
Vol.:(0123456789)

SN Computer Science (2020) 1:299 
https://doi.org/10.1007/s42979-020-00315-8

SN Computer Science

SURVEY ARTICLE

Peer‑to‑Peer‑Based Social Networks: A Comprehensive Survey

Newton Masinde1   · Kalman Graffi2

Received: 31 May 2020 / Accepted: 28 August 2020 / Published online: 11 September 2020 
© The Author(s) 2020

Abstract
The use of online social networks, such as Facebook and Twitter, has grown at a phenomenal rate. These platforms offer 
services that support interactions via messaging, chatting or audio/video conferencing, and also sharing of content. Most, 
if not all, of these platforms use centralized computing systems; therefore, the control and management of the systems lies 
entirely in the hands of one provider, who must be trusted to treat the data and communication traces securely. As a zero-
trust alternative, peer-to-peer (P2P) technologies promise to support end-to-end communication, uncompromising access 
control, anonymity and resilience against censorship and massive data leaks through misused trust. The goals of this survey 
are threefold. First, the survey elaborates the properties of P2P-based online social networks and defines the requirements 
for such (zero-trust) platforms. Second, it gives an exposition of the building blocks for P2P frameworks that allow the 
creation of such sophisticated and demanding applications, such as user/identity management, reliable data storage, secure 
communication, access control and general-purpose extensibility, which are not properly addressed in other P2P surveys. 
As a third point, it gives a comprehensive analysis of proposed P2P-based online social network applications, frameworks 
and architectures by exploring the technical details, inter-dependencies and maturity of these solutions.

Keywords  Computer networks · Distributed networks · Peer-to-Peer networks · Online social networks

Introduction

As a means of online user interaction, social networking 
has experienced unparalleled growth over the last 10 years, 
a fact that is attested to by the number of providers and the 
users registered, with the top ten providers shown in Table 1. 
To date, the most utilized computing model by the popular 
online social networks (OSNs) is still the centralized model. 
Several studies OSNs such as [1–5] have enumerated opera-
tional and design challenges directly or indirectly related 
to this computing model. These issues include, but are not 
limited to, seamless scaling of the network without straining 

of the available resources (both monetary and physical) and 
ability of users to control their data and maintain their pri-
vacy while using the social networks. While the first issue, 
challenges due to scaling, have been generally mastered by 
the providers, the privacy and trust issues have not been 
extensively considered. In the centralized service provision 
model, a single operator avails the social networking ser-
vices and maintains availability of the services. However, 
the provider has access and ownership rights to all data 
stored by the “customers”. The provider, besides striving 
to provide appealing services, may in most cases manifest 
a high interest in monetizing the data of the users, such as 
profile data, communication traces, all content uploaded 
and downloaded and all interaction traces. Consequently, 
the presence of (personalized) ads is an annoyance that users 
may have to bear with. However, worse cases of misuse of 
these data can be cited. Examples include the Facebook and 
Cambridge-Analytica scandal1, government surveillance that 
infringes privacy such as the Chinese Social Credit Sys-
tem [6, 7], location tracking2 [8], social media data mining 

 *	 Newton Masinde 
	 newton.masinde@hhu.de
	 https://tsn.hhu.de

	 Kalman Graffi 
	 kalman.graffi@honda‑ri.de
	 https://www.honda-ri.de

1	 Technology of Social Networks, Heinrich Heine University, 
Universitätsstr. 1, 40225 Düsseldorf, Germany

2	 Honda Research Institute Europe GmbH, Carl‑Legien‑Strasse 
30, Offenbach am Main 63073, Germany

1  https​://www.cnbc.com/2018/03/21/faceb​ook-cambr​idge-analy​tica-
scand​al-every​thing​-you-need-to-know.html.
2  https​://www.busin​essin​sider​.com/three​-ways-socia​l-media​-is-track​
ing-you-2015-5?IR=T.

http://orcid.org/0000-0002-2578-4361
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00315-8&domain=pdf
https://www.cnbc.com/2018/03/21/facebook-cambridge-analytica-scandal-everything-you-need-to-know.html
https://www.cnbc.com/2018/03/21/facebook-cambridge-analytica-scandal-everything-you-need-to-know.html
https://www.businessinsider.com/three-ways-social-media-is-tracking-you-2015-5?IR=T
https://www.businessinsider.com/three-ways-social-media-is-tracking-you-2015-5?IR=T


	 SN Computer Science (2020) 1:299299  Page 2 of 51

SN Computer Science

for terrorist sentiments [9, 10] which may infringe on free 
speech, among other effects.

Besides the common centralized data model for OSNs, 
decentralized federated and peer-to-peer [11, 12] data mod-
els have emerged. These promise to have the feasibility 
of hosting billions of users and shift the data control and 
ownership to the user. The federated decentralized model 
is a break away from the centralized models, with no single 
owner of the network. Instead, users host parts of the OSN 
and federate for a complete network, becoming the boot-
strap nodes for the network, and a list of available bootstrap 
nodes is availed to new users. There are over 30 federated 
social network projects listed as being active (https​://the-
feder​ation​.info/3). Table 2 gives a list of the top ten federated 
OSNs based on the number of users active in the network. 
Although federation tackles scalability concerns, the secu-
rity and privacy concerns are very similar to the centralized 
model, as discussed in [5]. It appears that bootstrap node 
owners are able to access the private information of the users 
that connect to them, while also having control of the con-
tent stored on the servers. Although they might not have 

access to all data, they still can access and modify the data of 
tens to hundreds, maybe even thousands, of users. Therefore, 
here as well, data sovereignty is not in the hand of the user.

To address the shortcomings in both centralized and fed-
erated data models for OSNs, we postulate that any pro-
posed solutions must: (a) be financially viable, (b) alleviate 
the security and privacy concerns of users, and (c) support 
dynamic system growth seamlessly. We therefore aim at the 
third data model, peer-to-peer (P2P), to show that it can 
provide the required properties of scale, security/privacy and 
organic growth and in addition alleviate the need for mon-
etizing. The P2P model has the advantages of being easily 
scalable depending on the type of overlay chosen. Peers that 
join the network bring their own resources, such as a part of 
their available storage space, flat rate bandwidth and unused 
computing cycles, leading to an accumulation of “free” 
resources, that is by far sufficient to host a fully decentral-
ized OSN. In addition, P2P mechanisms are self-organizing 
and also support zero-trust requirements, with the aim to 
remain functional under churn (node online dynamics), 
strong heterogeneity of resources and workload, the pres-
ence of malicious nodes in the network and tailored attacks. 
As all peers are equal, no role bearing higher rights, such as 
an administrator or operator, exist. In the code, the data sov-
ereignty of the user, security and privacy can be enforced. 
To build a purely P2P-based OSN seems highly preferable, 
no operational costs, harnessing of “free” resources and thus 
more powerful functions, data sovereignty of the user and 
inability to turn the system down or to censor the content. 
However, building a purely P2P-based OSN is also highly 
challenging as key functionalities need to be considered 
such as routing methods, data storage, distribution and rep-
lication mechanisms, messaging-handling techniques, com-
munication schemes and appealing apps, all while ensuring 
efficient, security and privacy. These requirements are alto-
gether highly challenging to meet within a single system and 
have thus far not yet been discussed in great detail and with 
completeness as in this paper.

Identifying the Gaps

Several publications discuss distributed (or decentralized) 
online social networks (DOSNs), in which P2P-based solu-
tions are also presented. Many of these articles highlight 
different aspects of the DOSNs such as P2P architectures for 
DOSNs [13, 14], DOSN design decisions (storage, access 
control, and interaction and signaling mechanisms) [15], 
security and privacy in DOSNs [16–19], as well as general 
surveys on DOSNs [15, 20]. They give insightful informa-
tion of various aspects of DOSN in general, with P2P-based 
OSNs forming a small part of the discussion. However, they 
do not analyze the strong interdependencies stated by the 
requirements for a secure OSN with the (often limited) P2P 

Table 1   Top 10 OSNs as of July 
2019 (in millions) from https​://
www.stati​sta.com

OSN Platforms Users

Facebook 2375
YouTube 2000
WhatsApp 1600
Facebook Messenger 1300
WeChat 1112
Instagram 1000
QQ 832
QZone 572
Douyin/Tik Tok 500
Sina Weibo 465

Table 2   Top 10 federated OSNs (Nov. 2, 2019)

Project Nodes Users Users per node

Mastodon 2771 2,525,434 912
Diaspora 202 705,662 3494
Pleroma 590 27,770 48
PeerTube 331 20,018 61
Juick 1 18,053 18,053
Friendica 107 14,632 137
Hubzilla 119 7045 60
Write Freely 183 5023 28
PixelFed 101 4644 46
FunkWhale 30 2659 89

3  https​://the-feder​ation​.info/.

https://the-federation.info/
https://the-federation.info/
https://www.statista.com
https://www.statista.com
https://the-federation.info/


SN Computer Science (2020) 1:299	 Page 3 of 51  299

SN Computer Science

technologies, for example, how to guarantee security in a 
zero-trust network while ensuring data availability or how 
to handle social update data, all without violating privacy, 
among other concerns. Therefore, analyzing parts of the sys-
tem, unfortunately, does not fully describe how the singular 
components work in interaction with further required OSN 
elements.

Also, surveys that cover different component aspects of 
the P2P networks such as overlays [14, 21], replication [22, 
23], searching and indexing [24–26], security [27–29] and 
so on, as well as several good reference books that cover P2P 
networks in general such as [30] and [31] are in existence. In 
our experience, the challenges in building a P2P-based OSN 
appear when these widely discussed mechanism need to be 
combined into a single working application that must also 
be secured. Thus, pure P2P surveys only give a very limited 
view on applicability of the P2P technologies for the purpose 
of building P2P-based OSNs.

Our Contributions

In line with the gaps identified in our study, we make the 
following contributions: (1) We identify key features com-
mon in all OSNs, as well the functional and non-functional 
requirements needed for a working OSN. (2) We give an 
overview of the concerns raised that have led into research 
on decentralized solutions, and in particular P2P-based 
options, for the OSNs. (3) We give a general layout for the 
technical requirements needed to achieve the functional and 
non-functional requirements, and use these technical aspects 
to further define a P2P framework for an OSN. (4) Based 
on the technical requirements, we give a study on the core 
P2P network mechanisms that are integral in the design of 
any P2P application, with considerations into the security 
aspects for each mechanism. (5) We present a comprehen-
sive survey of a number of the proposed P2P-based OSNs. 

(6) We provide a roadmap for possible future research into 
P2P-based OSNs. The structure of the survey is shown in 
“Table of contents”.

Social Networks

A social network in the classical sense involves real people 
interacting in the real world [32], and a more technical view 
is as a directed graph structure [33, 34]. However, the term 
“social network” as it is used today tends to refer to a com-
bination of the real and virtual world via web-based services 
[35]. Social networking in view of computer-mediated com-
munication is defined as “the use of Internet-based social 
media platforms to stay connected with friends, family, or 
peers”4. The types of Internet-based social media platforms 
with some common examples are shown in Table 3.

In this section, we present the various ways of classi-
fying OSNs as identified in the literature. Thereafter, we 
consider the desired functions in the OSNs that help in meet-
ing the user’s online needs. Further, the functional and non-
functional SN requirements based on the desired functions 
will be presented. Lastly, we discuss the principle concerns 
raised that have necessitated research into decentralized 
solutions for social networks, and in particular P2P-based 
solutions.

Social Network Classifications

Social networks can be classified into several ways as shown 
in Fig. 1 and discussed herein.

Table 3   Types of social media

Type Description Example

Social networks Users can access combination of services such as direct messaging, content 
sharing (pictures, video/audio clips), audio/video chats, group interactions 
and so on

Facebook, LinkedIn

Social blogging networks Users express their thoughts to other readers without worrying about a self-
hosted website. Readers of the blogs can also give feedback

Tumblr, WordPress, Blogger, Medium

Microblogs Are blogs with a limitation on the amount of content users can share in a sin-
gle post. Post are in the form of text, pictures, links, short videos or other 
forms of web media

Twitter, Instagram, SnapChat

Media sharing networks Are generally optimized for sharing videos and photos YouTube, Vimeo, Pinterest
Social review networks Users give reviews relating to different locations/experiences. The reviews 

help others make decision on an activity related to that reviewed location/
experience

TripAdvisor, Yelp, Booking.com

Discussion networks Platform for topical conversations. Users freely ask questions and give their 
opinions on a specific question

Reddit, Quora

4  https​://www.inves​toped​ia.com/terms​/s/socia​l-netwo​rking​.asp.

https://www.investopedia.com/terms/s/social-networking.asp


	 SN Computer Science (2020) 1:299299  Page 4 of 51

SN Computer Science

The Scope Model

This model considers the core activities which are either, 
entertainment and business [11]. 

(a)	� Entertainment (or private [2]) Focuses on the delivery 
of fun and interactive social experience to users, for 
example, Facebook, Flickr, MySpace and Hi5.

(b)	� Business Focuses on connecting professionals for 
purposes of productivity and success, for example, 
LinkedIn and Xing.

The Data Model

It is also called the programming paradigm model [12]. It 
classifies based on how data management is done [11], hence 
centralized or decentralized. 

(a)	� Centralized model Data management is by a single 
administrative domain, which is either an integrated 
client–server or a decoupled client–server.

–	 Integrated client–server model Application developers 
utilize their own servers to manage and store social rela-
tionships and also provide required resources supporting 
content sharing.

–	 Decoupled client–server model Users manage their own 
social relationships and only core social services and 
social relationships which are linked to their accounts 
are updated centrally.

(b)	� Decentralized model Data management is distributed 
across multiple administrative domains, and can be 
either decentralized federated or peer-to-peer.

–	 Decentralized federated model It offers no centralized 
infrastructure from the application developers but there 
is reliance on existing decentralized and federated mes-
saging system, such as Extensible Messaging and Pres-
ence Protocol (XMPP). Thus, users choose the service 

provider of their choice so long as they are part of the 
same federation.

–	 Peer-to-peer (P2P) model It is fully decentralized and 
users directly connect to their trusted friends and share 
content. Developers either write their own P2P protocol 
or rely on existing P2P technologies.

The System Model

This view shifts to manner in which the application servers 
host content distribute it. Thus, two categories are suggested 
[11]. 

(a)	� Web-based scheme Application servers that may be 
owned by the service provider host the web sites. The 
tasks of ensuring load balancing, handling failovers 
and request forwarding to the appropriate application 
server is handled directly by the service provider. In 
such cases, most of the services offered to users are 
usually free.

(b)	� Cloud-based schemes Application servers are hosted 
by a utility computing infrastructure such as Amazon 
Elastic Compute Cloud (Amazon EC2), which frees 
the service provider to only focus on the application 
only. However, this introduces additional costs to the 
service provider that may sometimes be passed on 
directly or indirectly to the users.

The Network Model

In this model, the focus is on the entity upon which relation-
ships are formed in the system [11]. Thus, the network can 
be user oriented or content oriented. 

(a)	� User oriented (profile based) Emphasis is on the social 
relationships existing between users and how they 
share their content within a community. Examples of 
SNs in this category include Facebook, MySpace and 
LinkedIn.

(b)	� Content oriented (content based) The focus is on 
the common user interests rather than the social 

Fig. 1   Social network classifications



SN Computer Science (2020) 1:299	 Page 5 of 51  299

SN Computer Science

relationships. Examples in this category include 
YouTube.

Desired Features for OSNs

For maximum user experience, it is necessary to define the 
core features that the OSN must include. These features are 
in essence a summary of real requirements of the OSN based 
on user expectations for the system. [36] presents a compre-
hensive discussion on these features which we endeavor to 
summarize here. They include identity, conversation, shar-
ing, presence, relationships and groups. Further reputation 
is given, which we discuss separately. A brief summary of 
these concerns follows. 

(a)	� Identity The extent to which users are willing to dis-
close their personal details hence reveal their identity. 
This requires keeping the users’ personal data private 
during registration and profile creation. Also, there is 
a multiplicity of ways in which user’s anonymity and 
privacy can be compromised, particularly via their 
characteristic online behavior and communication 
patterns. Therefore, appropriate tools/mechanisms 
that ensure a proper balance between anonymity and 
privacy while online must be incorporated to increase 
accountability among users, prevents cyberbullying 
and encourages off-topic/-color comments.

(b)	� Conversation This defines how users communicate 
with each other. Conversations may have a defined 
format, such as Twitter, or be general, such as in Face-
book. Group conversations should also be possible.

(c)	� Sharing Emphasizes how users exchange, distrib-
ute and receive content. The ease of sharing con-
tent securely, and guaranteeing its availability even 
when the content owner is offline must be carefully 
addressed.

(d)	� Presence Focuses on the extent to which users are 
aware if other users are accessible, that is, knowing 
where they are (virtual and/or real) and whether they 
are available. This is possible through provision of sta-
tuses, for example, “ invisible”, “available”, “busy” 
and so on.

(e)	� Relationships Looks at the ability of users to relate to 
other users leading to conversations, sharing of content 
and listing one another as friends or fans. This then 
dictates the what-and-how of information exchange. 
A general rule is that a social media that esteems the 
value of identity as low also considers relationships as 
of low concern and vice versa.

(f)	� Groups This looks at how the users are able to form 
communities and sub-communities. Dunbar’s number 
[37] is one of the proposed relationship-group met-
rics, which considers a cognitive limit that bounds 

the number of stable relationships people can have 
to 150 people. Two types of groups are considered. 
In the first group, individuals go through their con-
nections and place their friends, followers or fans into 
self-created groups. In the second group, the online 
groups are analogous to clubs in the real world and 
can be opened to access (public), closed (approval is 
required) or secret (by invitation only).

While [36] also discusses reputation as an important 
element, we do not share this view. Reputation is used to 
emphasize how users identify the standing of other users, 
as well as themselves, within the social media setting. In 
reality, such explicit reputation ratings do not take place in 
OSNs. Only in online business reviews (such as restaurant 
ratings) are reputations found, but in contrast to social repu-
tations, these are explicitly public, while a social reputation 
is mainly created for a personal use. Thus, a technical sup-
port for reputation is not considered relevant.

Design Requirements for OSNs

The design of OSNs must account for all, or most of the 
features described in section “Desired Features for OSNs”, 
which are converted into system requirements. In general, 
two types of requirements are considered, that is, functional 
and non-functional requirements. We discuss them in detail 
in this section.

Functional Requirements

These requirements specify what the system must do to meet 
the core reasons for its existence [38]. They describe a useful 
capability provided by one or several system components 
[39], or a system’s behavior under specific condition [40]. 
The following is a brief discussion of the core functionalities 
required for OSNs as highlighted in [41] and discussed also 
as service requirements in [42]. 

(a)	� Personal storage space management Users should 
control some arbitrary assigned space after creating 
the account and profile, allowing storage, deletion and 
manipulation (or editing) of user’s content. Most OSNs 
will usually allow the reporting of the user’s action in 
their personal space to other users that are their social 
contacts unless this feature is specifically disallowed 
by the user.

(b)	� Social connection management Users are able to define 
their relationship with other users by establishing/
maintaining/revoking a social connection, for exam-
ple, via friend lists. Users may also be able to locate 
and reestablish connections with lost friends and form 



	 SN Computer Science (2020) 1:299299  Page 6 of 51

SN Computer Science

new relationships based on common interests such as 
ideologies and media content.

