
Vol.:(0123456789)

SN Computer Science (2021) 2:35
https://doi.org/10.1007/s42979-020-00420-8

SN Computer Science

ORIGINAL RESEARCH

An Ontology‑Based Approach to Automated Test Case Generation

Shreya Banerjee1 · Narayan C. Debnath1 · Anirban Sarkar2

Received: 21 September 2020 / Accepted: 3 December 2020 / Published online: 12 January 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. part of Springer Nature 2021

Abstract
Software testing is as old as software itself. However, the techniques, tools, and processes used by researchers to ensure
product quality are constantly evolving. Application of knowledge management technologies in automated test case genera-
tion is one of them. This paper addressed the issue of ontology-based automated test case generation in the case of black
box testing. In this context, several challenges are present in existing literature. The prime challenges among are (1) major
approaches are confined to a specific domain, (2) least consideration about modified domain knowledge, (3) lack of method-
ology for auto-identification of pre-conditions and different combinations among test input data and (4) poor requirements
and domain coverage. The proposed methodology, in this paper, is aimed to resolve these issues by devising a rule-based
reasoner that can auto generate the test cases. The proposed method takes an ontology-based requirements specification as
an input. The novelty of the proposed method is the specification of domain independent inference rules based on which the
devised reasoner can generate test cases for different domains and systems automatically. This contribution of the proposed
work facilitates in improving both user’s requirements coverage and domain coverage. The devised reasoned, in this paper,
is implemented in Apache Jena (Apache Jena, https ://jena.apach e.org., Accessed 2020/09/04). In addition, the usability of
the proposed work is illustrated using a suitable case study.

Keywords Automated test case · Test case ontology · Rule-based reasoner · Test case generation tool

Introduction

Software Testing is a time-consuming and resource-hungry
task that depends on advanced expert knowledge. Research-
ers are continuously seeking to develop new approaches to
address this issue [1]. In modern days, the process of soft-
ware testing is performed using systematic test activities,

such as test planning and design, visual reviews of require-
ments documents and program code, program testing,
system testing, acceptance testing, and so on [3]. Despite
all these efforts, errors are remain undetected in the code.
According to CapgeminiWorld Quality Report 2018–19,
the budget allocation for quality assurance and testing, as
percentage of IT expenditures in the software industry, has
come down in recent years but still accounted for 26% in
2018 [3]. This issue requires serious attention on automated
testing tools and techniques.

Despite successful achievements in automation on script
execution and white-box testing, there is still a lack of auto-
mation of black-box testing of functional requirements [3].
Tedious manual process of test case generation for black-
box testing largely depends upon domain knowledge [12].
Usually, in black-box testing, test cases are formed by look-
ing at different users’ requirements. However, it requires
40–70% of the software test life cycle that has affected on
cost, time and effort factors due to the frequent changes in
requirements and having different terminologies [4]. In this
context, requirement-based testing can be used to uncover
faults and defects in artefacts during early stage development

This article is part of the topical collection “Applications of
Software Engineering and Tool Support” guest edited by Nabendu
Chaki, Agostino Cortesi and Anirban Sarkar.

 * Shreya Banerjee
 shreya.banerjee@eiu.edu.vn

 Narayan C. Debnath
 narayan.debnath@eiu.edu.vn

 Anirban Sarkar
 sarkar.anirban@gmail.com

1 Department of Software Engineering, Eastern International
University, Thu Dao Mot City, Binh Duong Province,
Vietnam

2 Department of Computer Science and Engineering, National
Institute of Technology, Durgapur, India

https://jena.apache.org
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00420-8&domain=pdf

 SN Computer Science (2021) 2:3535 Page 2 of 12

SN Computer Science

[5]. Further, to aid automated generation of test cases from
requirements, requirements specification should be repre-
sented precisely.

These days, knowledge management is extensively used
in software testing and influences software testing processes,
methods and models [2]. Test-case generation using avail-
able system knowledge is one of the crucial applications
of knowledge-based software testing among many. Usually,
the testing process requires collaboration between several
stakeholders [11]. This creates the necessity that domain
experts need to be able to communicate with the testers
effectively. Ontology is defined as explicit specification of
shared conceptualization [7]. It can represent concepts and
relationships within a domain in a way that allows automated
reasoning [7]. Ontologies are considered as an enabling
technology for representation and sharing of domain knowl-
edge in software testing. It can be used to represent users’
requirements precisely. Automated reasoning on ontology
specification can be accomplished using of inference rules
[6]. An ontology can represent requirements from a soft-
ware requirements specification, and the inference rules can
describe strategies for deriving test cases from that ontology
[4].

However, several challenges are present in related exist-
ing approaches those have applied ontology for automating
their test cases. The crucial challenges among those are, first,
most of approaches are confined to specific applications.
Those cannot be applied over different domain and appli-
cations. Test specifications need to be represented in high
level of abstractions, so that those can be further reused over
different implementations [5]. Second, automated genera-
tion of test data is required to deal with domain knowledge
that is changing continuously. Third, in several test cases,
pre-conditions have high impact on test input. Pre-condi-
tions represents the context, in which the test need to be
executed. Thus, based on pre-conditions, result of a similar
test input can vary. Hence, automated extraction of pre-con-
ditions from requirements specification is also a significant

task. Fourth, sub test cases can be generated from different
combinations of test data reside in single test case. It can
help in update or addition of new test cases. Hence, auto-
mated extraction of different relationships among test data
is required.

