter kernels and increment in feature maps 
from 64 to 512 by a factor of two. Each convolutional layer 
is followed by Leaky RELU as an activation function with 
alpha is equal to 0.2. Strided convolutional layers are used to 
reduce the resolution of DEM while the number of features 
is doubling. In the last convolutional layer, there is an addi-
tional adaptive average pooling layer prior to dense layers. 
The outcome of the discriminator is produced with sigmoid 
function after the dense layers. The visual representation of 
the discriminator is provided in Fig. 3. In the Figs. 2 and 3, 
kernel size, feature map, and stride are denoted by k, n, and 
s respectively.

Loss Functions

Under this section, we will review the loss functions applied 
in the neural networks. In the training phase, the adversarial 
loss is used by both discriminator and generator. In addition 
to adversarial loss, the generator is affected by content loss 
to converge fast and produce more accurate data points.

Adversarial Loss

Adversarial loss is an essential part of the GAN structure. 
In our design, it is the only element that is used by dis-
criminator of the network as a loss function. The adver-
sarial component is helping to enhance the discriminator 
while distinguishing the source of data as expected. In the 
training phase, mean absolute error, L1 Loss, is used as 
adversarial loss for both discriminator and generator. The 
formulation of adversarial loss for discriminator (Eq. 2) is 
provided below:

Fig. 2   Architecture of generator 
component

Fig. 3   Architecture of discrimi-
nator component
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where yi is the real high resolution DEMs, xi low resolution 
DEMs,m total number of samples.

Adversarial loss is also used for the generator to create 
more realistic examples with aiming to fool the discrimi-
nator. Formulation of adversarial loss for generator (Eq. 3) 
calculated as follows:

w h e r e  xi is the low resolution DEMs   , 
m is the total number of samples.

Content Loss

Alongside adversarial loss, it is a common procedure to use 
a loss function to determine the difference between ground 
truth and fabricated data to capture the goodness of pro-
duced data and mean square error (MSE) is the widely used 
optimization value in various work [23, 26, 59]. It sounds 
reasonable to use MSE in order to understand the result of 
the ongoing process, since DEM contains the numerical 
value of earth surface elevations and MSE is used as a metric 
to understand the goodness of methods in the field.

w h e r e  xi is the generated high resolution DEMs   , 
yi is the real high resolution DEMs   , 
m is the total number of samples..

Since the generator is affected by multiple loss functions, 
its loss function (Eq. 5) combination of content loss (Eq. 4) 
and adversarial loss (Eq. 3) and it is as follows:

w h e r e  ICGen
− contentlossofgenerator   , 

IAGen
− adversariallossofgenerator   

, � − weightofadversarialloss.

Data Processing

The dataset used in the experiment is collected from North 
Carolina Floodplain Mapping Program*.2 It is a government 
program that allows the public to download different data 
types such as DEM for selected regions from North Caro-
lina. The dataset covers a total area of 732 km2 from Wake 

(2)IDis =
1

2m

m∑

i=1

1 − D
(
yi
)|
|
|
+D(G

(
xi
)|
|
|
,

(3)IAGen
=

1

m

m∑

i=1

||
|
1 − D(G

(
xi
)|
|
|
,

(4)ICGen
=

1

m

m∑

i=1

(
xi − yi

)2
,

(5)IGen = ICGen
+ �IAGen

and Guilford counties. As a training set, a total area of 590 
km2 is used. The rest of the dataset, area of 142 km2, is 
accepted as a test set. Each of the used DEMs was collected 
at a spacing of approximately 2 points per square meter. In 
the experiment, 3 feet and 50 feet DEMs are used as high-
resolution and low-resolution examples, respectively. The 
NC Program delivered each tile of high-resolution DEMs 
as 1600 × 1600 data points and the low-resolution DEMs 
as 100 × 100 data points. In the preprocessing phase, HR 
DEMs are split to 400 × 400 data points and LW DEMs are 
split to 25 × 25 data points. In addition to the fragmentation 
process, DEMs with missing values are discarded from the 
dataset prior to the experiment. The average, minimum and 
maximum elevation values in both datasets are pro›vided 
in Table 1. The distribution of elevation values is also pro-
vided for both datasets in Fig. 4. The network in our study 
is implemented with Pytorch framework.