(c)	� Social graph traversal Also called social traversal. By 
traversing the online social graph and examining friend 
lists of other users, a search list can be retrieved. Using 
a traversal policy, traversals may be restricted to a sub-
set of users.

(d)	� Means of communication This ensures the presence of 
necessary secure channels for users to interact with one 
another via messages in the form of text, audio, video, 
photos or other format. The messages can be public or 
private. The SN should also support both synchronous 
communication (such as instant messaging) and asyn-
chronous communication.

(e)	� Shared storage space interaction Allows users to inter-
act with each other via walls, forums or commonly 
shared folders. Having an access-controlled shared 
storage space, more sophisticated applications can be 
added that require data-based interaction, such as col-
laborative cooperation, gaming, digital workplaces and 
more.

(f)	� Search facilities Gives users the ability to find and con-
nect with new contacts by exploring the social network 
space.

Non‑functional Requirements

These are the qualities that the system must include, result-
ing in a system that is attractive, usable, fast, reliable or safe 
[38]. They describe a property/characteristic that the system 
shows, or a constraint that it should respect [40]. The OSN 
non-functional requirements that we take into consideration 
are: privacy requirements, security requirements [42] and 
metering. 

(a)	� Privacy The system must provide confidentiality, own-
ership privacy, social interaction privacy and activity 
privacy.

–	 Confidentiality Availability of appropriate access control 
policies and encryption mechanisms to prevent informa-
tion leakages.

–	 Ownership privacy Content owner should be able to 
make a choice of revealing ownership information to 
other users.

–	 Social interaction privacy User can hide the interaction 
patterns between him/herself and other users.

–	 Activity privacy Interactions between the user and the 
application suite are not exposed to the public.

(b)	� Security To provide appropriate security, the sys-
tem must also include cover channel availability, 

authentication, data integrity and authenticity, and 
some also name non-repudiation.

–	 Channel availability Service is available and can be used 
even under malicious attacks.

–	 Channel authentication There is some form of two-way 
authentication between an initiator and recipient of the 
message.

–	 Data integrity and authenticity The system prevents 
modification of content or messages by any unauthor-
ized users.

–	 Non-repudiation The sender can be traced and the inter-
action is documented, which might be useful in case 
of any malicious content/messages. If anonymity has a 
higher priority, non-repudiation is to be avoided.

(c)	� Metering As an added bonus to the OSN, it would be 
beneficial to the users as well as the system develop-
ers to receive insights into how well the system oper-
ates, the general system performance as well as system 
limitations/overloads if they exist. This way, mitigating 
solutions may be designed to ensure optimum perfor-
mance. Thus, a reliable and accurate system monitor-
ing interface can be integrated to collect system data, 
which can later be analyzed to gauge the health of the 
system.

 

Summary With these functional and non-functional require-
ments, we believe that the desired features discussed in sec-
tion “Desired Features for OSNs” can be met. In Table 4, we 
present a feature-to-requirement mapping.

Motivation for Decentralization

The centralized computing model has matured since it 
was introduced into the market, making it friendly for the 
development, deployment and administration of network-
based applications. It was, therefore, a natural choice for the 
OSN service providers. However, as the OSNs grew, fueled 
mostly by newer and better technologies and increased user-
base, two key concerns have stood out: accumulated costs 
for centralized operations, and security and privacy concerns 
[13]. We discuss each concern in detail.

Accumulated Costs for Centralized Operations

These concerns arise as a direct effect of scalability, with 
five issues identified [4]. 



SN Computer Science (2020) 1:299	 Page 7 of 51  299

SN Computer Science

(a)	� Large number of highly connected users Managing the 
growing social graph in real time is an ever-present, 
growing challenge. It arises from the tight coupling 
existing among different communities, and the con-
stantly increasing user data generated.

(b)	� Infrastructure issues As the network grows, the equip-
ment used to keep the OSN running needs regular 
maintenance and upgrades, and eventually newer 
systems need to be introduced while the older ones 
are phased out. Hence, ever-increasing operational 
costs such as replacement of failed equipment, and 
hiring, training and maintaining skilled staff must be 
accounted for. High-energy consumption by the serv-
ers and the Heating, Ventilation and Air Conditioning 
(HVAC) system for cooling the servers and networking 
equipment is also a growing concern.

(c)	� Internal network traffic The numerous interconnections 
point to high internal traffic, usually due to friend rec-
ommendations, real-time notifications, personalized 
marketing, replication, maintenance and index syn-
chronization, which presents a scaling bottleneck.

(d)	� User-generated content management and dissemina-
tion In most of the SNs, the large portion of interac-
tions is related to content creation and sharing. There-
fore, handling and disseminating of the user-generated 
content (UGC) efficiently in a centralized social net-
work create scalability challenges.

(e)	� Database scalability Centralized SNs require some 
form of reliable database management system to han-
dle huge amounts of data, ensure rapid deployment of 
data and UGC as well as maintain heterogeneity of 
content. The traditional relational database manage-
ment systems (RDBMSs) are unsuitable as horizon-
tal partitioning due to relationships and dependen-
cies among stored data is difficult [43]. Designed to 

guarantee consistency, RDBMSs have limited scal-
ability and availability especially in case of network 
partitions [44, 45], and cannot provide required latency 
and scalability for SNs with clusters replicating over 
data centers geographically dispersed [44]. Therefore, 
alternative data management solutions such as Cas-
sandra [44] and Haystack [46] by Facebook, Bigtable 
[47] and Megastore [48] by Google were developed.

It is evident that the operational costs in centralized sys-
tem are tremendously high. Most OSN providers thus seek a 
way to reimburse these costs, and this is mainly achieved by 
selling of the accumulated user data to product advertisers 
and other data “analysts”. This leads to the second category 
of concerns.

Security and Privacy Concerns

These concerns are divided into two broad categories [5, 
19]: 

(a)	� User-related threats Arise from disclosure of private 
data to other OSN users or even unregistered users. 
This can be intentional such as by hacking or unin-
tentional due to poor/misconfigured privacy settings. 
Also, although most OSN platforms include options 
for predefined privacy settings, in most cases having 
fewer configured privacy settings is better since more 
tends to reveal a user’s preferences [49].

(b)	� System provider-related threats The implicit require-
ment for self-disclosure during registration assuming 
the providers can be trusted to handle and protect pri-
vate information fairly and accurately is a major loop-
hole. By utilizing data mining techniques, implicit data 
can be extracted that may violate a user’s privacy. This 

Table 4   OSN desired features to requirement mapping

a PSSM personal storage space management, SCM social connection management, SGT social graph traversal, Comm means of communication, 
SSSI shared storage space interaction, SF search facilities
b Conf confidentiality, OP ownership privacy, SIP social interaction privacy, AP activity privacy
c CAva channel availability, CAuth channel authentication, DIA data integrity and authenticity, NR non-repudiation

Desired features Functional requirementsa Non-functional requirements

PSSM SCM SGT Comm SSSI SF Privacyb Securityc Metering

Conf OP SIP AP CAva CAuth DIA NR

Identity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Conversation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sharing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Presence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Relationship ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Groups ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



	 SN Computer Science (2020) 1:299299  Page 8 of 51

SN Computer Science

has seen the emergence of personal data markets [50] 
where these personal data may be used directly by the 
providers or sold to third parties to be used for per-
sonalized advertising, increased band awareness, emo-
tional manipulation [51, 52] as well as online activity 
surveillance [53–55]. Network-related vulnerabilities 
such as Sybil attacks [56], social spamming [57] and 
general cyberattacks on online services [58] may also 
occur.

These concerns must of necessity be met with workable 
mitigating solutions. We look at possible solutions discussed 
in the literature.

Mitigating the Concerns

OSNs are complex systems and it may not be possible to 
completely eliminate all the concerns. To tackle security 
and privacy concerns, suggested solutions include the use 
of anonymization, encryption, fine-grained privacy settings 
with matching access controls, and encouraging user aware-
ness and change of behavior [19]. To handle infrastructural 
challenges, the use of more advanced technologies such as 
use of elastic cloud scaling may offer solutions. However, an 
all-round solution may entail making concessions on other 
aspects of the OSN design. It has been suggested that cen-
tralized OSNs can be improved in two ways [59]:

–	 extending the capabilities of provided services, or
–	 decentralizing the supporting infrastructures.

Extending features and service provided by OSNs has thus 
far been done to a great degree. However, we see that decen-
tralizing the server-side infrastructure has not been exten-
sively undertaken, thus meriting further exploration. In our 
view, decentralization will not only solve the privacy and 
security concerns but also the infrastructural concerns.

Decentralized Online Social Network (DOSN)

This is an OSN designed to run in a distributed environment 
with minimal or no central control. The distributed nature 
of the DOSN provides three main benefits for the user in 
comparison to centralized OSNs: 

(a)	� The provider’s operational costs are ideally reduced to 
zero, as all resources are provided by the users. Thus, 
no monetary requirement is given to sell the users data. 
DOSNs can be developed as open source solutions and 
run through the users, thus eliminating the need for a 
provider at all.

(b)	� A better and user-oriented user privacy control can be 
applied. No one needs to be trusted, as mathematically 

trusted access right management mechanisms can be 
applied and the openly available source code can be 
verified to correctly implement security mechanisms.

(c)	� Innovative development [60] is encouraged as 
resources, in terms of communication and storage 
options, are widely available. Thus, depending on the 
contribution of the users, several gigabytes of storage 
space can be offered allowing to solve typical use cases 
such as file synchronization, workspace sharing and 
messaging large files.

Two main classes of DOSNs are identifiable, web-based 
and P2P-based DOSNs [61]. 

(i)	� Web-based DOSNs They heavily rely on a distributed 
web server infrastructure. Thus, configuring and set-
ting up the system is only possible by experts. In addi-
tion, there is the need for a reliable web space, else 
user profiles become inaccessible.

(ii)	� P2P-based DOSN This is a major step in distributed 
computing as participants (peers) simply install a pro-
gram and cooperate with each other to realize a desired 
service. The P2P DOSN can be used by novice users 
and thus provides a broader acceptance. However, 
building a reliable, secure and appealing P2P OSN 
is only possible after addressing some challenges in 
providing essential services to OSN [59].

Summary Many users of OSNs have been attracted to them 
because of the perceived benefits. However, of late, concerns 
have been raised, not only by the users (social concerns) but 
also by the providers themselves (technical concerns). To 
this end, one proposed solution worth exploring to tackle 
these concerns is decentralization of the infrastructure. The 
available options include web-based and P2P-based DOSNs, 
with P2P-based solutions being a more viable choice. In the 
next section, we discuss how the essential services needed 
for a functional OSN are achieved by defining technical 
requirements for a P2P framework for an OSN.

Technical Requirements for a P2P 
Framework for Social Networks

To match expected user experience in a P2P-based online 
social network, a set of P2P component is required which 
provides a reliable basis for the social networking opera-
tions. The aim is to ensure overall quality of the P2P-based 
OSN is equivalent to, or surpasses that of, popular OSNs in 
terms of ability to scale, application richness, response time, 
security and privacy. Therefore, essential infrastructural 
elements need to be conceptualized and realized. DOSN 



SN Computer Science (2020) 1:299	 Page 9 of 51  299

SN Computer Science

architectural designs for P2P networks abound, such as [15, 
42, 59] and [62], and in general, a fourfold architecture is to 
be applied, delineated as

–	 overlay,
–	 storage and communication framework,
–	 social networking elements, and
–	 graphical user interface.

These are portrayed in Fig. 2 as the P2P architectural model 
for OSNs. These functionality blocks are responsible for 
interconnecting the nodes reliably, providing rich P2P-based 
interaction functionality and building high-quality social 
networking functions with an appealing look and feel. In 
the following, we elaborate in detail the technical require-
ments defined by these functional elements.

Overlay Network

This is first layer of the framework. It defines how nodes are 
to be addressed and connected, to achieve the primary pur-
pose of the social network. An overlay network requires the 
nodes to have a node identifier, a routing table and a list of 
open connections to other nodes in the network. Therefore, 
services that are offered at this layer include handling the 
addressing scheme, joining and leaving protocols, routing 
and maintenance protocols and ensuring that peers remain 
connected, operational and optimized even under strong 

network dynamics. We discuss each briefly here but an in-
depth discussion is given in section “Overlay Structures”.

Addressing of Users, Nodes and Data

Typical P2P networks are designed for file sharing. These 
have no concept of user identifiers as nodes simply share 
files with one another within the network; hence, only the 
data location is relevant. OSNs, on the other hand, require 
reliable addressing of users, data and nodes in the network, 
for example, to send a message to a user, to retrieve a data 
item by its ID or to send a data item to a specific node based 
on its ID. Technically, the addresses of users, data and nodes 
have to be consolidated and a search and/or lookup for these 
IDs must be supported. There is the possibility of the peers 
changing their physical address over several interactive ses-
sions and with this also the location of the data they carry. 
Therefore, an appropriate mechanism for addressing the 
nodes to support searching of friends and data, as well as 
discovering new friends, is needed. This ensures that for 
existing connections, the trust links are maintained.

Routing

A core functionality of the overlay is routing of messages 
to users, nodes and nodes carrying specific data by their ID. 
This allows building of applications such as chatting apps 
in which messages are sent to specific user IDs, building of 
functionality such as replication where data is stored on a 
specific node determined by its nodes ID, and sending of 
messages to a node by a given data ID, so that the respon-
sible node in the structured P2P overlay can implement the 
task described in the message on the corresponding data. 
The response time for the resolution of a lookup operation 
is crucial to ensure users do not wait for long periods for 
query results. For file-sharing application, a slightly longer 
response time is tolerated in perspective of a long download 
time for any file.

Security

Confidentiality, integrity and authentication during commu-
nications are essential in OSNs. Ideally, these security goals 
are to be integrated deep in the P2P-based OSN, thus in the 
overlay. Nodes should be able to engage in a secure commu-
nication directly with their first message to each other with-
out exchanging further security related messages upfront and 
without using services outside of the P2P-network.

Having peers, data and users in the P2P system with 
individual identifiers raise the question on how to map the 
users to peers and how to handle device changes by users 
as they join the P2P network. Therefore, the network should 
support the use of multiple devices by a user (although not 

Fig. 2   A P2P architectural model for OSNs



	 SN Computer Science (2020) 1:299299  Page 10 of 51

SN Computer Science

simultaneously), and ideally also should not require any 
physical property (such as private key) to authenticate the 
users. The authentication of the user should be purely based 
on his/her knowledge.

Derived Requirements

These requirements are not explicitly outlined in the set 
of requirements but are needed to satisfy one or more of 
them. The derived requirements at the overlay focus mainly 
on the aspect of system robustness. Two points are worth 
consideration. 

(a)	� Robustness to Churn Churn is the rate at which peers 
join and leave the network. It leads to broken links and 
invalid entries in the routing tables. Thus, when a con-
nection is needed, nodes might discover missing con-
tacts that need replacement, inducing a delay. Some-
times the delay and the impact on the routing table is 
so high that a correct state cannot be reached anymore 
resulting in a partitioned network. Thus, maintenance 
protocols are needed to keep the routing table consist-
ent and operational.

(b)	� Robustness to attacks While the security measures 
guarantee authenticated and secure communication, 
there might be nodes with adapted protocols that aim 
at compromising the network and causing harm. Such 
attacks may also cause network partitioning, hinder 
correct routing hence lookup failure, or attract routing 
and maintenance traffic to spy on node behavior. The 
overlay should withstand the presence of malicious 
nodes aimed at sabotaging the network functions.

P2P Framework

This is the second layer. It hosts advanced functions that 
support the building of a P2P-based OSN which include user 
and group management, data storage and replication, single 
and group communication, monitoring and quality control, 
and testing. With a set of mature and reliable mechanisms, 
independent of the later use cases, it is possible to build 
rich applications that are unaware of the underlying P2P 
functions. We discuss these functions in greater detail in 
the following.

Single Data Storage

Unstructured overlays do not have a defined data storage 
location and, any active node is utilized. Thus, data retrieval 
in the network typically accomplished by flooding, which 
often generated high traffic, has the risk of missing data even 
though it is in the network. On the other hand, structured 
overlays provide a routing mechanism based on data ID and 

the node responsible for that data ID responds to a request. 
Thus, data are always found and retrieved if they are in the 
network. The consistency of the data in the network is essen-
tial so that nodes interested in a data item receive the most 
recently updated copy. The single data storage and retrieval 
functionality is one of the basic building blocks for P2P-
based OSNs and is discussed in section “Storage Techniques 
and Redundancy”.

Reliable Data Redundancy

Data availability guarantee requires efficient data redun-
dancy mechanisms such as replication and erasure codes. 
Erasure codes are more suitable for static data such as in file-
sharing applications, and replication is more suited for OSN 
as it allows for regular data updates as the data changes. Data 
replication must be done in a reliable and consistent man-
ner to prevent data loss due to churn. Protocols should be 
in place to monitor the number of network copies of a data 
item and new replicas created in case of fewer copies. The 
item replicas should be high enough to guarantee data avail-
ability, and few enough to ensure faster replica updates and 
minimal loading on the nodes due to requests. Replication 
mechanisms should incorporate and maintain the security 
requirements on the data and its replicas. Optional require-
ments for data locality and trust-based replication might be 
considered. The data redundancy mechanism are discussed 
in section “Storage Techniques and Redundancy”.

Data Access Control for Users and Groups

When data are created, the author of the data stores that 
in the network, and modifications should be allowed only 
for the initial author of the data. Read only access may be 
granted to a list of privileged users for the data and their 
replicas while all other users, including the replica nodes, 
should not access the data. These rights apply even when 
the data owner is offline. The set of users with privileged 
access is not explicitly required to be the list of “friends” in 
an OSN. The reason is that the list of “friends” is typically 
not identical with the list of trusted nodes and it may also 
not be the intent of the users to provide access rights for each 
data item to only this set of users. The P2P framework must, 
therefore, support definitions for a set of read-enabled users 
for each data item. To scale the security and access control 
protocols, it is reasonable to introduce groups or roles. Sin-
gle users can be added to groups, where the members have 
the same access rights. This makes it easy to assign the read 
or write access to a specific group, such as thousands of 
users at once, instead of assigning them the access rights 
individually.



SN Computer Science (2020) 1:299	 Page 11 of 51  299

SN Computer Science

Search for Data and Users

The method used for locating data is based on the over-
lay structure. Unstructured overlays search for data using 
flooding techniques. Structured overlays, however, support 
lookup, which assumes that the user and data ID are known. 
The OSN, on the other side, interconnects users and allows 
them to create and access data items. Users and data items, 
with corresponding access permissions, should be searcha-
ble based on keywords. Thus, users could be searched based 
on their location and interests, and data could be searched 
based on its content and tags. Generally, the overlay topol-
ogy provides for either an indexing support or for better 
flooding approaches, but not both simultaneously. In spe-
cial cases, additional indexing structures may be consid-
ered as the topology may not support advanced searching 
methods, such as multidimensional queries. An overview on 
resource lookup and search approaches is discussed exten-
sively in section “Overlay Function: Search and Lookup 
Mechanisms”.

Direct Communication, Multicast and Publish/Subscribe

One core function of an OSN is the 1-to-1 or direct com-
munication between nodes, either asynchronously, when 
typically the storage is used, or synchronously, when direct 
messages are sent between peers. This supports implement-
ing direct chatting and messaging. Multicast communication 
makes it possible for multiple parties to communicate at 
once. This can be either one-to-many (1-to-M), many-to-
many (N-to-M) or many-to-one (N-to-1) communication. 
Multicast communication has made it possible to implement 
multicast event notification systems called publish/subscribe 
systems. In all communication, security considerations must 
be put in place. These communication options are discussed 
in section “Communication: Unicast, Multicast andPublish/
Subscribe”.