This paper is aimed to address these aforementioned chal-
lenges using an automated testing approach. In the proposed
approach, a rule-based reasoner is devised that will auto-
matically create test cases based on an ontological represen-
tation of requirements described in [8]. The contribution of
the proposed method are many. First, the ontology-based test
specification and proposed rules are domain independent.
Hence, the rules can be applied to different applications on
same or different domain for automating the test cases. Thus,
the proposed approach aids in customised domain- or appli-
cation-specific test case generation. In this way, the proposed
approach has addressed the first challenge. Second, since the
proposed approach is based on an ontolog-based description
of requirements specification, it can infer new knowledge
from existing domain knowledge and synthesize test data.
This contribution can deal with continue modifications of
domain knowledge. Thus, the second challenge is addressed
in the proposed methodology. Third, both pre-conditions of
test data and different association among test data are identi-
fied in the proposed method. Thus, the approach is capable
to identify test context and the different conditions of test
execution automatically. Fourth, proposed method in this
paper is an effort to devise a software testing tool that can
save time and cost by accomplishing automated test case
generation for customized domains or applications in the
context of black-box testing. Thus, the proposed approach
aids in obtaining domain or system coverage.

With these objectives, the paper is organized in the fol-
lowing way. Section 2 has described the related work. Sec-
tion 3 has proposed the methodology for devising the rule-
based reasoned. Section 4 has implemented the proposed
methodology in Apache Jena [10]. Further, the proposed
approach is illustrated using a case study in Sect. 5. Finally,
Sect. 6 has concluded the paper.

Related Work

Few approaches exist in the literature those have applied
ontology in automated test case generation for black-box
testing. In [3], authors have described an approach that has
automated complete testing process using ontologies and
inference rules. The approach takes an ontology-based
software requirements specifications as input and produces
test scripts as output. However, in the described require-
ments ontology, associations among different requirements
are not considered. Further, the prescribed inference rules
are domain specific. Hence, inference rules are need to be

Automation of Test Cases, Test
Data and Precondition generation

Early Requirements

Rule based Reasoner implemented in
Apache Jena

Ontology
Driven Re-
quirement
Analysis
Framework
[8]

Detailed Requirements

Extended
To

Ontology based
specification

Ontology based
specification

Fig. 1 Overview of the proposed approach for ontology-based auto-
mation of test case generation

SN Computer Science (2021) 2:35 Page 3 of 12 35

SN Computer Science

formulated manually for different domains and applications.
In [14], a general knowledge-based test case generation
framework is described that allows customized definition
of domain and system specific coverage criteria. However,
this approach has not considered pre-conditions, test sce-
nario and relationships among different requirements. In
[12], an automatic test case generation framework is devised
that involves ontology-based requirement specification and
learning-based methods for conducting black box testing.
This method also integrates ontology-based system with
learning-based testing algorithm to automate generation
of test cases, test execution and test verdict construction.
However, the described method is presented only from con-
ceptual perspective. Authors have not developed the frame-
work in practice. Further, they have not considered about
different combinations of test data in a test case. In [15, 16],
the described ontology is intended for automating of test
cases for web-services. Thus, these approaches are specific
to certain domain. Likewise, in [17], authors have described
the method for automated test case generation of multi-agent
systems. In [18], authors has developed a Reference Ontol-
ogy on Software Testing (ROoST). This ontology establishes

a common conceptualization about the software testing
domain, such as defining a common vocabulary for knowl-
edge workers with respect to the testing domain, structuring
testing knowledge repositories, annotating testing knowledge
items, and for making search for relevant information easier.
Authors have described about ontology testing but they have
not prescribed about ontology-based test case generation.

Majority of the existing approaches focus on specific
domain for developing their automated test case generation
framework. Thus, the domain or system coverage criteria for
their approaches are very limited. However, in this paper, a
general framework is proposed, that can facilitate automated
generation of test cases for different domain and application.
Thus, the domain coverage criteria of the proposed approach
is good. Besides that, few approaches have specified about
automated preconditions and different relationships among
test input. Both these artefacts are required to grasp the test
context. Further, these artefacts also aid in deriving new test
cases from exiting one and update test cases. The proposed
approach, in this paper, has facilitated in automated genera-
tion of both pre-conditions and test input.

Fig. 2 Detail illustration of
Ontology Driven Requirement
Analysis Framework [8]

Early Requirement Analysis Phase Ontology in Early Require-
ment Analysis Phase

Conceptualize

Formal
Scenario

Ontology in Detailed Re-
quirement Analysis PhaseCED

graph

Application Dependent On-
tology

Detailed Requirement Analysis Phase

Conceptualize

Ex
te

nd
ed

 T
o

Ex
-

te
nd

ed

Analyse

Analyse Re
-

str
ic

te
d

Application Level Requirement Analysis
Step

Fig. 3 Different Variations
of Inclusive Or conditions
based on Transformation and
Dependency Relationships; a
All causes have transformed
towards the effect; b One cause
has transformed towards all of
the effects; c All of the causes
has dependent on one effect; d
One cause has dependent on all
of the effects. [8]

C1

C2

E1
G((C1,C2),

inclusive_or)

C1

C2

E1

G((C1,C2),
inclusive_or)

L

L

C1

E1

G((E1,E2),
inclusive_or)

E2

C1

E1

G((E1,E2),
inclusive_or)

E2

L

L

 SN Computer Science (2021) 2:3535 Page 4 of 12

SN Computer Science

Proposed Methodology

Proposed approach in this paper is accomplished based
on the outline illustrated in Fig. 1. The main objective of
the proposed work is to devise a reasoner that can auto-
mate test case generations. The devised reasoner takes
ontology-based requirements specification as input. A set
of inference rules are proposed to build the proposed rea-
soner. The reasoner has generated test cases along with
pre-conditions and expected result based on those infer-
ence rules. Section 3.1 has summarized the description of
ODRA. Section 3.2 has specified the proposed method of
the reasoner. Further, Sect. 3.3 has proposed the different
inference rules.

