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Abstract
While speaking, humans exhibit a number of recognizable patterns; most notably, the repetitive nature of mouth movement 
from closed to open. The following paper presents a novel method to computationally determine when video data contains 
a person speaking through the recognition and tally of lip facial closures within a given interval. A combination of Haar-
Feature detection and eigenvectors are used to recognize when a target individual is present, but by detecting and quantifying 
spasmodic lip movements and comparing them to the ranges seen in true positives, we are able to predict when true speech 
occurs without the need for complex facial mappings. Although the results are within a reasonable accuracy range when 
compared to current methods, the comprehensibility and simple nature of the approach used can reduce the strenuousness 
of current techniques and, if paired with synchronous audio recognition methods, can streamline the future of voice activity 
detection as a whole.
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Introduction

Current voice activity detection (VAD) relies heavily on 
audio cues. The non-convoluted approach to use auditory 
benchmarks to predict when speech is occurring has made 
its way into several recent studies [1−3]. However, VAD 
struggles to detect true speech when multiple speakers are 
involved or a strong background noise is present [4], because 
of the inability effectively to compute and isolate the audio 
signals from each other.

Visual voice activity detection (VVAD), a subset of VAD, 
can be used in tandem with auditory techniques or as a stan-
dalone method. Given the current progress with intelligent 
systems, face detection software, and its contemporary sub-
set, facial recognition, have practically become a standard 
in modern technology [5]. In the past decade alone, several 
new methods to detect faces and its individual components 
have surfaced [6, 7]. The usage of automated tracking algo-
rithms, such as active lip shape models [8] and variance-
based techniques [9], have made it easy to detect when an 

individual is speaking. Applications of visual voice activ-
ity detection (VVAD) range from automated video extrac-
tion, anti-cheating software, speaker recognition in an audio 
intense situation, machine learning training for complex 
facial tracking, etc. The following paper presents a compre-
hensible approach to detect when speech is occurring, along 
with detecting when a specific individual is speaking among 
many (conference calls, video chats, ceremonies, lectures, 
etc.)

Although the proposed method, Lip Closure Quantifica-
tion (LCQ) is independent, it requires two separate algo-
rithms prior to its activation. The first is face detection and 
recognition, to ensure that the algorithm will only run when 
the target speaker is on video. The second component is lip 
detection, which returns a numerical value for when the lips 
are closed within an interval as well as the coordinates for 
their location.

Related Work

Previous work with VVAD that is relevant to this study will 
be briefly referenced and summarized. *	 Ananth Goyal 
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Lip‑Based Geometric Approaches

A study done by Sodoyer et al. [10] aimed to establish a 
relationship between lip activity and speech activity to 
effectively improve contemporary methods of VAD. Two 
individuals engaged in a face to face discussion primarily 
using spontaneous dialogue. By looking at recognizable 
humanistic patterns and by characterizing lip movements 
from facial mappings, their audio-visual recognition sys-
tem flourished in varying environments and situations.

The approach used by Liu et al. [11] involved a novel 
lip extraction algorithm which combined rotational tem-
plates and prior shape constraints, with the introduction of 
active countours. By amplifying the strength of this tech-
nique with audio voice detection and adaboosting, they 
received low error rates and affirmative results on their 
tested video clips from the XM2VTS dataset and several 
youtube videos.

In the study done by Navarthana et al. [12], visual voice 
activity detection was enhanced with the inclusion of 
viewpoint variation. They looked at the variance between 
the speaker’s profile and and frontal views on the freely 
available CUAVE dataset; by using their approach and a 
Gaussian mixture model-based VVAD framework, their 
results appear to be useful future work in multi-model 
human computer interaction.

Comparison with Other Methods

Due to the extreme variance in approaches and low num-
ber of available datasets, it makes it difficult to thoroughly 
compare the proposed method with existing approaches. 
To maintain the technical validity of this paper, a set of 
results were compared to pre-recorded footage on the pub-
licly available LiLir dataset.

The study done by Qingju Liu et al. [13] attempts to 
reduce signal interference with Visual voice activity detec-
tion. While the study is not entirely focused on the detec-
tion itself, the publicly available dataset and results make 
it easy to compare with the proposed approach.

Additionally, the results found in  the work done by 
Aubrey et al. [14] on VVAD with optical flow, as well as 
the comparison found in Liu et al.’s with SVM [15] (infor-
mation about the actual approach is unknown to the author, 
however its resultant data can be compared with LCQ.)