Optional Derived Requirements

Two additional optional requirements are identified, which 
may prove useful. 

(a)	� Secure distributed data structures The storage option 
thus far presented is suitable for storing simple data 
items such as profile data and small files only. How-
ever, this finds its limitations when storing more com-
plex data structures such as a list of albums contain-
ing hundreds of photos, which would overload a single 
peer. In such cases, it is advisable to distribute the data 
by storing the various connected data items on differ-
ent nodes which distributes the load and allows for 
parallelized data retrieval. Distributed data structures 

(DDSs), such as proposed in [63–65], provide a means 
of creating and accessing the data items tailored for 
OSNs. Typical use cases are unordered sets (such as 
for photos in an album), ordered lists (such as for list of 
comments on the user’s wall) as well as tree structures 
(such as for folder structures for a collaboration space). 
DDSs should include fine-grained access options such 
as adding entries to a set or list or rearranging the tree 
structure without replacing the whole data structure. 
While single data items are important, the use of DDSs 
in the P2P network is more convenient as it suits the 
needs of an OSN. In section “Advanced Storage: Dis-
tributed Data Structures” we discuss the options to 
implement distributed data structures.

(b)	� Distributed quality monitoring and control loop Infor-
mation on the performance of the OSN can help iden-
tify situations of bad performance and give direction 
on how to control the performance. A monitoring mod-
ule integrated into the system may be key in obtaining 
information on performance of the P2P network and 
OSN in form of aggregated statistics. Example of such 
statistics include total, average, minimum and maxi-
mum retrieval times, network traffic, storage load and 
also give a standard deviation on this. The availability 
of such complete, aggregated and timely information, 
allows users, potential operators and the system itself 
keep track of the performance of the P2P networks and 
OSN. With the monitoring information a distributed 
control loop can be implemented in the P2P network, 
which can be auto-tuned to ensure that performance 
goals are reached and maintained. The discussion on 
monitoring is done in section “Services: Monitoring 
and Management”.

OSN Plugins and the Graphical User Interface

The overlay and framework layers discussed thus far are 
quite general. They are not limited to the use case of P2P-
based OSNs as they do not provide dedicated functions such 
as profile handling, friend lists or photo albums. For the 
implementation of OSN specific functionality, ideally, a 
modular system is used which utilizes the functions offered 
by the P2P framework and P2P overlay and allows the pro-
grammer to add new social plugins easily.

Mandatory OSN Plugins

OSNs at a minimum require a personal storage space (pro-
file), and social contacts (friends). In combination with the 
opportunity for social graph traversal, nodes can present 
themselves, connect to friends and browse these friends’ 
profiles. In addition to this, users expect means of commu-
nication (messaging, a wall for conversation) as well as a 



	 SN Computer Science (2020) 1:299299  Page 12 of 51

SN Computer Science

basic set of shared storage space, where they can present 
photo albums and link each other. The main interaction will 
take place in direct messaging communication, through 
comments and updates on the wall of the users as well as 
through photo uploads and comments. With the P2P frame-
work underneath the plugin layer a standard quality is pro-
vided and a foundational security concept established, with 
convenient storage and communication functions. But this 
also defines a specific set of requirements that all plugins 
must follow. Having an encrypted profile at first glance hin-
ders it from being recommended by specific plugins.

Optional OSN Plugins

While the behavior of mandatory plugins is quite fixed and 
predictable, additional functionality can be added through 
the optional plugins, such as a profile recommendation ser-
vice. This allows for opt-in services available only for those 
that opted in (that is, by installing the optional plugin) such 
as profile recommendation services. The downside with 
inclusion of such plugins is the risk of opening services to 
untrusted third-parties, which may expose all other plugins 
to the privacy problem. The trend nowadays is towards inclu-
sion of machine learning-driven plugins into OSN. From a 
user’s perspective, the only data that should be breached are 
those marked as publicly accessible, thus of low value. From 
a data analyst point of view, data provided in an OSN are not 
to be trusted, especially if the OSN aims for anonymity and 
privacy. Websites with such characteristics, such as 4chan.
org5, even claim that the information on them is not to be 
trusted. Thus, the value of data obtained from such OSNs is 
to be evaluated. For the P2P environment, the peers’ choice 
of enabling a third party application should not affect other 
peers. Using the functions of the P2P framework no new 
plugins should have the ability to circumvent the security 
features of the P2P framework as all security and perfor-
mance related information are handled by the P2P frame-
work, while the OSN plugins only utilize the framework and 
are bound to its policies.

Graphical User Interface (GUI)

Most popular OSNs are accessible via browsers. Conse-
quently, it is desirable for the GUI to be browser-based, sup-
porting the newest features of HTML5. It should be capable 
of providing an overview on the OSN functions offered, and 
easily integrate OSN apps added later. The OSN apps added 
should be restricted from tampering with the presentation 
of other apps.

Having elaborated the technical requirements for a P2P 
framework for social networks leads us to the analysis of 
what solutions are already available in P2P literature. In the 
next section, we give a overview on the core P2P building 
blocks.

Peer‑to‑Peer Networks

A P2P network (or system) is a virtual, self-organized net-
work formed over the existing physical network by introduc-
tion of specialized protocols that allow heterogeneous nodes 
to autonomously interact and share resources. General char-
acteristics of P2P networks are resource sharing, intercon-
nection between peers, decentralization, self-organization, 
stability and fault resilience, scalability, anonymity and 
shared cost of ownership [66]. To realize these character-
istics, P2P network must incorporate certain key essential 
services within the architecture. These essential services 
then provide a foundation for designing suitable application 
such as OSNs. In this section, we look at the core services 
that P2P networks should at a minimum incorporate, with a 
focus on services needed to implement an P2P-based OSN. 
The structure of the study is shown in Fig. 3.

Overlay Structures

The overlay network is a collection of logical links that con-
nect nodes to the application layer [67], and is in essence 
a set of protocols that run by mimicking the physical net-
work’s behavior [68]. The logical links may involve one or 
more actual physical links between participating nodes and 
the construction of the overlay itself is generally not depend-
ent on the underlying layers although the information from 
these layers (such as network delays and physical proximity) 
is used in the operation of the P2P network [67]. Different 
ways of classifying P2P networks exist and they depend on 
level of broadness adopted by an author [69] which is dic-
tated by the evolutionary process of P2P architecture [70]. 
Traditionally, classification was based on routing manage-
ment; hence, structured and unstructured P2P overlays. 
However, this method is limiting in its view because it does 
not take into account many recent changes observed in over-
lay designs. In our view, the classification given by [21, 67] 
covers more ground, which classifies them as single-overlay, 
multi-overlay or bio-inspired P2P networks, and takes into 
consideration other factors in affecting the overlays.

Single‑Overlay P2P Networks

This class of P2P networks form a single overlay, and 
hence is the traditional form of P2P networks. It is further 
divided based on two levels: type of index and type of 5  https​://4chan​.org/.

https://4chan.org/


SN Computer Science (2020) 1:299	 Page 13 of 51  299

SN Computer Science

structure. Table 5 gives examples of P2P networks in this 
group.

Type of index Indexing mechanism are useful for locating 
nodes or sharing resources. The mechanisms may be central-
ized, distributed or hybrid. An in-depth discussion on the 

indexing mechanism is given in section “Overlay Function: 
Search and Lookup Mechanisms”.

Type of structure The P2P network may be unstructured, 
structured or a combination of the two. Each type of index 

Fig. 3   Structure of study on 
P2P technology

Table 5   Single-layer overlays Indexing mechanism Network structure Example(s)

Centralized Structured None
Unstructured Napster, BitTorrent [85]
Structured + unstructured Trackerless BitTorrent

Distributed Structured DHT-based P2P networks, e.g. Pastry [86], Tapestry 
[87], Chord [88], Kademlia [89]

Unstructured Gnutella v0.4, Freenet [90, 91]
Structured + unstructured None

Hybrid Structured P2PSIP [92]
Unstructured JXTA [93], Gnutella v0.6, FastTrack/KaZaA [94, 95]
Structured + unstructured Skype



	 SN Computer Science (2020) 1:299299  Page 14 of 51

SN Computer Science

mechanisms can further be broken down into these three 
groups. 

(a)	� Unstructured overlays The overlay has flexible node 
relationships and lookup operations [21], and nodes 
rely only on adjacent nodes for message delivery [68]. 
The overlays supports churn with a degree of flexibil-
ity, and node failure does not adversely affect search-
ing [25]. Search is based on broadcasting (flooding) 
schemes, and implementing a Time-To-Live (TTL) 
value for query messages helps reduce network load 
[71]. These overlays are unsuitable for exact match 
queries, but are quite efficient for replicated data while 
also supporting keyword searches but at a high cost to 
bandwidth.

(b)	� Structured overlays These have a tightly controlled 
topology maintained via a network graph, with 
resources placed in a deterministic fashion using dis-
tributed hash tables (DHTs) [21], and nodes coopera-
tively maintain routing information about how to reach 
all nodes in the overlay [68]. Thus, structured overlays 
support key-based routing protocols, and can only han-
dle exact match queries with high precision but are not 
designed for keyword searches.

(c)	� Combination of structured and unstructured Such P2P 
systems rely on hybrid indexing schemes, hence have 
super-nodes [67]. These supernodes are connected in a 
structured network formation and the communication 
existing between the regular nodes is unstructured.

Multi‑overlay P2P Networks

The overlay is constituted of several interconnected over-
lays forming a single functional entity [67]. This may pro-
vide a means to solve the totality of issues regarding per-
vasive networks [72]. The need for multiple P2P overlays 
is probably a consequence of perceived benefits realized 
due to its use in virtualization [73], which enables the 
utilization of the same physical resources by many differ-
ent applications [21]. Classification of the multi-overlay 
schemes is determined by considerations towards temporal 
synergies and dynamicity, as well as communication, state 
and service interactions [21], hence are vertical and hori-
zontal. Examples of multi-layer overlays are in Table 6. 

(a)	� Vertical multi-layer overlay Several overlays are clus-
tered one on top of the other, with each layer being 
independent structured P2P overlay network, and 
a higher level overlay exploits functionalities of the 
lower level overlay [21]. In most cases, these layers are 
usually DHT based. Communication occurs via gate-
way nodes responsible for message routing between 
two vertically adjacent nodes.

(b)	� Horizontal multi-layer overlays Here the parallel oper-
ations of overlays are the focus [21]. Multiple overlay 
networks, each referred to as a leaf, are joined to form 
a single DHT-based P2P network, with possible con-
nections existing between the leaf overlays. The overall 
function of the resultant DHT-based P2P network is 
to optimize routing and maintain the conceptual hier-
archy of the leaf overlays [74]. Unlike vertical multi-
overlay networks, there are no gateway nodes, but the 
leaf overlays connect by carefully selected links to 
ensure a limited number of total links per node.

Bio‑inspired P2P Networks

These overlays are a result constructing P2P overlays net-
works using algorithms and techniques that are inspired 
by naturally occurring biological phenomena. These bio-
inspired solutions are characterized as being highly adaptive 
and reactive, having support of heterogeneity, distributed 
operations, resilience to component failure and can self-
organize [75]. Therefore, bio-inspired approaches have been 
taunted as a possible alternative for managing P2P over-
lay networks having been proven as an effective solution 
in the computer network domain [76]. Existing solutions 
are mostly based on the collective behavior of ant colonies 
or bees called swarm intelligence, but other approaches 
have also been studied such as biological neurons and fungi 
growth. Examples of proposed overlays are listed in Table 7.

Other Overlay Considerations

Several theories have been taken into consideration for the 
systematic development of overlays with desired properties 
such as locality awareness, anonymity, mobility and other 

Table 6   Multi-layer overlays

Classification Example(s)

Vertical NICE [96], HIERAS [97],
Horizontal Structella [98], Cyclone [74]

Table 7   Bio-inspired overlays

Inspiration Example(s)

Ant colony optimization AntCAN [99], P2PSI [100], BlatAnt [101], 
Self-chord [102], AntOM [103], Self-
CAN [104]

Bee foraging Antares [105], P2PBA [106],
Neurons SCAN [107]
Fungus Myconet [108]



SN Computer Science (2020) 1:299	 Page 15 of 51  299

SN Computer Science

features [77]. Examples include Geodemlia [78] and LobSter 
[79] which are location-aware overlays, FRoDO [80] which 
supports anonymous communications.

Security Discussion: Overlay

P2P networks are embedded into the TCP/IP protocol suite 
and, therefore, security issues affecting networks can also 
be found in P2P networks. Threats that affect the overlay 
have mainly to do with denial of essential services. These 
include denial-of-service (DoS) and distributed denial-of-
service (DDoS), man-in-the-middle attacks and routing 
attacks such as eclipse attack [81], wrong routing forwards 
(attrition attacks [82]), identity theft [83] and churn attacks 
[84]. To mitigate these types of attacks, the solutions must, 
therefore, consider securing the communication. These solu-
tions are discussed in depth in section “Communication: 
Unicast, Multicast andPublish/Subscribe” where provision 
of communication channels is considered in depth.

Overlays for P2P social networks In SNs, each individual 
data item is relevant and should be easily retrievable in the 
shortest time possible. Thus, only single-layer overlay, struc-
tured networks seem to be suitable. It is more important to 
be able to retrieve rare data items in at most O(logN), while 
tolerating an expensive keyword-based search which may 
require development of other mechanisms to support it, than 
to have a cost-efficient searching, as availed by unstructured 
networks, but high costs in locating and retrieving the profile 
data of connected friends. Another essential aspect is the 
ability to change data, such as profiles. The network should 
support updating of all copies of such data. In structured 
overlays, only the node responsible for the data’s identi-
fier needs to be contacted, which is feasible, in contrast to 
searching through the entire network for copies as in an 
unstructured overlay network. Although multi-layer overlay 
and bio-inspired overlay P2P networks may seem promising 
as solutions for social networks, it may require much more 
effort to implement needed mechanisms for social network 
services to match the centralized SNs.

Overlay Function: Search and Lookup Mechanisms

At the core of solving the P2P search/lookup challenge is the 
development of appropriate and agile indexing mechanisms 
and querying mechanisms for efficient information retrieval. 
This makes the search techniques dependable and adaptable 
to the changing network. P2P indexes can be classified as 
follows: 

(a)	� Local indexes Each peer maintains an index for its own 
data or objects only, as seen in the first Gnutella. They 
support rich queries along with simple key lookups, 

and query flooding is used for global data search. How-
ever, the use of local indexes in a large and growing 
network becomes inefficient.

(b)	� Centralized indexes They depend on a single server 
to maintain data references to the many peers, such 
as Napster6. However, a centralized index for a P2P 
network reintroduces the problems of centralized sys-
tems, and hence is discouraged for a fully decentral-
ized application system.

(c)	� Distributed indexes Nodes maintain information for 
a part of the identifier space and a systematic routing 
table to reach nodes responsible for other parts of the 
identifier space. The index can be semantic or seman-
tic-free indexes.

–	 Semantic indexes Found in most unstructured P2P 
networks. They utilize human readable indexes hence 
semantic. Further discussion is in section “Semantic 
Mechanisms for Searching”. However, they do not sup-
port persistent object references and prevent contention 
free references [109].

–	 Semantic free Indexing supports content-based referenc-
ing, as DHTs are used to enable object location using 
persistent keys in a high-churn network [110]. Detailed 
discussion is in section “Semantic-Free Mechanism for 
Lookup”.

(d)	� Hybrid indexes They utilize the best of both worlds, 
that is, they combine two or more types of single-layer 
overlays to achieve effective indexing. In most cases, 
the structured network consists of nodes that perform 
the indexing called the super-nodes, while other nodes 
are maintained in an unstructured format. A result of 
these hybrid indexes is the development of multidi-
mensional indexing mechanisms to tackle the problem 
of rich text and multidimensional data searching.

Figure 4 is an overview of the indexing mechanisms 
used in resource discovery. In the following, we describe 
the semantic-free, semantic and multidimensional indexing 
mechanisms.

Semantic‑Free Mechanism for Lookup

Mechanisms that support some form of key-based routing 
(KBR) will generally offer semantic-free indexing. These 
methods cover the use of DHTs, tree-based mechanism and 
skip lists/skip graphs. 

6  Originally available on http://www.napst​er.com.

http://www.napster.com


	 SN Computer Science (2020) 1:299299  Page 16 of 51

SN Computer Science

(a)	� DHTs Traditional DHTs such as Chord [88], Pas-
try [86] or Tapestry [111] use a routing table of the 
size of �(logN) neighbors which ensures routing to 
the responsible peers within �(logN) hops. However, 
hashing as used in the DHT based indexes destroys the 
locality of data, particularly data item’s closeness users 
(content locality) and prevents global routing if query-
ing and answering nodes are within the same locality 
(path locality) [112].

(b)	� Skip list & skip graphs The Skip List [113]-based over-
lays, Skip graphs [114], SkipNet [112] and HSkip+ 
[115] can be used instead of DHT-based overlays to 
alleviate the problem of locality. Skip Lists ensure bal-
ance through probabilistic balancing during insert and 
delete operations with every node having averagely 
�(logN) neighbors. Unlike DHTs, Skip graphs sup-
port prefix searches, proximity searches [116] as well 
as location-sensitive name searches [24].

(c)	� Tree-based overlays They also offer logarithmic 
key-dependent searching such as BATON [117]. In 
BATON, each of the peers in the network maintains 
a node of the tree. Node links to other nodes may be 
parent links, children links, adjacent links or neigh-
bor links. Each node (leaf or internal) is assigned and 
manages a range of values that should be greater than 
those of the left adjacent node but smaller than the 
right adjacent node. Searching is then performed based 
on the range in which the value falls either towards the 
right of the tree if value is greater or towards the left if 
the value is smaller.

Semantic Mechanisms for Searching

Semantic-free mechanisms guarantee that a key can be 
found if it exists in the network because they rely on the 
structure of the overlay network but they do not show the 
relationships existing among objects. However, seman-
tic indexes do reveal these relationships, but they do not 
guarantee locating rare items as they rely on heuristics. 
Semantic indexing is mainly the domain of unstructured 
P2P networks. For the unstructured networks, performing 
exact searches can only be realized through an exhaus-
tive all node contacting flood, as a global index cannot 
be constructed [118]. However, keyword searches can be 
undertaken quite easily as this involves querying for a 
single keyword or several keywords. The keyword search 
mechanisms can be broken down into single- and multi-
keyword searches. 

(a)	� Single-keyword searches There are basically two ways 
that this can be realized, blind routing and routing indi-
ces [118].

–	 Blind routing techniques do not take into account 
resource distribution thus are likely to get wider cover-
age. However, they generate high network traffic loads. 
These searches are achieved using flooding techniques. 
The flooding techniques can be pure flooding, flooding 
across hops, TTL limit-based flooding such as expanding 
ring search, and probabilistic limit-based flooding such 
as random walks [119].

Fig. 4   Resource discovery using indexes



SN Computer Science (2020) 1:299	 Page 17 of 51  299

SN Computer Science

–	 Routing indices approaches build indices to help guide 
forwarding queries. The indices can be peer-content 
based such as naive routing [120], or peer-query based.