Brief Description of ODRA (Ontology Driven
Requirements Analysis Framework) [8]

ODRA described in [8] is a generalized requirements engi-
neering framework that can be applied towards different
domains and applications. ODRA is specified for both early
and detailed requirements analysis phase.

In early requirements analysis phase, the framework
has represented and analyzed users’ requirements based
on users’ goals, roles, and corresponding scenarios. Users’
goals can be achieved by sequence of functionalities (F)
those are resulting in real-world effects (E). Functionalities
can be realized through distinct combinations between tasks,
activities, user inputs, events, and other entities. Real-world
effects can be specified as a set of effects. Thus, sequences
of functionalities F and corresponding effects E can be rep-
resented as a scenario. Identified Goals are satisfied through
E. Thus, a scenario aids to achieve Goals effectively.

In detailed requirements analysis phase, Cause-Effect-
Dependency graph (CED Graph) [13] is used for analysis
of users’ requirements in detailed way. CED graph has rep-
resented and analyzed users’ requirements from six views—
Who, What, Why, When, Where and How (5W1H). In this
phase, ontology has two concepts—causes and effects.
Causes are equivalent to functionalities identified in early
requirement analysis Phase. Cause can be defined as a set
of input entities bringing changes in a domain. Effects are

equivalent to a set of effects created through scenarios of
functionalities in early requirement analysis Phase. Thus,
effects aid in satisfying of users’ Goals. Effect can be
defined as a set of output states, those are created from a
combination of Causes. Causes are related to effects using
two crucial relationships—Transformation Relationship
(TR) and Dependency Relationship (DR). Further, causes
are connected with each other using different guard func-
tions. Likewise, effects are also connected with each other
using different guard functions. Those different guard func-
tions are And, Or, Mask, Inclusive_Or, Exclusive_Or, Not,
and Require. The detailed requirements analysis phase com-
prises two steps. The first step represents domain-specific
requirements. The second step specifies application level
requirements. Thus, the first step represents domain level
causes and effects and the second step specifies applica-
tion level causes and effects. ODRA was implemented Pro-
tégé [9]. The Fig. 2 has illustrated the ODRA framework.
Figure 3 has demonstrated Inclusive_Or guard function in
causes.

Proposed Methodology for Rule‑Based Reasoner

A method is proposed in this section for devising the rule-
based reasoner. The devised reasoner takes ODRA specifi-
cation of a certain domain as input. The reasoner also takes
the list of inference rules proposed in Sect. 3.3 as an input.
Since, ODRA can be customized for different domains and
applications; the reasoner is able to generate test cases based
on different domains and applications. Besides that, the rea-
soner starts its execution with specific user goal id. Hence,
it is able to automate the scenario related to the specific user
goal. Thus, pre-conditions and different relationships among
user requirements along with test data are auto generated
by the proposed reasoner. Distinct guard function present
in ODRA facilitates in realization of different combinations
among users requirements. It also assists in test case genera-
tion as per customized requirements rather than generation
of all test cases for whole requirements specification.

In the proposed method, a test case ontology is auto-
mated from the scenario related to the input goal id. The
proposed set of inference rules are applied on a scenario
related to a specific user goal, populate the test case

Table 1 Summarization of proposed test case ontology and equivalent ODRA facets

Proposed test case ontology Corresponding ODRA facets

TestOutput Effects extended from a specific user goal in detailed requirements analysis phase
TestInput Causes transformed to the effects extended from a specific user goal
PreCondition Effects on which causes are dependent

Effects with which one effect is related using Require guard functions

SN Computer Science (2021) 2:35 Page 5 of 12 35

SN Computer Science

ontology and generate the required test cases. This test case
ontology includes 3 classes and 2 object relationships. The
three classes are “PreCondition”, “TestInput” and “TestOut-
put”. Further, the object relationships are “hasPrecondition”
and “hasTestInput”. Different facets of the automated test
case ontology is identified from different concepts and
relationships of ODRA. Table 1 has summarized this map-
ping. Further, the auto-generated test cases based on this
automated test case ontology include three segments. Those

Fig. 4 A workflow model of the
proposed methodology 1. Early Level Requirements Specifica-

tion of a domain [Ontology based Speci-
fication]

2. Detailed Level Requirements
Specification of a domain [On-

tology based Specification]