Results and Discussions

The goal of our network is increasing the resolution of given 
DEM with 4 × upscaling factor. The generator is designed 
to take low-resolution DEMs (50 feet) with 25 × 25 cells 
as input and returns high-resolution DEMs (3 feet) with 
400 × 400 cells as output. The discriminator of the network 
is accepting DEMs with 400 × 400 cells as input and guess 
the source of it whether generated by the generator or not. At 
the beginning of the training procedure, the Adam algorithm 
[63] is used as optimizer with learning rates 0.0001 for both 
discriminator and generator. The rest of the parameters are 
used with their default values in Pytorch implementation. 
The weight of the adversarial loss in the generator is set to 
the learning rate of the generator, and the weight changes 
with it. The learning rate of the generator is divided by two 
on 800th and 1600th epoch. Also, during the training pro-
cedure, discriminator is frozen as a favor to the generator 
time to time since its performance reaches almost the perfect 
level. Figure 5 showcases the visualization of fabricated HR 
DEM for different epochs with same input DEM.

Based on the network, GAN based approach provides 
promising results. Since DEM contains the height value of 
the corresponding area, it is reasonable to use a metric that 
reflects quantitative measurements in order to understand 

Table 1   Statistical summary of elevation datasets for training and 
testing (m)

Average elevation Minimum 
elevation

Maxi-
mum 
elevation

Training 653.1 205.7 984.9
Test 621.7 230.0 982.7

2  https​://sdd.nc.gov.

https://sdd.nc.gov


SN Computer Science (2021) 2:48	 Page 7 of 11  48

SN Computer Science

the performance of the method. Also, it is common prac-
tice to use MSE to understand the effectiveness of proposed 
methods [23, 26, 59]. The result of GAN based model is 
compared with different methods to understand their effec-
tiveness. From the classical methods, bicubic and bilinear 
interpolations are performed with the help of a well-known 
Python library scikit-image. Also, D-SRCNN [26] and 
DPGN [28] are two recent methods that aim to increase the 
resolution of DEMs with neural networks used to compare 
the results with our method. Both models use convolutional 

neural networks and ReLU as activation function similar 
to our model. D-SRGAN and DPGN use residual blocks 
and skip-connections to increase effectiveness. All net-
works use similar loss functions to find the content loss, but 
D-SRGAN includes the adversarial loss in its loss function. 
Table 2 shows mean squared errors of different methods on 
both training and test datasets for elevation data. Accord-
ing to the results, D-SRGAN outperform tested classical 
methods and D-SRCNN on both training and test datasets. 
As can be seen from the table, DPGN and D-SRGAN give 
the best results among the other methods in training and 
test sets, respectively. However, it should be noted that the 
average error between training and test sets are very close 
in D-SRGAN to respect other neural network methods. The 
error distribution of D-SRGAN is also provided in Fig. 6. 
The mean, median and standard deviation of error distribu-
tion in the testing dataset for D-SRGAN are 0.75, 0.64 and 
0.50 m, respectively. The distribution of errors shows that 

Fig. 4   Distribution of elevation data

Fig. 5   Example outputs of generator during different training epochs

Table 2   Performance 
comparison of D-SRGAN and 
other methods when increasing 
DEM resolution from 50 to 
3 feet, as MSE in meters

Methods Training Testing

Bicubic 0.968 0.946
Bilinear 1.141 1.124
D-SRCNN 0.900 0.872
DPGN 0.758 0.803
D-SRGAN 0.766 0.753
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most of the time D-SRGAN provides promising results with 
a limited number of outliers.

Figure 7 visualizes the example DEMs from the test-
ing dataset which are generated with D-SRGAN, bicubic 
interpolation in order to show the strength and weaknesses 
of GAN based model. D-SRGAN is capable of regenera-
tion of DEMs with 4 × higher resolution under the promis-
ing deviation. According to Fig. 6, %78 of all values fall 
within plus or minus one standard deviation from the mean 
which shows the stability of our model. As seen from the 
figure that D-SRGAN is struggling to capture finer details 
of DEMs. In image super-resolution, MSE based solutions 
have a tendency to miss high-frequency content and produce 
more smooth results in which similar effects can be found in 
GAN-based model [27]. However, D-SRGAN still outper-
forms other methods in similar conditions.