(b)	� Multi-keyword search This is a great motivation for 
making searching in the systems much easier and 
faster. However, [118] suggests three ways that can 
be looked into to solve the problem of multi-keyword 
searches by introducing modifications to the single-
keyword search methods. These are

–	 performing single-keyword search and then merging the 
results;

–	 assumption that the multiple keywords are a single query; 
or

–	 viewing the problem from a query routing process per-
spective.

Multidimensional Indexing Mechanism

In addition to supporting simple searching or key-based 
lookup queries, a highly desirable quality in P2P systems 
is support for complex rich text queries [121] and multi-
dimensional data [26, 122]. Multidimensional indexing 
(MI) allows users to perform querying efficiently in cases 
of multi-dimensional data such as Geo-spatial data. This can 
be achieved using multidimensional indexing structures such 
as Skip Lists and Skip Graphs [122]. In [26], three classes 
of MI are discussed:

–	 P2P-based MI methods that are extensions of centralized 
MIs that have been decentralized,

–	 P2P-based systems that have been augmented to achieve 
MI, and

–	 combining of centralized MI and P2P-based systems.

This way, it is possible to run more advanced query types 
such as aggregation queries, multi-attribute queries, join 
queries, k-nearest neighbor query and range query.

Security Discussion: Search and Lookup Corruption

One of the main problems in searching and lookup is holes 
arising from attacks that affect data availability causing 
inconsistencies in routing, storage or resource lookup. The 
following are some of the common ones:

–	 Content availability depletion [123] Arise from attacks 
targeting content availability which make finding a 
needed resource difficult. They are accomplished by poi-
soning or pollution of the replicated resources, lowering 
the relative availability of usable content in the network.

–	 Random decoy injection [124] This is the process of poi-
soning by the insertion/injection of large quantities of 
decoys in the network resulting in poor ranking of usable 
files from the search results.

–	 Replicated decoy injection [124] Occurs when numer-
ous replicas of the same decoy are injected into the net-
work, resulting in higher rankings for the injected decoy 
in the search results. This attack, however, can be easily 
detected.

–	 Replication transient decoy injection [124] This is an 
alternative that overcomes detection, for example, by a 
reputation system, by frequently replacing the replicated 
decoys injected in the network

–	 Routing table poisoning attacks This affects structured 
networks, because of the reliance on the routing tables to 
perform lookups.

Resource discovery in P2P-based OSN For an OSN capable 
of finding other resources, the preferred option is incorpo-
rating lookup (semantic-free indexing) mechanisms as they 
offer efficient search and retrieval. However, in cases where 
the P2P network is to be designed for file sharing applica-
tions where there is need to find the closest neighbor that is 
available to share a file, then searching (semantic indexing) 
mechanisms would suffice.

Storage Techniques and Redundancy

Designing a reliable storage mechanism is aimed at ensur-
ing data availability and in P2P systems and several pro-
posal exist. DHT-based mechanisms include PAST [125] 
on Pastry, Cooperative File System (CFS) [126] on Chord 
and OceanStore [127] on Tapestry [87]. Most unstructured 
P2P networks are essentially storage networks as they were 
designed for file sharing purposes such as Freenet, FastTrack 
and BitTorrent. Irrespective of the overlay upon which the 
storage technique has been designed on, the most important 
consideration is guarantee on data availability. In most dis-
tributed systems, this is achieved through the inclusion of 
data redundancy mechanisms which utilize replication and/
or erasure codes [128]. We discuss how this is achieved.

Data Availability Through Replication

In replication, copies (full or partial) of the data are dis-
tributed to chosen peers in the network to guarantee fault 
tolerance within a distributed system. The term replica refers 
to copies of the replicated objects. Data replication in a dis-
tributes system ensures high availability, reliability and fault 
tolerance, scalability, increased performance and presence 
of “fail-safe” infrastructures [23]. Caching is very similar 
to replication and is aimed at releasing loads experienced at 
particular hot spots and decreasing file query and retrieval 



	 SN Computer Science (2020) 1:299299  Page 18 of 51

SN Computer Science

latency. Caching is usually performed near the file owners 
or the file requestors or along a query path from a requestor 
to an owner [129]. However, caching is done opportunisti-
cally and is uncoordinated, leaving no information about 
where caches exist in case there arises a need to update the 
cached data items. In replication the storage points of the 
data copies are and remain well known so that all copies of 
the data item can be found and addressed, for example, to 
update them. When utilizing replication, the replica control 
mechanisms and data replication techniques have to be con-
sidered. These are discussed next.

Replica control mechanisms To maintain file consistency 
during replication, update management using suitable rep-
lica control mechanisms is necessary. These mechanisms 
are classified based on replication point, update propagation 
method or replica distribution [23, 130, 131]. 

(a)	� Replication point Protocols are either single-master or 
multi-master with the option to perform push-based or 
pull-based updates to the slaves.

(b)	� Update propagation The mechanisms can be either 
synchronous or asynchronous. Asynchronous propa-
gation mechanisms are either pessimistic or optimistic.

–	 Pessimistic propagation Ensure single-copy consistency 
and prevent replica access unless it is up to date. This suf-
fices for small network but fails in a globally distributed 
networks, such as the Internet which is generally slow 
and unreliable; hence, pessimistic algorithms would scale 
poorly in such contexts, coupled with the fact that some 
online human activities necessitate asynchronous data 
sharing [132].

–	 Optimistic propagation Allows sharing of data efficiently 
in wide area and mobile environments hence is preferred 
for globally distributed networks. However, optimistic 
replication faces challenges due to divergent replicas 
and concurrent update conflicts, thus is unsuitable for 
systems rarely experiencing conflicts and having high 
tolerance to data inconsistencies [23], such as most P2P 
applications.

(c)	� Replica distribution This can be performed as full rep-
lication, where each site stores a copy of the shared 
objects, or partial replication, in which case sites only 
store a subset of the shared objects, thus sites store 
different replica objects which save space overall.

Data replication techniques These are divided into three 
groups: site selection techniques, file granularity techniques 
and replica distribution techniques. 

(a)	� Site selection techniques In unstructured networks, 
solutions include owner replication, path replication 
and random replication which are discussed in [133] 
as well as HighlyUpFirst replication and HighlyA-
vailableFirst replication which are discussed in [134]. 
Structured networks site selection techniques include 
successor replication, multiple hash functions, corre-
lated hashing and symmetric replication as discussed 
in [135].

(b)	� File granularity techniques Include full file replica-
tion, block level replication and erasure code replica-
tion [136, 137].

(c)	� Replica distribution techniques These include uniform 
replication, proportional replication and square-root 
replication discussed in [133], Pull-then-Push replica-
tion [138] and optimal content replication [139].

 Most P2P systems utilize one or more of these replication 
strategies in combination to achieve some form of reliable 
replication. The second aspect of achieving data availability 
is based on the use of erasure codes which we discuss next.

Data Availability Through Erasure Coding

Systems that rely solely on replication generally achieve 
high availability only with high space overhead [140]. Error 
Correcting Codes (ECCs) [141] have been used to prevent 
information loss experienced during transmission of a data 
stream. Erasure codes [142] are a special class of ECCs 
which are used if a system can differentiate in advance the 
missing or corrupted encoded data segments. Generally, a 
data block b of size Sb is first broken into m equal-sized frag-
ments of size Sf = Sb∕m which are then coded into n blocks 
by adding r redundancy blocks in a way that it is possible to 
reconstruct b from any subset of m blocks among the m + r 
( = n ) fragments. The original blocks are referred to as data 
blocks and the coded blocks as check blocks. The ratio n/m 
is called the stretch factor and m/n is the useful space. The 
main idea behind the erasure codes is that given any choice 
for m blocks, it is possible to reconstruct the original data. 
Replication can be seen as a special case of erasure codes 
where m = 1 [140]. The most commonly used erasure coding 
techniques include Reed-Solomon codes [143], Regenerat-
ing codes [144], and Hierarchical codes [145].

In addition to selecting an appropriate coding technique, 
another challenge is maintaining a minimum number of data 
fragments in the network for durable long-term storage in 
spite of failures by ensuring proper fragment placement. 
It has been shown that the choice of fragment placement 
has an impact on system performance [128]. Therefore, not 
only is the coding technique important, but also the replica 
placement policy. Examples of placement policies include 



SN Computer Science (2020) 1:299	 Page 19 of 51  299

SN Computer Science

global & random policy, chain policy and Buddy (or RAID) 
policy [128].

Replication vs. erasure coding When retrieving a replicated 
data item, it is sufficient to contact one single peer which 
has the replicated data item. This can be done through one 
lookup. On the other hand, with erasure codes, at least m 
nodes are required so as to retrieve the complete data item 
which takes more time and generated more network traffic. 
Much more severe is the case when data updating is to be 
performed. With replication, there is typically only a handful 
of nodes to be contacted, that is, those which are the rep-
lica holders, to update the data item. In the case of erasure 
codes, all m nodes have to be contacted, which is typically 
a much higher number. Thus, replication is faster in terms 
of the replication, update and retrieval process, but requires 
drastically more space. Hence, as noted in [146], the use of 
replication is preferred for OSNs as the data are frequently 
updated, while the use of erasure codes is a better choice in 
systems handling large static data for archival/backup pur-
poses despite the fact that they are very space efficient.

Advanced Storage: Distributed Data Structures

A distributed data structure (DDS) is a data structure that 
has been designed to work in a distributed environment as a 
self managing storage layer. The DDS consists of

–	 a data organization scheme specifying a collection of 
local data structures acting as stores of data items by 
copying them to various sites in the network, and

–	 a set of distributed access protocols supporting the pro-
cessors in issuing of modification and query instructions 
to the network and getting appropriate responses [147].

DDSs have strictly defined consistency models (operations 
on its elements are atomic), support a single, logical data 
item view for clients despite replication (one-copy equiva-
lence), and they use two-phase commits for replication 
coherence [148]. They can be grouped into two classes, 
hash-based and order-preserving as shown in Fig.  5. This 
is based on the fact that insertions and retrievals in the DDS 
is either based on hashing or keys.

Hash‑Based Schemes

The basis of the DDSs in this class is the hash table, a data 
structure used to map keys to values, store these ⟨key, value⟩ 
pairs, and retrieve the values using the provided keys. A hash 
table consists of two parts, an array which is a table that 
stores data to be searched and a mapping function known as 
the hash function that maps data item keys onto the integer 
space that defines the indices of the array. The most com-
monly used hash-based scheme in DDSs is the distributed 
hash table.

A Distributed Hash Table (DHT) provides a decentralized 
mechanism for associating hashed key values to some stored 
data item, hence supporting hash table functions. As DHTs 
are utilized in structured overlay networks, the intercon-
nection that exists between the nodes supports the efficient 
delivery of the key lookup and insertion requests from the 
requestor to the node storing the key. Generally, replication 

Fig. 5   Classification of DDSs



	 SN Computer Science (2020) 1:299299  Page 20 of 51

SN Computer Science

of stored items as well as maintenance of the ⟨key, value⟩ 
pairs within the overlay network bolsters robustness against 
node churn.

Advantages of DHTs DHTs offer several advantages such 
as support decentralization of operations, scalability, load 
balancing, system churning and fast and efficient routing as 
well as data retrieval [149]. With few exceptions, hash-based 
schemes require �(logN) links per node and O(logN) hops 
to perform routing. Viceroy and Koorde gives O(1) links per 
node while maintaining the O(logN) hops [150].

Disadvantages of DHTs There are several shortcomings of 
hash-based schemes. They have the tendency of destroying 
the key ordering, resulting is scattering of the data in the 
array due to the hash function. This prevents performing 
range queries and possibly stored data items may be located 
far from its frequent users [151]. They include high cost sta-
bilization, maintenance and recovery protocols that operate 
in the background to mitigate against failures hence achiev-
ing system state consistency. Finally, hash-based structures 
are not able to self-organize.

Examples Popular DHT implementations include Chord 
[88], Tapestry [87], Pastry [86], CAN [152] and Viceroy 
[153]. An alternative approach observed in literature is 
layering of range query schemes over the DHT systems. 
In these systems, the DHT is the routing substrate and the 
upper layer handles the order-based queries. Examples of 
such include P-Tree [154] which uses a B +-tree layer on top 
of Chord, and Squid [155] which uses Hilbert space filling 
curves on top of Chord, which then support multidimen-
sional indexing mechanism (section “Overlay Function: 
Search and Lookup Mechanisms”).

Order‑Based Schemes

These were proposed to offer solutions to some of the prob-
lems associated with DHT implementations. The P2P sys-
tems are then constructed based on tries or other types of 
search trees that provide distributed search tree (DST) capa-
bilities, which supports order-based searches [151]. They 
therefore rely on order-preserving structures, in specific, bal-
anced search trees, hence directly supporting search queries 
that depend on the key order, for example, range searches. 
The DST schemes are distinguished into two groups based 
on the balancing technique the trees applies: rotation based 
and split-and-join based schemes [151]. 

(a)	� Rotation order-based schemes Utilize the red-black 
tree and AVL tree structures to maintain order. When 
a node joins or leaves the system, a restructuring 
operation called a rotation is performed which will 

usually affect several nodes in the tree structure. This 
introduces a non-local operation as rotations cascade. 
Therefore concurrent insertions and deletion of nodes 
may cause inconsistencies to arise. A solution may be 
to implement and utilize some form of mutual exclu-
sion mechanism which may impair the scalability 
of the entire system. Examples of P2P systems that 
have been implemented using these schemes include 
BATON [117] which is based on the AVL tree.

(b)	� Split-and-join order-based schemes are based on the 
B-tree and its derivatives such as the 2, 3 tree, skip-tree 
and skip lists. They maintain order in the system by 
performing restructuring through a split and join oper-
ation which tend to be local as opposed rotation-based 
schemes. Therefore, only a very minimal set of nodes 
in the tree are accessed and balancing is achieved 
via randomization. Consequently, these schemes are 
highly scalable as they do not need the mutual exclu-
sion mechanism. Example implementations include 
Skip Graph [114] and Skip Tree Graph [151] based 
on the Skip List, Skip web [156] based on a range-
determined Link structure, and Hyperring [157] based 
on a deterministic 2,3 tree.

Advantages of order-based scheme The order-based 
schemes have some itinerant advantages. They show high 
resilience to node failures even in cases where adversaries 
target specific node sets. An advantage they have over hash-
based schemes is the provision of content and path locality. 
In addition to this, the ordering of the data based on their 
keys allows the use of range queries as well as other types of 
multidimensional queries for searching data items. Moreo-
ver, these schemes have in-built structural repair mecha-
nisms that ensure the order is maintained, which in some 
cases may simply involve rearranging of the pointers.

Disadvantages of order-based scheme However, on the 
downside, the schemes are strongly affected by some secu-
rity faults. One such security issue is the Byzantine fault 
problem, which may need some Byzantine fault models to 
be applied to these designs. Also, they are vulnerable to 
security breaches such as DDoS attacks and can also be used 
as a platform for launching the DDoS attacks.

Security Discussion: Storage and Resource Lookup

Security concerns that affect storage also affect the distrib-
uted data structures, as they are used to store objects, and 
the resource lookup mechanisms, which are used to locate 
the stored objects. Information integrity in the P2P network 
may be compromised through the introduction of low qual-
ity (degraded) or by otherwise misrepresenting the content 
identity (false labeling) [158]. The main security threats 
that target the content stored therefore focus at corruption 



SN Computer Science (2020) 1:299	 Page 21 of 51  299

SN Computer Science

or erasure of stored data in the system. Some of the threats 
include worm propagation, the rational attacks, storage and 
retrieval attacks, index poisoning attacks, pollution attacks 
and query flooding attacks [27].

Most of these challenges can be solved easily by incorpo-
rating a trust model within the system such as a reputation 
system. It has also been shown that a trust model can miti-
gate worm propagation [159]. Reputation systems are useful 
in the detection of selfish peers, thus are good for mitigating 
against free-riders, but they fail in the detection of Byzantine 
peers and malicious peers. Byzantine peers are peers who 
behave randomly, that is, they misbehave, but not necessarily 
following a pattern to maximize their benefit or to disrupt 
the system while malicious peers perform actions based on a 
target that is either detrimental or beneficial to the system (or 
both) [160]. To handle this, micropayment systems (MPS) 
can be used. MPSs are indirect incentive systems in which 
virtual or real currency, such as Bitcoin [161], is used to 
create a form of indirection between the contribution of a 
service and the request of similar contribution from another 
peer [160, 162]. The MPS architecture includes a Broker 
that issues the currency and certifies its value. Additionally, 
the MPSs usually incorporate a significant amount of cryp-
tographic verification and hence are mostly used in static 
content distribution systems. However, solutions that require 
trusted third parties are to be avoided.

Communication: Unicast, Multicast and Publish/
Subscribe

In general, communication systems support three types of 
communication models, that is, unicast (one-to-one), mul-
ticast (many-to-many) and broadcast (one-to-all). In P2P 
systems, the use of broadcast algorithms is highly discour-
aged and when used there is a need to setup a limitation on 
the number of hops to prevent network flooding and conse-
quently slow down the entire network. Thus, it is preferable 
for P2P systems to utilize unicast and multicast algorithms 
so as to optimally and efficiently realize effective communi-
cations. We therefore discuss the different communication 
options that are preferred for P2P systems.

Unicast and Multicast Communications

Unicast communications This allows users to make use of 
application features such as direct messaging, video/audio 
chatting, file sharing among others.

Multicast communications This allows sending of packets to 
a group of recipients that may be scattered throughout the 
network and users can choose whether to participate in a 
multicast group or not. Therefore, because the packets travel 

only to subscribed users, there is reduced network load and 
end-to-end-delay, in comparison to broadcasting systems 
[163]. Multicasting can be [164]:

–	 1-to-M multicasting Useful in application that offer 
scheduled audio/video distributions, push media, file 
distribution and caching, announcements and monitor-
ing of real-time information.

–	 N-to-M multicasting Utilized in multimedia conferenc-
ing, synchronized resources such as databases, con-
current processing (in particular, distributed parallel 
processing), collaboration (such as shared document edit-
ing), distance learning, chat groups, distributed interac-
tive simulations, multi-player games and jam sessions.

–	 N-to-1 multicasting Seen in resource discovery, data col-
lection, auction systems, polling, jukebox systems and 
accounting.

Publish/Subscribe Systems

One particular use of all the features that multicasting pro-
vides is seen in the development of publish/subscribe (pub/
sub) system, event-driven distributed system composed of 
three types of processes, inter alia, publishers, subscribers 
and brokers [165]. They support distribution of informa-
tion/data from the publishers (data/event producers) to the 
subscribers (data/event consumers). The publisher sends 
out a notification of an application event, and any user who 
subscribes to that application event becomes a target for the 
notification. Brokers are essentially routing algorithms that 
match the event notifications against the subscriber require-
ments and deliver the notifications to the target subscrib-
ers. Pub/sub-systems models can be based on: subscription, 
event routing and overlay topology [166, 167]. 

(a)	� Subscription models Subscribers have the ability to 
precisely matching their interests. The model deter-
mines the overall specification of events and also has 
an effect on how the events are routed within the event 
channel. Subscription models can be topic-based, con-
tent-based and type-based models.