3. A scenario is extracted according
to a specific requirement

5. A Rule based reasoner imple-
mented in Apache Jena is applied on

the test case ontology

4. A Test case Ontology is auto-Generated
and populated from the extracted scenario

6. Related Test Cases, Pre-Conditions
and Test Data are auto generated

A set of
inference

rules

IF a is an instance of concept DomainLevelCause
b is an instance of concept DomainLevelCause
c is an instance of concept DomainLevelEffect
d is an instance of concept DomainLevelEffect
l is an instance of concept DomainLevelEffect
i is an instance of concept DomainLevelEffect
Transformation_Realationship is a relationship
Depandency_Relationship is a relationship
AND is a relationship
Require is a relationship
a Transformation_Relationship c
b Transformation_Relationship c
a AND b
notEqual(a,b)
a Depandency_Relationship d
b Depandency_Relationship l
c Require i

Then, make a as an instance of concept TestInput

make b as an instance of concept TestInput
make c as an instance of concept TestOutput
make d as an instance of concept PreCondition
make l as an instance of concept PreCondition
make i as an instance of concept PreCondition
create the statement c hasTestInput a
create the statement c hasTestInput b
create the statement c hasPrecondition d
create the statement c hasPrecondition l
create the statement c hasPrecondition i

Fig. 5 Example of an domain independent Inference Rule that facili-
tates in automated of Test Cases

Table 2 List of domain level causes and effects in the example speci-
fied in Sect. 3.3

Domain level causes Domain level effects (TR/DR rela-
tionships)

Order is received (C1) Order is confirmed (E1)(TR)
Check stock availability (C2)
Create invoice (C3) Order is confirmed (E1) (DR)
Update the stock (C4)
Create invoice (C3) Ship the good (E3) (TR)
Update the stock (C4)
Packing the good (C5) Order is confirmed (E1) (DR)

the good is packaged (E2) (TR)
Ship the good (E3) (TR)

 SN Computer Science (2021) 2:3535 Page 6 of 12

SN Computer Science

are “Pre Condition”, “Test Input” and “Expected Result”.
Method 1 has specified the proposed step-wise method of

devising the rule-based reasoner. Further, in Sect. 4, this
stepwise algorithm is implemented in Apache Jena. Fig-
ure 4 has specified a workflow diagram of the proposed
methodology.

C1

C2

G((C1,C2),
AND)

E1

C3

C4

G((C3,C4),
And)

E3G((C3,C4),
And)

E2C5

G((E2,E3),
Require)

Fig. 6 CED graph of the example specified in Sect. 3.3

Table 3 Mapping from domain level causes and effects related to the
example to facets in the proposed test case ontology using an infer-
ence rule

Domain level causes
/ Effects

Instances in the rule
specified in Fig. 5

Facets in the
proposed test case
ontology

C3 a TestInput
C4 b TestInput
E1 d PreCondition
E3 c TestOutput
E1 l PreCondition
E2 i PreCondition

Method 1: Proposed method for devising the rule-based reasoner for automating test cases

Input: Ontology-based requirements specification of a certain domain, a specific user requirement, set of inference rules
Output: Test cases along with pre-conditions and test data for the input user requirement
Step 1: Read the file F related to the input ontology specification
Step 2: Create a ontology file T for the test case ontology
Step 3: Read the goal id of a specific user requirement
Step 4: Print the objective of the user requirement to the console
Step 5: Create a list effect_List
Step 6: Store all the domain level effects extended from that requirement in the list effect_List
Step 7: Create a class “DomainLevelEffect” and write it to the file T. Add all the elements of the list effect_List to this class as instances.
Step 8: Find all the domain level causes from file F those are transferred towards the domain level effects through transformation rela-

tionship
Step 9: Create a class “DomainLevelCause” and write it to the file T. Add all the domain level causes found in the previous step as

instances to the class “DomainLevelCause”.Create an object property Transformation relationship and write it to the file T.
Write the statements containing identified domain level causes, transformation relationship, corresponding effects to the file T.

Step 10: Find all the relationships among these domain level causes from file F through six guard functions such as And, Inclusive_Or,
Exclusive_Or, Mask, Not, Require.

Step 11: Create six object properties “AND”, “Require”, “Inclusive_Or”, “Exclusive_Or”, “Mask”, “Not”. Write all these object proper-
ties to file T. Write all the statements containing identified source domain level cause, guard functions, target domain level
cause to the file T.

Step 12: Find all the effects those are dependent from these domain level causes from file F.
Step 13: Add all the effects identified in Step 12 as instances to the class “DomainLevelEffect” in file T.
Step 14: Create an object property dependency relationship and write it to the file T. Write all the statements containing identified domain

level causes, dependency relationship, identified domain level effects.
Step 15: Find all the guard functions present among domain level effects identified in step 12. Write the statements containing source

domain level effects, guard functions, target domain level effects.
Step 16: Create a class “TestCase” and write it to the file T. Create three classes “PreCondition”, “TestInput”, and “ExpectedResult”. Add

these classes as subclass towards “TestCase” and write the related statements to file T.
Step 17: Create two object properties “hasTestInput” and “hasPrecondition” and write these two object properties to file T.
Step 18: Read the file R containing set of inference rules.
Step 19: Apply the set of inference rules on file T using the generic rule reasoner, generate the test cases as per inference rules and print

those test cases to the console.