Pre‑LCQ Setup

OpenCV was used to facilitate a majority of the meth-
ods used in this study. While the primary algorithm only 
involves lip motion detection, it is dependent on the face 
detection technology to isolate the components of video 
data that only contain footage of the target speaker.

Haar‑Features and Facial Detection

Prior to facial recognition of the target speaker, a Haar-
Feature method, known as the Viola–Jones approach [16, 
17], is used to detect the presence of a face. By looking 
at noticeable differences in hue intensities (I), specifically 
dark and light shadings, patterned edges can be detected 
[18]. In an ideal situation, the resultant differential would 
be 1 and only ones and zeros would be produced [19]; 
however, typically a more error-prone matrix (like the one 
shown below) would be generated every single time an 
edge has been detected. Although grayscale pixel intensity 
levels are between (0, 255) like standard RGB metrics, 
those values are divided by the outer limit (255) to keep 
it within 0 and 1.

When the algorithm is deciphering whether the edge is a 
constituent of a face, it calculates the difference ( Δ ) in pixel 
intensity [20] between the sets of columns. The closer the 
difference is to 1, the more likely a Haar feature has been 
detected [21].

Since the LCQ setup was done through Open CV, the thresh-
old point for where the Haar-Feature differential produces 
a face was not a known number, but given the results, it is 
assumed to be between 0.6 and 0.99 (Figs. 1 and 2).

Eigenvectors and facial recognition

A variant eigenface model is used to recognize the target 
speaker [22, 23]. Given the mean ( � ) face, we are able 
to accumulate slight differentials of facial structures [23] 
within a dataset X to improve the model’s ability to rec-
ognize a specific face and compute a covariance matrix M 
[24]. By computing every eigenvector and its corresponding 
eigenvalue, we can then arrange them in decreasing order 
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and reconstruct the original dataset given the calculated vec-
tor set W [25].

The uniqueness of any particular face is stored as its relative 
variance between the mean or average face [26]. When the 
target individual is present in the video data, the eigenvalues 
are compared and matched to justify the presence of the 
correct speaker.

Lip Detection by Using Segments of Haar‑Features

Using Haar-Features, we can focus solely on lip detection, 
which is the basis for the current study. When the lips are 
closed, the algorithm will look for a strong horizontal dif-
ferential in the matrix such that it will fit the requirements 
to be considered a set of lips.

The structure that appears around the lips is based on the 
matrix produced from the Haar-Feature. Similar to facial 

(3)M =
1

n

n∑
i=1

(Xi − �)(Xi − �)T ,

(4)X = WWT (x − �) + �.

detection (“Haar‑Features and Facial Detection"), lips are 
detected by the differential between white and dark pix-
els, except with horizontal calculations rather than verti-
cal (Shown in Fig. 2). If the difference is greater than the 
minimal condition, the algorithm will assume that lips are 
present in the video data.

Lip Closure Quantification

The primary proposed technique, Lip Closure Quantifica-
tion (LCQ), is a pattern analysis algorithm used to deter-
mine whether the target individual is speaking by counting 
the number of closure occurrences in an established time 
interval as a basis for its prediction. When the total number 
of closure occurrences ( �n ) within an interval fit within an 
approximated range of false and surplus detections, ( �n ) will 
be inserted into a dataset ( � ). Both ( � min ) and ( � max ) are pre-
determined bounds, but are constantly adjusting (mentioned 
in Sect. 4.2) to reduce the margin of error.

If the condition is not met, there are two possibilities of neg-
atives: the first being that �n exceeds the range, i.e., the mouth 
is closed. The second is that �n fails to meet the sufficient 

Fig. 1   Progress from initial Haar-Feature detection from calculated intensity differences to completed facial detection

Fig. 2   Progress from initial Haar-Feature detection from calculated intensity differences to completed lip closure detection
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requirement for it to be considered a positive; this could be a 
result of a resting open mouth, sporadic facial alignment with 
the camera, false lip detections, etc. The initial time interval 
is repeated; if the number of occurrences within such interval 
falls within the detection range, then the whole time interval tn 
is marked as positive and inserted into the dataset (t). For data 
accumulation, a two-dimensional matrix (T) contains every 
subsequent dataset t (referenced in “Adjusting Frequential 
Bounds”). The difference between a single mouth closure and 
a continued closure is the difference between a positive and 
negative. When the mouth is closed throughout the interval, 
� max will naturally be exceeded. An example is shown below.