–	 Topic based Events have locally or globally unique IDs 
that are usually identifiable character strings. Topics also 
represent logical connection channels between publish-
ers and interested subscribers with network multicasts 
and diffusion trees being utilized for event distribution. 
Because they take only coarse-grained subscriptions, 
they give limited expressiveness and choices for sub-
scriptions. Examples include Scribe [168] and Bayeux 
[169].

–	 Content based Notifications are composed of value-
attribute pair sets. A subscription can be any randomly 



	 SN Computer Science (2020) 1:299299  Page 22 of 51

SN Computer Science

chosen number of attribute names with filtering based on 
their values. The advantage of content-based models over 
topic-based models is that the subscription selectivity is 
increased due to increased dimension of choices. Events 
that meet the subscription criteria are then delivered to 
the subscriber. However, the disadvantage with these 
systems is in developing matching algorithms that are 
scalable and remain efficient.

–	 Type based Events are objects of a specific type group 
which can also encapsulate attributes and methods. In 
this model, declaring of a desired type becomes the dis-
tinguishing attribute. They take a middle ground between 
the previous two subscription models, giving a coarse-
grained structure on events (topic based) on which fine-
grained constraints can be expressed over attributes (con-
tent based).

(b)	� Routing models These models take into consideration 
the problem of event dispatching. They ensure that 
matched events are properly routed to the relevant 
subscribers. The events-to-subscription matchings 
are done using an appropriate filter. Then the routing 
algorithm forwards the events to the subscriber either 
directly or indirectly via elements close to the sub-
scriber. The routing algorithms are classified as follows 
[167]:

–	 Selective filtering Subscriptions are filtered somewhere 
along the notification channel, thus presenting the need 
for a subscription or a routing table.

–	 Gossiping Utilizes a probabilistic neighbor forwarding 
strategy.

–	 Flooding Events are broadcasted through the notification 
channel.

–	 Rendezvous One node acts as a routing point for a given 
class of events.

(c)	� Overlay topology Pub/sub-systems may be classified 
based on the event channel’s architectural realization 
or topology organization [170, 171]. Thus, the main 
classifications are

–	 Centralized fixed topology One broker acts as a central-
ized server, storing all subscriptions, performing event 
to subscription mappings and undertaking event delivery 
to matched subscribers. However, these present a single 
point of failure and are not highly scalable and reliable as 
is required for distributed applications. Examples include 
Elvin [172] and S-ToPPS [173].

–	 Distributed static topology Are also referred to as hybrid 
P2P or partially decentralized. The static topology points 

to existence of a graph-like distribution of brokers that 
are predictable and not expected to significantly change 
over time. The main topologies include, hierarchical 
(such as tree-based such as JEDI [174]), acyclic where 
event-flow via brokers is not permitted to form cycles 
(such as REBECA [175]), cyclic where event-flows result 
in a general graph, or a combination of the above (such 
as SIENA [176, 177]).

–	 Distributed dynamic topology Also referred to as pure 
P2P or fully decentralized. The broker overlay relies on 
a secondary real P2P overlay or is actually part of the 
overlay itself. Examples of include Scribe [168], Bayeux 
[169], NICE [96], Meghdoot [178] and LightPS [179].

Security Discussion: Communication and Publish/Subscribe 
Systems

The very first need for users in communication ensuring 
security of data during communication data. Using appro-
priate cryptographic services (encipherment), which can 
be either symmetric (secret key) and asymmetric (public 
key infrastructure) depending on system needs. The public 
key infrastructure (PKI) incorporates services such as node 
certification, node revocation, certificate storage and certifi-
cate retrieval, which ensure that there is secure assignment 
of NodeIDs, as well as provide for authentication. It also 
provides necessary security controls such as availability, 
resiliency, unforgettability, proactive security and secure 
communications, while also supporting efficient scalability, 
distribution of functionality and tolerance to churn [180].

To better identify nodes in the network, the public key 
infrastructure (PKI) can be used, as it links a user’s identity 
to the cryptographic key. The solutions proposed for node 
identification include use a set of trusted certification author-
ities (CA) to assign the NodeIDs to principals as well as to 
sign the NodeID certificates that bind a random NodeID to 
the public key of the principal and its IP address [181], as 
well as using a distributed PKI [180]. The CAs, however, 
are a single point of failure as they are vulnerable to both 
legal and technical attacks while the distributed PKIs are 
easily affected by Sybil attacks [181]. Alternatively nodes 
may be required to solve crypto puzzles to obtain a NodeID 
[182] which has been shown to mitigate against Sybil attacks 
[183, 184]. PKIs, however, face the limitation that either 
trust among the users or trust in a third party is assumed, 
which typically is not given in fully decentralized networks.

In case symmetric encryption is used, an appropriate key 
exchange mechanisms is essential, such as Diffie–Hellman 
key exchange protocol. Asymmetric keys can also serve 
as digital signatures to enforce non-repudiation of data. In 
combination with the cryptographic schemes, an appropriate 
access control method is needed to authenticate the iden-
tity of a user or information about a user. To complete the 



SN Computer Science (2020) 1:299	 Page 23 of 51  299

SN Computer Science

requirements for secure communications, secure routing is 
necessary. This must support unique and secure ID assign-
ment to prevent abuse of the illegal IDs by malicious peers. 
With well designed security mechanics, P2P networks which 
are normally designed to harbour semi-trusted and untrusted 
peers can remain robust and secure.

The pub/sub systems of the P2P networks are not free 
from security concerns. The main concern in pub/sub sys-
tems is ascertaining the confidentiality of exchanged infor-
mation without limiting the decoupling of the paradigm 
[185]. Security threats that affect pub/sub-systems include 
identity attacks, network communication attacks, network 
protocol attacks, passing illegal data, stored data attacks, 
remote information inference, loss of accountability and 
uncontrolled operations [167]. To secure pub/sub systems, 
they should incorporate trust management, information flow 
control, ubiquitous security self-adaptation, decentralized 
security, plugins and dynamic security reconfiguration and 
combination of static and dynamic solution features [167]. 
This ensures publication confidentiality so that the content 
of events cannot be known by the broker or any unauthor-
ized third party, and subscription confidentiality so that fil-
ter details are hidden from brokers and unauthorized third 
parties.

Efficient P2P data transfer In real-time applications such as 
online social networks, reliable and efficient the data trans-
mission is an enormous requirement. In centralized systems, 
solutions to this challenge are dependent on the finances 
available to the service provider in ensuring a consistent 
broadband connection or in utilization of cloud-based solu-
tions. On the other hand, for P2P networks, the upload band-
width is provided by the users (typically about 10 MB/s). 
With parallel chunk-based downloads from different replica 
holders, increasing the available upload bandwidth is pos-
sible but at the cost of additional communication overhead 
to contact those replica holders. In social networks, images 
account for a large percentage of the transferred data, oth-
erwise mostly smaller data (less than 10 kB), such as mes-
sages, are transferred. For larger data sizes, such as videos, 
concepts such as BitTorrent can be used to share unique files 
or Chunked Swarm [186] to benefit from p2p-supported live 
video streaming and reduce the upload requirements of the 
stream provider by up to 95%. Thus although the single peer 
upload bandwidth is small, the presence of redundancy help 
significantly.

Services: Monitoring and Management

Using of the functionality blocks thus far discussed, building 
a decent and rich P2P-based social network application is 
now feasible. However, for quality-focused, fully decentral-
ized P2P application, an essential requirement is monitoring 

and quality management. Once the system is operational, it 
is now possible to measure the performance and ascertain 
its quality based on the capacities of network nodes, current 
workload and initial system configuration. Hence, equipping 
the system with monitoring capabilities will provide a timely 
and precise view on the performance of the P2P network, 
and in conjunction with management capabilities, allow 
for automated system configuration changes at the nodes to 
improve performance hence overall quality.

Network Monitoring

Goal of monitoring The monitoring component retrieves an 
exhaustive statistical view on a wide set of metrics on all 
peers in the network and to disseminate it to all peers in the 
network. The set of metrics is an extendable list common 
to all network nodes. The metrics are based on local meas-
urements at each peer, such as the bandwidth consumption 
or observed lookup delays or a peer. The statistical view 
on the metrics (average, minimum, maximum and so on) is 
taken over the local measurements in the network and local 
measurements are gathered to obtain a global view on the 
system statistics. The global statistics are then disseminated 
to all network peers to ensure they have a global view of the 
entire network.

Uses of monitoring information Monitoring information can 
be used for various purposes, for example,

–	 To foresee low availability of replicating nodes and nodes 
with relevant duties and thus to counteract by selecting 
further nodes for replication [187].

–	 Using information on message priorities, differentiated 
services can be provided through adaptive strategies to 
forward messages in P2P overlays, as presented in [188].

–	 Optimized routing in P2P-based social networks based 
on monitoring information including social interaction 
patterns is discussed in [189].

–	 Self-stabilization, a property that allows converging from 
any given connected topology to a desired topology, such 
as Chord as described in [190]. This approach can benefit 
from global monitoring statistics as the self-stabilization 
process can be accelerated.

Distributed Monitoring Approaches

Centralized monitoring approaches such as the simple 
network management protocol (SNMP) [191] or network/
transport layer-focused approaches [192] are not suitable 
for a distributed environment, necessitating a decentralized 
approach. Integrating the monitoring functionality into the 
used overlay, such as it is done in DASIS [193] or Willow 



	 SN Computer Science (2020) 1:299299  Page 24 of 51

SN Computer Science

[194] is one option. Here the prefix-based routing tables of 
the corresponding overlays are extended to maintain moni-
toring data as well and a corresponding data exchange pro-
tocol is included in the routing table update communication. 
P2P-Diet [195] and HilbertChord [196] are further variants 
of integrated monitoring solutions in existing P2P overlays. 
However, when combining the monitoring and routing func-
tionality, there is the problem that the two functionalities 
cannot be independently improved and optimized.

Decentralized P2P monitoring solutions are broken into 
unstructured or structured approaches. 

(a)	� Unstructured approaches They simply use the con-
tacts that are available in the overlays routing table and 
apply a gossip based information exchange, where each 
peer exchanges periodically its knowledge with neigh-
bors. Examples for this category is gossiping [197], 
T-MAN [198] and push-sum [199]. While all nodes 
can directly start monitoring and the monitoring topol-
ogy is robust against churn, information spreads slowly 
and redundancy occurs, leading to outdated monitoring 
results.

(b)	� Structured approaches They build new topologies, typ-
ically a tree structure, on top of the used P2P overlay 
for dedicated monitoring data flows. The monitoring 
information is gathered, cyclic free towards the root, 
aggregated on its way towards the root, and then spread 
to all participating nodes in the tree again. Examples 
are SkyEye [200, 201], CONE [202, 203], or SOMO 
[204]. SkyEye, as an advanced example, uses a tree-
based approach which allows for efficient aggregation 
and dissemination of information, up and down the tree 
respectively. The tree height defines the freshness of 
the aggregated statistics, which can be obtained with-
out any redundant information transfer, thus highly 
optimized. Also the costs are bound by the fixed node 
degree of the nodes. Regardless of the position in the 
tree, each node encounters the same load. Lastly, one 
may note that trees in the first place are vulnerable to 
churn. Through the creation of multiple trees, such as 
in [205], a dynamic set of parallel monitoring topolo-
gies are created that is used to highly reduce the failure 
of an individual node on the monitoring tree. Through 
the expected similarity of the monitoring results in the 
parallel topologies, errors and outliers in the monitor-
ing data can be identified and corrected.

Network Management

Goal of management The management component takes 
the current monitoring statistics of the network and using 
a mechanism for distributed analysis, makes it possible to 
assess the situation and plan changes to the configuration 

of all nodes, to effect improvement in overall performance 
of the network. The monitoring information thus gives 
insights on the quality and weaknesses of the network. 
This can then be used to implement a distributed control-
loop for P2P systems, as suggested in [206, 207]. The 
monitoring information is obtained through a distributed 
approach, analyzed and parameter changes are decided 
which are then communicated and executed throughout 
the network. The network is now capable of identifying 
and resolving its own weaknesses, and then lead the sys-
tem back to a threshold state.

For example, averagely long lookup delays will lead to 
long data access and retrieval times in the network. Through 
monitoring, nodes realize a high hop-count during routing 
hence lookup delay and decide, via a distributed mechanism, 
to increase the size of their routing tables with the perspec-
tive to have the better contacts in the routing table resulting 
in a lower hop count. This decision is diverged to all nodes 
and takes effect once all extended routing tables are suffi-
ciently filled with more nodes. Thereafter nodes can again 
evaluate if the lookup delay is solved or whether further 
adaptations are needed.

Summary Thus, several improvements become possible 
through a monitoring approach. We further tend to believe 
that such a monitoring and management mechanism with 
an integrated quality monitoring and control loop is essen-
tial for the operation of a fully distributed P2P-based social 
network.

Having reviewed the essential building blocks for 
advanced P2P applications, next we present and discuss the 
proposed solutions of P2P-based social networks.

P2P‑Based Social Networks

Peer-to-peer-based SNs have been put forward as a possi-
ble alternative for addressing the security and scalability 
challenges associated with centralized approached for SNs. 
To this end, various proposals for possible solutions have 
been made, as is evident from literature. Each proposal tries 
to achieve a fully functional P2P-based OSN using various 
combinations for P2P components, and may sometimes pro-
pose new methods to achieve a critical aspect of OSN within 
the P2P environment. In discussing the proposals studied, 
we take the direction of classifying them based on the struc-
ture of the overlay as illustrated in Fig. 6. In addition, we 
also consider whether the SN is a microblog or a full SN 
(which we simply refer to as SN). In the analysis, the trend 
is to give a general overview of the design goals, the archi-
tecture, and a brief discussion of possible flaws noted with 
the proposal.



SN Computer Science (2020) 1:299	 Page 25 of 51  299

SN Computer Science

Single‑Overlay Distributed Social Networks

As highlighted in section “Single-Overlay P2P Networks”, 
these social networks are designed on a single overlay (struc-
tured or unstructured) and, therefore, all routing and storage 
procedures are handled by the overlay itself. We discuss the 
proposals in this category.

LifeSocial.KOM/LibreSocial

LifeSocial.KOM [62, 208, 209]/LibreSocial [210] was first 
proposed in 2008. Due to name conflicts, the initial name 
of LifeSocial.KOM has been changed to LibreSocial (https​
://libre​socia​l.com). It is a plugin-based and extendible P2P 
based OSN build on a composition of various essential P2P 
functionalities within a P2P framework.

Architectural design It utilizes an OSGi-based framework 
which is highly modular, with FreePastry for the overlay 
network and PAST to provide reliable storage with data 
replication mechanisms. Both FreePastry and PAST have 
been heavily modified to increase robustness, fault-toler-
ance and security. PAST has been extended to support data 
updates, such as profile data updates, and to ensure secure 
data storage that incorporates access control functions. The 
stored data is replicated with support for WRITE, READ, 
UPDATE, DELETE and APPEND operations. The replica-
tion mechanisms maintain availability of the stored data and 
ensure load balancing, overload avoidance and the support 
for weak nodes in the network. It further includes secure, 
access controlled and replicated distributed data structures, 
such as distributed sets, linked lists and prefix hash trees. 
This supports a variety of data forms, such as (comment) 
lists, (photo and friend) sets or (forum thread) trees. As the 
underlying P2P framework and secure data structures are 

very general, it is easy to add new application functionali-
ties in LibreSocial. One unique function in LibreSocial is 
the availability of a message inbox which can be read by 
the corresponding user only but filled with entries from 
various users. This feature is cryptographically enforced to 
ensure that crucial messages, intended only for the eyes of 
the recipient user must not be read by his/her friends. This is 
guaranteed in LibreSocial. A mechanism for keyword-based 
and range-queries is integrated to support the searching for 
searchable items. Currently, it is used to support the search 
for users based on the profile information that explicitly has 
been marked as public by its owner. The OSN offers end-to-
end secured unicast, multicast and publish/subscribe func-
tions. As FreePastry is a DHT that offers reliable key-based 
routing. To quicken the process the routing protocol has been 
adapted to become iterative such as in Kademlia instead of 
the previous recursive approach. In joining the network, 
weak and strong nodes are treated differently so as to sup-
port weak nodes in the network, mainly as clients, without 
involving them in the burden of carrying load, or routing.

Security This is enforced via the registration and login mech-
anisms, and using access control for data stored as described 
in [211]. An asymmetric key mechanism without the use of a 
server, certificate authorities or even the trust in other nodes 
is used for for the creation of cryptographic keys, that are 
used throughout the system. The public key is also the node 
ID, which allows for direct encrypted communication and 
authentication. Access control is managed by encrypting the 
data for the various access enabled users in the network. One 
outstanding feature of LibreSocial is that the friends in the 
network do not play any privileged role in terms of security 
and trust in them is not required.

Fig. 6   Classification of the P2P-
based OSNs

https://libresocial.com
https://libresocial.com


	 SN Computer Science (2020) 1:299299  Page 26 of 51

SN Computer Science

OSN features All the common OSN functionalities such as 
user profiles, friends lists, user groups, photo albums, chat-
ting and status updates are provided. It also includes the 
forums and data spaces for collaboration, messaging and 
calendars for coordination, as well as text-, audio-based and 
video-based real-time communication. In addition to the rich 
set of applications, it comes with an integrated decentralized 
app repository that any user can host, and which allows to 
created and share application plugins with other users. Also 
it comes with a fully decentralized monitoring that allows to 
observe and evaluate the performance of the P2P network.

Porkut/My3

Porkut [212] and My3 [213] are similar proposals by the 
same authors to provide privacy-preserving data access. 
The OSN was designed to achieve three goals: the elimina-
tion of a single administrative control; privacy preserva-
tion of individual’s privacy content, giving users complete 
control of their profile and its content; and the exploitation 
of trust relationships among network users for improve-
ment of content availability and storage performance.

Architectural design The application has three key features: 
a DHT such as OpenDHT [214] that is used to store meta 
information of the user based on a user-to-TPS mapping to 
form the ⟨key, value⟩ pair; an online time graph that contains 
all the user’s friends as vertices and edges are only existent if 
there is an overlap in online times between two trusted pairs; 
and a storage layer which is a construction of the trusted 
proxy set (TPS) for a user u. The TPS is a set of self-defined 
nodes in which a user’s profile is hosted. Using an appropri-
ate algorithm, the set TPS for a particular user is constructed 
from his social graph in which users are characterized as 
having two parameters:a geographical location that deter-
mines the time zone of the user, and an online time period 
which is the time the user is online in the social network. 
The proposed criteria possible for selecting the proper set 
of members into TPS from all possible trusted friends are 
low access and consistency costs and high data availability.

Security A privacy-preserving index of the social network 
contents is constructed such that it is possible to perform 
privacy-aware searching which enables content discovery 
among friends in the OSN and allowing new discovery of 
new friends and the establishment of new social connec-
tions. The index mechanism uses k-anonymization tech-
niques so that a list of keys are mapped to a list of values. 
This helps achieve content and owner privacy, so that, with 
the indexing scheme, strangers can contact each other based 
on interested content.

OSN features The main aspects of the system that are empha-
sized, in addition to the basic requirements for an OSN, are 
storage layer formed by the TPS construction, profile acces-
sibility through an available mount point of a given user, 
update propagation as a user’s profile is replicated to other 
mount points, and eventual consistency since concurrent 
updates ensure mount points are up to date.

This system assumes that users have friends they trust and 
that online times of these trusted friends overlap. However, it 
is important to note that the existence of (online) friends as 
well as the requirement to trust these friends is an assump-
tion that is not always existent in reality. Without friends 
or trust in them, then data availability, confidentiality and 
integrity is not guaranteed.