SN Computer Science (2021) 2:35 Page 7 of 12 35

SN Computer Science

Proposed Inference Rules for Test Case Automation

The proposed inference rules are specified based on causes,
effects, transformation relationships, dependency rela-
tionships and different guard functions of ODRA. These
rules are domain independent. Hence, they are applicable
to different domains and applications. Thus, customized
domain and application-based test case generation is pos-
sible through the proposed approach. These proposed infer-
ence rules are intended for mapping from the ODRA-based
scenario towards test case ontology as specified in Table 1.
Figure 5 has illustrated an example of the proposed rules.
This example represents there are two different instances
(a,b) of domain level cause. Both a and b are transferred
towards a domain level effects c and related with each other
using And guard function. Further, a and b both depends on

Fig. 7 Partial view of the
proposed rule-based reasoned
implemented in Apache Jena

public static void main(String[] args) throws IOException
{
Scanner sint= new Scanner(System.in);
OntDocumentManager mgr=new OntDocumentManager();
OntModelSpec s=new OntModelSpec(OntModelSpec.OWL_MEM);
s.setDocumentManager(mgr);
OntModel m1=ModelFactory.createOntologyModel(s,null);
OntModel TestModel=ModelFactory.createOntogyModel(s,null);
TestModel.createOntology(NS1);
--- --------

goalId=(objectid.asLiteral().getInt());
if(goalId==REQID)
{System.out.println("The objective of the requirement-ID"+
" "+goalId +" "+"is " +subjectg);
StmtIterator gdoeff=m1.listStatements(subjectg, extended,
(Resource) null);
while (gdoeff.hasNext()){

StmtIterator csdoeffdr=m1.listState-
ments(cause_list_tr.get(j),DR,(Resource)null);
while(csdoeffdr.hasNext())
{Statement casdeffdr = csdoeffdr.next();
Resource objecteffdr=(Resource) casdeffdr.getObject();
cause_effect_list_dr.put(cause_list_tr.get(j),ob-
jecteffdr);}
effectsdr=cause_effect_list_dr.get(cause_list_tr.get(j));
effect_list_dr= new ArrayList<Resource>(effectsdr);
for(m=0;m<effect_list_dr.size();m++){
--
File f1 = new File(input0);
if (f1.exists()) {
List<Rule> rules = Rule.rulesFromURL("file:" + input0);
GenericRuleReasoner r = new GenericRuleReasoner(rules);
r.setOWLTranslation(true);r.setTransitiveClosureCach-
ing(true);

StmtIterator effhapreconeff=testModel.listStatements(ef-
fect_list.get(i),hasPreCondition,(Resource) null);
while (effhapreconeff.hasNext()){------------------

Table 4 summarization of the users’ goals and corresponding domain
effects present in the case study described in Sect. 5.1

Users’ goals Corresponding domain effects

Framer’s_Registration_Process Soil_Sample_is_Rejected
Soil_Sample_is_accepted
Farmer’s_Registration
Message_sent_to_farmer
Fee_is_collected
Sample_Soil_Collected
Fee_is_not_collected

Soil_Health_Card_Generation Acknowledgement_to_the_farmer
Soil_health_Card_is_Generated

Testing_of_Soil_Sample Sample_Test_is_Accepted
Test_Result_is_displayed
Sample_Test_is_Rejected

 SN Computer Science (2021) 2:3535 Page 8 of 12

SN Computer Science

domain level effect d and l, respectively. Besides this, c is
related with another domain level effect i through Require
guard function. If all these conditions are met, then a and b
become “TestInput”, d, l, and i become “PreCondition” and
c become “TestOutput” in the automated test case. Further,
c will be related with a and b using “hasTestInput” object
property. In addition, c will be related with d, l and i using
“hasPrecondition” relationship.

To illustrate the rule specified in Fig. 5, let an example
of a system that facilitates in online shipping of products.
Upon getting the request of shipping of a product, at first,
the system checks the stock for the availability of the prod-
uct. If the product is in stock, the order is confirmed other-
wise it is rejected. Next, if the order is confirmed, then the
system will create an invoice, update the stock and ships
the good to the customer after proper packaging. Table 2
has listed the causes and effects of this example. The CED
graph for this example is illustrated in Fig. 6. Further,
Table 3 has listed the causes and effects in this example;
those are mapped with the instances in the rule specified
in Fig. 5. Based on this mapping, the “TestInput”, “Tes-
tOutput” and “PreCondition” class of proposed test case
ontology will be populated for the test case, which is gen-
erated according to the rule. Table 3 also specifies the auto
generated “TestInput”, “TestOutput” and “PreCondition”
for this specific test case.

Implementation of the Proposed
Methodology

In this section, the proposed reasoner is implemented using
Apache Jena. Apache Jena is a free and open-source Java frame-
work for building semantic web and Linked Data applications.
The framework is composed of different APIs interacting together
to process RDF data. It supports processing of ontology expressed
in OWL by giving access to a range of inference capabilities. Jena
has several built-in reasoners. Generic rule reasoner is one, which
can reason over an ontology specification based on users’ defined
rules. Those rules should be defined in Apache Jena rule syntax.
The proposed inference rules are represented using Apache Jena
rule syntax. Figure 7 has illustrated the partial view of the pro-
posed reasoner implemented in Apache Jena.