Dealing with False Negatives

A false negative is defined as a situation when the target 
individual is speaking but it is not recognized. In an entirely 
positive scenario the standard interval time � will define every 
interval until the first false negative.

The difference between the latest time stamp and the next 
positive will no longer be � . Typically if the speaker moves 
their head, takes a brief pause, or wipes their face within an 
interval, the entire stretch will be disregarded as a negative 
and excluded from the set. To effectively reduce the number 
of false negatives, t is scanned for minimal discrepancies and 
compared to a set threshold ( � ). The most effective way to 
differentiate between a true negative and false negative is to 
calculate the number of gaps within two positive intervals. 
When the number of gaps is greater than the threshold value, 
it is assumed that the individual was not speaking in that 
time frame. However, if the number of gaps is less than or 
equivalent to the threshold value (shown below), speech was 
undetected but was still occurring,and should be inserted 
into the dataset (Fig. 3).

Analyzing Direct Accuracy

The direct accuracy (DA) is an accumulation of instantaneous 
Boolean data. Each binary data point is represented as �.

(5)� =
1

(x − 1)

x∑
n=1

[
tn − t(n−1)

]
.

(6)� ≥
(tx − tx−1)(x − 2)
∑x−1

n=1

�
tn − t(n−1)

� .

(7)
n∑
i=1

(5� − �2 − 2).

(DA) is determined using the binary output while inserted 
as d ∈ D such that a = n max and c is the true binary value of 
that respective iteration.ci+1

di+1
 is inputted as �.

Adjusting Frequential Bounds

Given the varying frequencies of occurrences in any tn , the 
quality of the (LCQ) outputs is dependant on the accuracy 
of the bounds � min and � max . To enhance the computational 
accuracy of the algorithm, an intelligible self-learning method 
utilizing � is employed. By setting a compensation factor � 
(initially a random value within close proximity of the orig-
inal bounds), we are able to reduce the margin of error by 
equally and continually adjusting the bounds of ( � min , � max ) 
accordingly.

Once the new frequential bounds are computed (if the need 
to do so arises), they are updated for future comparisons. If 
a true negative arises, then the bounds are not updated and 
will maintain their previous value until more timestamps 
are inserted into t.

Accumulating Video Data After (LCQ)

Once the subsequent calculation is completed and t is returned 
from (LCQ), it is appended into the following two-dimensional 
dataset T, which, when completed, contains all the stored posi-
tive intervals in which the target individual was speaking.

Because of the inclusion of � to bypass false negatives, the 
only important values in the datasets within T are the initial 
and final elements. These time bounds can be used to accu-
mulate the total amount of video data that will be extracted 
(V), given the length of the dataset (z).
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Results

The results are distinguished into individual segments. 
The algorithm’s pre-LCQ ability was tested once with the 
stock face images made available from the LFW dataset. 
Its LCQ performance was tested twice, first with a sample 
video conference lecture to test the algorithm’s ability to 
use pre-LCQ and LCQ simultaneously and, second, with 
the video clips available from the LiLir video dataset for 
thorough comparisons to other methods.

Pre‑LCQ Results

The LFW dataset contains 13233 sample images of 5749 
people’s faces. The dataset is alphabetically organized by 
name; 100 images were used from each letter. The follow-
ing data shows the pre-LCQ’s accuracy in detecting both 
the face and lips of the sample individual (Table 1).

Fig. 3   Differences in interval types (negative and positive). Negative: closed face maintained throughout the duration of the interval. Positive: 
both types of facial detections for LCQ ( �

n
 and �

n
+ 1)
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Pre‑LCQ and LCQ Integrated Results

A sample 510 second conference call video was inputted 
into the algorithm with the lecturer recognized as the target 

speaker. The training method for recognizing the particular 
face used Haar-Feature for the detection and eigenvectors 
for the recognition like previously noted. � was set at 10 s; 
the number of closure motion counts within each interval is 
shown below (For simplistic purposes, we arbitrarily chose 
to show every fourth interval; however the complete progres-
sion is referenced in the graphs at the end of this section) 
(Table 2).

The direct accuracy will continually fluctuate as each 
false negative accumulates. As time increases, the direct 
accuracy will approach a certain number, in this case 0.7, 
indicating an estimate of the average frequency of success 
to error in that particular interval set. The completed accu-
racy, 0.98, is the final accuracy after the detected false nega-
tives have been calculated and accounted for. In real time, 
the false negatives cannot be recognized, as their detection 
requires the new data available in the next interval. However, 
if LCQ is being used on pre-recorded footage or for analyti-
cal work, not in the real time, then its final accuracy would 
be a stronger indicator of its performance.