Megaphone

Megaphone [215] is a P2P microblogging application 
designed with the aim of overcoming the problem of single 
point of failure due to reliance on web-based services in 
centralized systems.

Architectural design It utilizes Pastry and Scribe to perform 
message and group routing by organizing the social graph 
of users into a multicast trees on top of Pastry using Scribe 
in which the “poster” node is the root of the tree with “fol-
lowers” being child nodes. Therefore, the poster creates the 
tree and performs the task of managing the joins, lists of 
followers, storage of the public keys of child nodes and send-
ing of messages. Followers can send response messages to 
the posters. As the overlay utilized is Pastry, the network 
guarantees logarithmic routing from source to destination.

Security features The messages can be signed and encrypted 
using public key infrastructure based on RSA [216] algo-
rithm. Posters generate session keys encrypted with their 
private key and further encrypted using the followers’ public 
keys. All nodes in the multicast tree cache this session key 
but it is readable only by authorized nodes. Authentication 
may be done by self-generated and self-signed certificates or 
generated by a certification authority. Node IDs are based on 
concatenated hashes of the username and public key to guar-
antee uniqueness. All members of a multicast tree, hence 
followers, have knowledge of the originator of any post and 
all the followers which means that the privacy of the users 
is not fully guaranteed.

eXO

eXO [217] is a completely decentralized, scalable system 
that is designed to offer key social networking services, 
while relying on a P2P platform. The system has two 
main goal, namely, foster the idea of highly distributed SN 



SN Computer Science (2020) 1:299	 Page 27 of 51  299

SN Computer Science

functionality, that is, autonomy, and support full user control 
even when sharing content.

Architectural design The underlay consists of a large num-
ber of nodes, with each node running a routing protocol for 
a structured overlay DHT such as Pastry [86] and Chord 
[88]. A node can have any of three roles. It can be a request 
solver, serving user requests and dispatching the requests; a 
network storage interface for contents and profile replicas; or 
act as a catalogue node that stores indexing data structures. 
Content item are indexed by representing them by a set of 
terms, or keywords that describe them, called the content 
profile. This is useful in performing “top-k similar content 
items” queries. A user is also described by a set of user-
defined terms which is then called the user profile. These 
two profiles make the use of tags possible. Tags are terms 
contributed by a user describing a specific content item or 
user, and they help in achieving better quality query result 
by leveraging community wisdom. eXO supports public net-
works and personal SNs. The public network is composed 
of the DHT, and the content and user profiles stored at the 
DHT nodes can be indexed and accessed via the DHT. The 
DHT structure makes it possible to perform queries on the 
user profiles as desired. Through the process of searching for 
interesting user profiles, a user can identify and add these 
user profiles to their personal social network.

Security features To support autonomy and privacy, content 
shared by a user (primarily images, audio and video content 
and secondarily text) is kept only at the user’s node while 
replication is done only on nodes adjacent to the user node 
in the ID space at the owner’s request or in case the content’s 
availability is needed. Content as well as user profiles can be 
either public which is indexed and available to all, or private 
which is not indexed.

The main limitation in eXO is that data can be either fully 
public or hidden. Through the lack of a foundation for secu-
rity mechanisms, confidentiality, access control and data 
integrity is not given. Thus, the platform can be used for 
only very simple applications.

PAC’nPOST

PAC’nPOST [218] is a framework for a microblogging 
social network. The two goals of the systems are, first, to 
enable the users the retrieve blogs of other users that are 
being followed and, secondly, to allow a user to perform 
keyword-based searches.

Architectural design It is implemented on an unstructured 
P2P network. Its search and retrieval mechanism is based on 
a probably approximately correct (PAC) search architecture, 
where a query is sent to a fixed number of random nodes in 

the network and the probability of attaining a certain accu-
racy being a function of nodes queried (fixed) and the docu-
ments’ replication rate. As the nodes do not push their blog 
entries, but rather they must be searched, chances are high 
that blog entries are missed or that over time, in case that the 
number of participants rises, the network will be overloaded 
with search messages.

This OSN is quite limited in terms of features it offers. 
Further, there are no security considerations presented or 
suggested. In addition, in unstructured overlay networks, a 
high search precision necessarily requires an adequately high 
traffic load, thus the network functions do not scale. There-
fore, its actual usage may be very limited.

DECENT

DECENT [219] is a proposed decentralized OSN architec-
ture, whose goal is to: utilize object-oriented design (OOD) 
to enhance flexible data management; ensure efficient access 
revocation and fine-grained data policies using suitable cryp-
tographic methods; and combine confidentiality, integrity, 
and availability through use of DHT functionalities.

Architectural design DECENT has modular design. The data 
objects, cryptographic mechanisms and the DHT are three 
separate components that interact through interfaces. This 
allows the OSN to use any type of DHT or cryptographic 
mechanism. The participants in the OSN are organized into 
a DHT, such as FreePastry or Kademlia, which provides for 
a scalable ⟨key, value⟩ pair store having an efficient lookup 
mechanism for the location of objects stored in the nodes. 
Every object in the OSN has three access policies (read, 
write and append) associated with it which can be attribute 
based (AB), identity based (IB) or a combination of both. 
These policies are defined by the user at object creation 
and stored in the object’s metadata. Objects are stored in 
the DHT with the object ID as the key and replicated for 
redundancy. Each object has a version number as part of 
its metadata for freshness guarantees that is authenticated 
by a write-policy signature to prevent modifications by a 
malicious node. Storage nodes do not know the write-policy 
signature public key (SPK) as it is part of the object refer-
ence. Hence, the storage node cannot differentiate between 
a legitimate and a malicious update. This is solved by add-
ing an unencrypted metadata field to an object containing 
a public key, which is used to authenticate write requests 
(write authentication public key, or WAPK). Thus, write/
delete request must be signed by the corresponding secret 
key. If not, the storage node refuses the request.

Security features DECENT implements a modified attribute-
based encryption (ABE) algorithm that includes support for 
immediate revocation using an extended EASiER scheme. 



	 SN Computer Science (2020) 1:299299  Page 28 of 51

SN Computer Science

With ABE the message is encrypted using a randomly cho-
sen symmetric encryption key, then encrypted with ABE. 
The ABE encrypted symmetric key is part of the object 
reference and not included in the object itself. This keeps 
the policy hidden from untrusted storage nodes. Objects can 
have different read policies associated if there exists sev-
eral references for an object. The EASiER scheme uses a 
proxy in every decryption to ensure the revoked contact is no 
longer able access data that requires the revoked attribute(s). 
There are two extensions to the EASiER scheme. First, the 
proxy functionality is divided among several randomly 
selected nodes using threshold secret sharing. Assuming 
majority of nodes are not actively malicious, this ensures 
the security of the proxy. Second, is an extension to support 
attribute delegation. To enforce authenticity, the write policy 
public key must be part of the object reference, rather than 
the object itself. Also, as the append policy is authenticated 
by the write-policy signature, it is included as part of the 
object metadata.

DECENT is similar to Cachet in providing security, shar-
ing the same shortcomings. First, the origin or the user cre-
dentials are unclear and second, through the focus on secure 
storage, the communication options are neglected.

PESCA

This proposal by [220] was designed with the aim of achiev-
ing privacy in the social communication and as well as social 
data availability.

Architectural design PESCA assumes a structured P2P 
overlay based on DHTs for an efficient lookup service. It 
monitors the users’s online patterns as well as the devices 
they use, taking into consideration the time of the day and 
the days of the week which are stored into the user online 
table (UOT) as small non-overlapping time slots which also 
indicate the device used. The replica placement strategy that 
is utilized take into account the online direct/indirect friends 
and the data audiences. The strategy determines the best 
replica matrix corresponding to a user’s data in a greedy 
fashion. The replica candidate list includes the user’s friends 
who are online and have enough storage space. Each can-
didate is scored based on the number of overlaps between 
its uptime and the audience’s uptime, and candidates with 
scores of zero are eliminated, and those with the highest 
scores are chosen. In case of similar scores available storage 
space is considered.

Security features Data confidentiality and access control are 
achieved using broadcast encryption (BE) scheme [221]. 
Users have a uniquely selected global identity (GID) based 
on a hash value of the user’s email address. A user also 
generates a virtual identity (VID), an ambiguous index, and 

a BE secret key for every social contact added as a friend. 
The user also allocates space, called space budget (SB) that 
can be spared for the friend. The user then sends the VID 
and the BE secret key via a secure channel along with the 
GID, the current UOT and assigned SB via a public channel.

The designers of PESCA do not provide any information 
about which OSN services the proposal offers outside of 
guaranteeing secure social communication and social data 
availability. This opens the proposals to questions on the 
practicality of its use in the real world.

WebP2P

This work is a break from the norm in the sense that it aims 
at providing a DOSN without the need to install any new 
software. Disterhöft et al [222] propose a solution and pro-
totype for a Web-based P2P framework that supports social 
networking. Specifically, it supports secure buddy lists, data 
storage and personal text, audio and video communication.

Architectural design It is implemented on a browser-
based implementation of the Chord Protocol that relies on 
WebRTC (https​://webrt​c.org/). WebRTC allows browser 
instances to establish connections to each other. Based on 
this, a DHT is implemented based on OpenDHT and has 
been extended to support secure user identities, secure com-
munication and a simple secure storage. The Web-based 
DHT overlay provides the basic functions that support buddy 
list management, communications via text-based chat, and 
device-independent, distributed storage of contacts and chat 
history. Thus, the functions are focused on chatting and 
maintaining a buddy list. Larger data items cannot be stored 
as WebRTC is limited to use only 5MB of storage space to 
hinder potential attacks. Data are stored and replicated in the 
DHT created among the browsers and encrypted by the data 
owner. Besides the overlay-based storage and communica-
tion, WebRTC channels are also used to establish video and 
audio calls between the participants.

Security features Authentication relies on public keys gen-
erated using an asymmetric Elliptic Curve Cryptography 
mechanism. The public keys also function as node IDs and 
user IDs. Each user initially has to use these cumbersome 
lengthy 160 bit IDs as user identifiers until, through a dia-
logue the user can identify each other and assign in the GUI 
and buddy list an alternative name for this user ID. Thus, 
fully decentralized authentication is provided. As the user 
IDs are public keys, the communication can be encrypted 
with the public key of the receiver and signed by the sender, 
providing confidentiality and integrity. A distributed iden-
tity-based access control mechanism is further used that uses 
self-signed certificates.

https://webrtc.org/


SN Computer Science (2020) 1:299	 Page 29 of 51  299

SN Computer Science

The WebP2P-framework is self-contained, secure and 
provides for the purpose of secure chatting in a web-based 
P2P-DOSN with focus on chatting, video and audio.

Single‑Overlay Hybrid Social Networks

These SNs implement a hybrid structure in which a single 
overlay (structured or unstructured) is utilized and some 
degree of centralization is incorporated.

In most of these cases, centralization is used to provide a 
solution for indexing while the P2P overlay is used to han-
dle routing. We discuss some of the SNs proposed in this 
category in the following.

P2P Social Networking (PeerSoN)

PeerSoN [223] was an advancement of the ideas put for-
ward in [60]. It is built to address privacy concerns raised 
over OSNs as well as look at how to ensure availability. In 
the proposed prototype, the privacy problem is addressed 
by integrating encryption and access control to implement 
a user login procedure. Availability is made possible by 
including novel file sharing procedures.

Architectural design PeerSoN has a two-tier architecture 
that ensures users’ contents are decoupled from the control 
mechanisms. The first tier, the lower level, consists of the 
users and the content, which allows the users to exchange 
content directly with each other. The second level is the 
DHT, specifically OpenDHT, which provides lookup ser-
vices, stores updates for a user in case a user goes offline 
and the user’s meta-data.

Security features Security and privacy concerns in the sys-
tem are addressed using identity management. PeerSoN 
assumes the availability of a public-key infrastructure (PKI) 
with the possibility of revocation of keys and encryption 
using public keys of intended audience.

OpenDHT is a centrally managed deployment of the 
Bamboo DHT on PlanetLab 7. The use of a centralized com-
ponent in the OSN is not desired when the overall goal is to 
realize full decentralization.

Safebook

Safebook [224–226] is a decentralized SN designed to 
achieve two goals. First, it utilizes a P2P architecture to 
avoid user data and user behavior control by a single entity 
such as a service provider. Second, it aims at providing pri-
vacy and trust management for user data and communication 

in the system through trust relations existing in the social 
network.

Architectural design Safebook implements a three-tier archi-
tecture with a direct mapping of layers to the OSN level. 
The layers are a user-centered SN layer which forms the 
SN level of the OSN, a P2P substrate which implements the 
application services (AS), and the Internet which represents 
the communication and transport (CT) level. Participants in 
the OSN are viewed as a host node on the Internet, a peer 
node in the P2P overlay and a member of the SN layer. Par-
ticipating nodes form two types of overlays: a set of Matry-
oshkas which are concentric structures in the SN level that 
provide distributed data storage with privacy and end-to-end 
confidentiality by assuming that users trust their friends in 
handling their data carefully; and a P2P substrate such as a 
DHT that supports data lookup services.

Security features It utilizes a trusted identifier service (TIS) 
to give nodes a unique pseudonym and identifier for the SN 
level, and related certificates. The TIS is not involved in 
data management and hence does not violate the goal of pri-
vacy preservation. This guarantees protection against attacks 
such as Sybil and impersonation attacks. After obtaining an 
identity, a new user begins the process of creating their own 
Matryoshka. This is done by first sending requests to friends 
or trusted peers. Secure communication between users is 
made possible by encryption and decryption of the pseudo-
nyms using private and public keys, hence message integrity 
and confidentiality.

Disadvantageous in this approach is the need to have 
friends to be able to store data reliable, to trust these friends 
to not tamper with the data as well as the need for the TIS 
as centralized component. In Safebook all data are to be 
assumed to be shared with the “friends”, thus confidential-
ity is not given. In addition, users without friends or with 
friends that are often online cannot maintain the availability 
of their data.

Cuckoo

Cuckoo [227, 228] is a socio-aware online microblogging 
system that is proposed and built to be compatible to the 
Twitter architecture.

Architectural design It is designed to utilize the Twitter serv-
ers to conserve bandwidth and storage resources while also 
taking advantage of the P2P technologies for scaling and 
reliable microblogging services. Cuckoo uses Pastry [86] as 
its underlying overlay. Typical microblogging services allow 
for the following social relations to exist between users: 
friend, neighbor, follower, and following. Along with the 
Pastry routing table, users maintain these four user lists. So 7  https​://www.plane​t-lab.org.

https://www.planet-lab.org


	 SN Computer Science (2020) 1:299299  Page 30 of 51

SN Computer Science

as to perform searching to perform status updates, Cuckoo 
uses a hybrid search method, that is, flooding to fetch sta-
tuses from influentials and the DHT to fetch statuses from 
normal users. Newly published micro-content is dissemi-
nated to users using push method rather than pull as it is 
more efficient. Micro-content is also replicated among fol-
lowers thus followers can provide the content to each other 
in a cache-and-relay style in case the original publisher is 
unavailable.

It has to be noted that without a cryptographic foundation 
any communication and data stored can be tampered and 
read. Cuckoo is insecure and highly requires the existence 
friends, neighbors, followers and followed users.

Litter

Litter [229, 230] is a lightweight microblogging service that 
leverages P2P virtual private network (P2PVPN) technolo-
gies, such as Hamachi8 and SocialVPN9. P2PVPNs utilize 
P2P technologies for direct IP traffic tunneling among peers. 
They also provide a trusted platform in which peers can 
communicate and collaborate at the IP layer with each other. 
Thus the trusted connections between the social peers form 
a social overlay P2P network. The P2PVPN also supports 
IP multicasting by tunneling the multicast packets to each 
friend with whom a node has an encrypted P2P connection.

Architectural design Litter’s microblogging service is com-
posed of two basic IP layer mechanisms. The first IP layer is 
IP multicasting that is used to propagate messages to two-
hops neighbors within the social graph. The second IP layer 
is UDP datagrams that are necessary for traversing the social 
graph for update dissemination to social distant peers. The 
use of these services is based on the assumption that users 
are running a P2PVPN. The messages in the system are 
distributed in a push/pull format in followers in four ways 
namely, multicast push to followers, multicast pull by fol-
lowers, random-walk push to distant followers and random-
walk pull by followers.

Security features To achieve peer discovery and crypto-
graphic key distribution, there are two proposed solutions. 
In the first solution there is exchange of endpoint informa-
tion and public keys via some trusted, out-of-band commu-
nication path by the users. This model is referred to as the 
Freenet darknet model. The second solution achieves peer 
discovery and key exchange through a reliance on the XMPP 
federation as the trusted medium. Message privacy is done 
through the use of a permission flag that controls who can 

share the posts as well as a time-to-live (TTL) to control the 
scope of the updates. Message verification and integrity is 
done through the use of signatures. Followers are respon-
sible for acquiring the publisher’s public key via a trusted 
out-of-band system.

A disadvantage in such VPN networks is that the entry 
into the network is unclear. Nodes without friends, just join-
ing the network, do not find contact points to connect to. 
Also, unfortunately, both security and trust initialization 
approaches, either through out-of-band channels or though 
centralized external XMPP servers, are not fully suitable for 
a fully decentralized OSN. Additionally, as only messaging 
is in the focus and routing is based on random-walks, the 
essential reliable data storage and retrieval is not provided.

SuperNova

SuperNova [146] is a distributed OSN designed to provide 
flexibility in terms of storage, that is, users have the choice 
of where to store their content and whose content they want 
to store.

Architectural design The architecture relies on a super-peer-
based network of volunteer agents. Data availability in case 
a user is offline, is solved by users replicating their con-
tents to a list of users called storekeepers. The super-peer 
nodes provide services in the system and particularly to new 
nodes. They take part in the formation of the network’s con-
trol infrastructure, and are the basic building block of the 
entire architecture as they provide lookup services, storage 
services, book-keeping services, recommendation services 
(such as for new friends or for storekeepers) among other 
services.

Security features The users choose three different level of 
access to other users: public (accessible to all), private (only 
accessible by owner), and protected (accessible to a chosen 
subset of friends). This means the system guarantees full 
content ownership.

While the design addresses several requirements stated 
for a P2P-based OSN, the root of trust is undecided. Users 
must trust the Storekeepers to treat their data properly. Also, 
incentives for this cumbersome task are not given.

HorNet

HorNet [231] is a proposed microblogging service for con-
tributory social networks that is built on a structured P2P 
overlay network. A contributory social network is a SN 
whereby the SN’s resources, such as CPU, network and stor-
age, are voluntarily contributed by the participating network 
members. The service is developed with the focus on avail-
ability, decentralization and performance.