Illustration of the Proposed Methodology
Using Case Studies

In this section, the proposed methodology is illustrated
using two case studies. The first one is related with soil
testing management system. The second one is related with
healthcare professional in rural area. Two case studies are
used in order to demonstrate that the proposed approach
can be applied on different domains. This is one important

Table 5 Summarization of
domain level causes and
corresponding domain level
effects and DR/TR relationships
present in the case study
described in Sect. 5.1

Domain specific causes Corresponding domain effects and DR/
TR relationship

Sample_Soil Sample_Soil_Collected (TR)
Farmer Sample_Soil_Collected (TR)
Physical_Verification_of_Sample_Soil Soil_Sample_is_accepted (TR)

Message_sent_to_farmer (TR)
Sample_Soil_Collected (DR)

Registration_Officer Soil_Sample_is_accepted (TR)
Message_sent_to_farmer (TR)
Farmer’s_Registration (TR)

Check_fee_is_applicable_or_not Soil_Sample_is_accepted (DR)
Fee_is_collected (TR)

Inward_Number_generation Fee_is_collected (DR)
Farmer’s_Registration (TR)

Lab_Code_no._assigned Farmer’s_Registration (DR)
Sample_Test_is_Accepted (TR)

Analyst Sample_Test_is_Accepted (TR)
Test_Result_is_displayed (TR)

Soil_Testing_Officer Test_Result_is_displayed (TR)
Soil_test_results_are_confirmed Acknowledgement_to_the_farmer (TR)

Soil_health_Card_is_Generated (TR)
Test_Result_is_displayed (DR)

SN Computer Science (2021) 2:35 Page 9 of 12 35

SN Computer Science

contribution of the proposed approach specified in the paper
since most of existing approaches are domain specific.

Description and Implementation of the First Case
Study

Let, a case study on soil testing management system. In this
case study, a farmer brings soil sample in lab for testing.
Upon checking the condition of soil, the sample is accepted
or rejected by registration officer. If the soil sample is
accepted, then registration officer checks if fees are applica-
ble to the corresponding farmer or not. If fee is applicable,
then fee is collected through either cash or back receipt.

Next, sample is sent to lab for both fee waiver and payee
farmer. A message is sent to the farmer’s mobile for accept-
ance of the soil. An inward number is generated for the soil’s
sample. After that, farmer’s registration is done. Next, lab
code number is assigned to the sample along with the serial
number of the soil being sent to the lab by soil testing officer.
Then, sample comes to the analyst in lab. Soil is tested in the
lab by analyst. If sample is valid, then readings are noted and
entered in the system by analyst. Test result is displayed on
the screen by soil testing officer. Soil Health Card is gener-
ated and stored. A message is sent to farmer’s mobile regard-
ing generation of Soil Health Card.

Fig. 8 Partial view of the
automated test cases generated
through the proposed rule-based
reasoner for the case study
specified in Sect. 5.1

What is the requirement ID?
1
The objective of the requirement-ID 1 is http://www.seman-
ticweb.org/user/ontologies/2017/5/untitled-ontology-
134#Framer’s_Registration_Process
'Test Case 1' 'Pre-Condition:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-
134#Fee_is_collected> 'Test Input:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Regis-
tration_Officer> <http://www.semanticweb.org/user/ontolo-
gies/2017/5/untitled-ontology-134#Inward_Number_generation>
'Expected Result' <http://www.semanticweb.org/user/ontolo-
gies/2017/5/untitled-ontology-134#Farmer's_Registration>
'end'
'Test Case 2' 'Pre-Condition:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-
134#Soil_Sample_is_accepted> 'Test Input:' ---------------
--------- <http://www.semanticweb.org/user/ontolo-
gies/2017/5/untitled-ontology-134#Fee_is_collected> 'end'
'Test Case 3' 'Pre-Condition:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Sam-
ple_Soil_Collected> 'Test Input:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Regis-
tration_Officer> <http://www.semanticweb.org/user/ontolo-
gies/2017/5/untitled-ontology-134#Physical_Verifica-
tion_of_Sample_Soil> 'Expected Result' <http://www.seman-
ticweb.org/user/ontologies/2017/5/untitled-ontology-
134#Soil_Sample_is_accepted> 'end'
'Test Case 4' 'Test Input:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-
134#Farmer> <http://www.semanticweb.org/user/ontolo-
gies/2017/5/untitled-ontology-134#Sample_Soil> 'Expected
Result' <http://www.semanticweb.org/user/ontolo-
gies/2017/5/untitled-ontology-134#Sample_Soil_Collected>
'end'
'Test Case 5' 'Pre-Condition:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Sam-
ple_Soil_Collected> 'Test Input:' ------<http://www.seman-
ticweb.org/user/ontologies/2017/5/untitled-ontology-
134#Physical_Verification_of_Sample_Soil> 'Expected Re-
sult' <http://www.semanticweb.org/user/ontolo-
gies/2017/5/untitled-ontology-134#Message_sent_to_farmer>
'end'
.../Jena Done/....

 SN Computer Science (2021) 2:3535 Page 10 of 12

SN Computer Science

From this case study, three users’ goals are identified and
those are mapped towards Goal concept of ODRA. Those
three goals are “Farmer’s Registration Process”, “Testing
of Soil Sample” and “Soil Health Card Generation”. These
goals are extended to several domain level effects. Table 4
has summarized the users’ goals and corresponding domain
effects. Further, several domain level causes are transferred
or dependent towards/on these domain level effects. Table 5
has summarized this listing. Figure 8 has illustrated the auto-
generated test cases for the goal “Framer’s Registration Pro-
cess”. The proposed reasoner has generated the test cases

along with required pre conditions, test input and expected
result. However, the pre-condition segment is optional.
Where the pre-condition is available, it is generated. For
example, in Fig. 7, in the test case 1 and test case 4, the pre-
condition is not generated. Further, different combinations
of test data are identified in the auto-generated test cases and
specified as “Test Input”. Besides this, if domain knowledge
is modified, then the ODRA specification is also modified
accordingly, and thus the automated test cases are updated.
In addition, the proposed methodology has supported test
case representations for customized users requirements of
different domain and applications based on users’ goal id.
This contribution of the proposed work facilitates in improv-
ing both users’ requirements coverage and domain coverage.
Thus, the proposed work in this paper has addressed the
challenges mentioned in introduction.