LCQ Comparisons

When testing with the LiLir dataset, which consisted of sev-
eral speech utterances (with emphasis on the visual data), 
results were compared to the findings from Liu et al., Aubrey 
et al., and SVM methods. We define �n as the false negative 
rate, �p as the false positive rate, and � as the total error rate.

The SVM comparison approach presented in Liu et al.’s 
work had the strongest false positive rate, yet also the high-
est false negative rate. Liu et al.’s approach had the strongest 
results overall, but also involved a more convoluted meth-
odology involving adaboosting and interference removal. 

Table 1   Calculated scores of 
Pre-LCQ on the LFW Image 
dataset by letter

The important components of 
the data; either a final value, or 
an average are in bold

Segment Mouth Face AVG

A–G 0.95 1.00 0.975
0.97 0.98 0.975
1.00 1.00 1.000
1.00 0.95 0.975
0.96 0.98 0.970
0.96 0.97 0.965
0.95 0.97 0.960

H–N 1.00 1.00 1.000
0.97 0.97 0.970
0.94 0.97 0.955
1.00 0.95 0.975
1.00 0.98 0.990
0.94 1.00 0.970

O–T 0.93 0.98 0.955
0.97 1.00 0.985
0.98 1.00 0.990
1.00 1.00 1.000
1.00 0.97 0.985
1.00 1.00 1.000

U–Z 0.97 1.00 0.985
1.00 0.98 0.990
1.00 1.00 1.000
1.00 1.00 1.000
0.97 0.99 0.980
1.00 1.00 1.000

Table 2   Continually adjusted 
direct accuracy (DA), with 
varying values in � for every 
fourth time stamp. The final 
value is the accuracy after the 
removal of false negatives

The important components of 
the data; either a final value, or 
an average are in bold

Time stamps �
n

DA

13.79 51 1
65.39 72 0.8
145.63 52 0.66
189.35 56 0.75
286.69 42 0.64
345.77 43 0.67
407.61 37 0.68
473.53 46 0.67
510.67 36 0.70
– – 0.98

Fig. 4   Direct accuracy (prior to false negative removal) with respect 
to time
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When compared to the three VAD methods shown above, 
LCQ performs in the high performance range with an error 
rate of 0.12 (Figs. 4 and 5, Table 3).

Conclusion and General Discussion

In this paper, we presented a novel approach to enhance vis-
ual voice activity detection without the need for audio data 
or complex facial mappings. When interpreting the results, 
it is important to consider all aspects (“Pre-LCQ Results”, 
“Pre-LCQ and LCQ Integrated Results”, “LCQ Compari-
sons”) and the overall comprehensibility of the approach 
used.

With the Pre-LCQ results, we were able to test the effi-
cacy of the concurrent face and lip detection algorithm. On 
average, the variance between the accuracy on both the lips 
and face detection was within (0.965, 1.000) indicating a 
strong performance. With the integrated results, we found 
LCQ’s real-time ability to be less accurate than its post-
LCQ ability, however, still reasonable nonetheless. When 

considering the usage of LCQ in future technologies and 
research, it is likely to be more successful with analytic 
work than real-time tasks. While the ability to automati-
cally account for false negatives after interval data has been 
stored is useful, it can reduce the frequency of highly accu-
rate results until post-analytic work is done. With regard to 
LCQ comparisons, it performed on par with other methods, 
superior in most aspects. With a total error score of 0.12, it 
is slightly less effective than Liu et al.’s method; however, 
its simple nature has many benefits, such as less CPU strain 
and easier development.

Although the current findings cover a wide variety of 
effectiveness, from pre-LCQ, LCQ, and integrated results, 
they are unable to predict its performance in more variable 
heavy situations involving large crowds, situations with sev-
eral faces within a single frame, or instances when simul-
taneous audio-visual voice activity detection is required. 
These cases, most significantly the latter, given that LCQ 
is solely a visual-based approach, will make way for future 
research. Testing LCQ’s or a similiar VAD method’s per-
formance with audio signals could potentially improve its 
overall performance and thus reduce the current error rate. 
While current work in VAD is beginning to digress to more 
complex approaches such as complete facial mappings, lip 
reading, and speaker recognition, it is important to establish 
a strong and effective basis to further enhance the results 
found in such methods.
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