8  https​://www.vpn.net/.
9  http://ipop-proje​ct.org

https://www.vpn.net/
http://ipop-project.org


SN Computer Science (2020) 1:299	 Page 31 of 51  299

SN Computer Science

Architectural design HorNet is split into three layers: the 
communication layer, a middle layer and the upper layer. The 
communication layer serves the function of connecting all 
the nodes that join and leave the system. It is implemented 
on FreePastry which offers key-based routing (KBR) which 
supports scalability and churn-tolerance. The middle layer 
guarantees availability of application logic’s data and com-
ponents by providing a file-based storage service for persis-
tence of messages and other data, and a freely available mid-
dleware called CoDeS [232]. CoDeS has several functions. 
It forms a platform for service deployment by aggregation 
of a set of non-dedicated, global and heterogeneous comput-
ers, which guarantees required services are always available, 
self-managed and decentralized. It also provides redundancy 
for failure-tolerance and uses weak consistency replication 
of its internal information so as increase performance while 
ensuring almost accurate information provision. Finally, it 
allows users to manage which resources to share with the 
network. The upper layer of HorNet is a set of small ser-
vices. Each user has an instance of the services in this layer 
deployed using CoDeS, and through CoDeS, the instances 
are kept available. The overall design of the HorNet system 
is thus divided into two main parts. The first is client provid-
ing the HorNet features to the users which is deployed as a 
web container. The second aspect of the design is a compo-
nent set that is deployed as CoDeS services which enforces 
HorNet’s core functionalities in a decentralized manner.

Security features Authentication is done using a PKI and 
it assumes that users hold a public-key certificate from a 
trusted CA upon registration for the services. All messages 
sent in the system are signed to protect authenticity and 
integrity.

HorNet uses the CA and the CoDeS servers as centralized 
components, as long as they are available HorNet networks 
might operate. As soon as one element is switched off, the 
network fails. For a fully decentralized OSN, servers should 
be avoided.

LotusNet

LotusNet [42] is a framework for the development of P2P-
based social network services. Its goal is to provide support 
for strong user authentication and offers a solution for the 
trade-off between security, privacy and services within a 
DOSN. It achieves this through provision of users options 
for tuning privacy settings via a very flexible and fine-
grained access control system. It includes a suite of high-
level services which support custom application develop-
ment and mash ups.

Architectural design The LotusNet architecture is based 
on a DHT called Likir [233], a customized version of 
Kademlia. The DHT offers distributed storage supporting 

implementation of social widgets to share and collect data. 
Likir unlike other DHTs requires users to fulfill a prelimi-
nary user registration procedure before receiving a certified 
identifier for their DHT node. Likir includes of a central-
ized Certification Service (CS) for this purpose. Directly 
on top of LotusNet’s P2P layer is a custom suite of widgets 
that interact by exchanging objects through the DHT that 
provides the essential social network services. The provi-
sion of these services is directly based on the API of the 
overlay node which includes the identity management and 
authentication features. The communication between widg-
ets is not restricted to be only via the DHT, but the widg-
ets can establish direct connections if needed. As identity 
management is at the overlay level, all data published by 
the same node are marked with the same user identity with 
no consideration on the nature of the widget that generated 
the content. Therefore integration becomes easy since every 
widget is able to collect and aggregate content from the dif-
ferent widgets owned by the known social contacts by a sim-
ple method invocation. Thus every application is potentially 
able to cooperate with other modules, that is, it guarantees 
maximum interoperability.

Security features Likir includes two properties that are key to 
securing the overlay. Firstly, the overlay communications are 
two-way authenticated. Authentication as well as binding of 
the user’s identity to a fixed but random Kademlia ID effec-
tively counteracts threats such as Sybil attacks, resulting in a 
more robust P2P layer. Secondly, it offers verifiable content 
ownership by attaching owner-signed certificates to content 
published on the DHT. This allows for secure identity-based 
resource retrievals, resulting in a filtering facility that per-
forms very sharp resource retrievals. In cases direct commu-
nication of, the distributed storage can be used for prelimi-
nary Diffie–Hellman exchange for the setting up of a secure 
out-of-band connection. The resulting new secure channel 
is also authenticated and encrypted as the key agreement 
protocol is done on a fully authenticated layer. Privacy of 
the shared information is guaranteed using signed grants. As 
the grants are linked to social contacts rather than to shared 
resources, their numbers do not grow with respect to the 
resources owned or with the number of privacy policy rules. 
A Discretionary Access Control Module (DACM) layered 
directly in the Likir node is used to manage the individual 
social connections and to set privacy policies in assigning 
grants. To further reduce risk of privacy violation for sensi-
tive information, the privacy level of widgets is tuned by 
storing the sensitive data at a set of trusted contacts specified 
by the user.

While LotusNet gains essential elements of its security 
through Likir, the use of a centralized Certification Service 
in Likir is disadvantageous. A further limitation is that the 
access control is enforced through policies that are selected 



	 SN Computer Science (2020) 1:299299  Page 32 of 51

SN Computer Science

rather than individual settings for each data object. Thus it is 
impossible to eventually fine tune the access rights on each 
document, or for example every picture, that is uploaded.

Vegas

Vegas [234] was designed as a secure OSN that limits the 
access to a user’s social graph to the ego network only. It 
ensures that users have full control over who can access their 
personal profile and published content by enforcing strong 
trust relationships that are mapped to the real world. It also 
aims at offering mobility support while guaranteeing profile 
availability in cases when the user is offline.

Architectural design Vegas is designed on an unstructured 
P2P network. Communication between P2P devices occurs 
through exchangers, secure asynchronous communication 
channels that support delay-tolerant information exchange. 
To ensure profile availability despite P2P anomalies like 
churn, Vegas utilizes datastores, which enforces a write-one 
read-all storage policy, where only the owner can write. The 
datastores can be a web resource such as FTP or a cloud 
storage service such as Amazon S310, or Dropbox11. Users 
can operate several datastores through which the friends 
can access the profile and shared content. The OSN sup-
ports emailing, short messaging (SMS), instant messaging 
(XMPP) and microblogging (Twitter).

Security features Messages are secured using a public key 
pair K−∕K+ called the link-specific key pair. For a given 
friend X of user Y, if Y is sending a message to X, then Y 
applies X’s public key K+

X
 to the message to encrypt it, K−

X
 

to sign it, and adds the fingerprint of K+
X

 then sends it to an 
accessible exchanger. The identity of A can only be verified 
by X since only X knows the mapping of the fingerprint. To 
ensure access control for profile data during profile synchro-
nization, a user applies a symmetric key to any given profile 
attribute, applies K+ for each of his/her friends to encrypt it, 
and then updates all the corresponding datastores. Compro-
mise on the link-specific key occurs if the mapping between 
the public part and the key issuer is disclosed. This is solved 
by a simple key refresh protocol that allows for in-band key 
negotiation and exchange. To enforce strong trust relation-
ships, Vegas does not support social graph traversals to seek 
for others. Instead, friendships are formed by out-of-band 
invitations or by coupling in which a user introduces two 
other users to each other.

The downside with Vegas is that it takes into account 
the desired security and privacy aspects as proposed by the 

authors at the expense of functionality. In addition, it utilizes 
XMPP for instant messaging and Twitter for microblogging 
services which reintroduces the problems of centralized 
OSN to the entire setup.

Decentralized OSN Using P2P Technology

Tran et al. [235] propose a social network based on P2P 
architecture that supports social computing services in a dis-
tributed environment. The goals of the proposed P2P based 
SN are to achieve scalability in architecture, reliability in 
content distribution and autonomy in administration. It is 
also aimed at solving the problem of heterogeneity using 
certain peers (called super peers) with more resources, such 
as storage, processing power and bandwidth, to support 
other peers with complex operations.

Architectural design The architecture relies on a super peer 
network based on the Gnutella protocol. It implements 
two authentication and posting services to reduce reliance 
on centralized servers, and increase and encourage group 
communication in the social network. The authentication 
service gives users access to network services. By perform-
ing more social activities users can find more super peers. 
After authentication is complete, users can utilize the post-
ing services to post messages to and request messages from 
individual users or user groups. The messages contain user 
statuses, user profiles and discussion updates. Group com-
munication is supported for updating discussions. Group 
communication is implemented by defining the user group 
information based on user profiles. The users then select to 
send messages to either the whole group, a set of users or 
only one user. The posting service improves data privacy and 
search capability by allowing the users to keep personal data 
on peers and super peers. Each peer has a MySQL database 
to store user data, peer data and messages.

Security features The network includes and publishes several 
registration servers for user registration. Registration servers 
maintain a database storing details of the super peers and 
registered users, while the super peers maintain a database 
which stores registered users synchronized by the registra-
tion server. After registration, a list of super peers in the 
network is forwarded to the user and the super peers also 
receive an update on the registered user. Henceforth, the 
users simply authenticate themselves on the super peers dur-
ing future logins. In case the super peers are offline, users 
can authenticate with the registration servers and obtain an 
updated list of super peers.

Disadvantageous in this approach is the strong reliance on 
the registration server which has to maintain the overview on 
all super peers and all nodes. Also secure communications 
is not addressed properly. Another stark limitation of the 

10  https​://aws.amazo​n.com/s3.
11  https​://www.dropb​ox.com.

https://aws.amazon.com/s3
https://www.dropbox.com


SN Computer Science (2020) 1:299	 Page 33 of 51  299

SN Computer Science

approach is that only messaging is supported, that is, nodes 
can push and pull data to/from each other, but there is not 
reliable data storage available. Consequently, the option in 
building an appealing OSN on top are limited.

HPOSN

HPOSN [236] is an optimized hybrid OSN model based 
in P2P rather than a fully distributed OSN. It is designed 
to solve Local Service Fault Partition (LSFP), a situation 
in which the network is inaccessible because of fault parti-
tioning caused by equipment/link failure or network attacks 
in centralized OSNs, which completely prevents users from 
logging into the network.

Architectural design The OSN leverages P2P technologies 
along with the centralized servers to offer a solution to the 
LSFP problem. The application operates in centralized mode 
in normal conditions and incorporates a supplemental P2P 
mode when the LSFP problem arises. Only data that is con-
sidered important is stored in the local terminal, and the rest 
is stored in the servers. An index pointing to the unimportant 
data stored at the server is maintained by the nodes.

Security features Unlike centralized OSNs, HPOSN sup-
ports direct communication between nodes by leveraging 
SocialVPN to establish direct communications. The system 
adopts Onion Routing [237] to guarantee anonymous com-
munications. Data stored at the terminals and the servers is 
encrypted using asymmetric encryption, with the private key 
of the user being used to encrypt the data.

This proposal, because of its strong reliance on the use of 
centralized servers, does not fully guarantee all aspects of 
privacy. This is evident from the fact that the system provid-
ers still have some access to the private data and may employ 
data mining algorithms to find out more information about 
the users. Also, because of the use of the servers as the main 
storage of the network, the scalability of the entire system 
is in question.

Multi‑overlay Social Networks

This class of P2P-based social networks utilize an architec-
ture that implements two or more overlays, such as struc-
tured overlay based on a DHT and a social overlay, so as to 
realize efficient indexing and storage. They are discussed 
hereafter.

Cachet

Cachet [238] was designed with the main focus being on 
protection of the confidentiality, integrity and availability 

of the user content, while also ensuring privacy of the user 
relationships.

Architectural design Cachet utilizes a hybrid structured-
unstructured overlay format, that augments a DHT with 
social links between users. The DHT enables decentraliza-
tion. Data is stored as an object in a DHT, such as Pastry 
[86] or Kademlia [89], using a random object identifier 
(objID) as the DHT key. The use of the DHTs covers certain 
desired features such as lookup and prevention of lookup 
attacks, availability replication, and prevention of malicious 
data overwrites using the write-policy verification. Due to 
the basic construction of the base architecture, Cachet pro-
posed a gossip-based social caching algorithm used in com-
bination with an underlying DHT. This is used to leverage 
on the social trust relationships to improve the performance 
and reliability when downloading and reconstructing a social 
contact’s wall or an aggregated newsfeed, a process which 
would otherwise be a lengthy process because of the decryp-
tion process. It supports user profiles and wall features such 
as status updates, wall posts from the other social contacts, 
post comments as well as newsfeeds. Policies are given 
through user identities or attributes. The identity-based poli-
cies are set to define user-specific access while attribute-
based policies define group-access of social contacts that 
share common features. There are basically three types of 
policies defined on objects, namely, read, write and append 
policies, defined by the owner of the object at creation time 
and stored in the object metadata.

Security features Cryptographic techniques are used to 
enforce data confidentiality and objects to represent data. It 
uses policies to enforce security, and these are given based 
on the user identities or attributes. The identity-based poli-
cies are set to define user-specific access while attribute-
based policies define group-access of social contacts that 
share common features. Three types of policies, read, write 
and append, are defined on objects by the owner of the 
object at creation time and stored in the object metadata. 
The access policies are enforced cryptographically through a 
hybrid scheme utilizing traditional public keys and attribute-
based encryption (ABE). With ABE, an object is encrypted 
using an AB policy. The ABE scheme used for Cachet is 
an extended version of EASiER [239] that provides sup-
ports for efficient revocation for Ciphertext Policy Attribute-
based Encryption [240] with the help of a minimally trusted 
proxy. For the hybrid mode, that is, when utilizing the social 
links, message encryption is by a randomly chosen sym-
metric encryption key, further encrypted with ABE. The 
Read policy is placed in the object reference instead of the 
object itself, enforcing policy privacy from storage nodes. 
Hence, the social graph is hidden from the storage nodes as 
authorization does not reveal identities of users. Therefore 



	 SN Computer Science (2020) 1:299299  Page 34 of 51

SN Computer Science

the storage nodes are unaware of the identities of the users 
that store and retrieve data from it. The Write and Append 
policies are enforced through access control of the corre-
sponding signature keys. Encryption for the Write policy 
key is by the object owner and Append policy with an AB 
policy. The storage nodes verify the Write Policy on objects.

While it is to highlight that Cachet fulfills the require-
ments we state for secure storage in decentralized OSNs, 
it does not specify the root of trust for the security mecha-
nisms. Through the use of social caching, data is spread but 
cannot be located reliably for an update or deletion. Further, 
the functionality is limited as the focus is on secure data 
handling but does not cover communication options such as 
unicast, multicast or publish/subscribe.

Twister

Twister [241, 242] is a microblogging architecture that lev-
erages P2P technologies. The goal of the design is to foster 
scalability, resiliency to failures and attacks, independence 
from central authority for user registration and provision of 
easily usable encrypted private communications and public 
posts.

Architectural design The proposed system is made up of 
three mostly independent overlay networks. The first overlay 
is based on the Bitcoin protocol [161]. The second P2P net-
work is a structured DHT overlay network based on Kadem-
lia [89]. It provides ⟨key, value⟩ storage for user resources 
and tracker location for the third network. This DHT over-
lay allows for arbitrary resource storage and user retrievals, 
which includes profiles, avatars and posts. The resource-
to-peer mapping is based on a one-way hash function that 
ensures deterministic resource location while ensuring even 
content distribution across the network. The third network 
is a collection of possibly disjoint “swarms” of followers. 
This swarm mechanism is used for distributing new posts 
and it solves the problem of efficient notification delivery of 
new posts to users thus sparing the followers of the need to 
poll on a certain address of the DHT network to check for 
updates. The swarm is a modified BitTorrent P2P unstruc-
tured overlay network.

Security features The use of the Bitcoin protocol provides 
decentralized and secure user registration through the use 
of the Blockchain mechanism thus avoiding the need for a 
central authority. To enforce privacy and prevent compro-
mise, the one-way hash function used for the resource-to-
peer mapping is performed on the user’s IP address and port 
number instead of on the user’s username only.

One drawback of BitTorrent and variants is that while 
it is optimized for a fast delivery, it does not support data 
availability. If no node is available in the swarm, the file is 

not available. Also, the update or deletion of content is not 
considered, as it is not needed in a file sharing scenario, but 
essential in a social networking scenario.

DiDuSoNet

DiDuSoNet [189] is a DOSN that is developed on a P2P 
overlay network with the aim of taking advantage of trust 
relationships to enforce certain services such as trustness, 
information diffusion and data availability.

Architectural design DiDuSoNet designers present a two-tier 
level system. The first level is a Dunbar-based P2P social 
overlay and the second level is the DHT. In the, Dunbar-
based social overlay, connections between the nodes are akin 
to the social relations of the ego networks of the users which 
were first identified by the psychologist Robin Dunbar. In 
social overlays (SOs), nodes of a P2P system only connect 
to one another if their owners are friends. DiDuSoNet lev-
erages a social aspect called Dunbar approach [37] in the 
SOs, which considers the fact that a user stably maintains 
approximately 150 friend connections at any given time. 
This number is referred to as the Dunbar number. An ego 
network [243] is a network consisting of an actor (ego) and 
other actors that he is connected to (alters), and an ego net-
work can be quite large. By reducing an ego network using 
the Dunbar number, the result is a Dunbar-based ego net-
work. The DHT makes lookup of other nodes easier and 
makes the system robust to churn. The system used Pastry 
[86] as the underlying overlay. Atop the DHT, a data avail-
ability service is implemented, which autonomously selects 
two nodes in an ego network to store each published profile. 
To search for profiles, a Point of Storage (PoS) list called 
the PoS table stores the Overlay IDs of all PoSs for a given 
ID (SocialID). Data stored inside the Dunbar-based Social 
Overlays is private and only visible to friends. Private data 
is stored at the owner’s node.

Security features To hide the overlay IDs of their PoSs to 
prevent spying by undesired nodes, the authors suggest 
having the nodes use an attribute-based encryption (ABE) 
scheme or a ciphertext-policy attribute-based encryption 
(CP-ABE) [240] scheme which mitigates the access of the 
PoSs list to selected friends only. Also to prevent unauthor-
ized access of data, the authors suggest the use of asym-
metric keys.

However, in this work only the secure data storage is 
considered, further elements of a DOSN are left out, such 
as communication, applications and a real implementation. 
Also, as previous examples, this solution requires that users 
share their data with their friends, which requires abandon-
ing confidentiality for the sake of availability.



SN Computer Science (2020) 1:299	 Page 35 of 51  299

SN Computer Science

SEDOSN

SEDOSN [244] was designed to provide a secure decentral-
ized OSN framework based on P2P technology.

Architectural features The application consists of three 
layers: an overlay network layer, function layer and the 
user interface layer. The network layer is designed using 
TomP2P12, an open source DHT library, and a P2P network 
that connects the peers is built upon the physical network, 
making the peers independent of the physical network. The 
function layer consists of four modules: a User Relation-
ship Module made using SQLite (a lightweight database) 
for managing the metadata of the relationships of the users; 
the Attribute Encryption Module that utilizes a modified 
RW’s [245] attribute-based encryption (ABE) algorithms; 
the BitTorrent Module for efficient transfer of shared file; 
and the Storage Service Module to store and get objects in 
the P2P network. The User Interface layer is designed using 
the JavaFX technique which supports creating and delivery 
of rich internet applications.

Security features The modified RW’s ABE algorithms 
incorporates discretionary authorization to enable fine-
grained access control on users’ data. Users generate a pub-
lic key and a secret master key. A secret decryption key for 
each of the friends based on the friends attributes is gener-
ated using the secret master key. Messages are encrypted 
using the access policy, and decrypted using the appropriate 
secret decryption key provided by the file owner.

The system focuses on ensuring secure file sharing with-
out compromising the privacy setting of the users. However, 
the system seems to lack advanced functionalities such as 
chatting and messaging which are standard in most OSNs, 
while offering only file sharing services.

Blogracy

Blogracy [246] is a microblogging social networking system 
that is focused on achieving anonymity and resilience of cen-
sorship, content authentication and activity stream semantic 
interoperability.