Description and Implementation of the Second Case
Study

Let, a case study on healthcare in rural area. In this case
study, daily activities of a health professional in a rural
area is described. Daily activities of a health professional is
started with printing a to-do list for all patients visits during
the day. The next activity is to make calls to different persons
to co-ordinate work and activities. Health care professionals
gather all the materials related to vital signs and/or meas-
urement of patients. Further, they also check if there is any
need of preparing injection or not. After that, the patient

Table 6 summarization of the the users’ goals and corresponding
domain effects present in the case study described in Sect. 5.2

Users’ goals Corresponding domain effects

Visit towards the patient Make all calls
Gather all prepared materials
Prepare injection
No need of preparing injection
Drive to patients’ home
Use of GPS
No need of use of GPS
Register the visit

Documents all patients’ visit Discuss with patients
Prescribe medication
No Need to prescribe medication
Prepare documents of all patients’ visit

Table 7 Summarization of
domain level causes and
corresponding domain level
effects and DR/TR relationships
present in the case study
described in Sect. 5.2

Domain specific causes Corresponding domain effects and DR/TR relationship

Print to do list Make all calls (TR)
Health professional Make all calls (TR)
Check for injection Prepare injection (TR)

Make all calls (DR)
Print vital signs/measurements Gather all prepared materials (TR)

Prepare injection (DR)
Call patient to notify Gather all prepared materials (DR)

Drive to patients’ home (TR)
Check for new patient Use of GPS (TR)

Drive to patients’ home (DR)
Visit to the patients home Use of GPS (DR)

Register the visit (TR)
Health professional Register the visit (DR)

Discuss (TR)
Patients Register the visit (DR)

Discuss (TR)
Check for need of prescribing medication Prescribe medication (TR)

Discuss (DR)
Write notes of all things Prescribe medication (DR)

Prepare documents of all patients’ visit (TR)

SN Computer Science (2021) 2:35 Page 11 of 12 35

SN Computer Science

is informed that the healthcare professionals are coming.
If the patient is new, then a GPS can be used to navigate.
The healthcare professional registers their visit. If there is
need, then medications are prescribed towards the patients.
Healthcare Professionals write note of all the related things.
All patient visits must be documented in the medical record
system.

This case study has two goals those are mapped towards
Goal concept of ODRA. The first is “Visit towards the
patient”. The second is “Documents all patients’ Visit”.
Table 6 has summarized the users’ goals and correspond-
ing effects. Table 7 has summarized the listing of domain
level causes, corresponding domain level effects and DR/TR
relationships. Figure 9 has illustrated the auto-generated test
cases for the goal “Visit towards the patient”.

Conclusion and Future Work

In existing literatures, automated test case generation for
black box testing is not considered attentively. This paper
has addressed this issue and devised a rule-based reasoner
for auto generation of test cases from an ontology-based
requirements specification. The proposed reasoner has
generated test cases specifically for black-box testing. It is

devised in Apache Jena. The contributions of the proposed
work are to facilitate in (1) specification of domain inde-
pendent inference rules those aid in test case generation
for different domains and applications, (2) auto upgrade
of test cases as per modification of domain knowledge, (3)
auto identification of pre-conditions related to a test case
if present, (4) auto identification of different combinations
of similar test data and (5) improvement of users’ require-
ments coverage and domain coverage.

Future work will include, automated test script gen-
eration for auto-generated test cases from the ontology
driven requirement facets of Applications in specific.
Further, evaluation of proposed testing strategy and test
cases will be also a significant future work. In addition,
adoption of proposed methodology in modern technology,
such as Internet of Things, cloud-based applications will
be a prime focus.

Conflict of Interest

On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Fig. 9 Partial view of the
automated test cases generated
through the proposed rule-based
reasoner for the case study
specified in Sect. 5.2

What is the requirement ID?
2
The objective of the requirement-ID 2 is http://www.seman-
ticweb.org/user/ontologies/2017/5/untitled-ontology-
134#Documents_All_Patients'_Visit
'Test Case 1' 'Pre-Condition:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Pre-
scribe_Medication> 'Test Input:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Tak-
ing_Notes_of_All_Things> 'Expected Result' <http://www.se-
manticweb.org/user/ontologies/2017/5/untitled-ontology-
134#Prepare_Documents_of_all_patients'_visit> 'end'
'Test Case 2' 'Pre-Condition:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Dis-
cuss_with_Patients> 'Test Input:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-
134#Check_for_Need_of_Prescribing_Medications> 'Expected
Result' <http://www.semanticweb.org/user/ontolo-
gies/2017/5/untitled-ontology-134#Prescribe_Medication>
'end'
'Test Case 3' 'Pre-Condition:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Regis-
ter_the_Visit> 'Test Input:' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-
134#Health_Professional> <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Pa-
tients> 'Expected Result' <http://www.semantic-
web.org/user/ontologies/2017/5/untitled-ontology-134#Dis-
cuss_with_Patients> 'end'
.../Jena Done/....