Alongside the investigation of D-SRGAN performance 
on the dataset for generating 3 feet DEMs from 50 feet 
DEMs, its effectiveness on different resolution DEMs is Fig. 6   Error distribution of D-SRGAN on testing dataset

Fig. 7   Example SR results from 
D-SRGAN and bicubic
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also examined. For this purpose, four different DEMs are 
created from 3 and 50 feet DEMs. Two of these DEMs 
were created from 3 feet DEM to 100 and 25 feet DEMs 
and the other two were created from 50 feet DEM to 100 
and 25 feet DEMs using bicubic interpolation to present 
an assessment on D-SRGAN performance with different 
DEM resolutions. In the new experiment, the model’s 
blocks are updated to be consistent with the input–output 
pairs. To speed up the training phase, some weights of 
D-SRGAN model trained for 50 to 3 feet DEMs are trans-
ferred to new models. According to experiment results, 
D-SRGAN outperforms two classical interpolation meth-
ods on generating 3 feet DEMs from 25 and 100 feet 
DEMs as it does in the previous experiment. Tables 3 and 
4 shows the performance comparison of proposed model 
and other methods as MSE in meters. Since the data for 
25 and 100 feet DEMs are interpolated, and the goal is 
to get an insight for D-SRGAN performance on different 
DEM resolutions, results are only compared with classical 
methods. Based on the overall results, it can be concluded 
that D-SRGAN can provide promising results for different 
DEM resolutions.

In addition to previous results, slope analysis provides 
valuable insights regarding the performance of methods in 
different terrains. The slope is a common parameter that is 
used in various applications in environmental sciences via 
DEMs [64, 65]. For each elevation value of a DEM, the 
slope is calculated with the average maximum technique 

proposed by Burrough et al. [66] based on a 3 × 3 cells 
around the value cell. As the slope value changes from 
lower to greater, the terrain goes from flatter to steeper. 
Figure 8 shows the slope imagery of the test set for gener-
ating 3 feet DEMs from 50 feet DEMs as well as the error 
distribution over slope values which are normalized into 
[0, 1]. As seen below, D-SRGAN performs better results 
on flatter terrain than steeper terrain.

Conclusions

In this study, a generative adversarial network, D-SRGAN, is 
proposed. GAN based model aims to convert low-resolution 
DEMs into high-resolution ones without needing additional 
information. The experiment outcomes show that GAN based 
model produces promising results while constructing 3 feet 
high-resolution DEMs from 50 feet low-resolution DEMs. 
Despite the overall success, the models could not perform 
evenly over the terrains. They produce more realistic exam-
ples in flatter terrains than stepper terrains. As a future work, 
this problem can be overcome by using different metrics in 
the training phase of the generator such as slope. In addition 
to using different losses, working on variational autoencod-
ers (VAEs) [67] to find better architecture to minimize the 
slope errors between flatter and steeper terrains can be studied. 
Also, investigating the effects of the generated high-resolution 
DEMs in different tasks with comparing the results with real 
high-resolution DEMs is a potential open question.

Table 3   Performance comparison of D-SRGAN and other methods as 
MSE in meters where the dataset (25 and 100 feet) obtained from 3 
feet DEMs used to estimate 3 feet DEM

Training Testing

Methods 25-to-3 feet 100-to-3 feet 25-to-3 feet 100-to-3 feet

Bicubic 0.279 4.342 0.271 4.404
Bilinear 0.386 5.743 0.375 5.879
D-SRGAN 0.136 1.402 0.133 1.796

Table 4   Performance comparison of D-SRGAN and other methods as 
MSE in meters where the dataset (25 and 100 feet) obtained from 50 
feet DEMs used to estimate 3 feet DEM

Training Testing

Methods 25-to-3 feet 100-to-3 feet 25-to-3 feet 100-to-3 feet

Bicubic 0.903 2.969 0.877 2.978
Bilinear 0.923 4.012 0.896 4.076
D-SRGAN 0.687 1.556 0.682 2.036

Fig. 8   The slope analysis of D-SRGAN on test set
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