 SN Computer Science (2021) 2:3535 Page 12 of 12

SN Computer Science

References

 1. Dadkhah M, Araban S, Paydar S. A systematic literature review on
semantic web enabled software testing. J Syst Softw. 2020. https
://doi.org/10.1016/j.jss.2019.11048 5.

 2. Wnuk K, Garrepalli T. Knowledge management in software test-
ing: a systematic snowball literature review. Informatica Softw
Eng J. 2018;12(1):51–78.

 3. Tarasov V., Tan H., Adlemo A. (2019) Automation of software
testing process using ontologies. In: Proceedings of the 11th Inter-
national Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management (KEOD), vol. 2, pp.
57–66.

 4. Tarasov V., Tan H., Ismail M., Adlemo A., Johansson M. (2016)
Application of Inference Rules to a Software Requirements Ontol-
ogy to Generate Software Test Cases. In: OWL: Experiences and
Directions – Reasoner Evaluation: 13th International Workshop,
OWLED 2016, and 5th International Workshop, ORE 2016, Bolo-
gna, Italy, November 20, 2016, Cham: Springer, 2017, pp. 82–94.

 5. Olajubu O., Ajit S., Johnson M., Turner S., Thomson S., Edwards
M.: Automated test case generation from domain specific models
of high-level requirements. In: RACS: Proceedings of the 2015
Conference on research in adaptive and convergent systems, Octo-
ber pp.505–508 (October 2015).

 6. de Souza E’F, Falbo RDA, Vijaykumar NL. Knowledge man-
agement initiatives in software testing: a mapping study. Inform
Softw Technol. 2014;57(2014):378–91.

 7. Guarino N, Oberle D, Staab S. What is an ontology? In: Staab
S, Studer R, editors. Handbook on ontologies. 2nd ed. Berlin:
Springer-Verlag; 2009. p. 1–17.

 8. Banerjee S, Sarkar A. Domain-specific requirements analy-
sis framework: ontology-driven approach. Int J Comput App.
2019;2019:1–25.

 9. Horridge M. A.: Practical guide to building OWL ontologies using
Protégé 4 and COODETools. Edition 1.3. The University of Man-
chester [Internet]. 2011, March 24, https ://maria iulia nadas calu.

files .wordp ress.com/2014/02/owl-cs-manch ester -ac-uk_-eowlt
utori alp4_v1_3.pdf, last accessed on 2020/09/06.

 10. Apache Jena, https ://jena.apach e.org., Accessed on 2020/09/04.
 11. Kanstrén T. (2013) A review of domain-specific modelling and

software testing. In: Proceedings of Event8th International Multi-
Conference on Computing in the Global Information Technology
(ICCGI 2013), pp. 51–56

 12. Haq S. U., Qamar U. (2019) Ontology Based Test Case Generation
for Black Box Testing. In: Proceedings of the 2019 8th Interna-
tional Conference on Educational and Information Technology
(ICEIT 2019), pp. 236–241

 13. Banerjee S, Sarkar A. A requirements analysis framework for
development of service oriented systems. SoftwEngNotes ACM-
Sigsoft. 2017;42(3):1–12.

 14. Nasser V. H., Du W., MacIsaac D. (2010) An Ontology-based
Software Test Generation Framework. In: Proceedings of Soft-
ware Engineering and Knowledge Engineering (SEKE), pp.
192–197

 15. Sneed H. M., Verhoef C. (2013) Natural language requirement
specification for web service testing. In: 15th IEEE International
Symposium on Web Systems Evolution (WSE), Eindhoven, pp.
5–14

 16. Wang Y., Bai X., Li J., Huang R. (2007) Ontology-Based Test
Case Generation for Testing Web Services. In: 8th International
Symposium on Autonomous Decentralized Systems (ISADS’07),
Sedona, AZ, pp. 43–50

 17. Nguyen C. D., Perini A., Tonella P. (2008) Ontologybased test
generation for multiagent systems. In: Proceedings of the 7th
international joint conference on Autonomous agents and multia-
gent systems (AAMAS), 3:1315–1320

 18. de Souza EF, de Falbo RA, Vijaykumar NL. ROoST: Reference
Ontology on SoftwareTesting. Appl Ontol. 2017;12(1):59–90.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jss.2019.110485
https://doi.org/10.1016/j.jss.2019.110485
https://mariaiulianadascalu.files.wordpress.com/2014/02/owl-cs-manchester-ac-uk_-eowltutorialp4_v1_3.pdf
https://mariaiulianadascalu.files.wordpress.com/2014/02/owl-cs-manchester-ac-uk_-eowltutorialp4_v1_3.pdf
https://mariaiulianadascalu.files.wordpress.com/2014/02/owl-cs-manchester-ac-uk_-eowltutorialp4_v1_3.pdf
https://jena.apache.org

	An Ontology-Based Approach to Automated Test Case Generation
	Abstract
	Introduction
	Related Work
	Proposed Methodology
	Brief Description of ODRA (Ontology Driven Requirements Analysis Framework) [8]
	Proposed Methodology for Rule-Based Reasoner
	Proposed Inference Rules for Test Case Automation

	Implementation of the Proposed Methodology
	Illustration of the Proposed Methodology Using Case Studies
	Description and Implementation of the First Case Study
	Description and Implementation of the Second Case Study

	Conclusion and Future Work
	Conflict of Interest
	References