Architectural design It has a modular architecture built 
on two components: an underlying BitTorrent module for 
basic file sharing and an OpenSocial application program-
ming interface (API). The BitTorrent module provides four 
key services to the OpenSocial container: StoreService 
for new key-value pairs storage request handling in the 
DHT; LookupService for searching values associated 
with a requested key in the DHT; SeedService for seeding 
newly shared file; and DownloadService for alerting users 

of the availability of a requested file. The P2P file sharing 
mechanisms utilizes two logically separated DHTs. The 
first DHT maps the user’s identifier, including a reference, 
to his activity stream which is represented in a standard 
format that is encoded in a JSON file. This JSON file con-
tains a reference to the user’s profile and references to user 
generated content, which are in the form of Magnet-URIs. 
The references are the keys to the second DHT, which are 
resolved as actual files. The OpenSocial module imple-
ments the social aspects of Blogracy via a web application 
and as indicated, relies on the services that the BitTor-
rent module provides. The OpenSocial containers design 
is based on the Model-View-Controller architecture. The 
controller’s function is to distribute responsibilities for 
various operations in key classes. The system is also built 
to support core functionality extensions by use of autono-
mous agents thus providing recommendations on users 
and content, personalized results and trust negotiation 
mechanisms. Semantic interoperability is also possible as 
it uses activity streams and weak semantic data formats for 
contacts and profiles, hence can be integrated into existing 
social platforms such as Twitter and RSS-based content 
streams, as either data source or a data sink.

Security features Blogracy strives to offer anonymity 
and pseudonymity while ensuring content is verifiable 
authentic and has integrity using two methods. The first 
method uses the public key as the user’s identifier. Then 
the user signs his/her messages and indexes so that veri-
fication of authenticity and integrity are easily done by 
receivers. The second method is the use of a cryptographic 
hash of the public key, and for Blogracy, the hash function 
corresponds to the one used by the DHTs. The proposed 
system also utilizes attribute-based encryption to prevent 
unauthorized data access (posts, contacts, communications 
and activities), based on the Cyphertext-Policy Attribute-
Based Encryption (CP-ABE) protocol [240]. Different 
levels of confidentiality for each individual social activity 
are allowed. The content creator releases the content with 
parameterized attribute credentials directly to acknowl-
edged followers by encrypting the content using the public 
key of the followers. To support anonymity, Blogracy is 
implemented on I2P [247], which is an anonymizing P2P 
overlay network that implements a protocol resembling 
Tor [248]. Tor (the Onion Router) is a networking technol-
ogy that is developed with the aim of guaranteeing some 
level of anonymity for the users by hiding their real net-
work location.

Blogracy thus pushes the content to the followers, 
which is typical to microblogging, but different to social 
networks, where data is pulled and browsed. This requires 
a reliable data storage, which is not guaranteed in this 
case.

12  https​://tomp2​p.net.

https://tomp2p.net


	 SN Computer Science (2020) 1:299299  Page 36 of 51

SN Computer Science

Comparative Analysis and Summary

In this section, we consider the various aspects of the sys-
tems, taking into consideration the functional requirements 
and non-functional requirements. We systematically assess 
each of the proposals and compare the contributions made 
and milestones met by each in realizing a fully distributed, 
secure and scalable OSN. This comparison will take into 
consideration two aspects that will be evident, that is, the 
overlay (single-overlay distributed/hybrid and multi-overlay) 
and the services offered (mixed services and microblog-
ging). The term mixed services is used to denote an OSN 
that offers more than one type of service to the consumers 
such as chatting, messaging, audio-visual communications, 
(micro)blogging and so on. Microblogging systems in this 
case are only limited to offering a platform for microblogs 
to the consumers. We also briefly consider the developmen-
tal timelines of the proposed solutions, inherent trends that 
may not be directly visible from, as well as the status of the 
proposal.

OSN Requirements and System Status

The requirements for OSNs have been defined in section 
“Design Requirements for OSNs”. Accordingly, each P2P-
based OSN has been objectively analyzed to show what 
requirements are met by the implemented features and the 
analysis is presented in Table 8. Two important aspects are 
taken into account during the analysis which must be men-
tioned for clarity. The first aspect is on the requirements 
presented. Based on the literature available for any proposal, 
in cases where a suggestion is made to use a particular solu-
tion to realize any desired functionality, the assumption was 
made that the proposed feature was not implemented and 
consequently any affected requirements were not met. The 
second aspect is the system status. Although it may imme-
diately be assumed that the OSN may have actually been 
implemented, our analysis took into account the presence 
of irrefutable evidence of the existence of a prototype or 
system deployment. The discussion that follows takes into 
consideration the type of overlay.

Single‑Overlay Distributed OSNs

These OSNs are designed on a single overlay (structured or 
unstructured) and rely on a distributed indexing mechanism 
for resource location. We consider the solutions based on the 
type of structure individually. 

(a)	� Structured overlays The indexing mechanism are based 
on keys and hence most of the solutions proposed 

are DHT-based. In this group, there were seven (7) 
OSNs that were identified, of which only Megaphone 
was a microblogs. The rest, LibreSocial, Porkut/
My3, eXO, DECENT, PESCA and WebP2P all offer 
mixed services. In terms of achieving the functional 
requirements, with the exception of Megaphone and 
WebP2P, all the remaining five proposals met all the 
requirements. However, the numbers of the propos-
als that meet all the non-functional requirements is 
drastically different, with only LibreSocial standing 
out in this category. Complete privacy is not achieved 
by Porkut/My3, Megaphone, and eXO, and complete 
security is not met by Porkut/My3 and eXO. Metering 
is only implemented in LibreSocial. Of these OSNs, 
only LibreSocial and WebP2P have prototypes.

(b)	� Unstructured overlays There was only one proposal 
in this category, that is PAC’nPOST which is a micro-
blog. It did not meet all the six functional require-
ments, lacking shared storage space interaction. It also 
fails to meet all the non-functional requirements, in 
addition to the fact that the system status is not known.

Single‑Overlay Hybrid OSNs

The OSNs in this category are also designed on a single 
overlay (structured or unstructured), while the indexing 
mechanisms relies on a hybrid of distributed and centralized 
mechanisms. Because of the incorporation of centralized 
solutions in these OSNs, there is a general tendency not to 
meet all the requirements as the centralized mechanisms re-
introduce some of the challenges faced in centralized OSNs. 
The solutions are discussed based on the base overlay. 

(a)	� Structured overlays Five proposals are discussed here, 
PeerSoN, Safebook and LotusNet being OSNs with 
mixed services, while Cuckoo and HorNet are micro-
blogs. LotusNet meets all the defined functional and 
non-functional requirements. Both HorNet and Cuckoo 
meets all functional requirement but not the security 
and privacy requirements. Safebook guarantees pri-
vacy and security although it does not meet some func-
tional requirements. However, none of the OSNs offers 
metering as a non-functional requirement. We note that 
the only proposal with a prototype is Cuckoo.

(b)	� Unstructured overlays The proposals in this classifi-
cation are SuperNova, HPOSN and the proposal by 
Tran et al. [235] offering mixed services, and Litter 
and Vegas as the microblogs, which incidentally are 
the only proposals that have prototypes. Three of these 
proposals, Litter, SuperNova and Tran et al. [235] meet 
all functional requirements. Two proposals Vegas and 
HPOSN achieve all privacy requirements as well as 
security requirements. Litter achieves all security 



SN Computer Science (2020) 1:299	 Page 37 of 51  299

SN Computer Science

Ta
bl

e 
8  

S
ys

te
m

 st
at

us
, f

un
ct

io
na

l a
nd

 n
on

-f
un

ct
io

na
l r

eq
ui

re
m

en
ts

a  Fu
nc

tio
na

l r
eq

ui
re

m
en

ts
: (

PS
M

 p
er

so
na

l s
to

ra
ge

 m
an

ag
em

en
t, 

SC
M

 so
ci

al
 c

on
ne

ct
io

n 
m

an
ag

em
en

t, 
SG

T 
so

ci
al

 g
ra

ph
 tr

av
er

sa
l, 

C
om

 m
ea

ns
 o

f c
om

m
un

ic
at

io
n,

 S
SI

 sh
ar

ed
 st

or
ag

e 
sp

ac
e 

in
te

ra
c-

tio
n,

 S
F 

se
ar

ch
 fa

ci
lit

ie
s)

b  N
on

-f
un

ct
io

na
l r

eq
ui

re
m

en
t: 

pr
iv

ac
y 

(C
f c

on
fid

en
tia

lit
y,

 O
P 

ow
ne

rs
hi

p 
pr

iv
ac

y,
 S

IP
 so

ci
al

 in
te

ra
ct

io
n 

pr
iv

ac
y,

 A
P 

ac
tiv

ity
 p

riv
ac

y)
c  N

on
-f

un
ct

io
na

l r
eq

ui
re

m
en

t: 
se

cu
rit

y 
(C

CA
​ c

ov
er

 c
ha

nn
el

 a
ut

he
nt

ic
at

io
n,

 D
IA

 d
at

a 
in

te
gr

ity
 a

nd
 a

ut
he

nt
ic

ity
, N

R 
no

n-
re

pu
di

at
io

n)

O
ve

rla
y 

str
uc

tu
re

Ty
pe

Pr
op

os
al

Se
rv

ic
es

Sy
ste

m
 st

at
us

Re
qu

ire
m

en
ts

Fu
nc

tio
na

la
N

on
-f

un
ct

io
na

l

PS
M

SC
M

SG
T

C
om

SS
I

SF
Pr

iv
ac

yb
Se

cu
rit

yc
M

et
er

in
g

C
f

O
P

SI
P

A
P

C
CA

​
D

IA
N

R

Si
ng

le
-o

ve
rla

y 
di

str
ib

ut
ed

St
ru

ct
ur

ed
Li

fe
So

ci
al

.
K

O
M

/
Li

br
eS

oc
ia

l

M
ix

ed
 se

rv
ic

es
Pr

ot
ot

yp
e

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

Po
rk

ut
/M

y3
M

ix
ed

 se
rv

ic
es

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

M
eg

ap
ho

ne
M

ic
ro

bl
og

gi
ng

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

eX
O

M
ix

ed
 se

rv
ic

es
–

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
D

EC
EN

T
M

ix
ed

 se
rv

ic
es

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

PE
SC

A
M

ix
ed

 se
rv

ic
es

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

W
eb

P2
P

M
ix

ed
 se

rv
ic

es
Pr

ot
ot

yp
e

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
U

ns
tru

ct
ur

ed
PA

C
’n

PO
ST

M
ic

ro
bl

og
gi

ng
–

✓
✓

✓
✓

✓
Si

ng
le

-o
ve

rla
y 

hy
br

id
St

ru
ct

ur
ed

Pe
er

So
N

M
ix

ed
 se

rv
ic

es
–

✓
✓

✓
✓

✓
✓

✓
Sa

fe
bo

ok
M

ix
ed

 se
rv

ic
es

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

C
uc

ko
o

M
ic

ro
bl

og
gi

ng
Pr

ot
ot

yp
e

✓
✓

✓
✓

✓
✓

✓
✓

✓
H

or
N

et
M

ic
ro

bl
og

gi
ng

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
Lo

tu
sN

et
M

ix
ed

 se
rv

ic
es

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

U
ns

tru
ct

ur
ed

Li
tte

r
M

ic
ro

bl
og

gi
ng

Pr
ot

ot
yp

e
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
Su

pe
rN

ov
a

M
ix

ed
 se

rv
ic

es
–

✓
✓

✓
✓

✓
✓

Ve
ga

s
M

ic
ro

bl
og

gi
ng

Pr
ot

ot
yp

e
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

Tr
an

 e
t a

l. 
[2

35
]

M
ix

ed
 se

rv
ic

es
–

✓
✓

✓
✓

✓
✓

H
PO

SN
M

ix
ed

 se
rv

ic
es

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

M
ul

ti-
ov

er
la

y
C

ac
he

t
M

ix
ed

 se
rv

ic
es

–
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

Tw
ist

er
M

ic
ro

bl
og

gi
ng

D
ep

lo
ye

d
✓

✓
✓

✓
✓

✓
✓

✓
✓

D
iD

uS
oN

et
M

ix
ed

 se
rv

ic
es

–
✓

✓
✓

✓
✓

✓
SE

D
O

SN
M

ix
ed

 se
rv

ic
es

Pr
ot

ot
yp

e
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

B
lo

gr
ac

y
M

ic
ro

bl
og

gi
ng

Pr
ot

ot
yp

e
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓



	 SN Computer Science (2020) 1:299299  Page 38 of 51

SN Computer Science

requirements although it does not meet the privacy 
requirements. Metering requirement is not met by any 
of the proposals.

Multi‑Overlay OSNs

This group of OSNs is interesting because the solutions 
are designed to utilize more than one overlay so achieve 
functionality. The solutions seek to combine the advantages 
offered by different overlays in combination to overcome the 
disadvantages seen in each individual overlay. The overlays 
utilized may be structured only, unstructured only, or a com-
bination of structured and unstructured overlays. Five pro-
posals are analysed that fall in this category, that is, Cachet, 
DiDuSoNet and SEDOSN that offer mixed services, and 
Twister and Blogracy which are microblogs. SEDOSN and 
Blogracy have prototype implementations while Twister13 
is the only P2P OSN that is in active deployment. DiDu-
SoNet is the only proposal that meets all the functional 
requirements, but is the only proposal in this category that 
fails in meeting all the non-functional requirements. From 

the remaining four proposals, only Twister fails to meet all 
privacy requirements. No proposal includes the ability for 
metering for measurements of system health.

One interesting aspect that is visible from a cursory look 
at the functional requirements is that at a minimum, all pro-
posed solutions met four functional requirements, that is, 
personal storage management, social connection manage-
ment, communication and search facilities.

Developmental Progression

In [11], the authors analyzed selected OSNs from 1997 to 
2011, indicating a boom between 2003 and 2006. Table 9 
is a summary of the P2P OSNs highlighting the timelines 
and current status of the proposed implementation over the 
period of the analysis (2008–2016). The boom of the P2P 
OSN platforms is seen to be clustered between 2011 and 
2013, with the majority being in the year 2012. Although 
the P2P OSNs may seem to be a decade too late, it is most 
probable that their development may be a direct result of 
concerns observed in centralized OSNs during the previous 
decade, in particular, privacy, security and scalability. As 
has been shown, the different P2P OSNs aim at meeting 
one or more of these concerns using various techniques. It 

Table 9   Developmental 
timeline of the P2P OSN 
proposals

Year Proposal Services Institution

2008 LifeSocial.KOM / 
LibreSocial

Mixed services TU Darmstadt

2009 PeerSoN Mixed services TU Berlin/EPFL/NTU Singapore
Safebook Mixed services TU Darmstadt

2010 Cuckoo Microblogging Univ. of Göttingen/Nanjing Univ./Fudan Univ.
Megaphone Microblogging California State University Long Beach
Porkut Mixed services EPFL, Switzerland

2011 eXO Mixed services Univ. of Patras/Univ. of Ioannina
My3 Mixed services EPFL, Switzerland
Litter Microblogging Univ. of Florida

2012 Vegas Microblogging Ludwig-Maximilians-University Munich
Cachet Mixed services Univ. of Illinois
DECENT Mixed services Univ. of Illinois
HorNet Microblogging Univ. Oberta de Catalunya
LotusNet Mixed services Univ. degli Studi di Torino
PAC” nPOST Microblogging Univ. College London
SuperNova Mixed services NTU Singapore

2013 twister Microblogging PUC-Rio
2015 PESCA Mixed services Isfahan Uni. of Tech./Foulad Inst. of Tech./ Ryerson Univ.

Tran et al. [235] Mixed services Intl. Univ., Ho Chi Minh
DiDuSoNet Mixed services Univ. of Pisa/IIT-CNR Pisa/Univ. of Düsseldorf
WebP2P Mixed Services Univ. of Düsseldorf
SEDOSN Mixed Services Peking University
HPOSN Mixed Services Shandong Normal University

2016 Blogracy Microblogging Univ. of Parma

13  http://twist​er.net.co.

http://twister.net.co


SN Computer Science (2020) 1:299	 Page 39 of 51  299

SN Computer Science

Table 10   Components realised in the P2P-based OSNs

Structure Type Proposal Infrustructural Aspects

Overlay Storage mecha-
nism

Lookup/search 
mechanism

Data redundancy 
mechanism

Pub/sub 
mecha-
nism

Single-overlay 
distributed

Structured LifeSocial.
KOM/ 
LibreSocial

Pastry Standard—PAST; 
Advanced - Sets, 
linked lists, pre-
fix hash trees

Semantic-free Replication & 
caching

✓

Porkut/My3 OpenDHT Trusted Proxy Set 
(TPS)

Semantic-free Replication to 
TPS

✓

Megaphone Pastry Local storage Semantic-free Replication ✓
eXO Pastry/Chord Local storage Semantic free Replication to 

adjacent nodes
DECENT Pastry/Kademlia DHT for object 

storage
Semantic-free Replication & 

versioning
✓

PESCA DHT-based Local storage Semantic-free Replication based 
on friends’ user 
online times

✗

WebP2P Chord Local storage Semantic-free Replication ✗
Unstructured PAC’nPOST Unstructured Local storage Semantic (proba-

bilistic search)
Replication ✓

Single-overlay 
hybrid

Structured PeerSoN OpenDHT Local storage Semantic-free Replication ✗
Safebook KAD Nodes in 

concentric 
“Matryoshka”-
like circles

Semantic-free Replication ✗

Cuckoo Pastry Local and server 
cloud

Semantic 
(flooding) for 
influentials else 
semantic-free

Replication to 
servers

✓

HorNet Pastry Storage service 
API based on 
DHT

Semantic-free Replication ✓

LotusNet Likir Local and set of 
trusted contacts

Semantic-free Replication on 
trusted contacts

✓

Unstructured Litter Social overlay Local storage Semantic (pseudo-
random walk)

Replication to 
one-hop peers

✓

SuperNova Super-peers List of users Search queries 
sent to super 
peers

Replication ✗

Vegas Unstructured Web-based data-
stores

Search queries to 
subset of friends

Replication of 
datastores

✓

Tran et al. [235] Gnutella MySQL database 
at local nodes

Semantic (flood-
ing with TTL)

Replication ✓

HPOSN Social overlay Local storage and 
cloud servers

Queries to server 
based on stored 
index

Replication on 
servers

✗



	 SN Computer Science (2020) 1:299299  Page 40 of 51

SN Computer Science

is also evident that most of these systems were developed in 
academic environments.

Essential P2P Components

In section “Peer-to-Peer Networks”, a general overview 
was given in consideration of key components that must 
be considered during the design of any P2P-based OSN. 
In line with that, in Table 10, we present a summary of the 
components realised in the surveyed P2P OSNs. The key 
components that were considered were the overlay, storage 
mechanisms implemented, lookup/search mechanisms, data 
redundancy mechanisms utilized and inclusion of a publish/
subscribe mechanism.

Single‑Overlay Distributed OSNs

We consider the structured and unstructured overlays sepa-
rately and discuss them herein. 

(a)	� Structured Most of the proposals were based on com-
mon DHT-based overlays, such as Pastry, Chord and 
Kademlia, to form the network. Therefore, the lookup 
mechanics were based on key-based routing, hence 
semantic free. The proposals all implemented replica-
tion in differing ways so as to guarantee data avail-
ability, as the local nodes replicated the local data to 
other nodes in the network using appropriate algo-
rithms. Only LibreSocial included advanced storage 
features, that is, distributed sets, linked lists and prefix 
hash trees. Only WebP2P and eXO did not include the 
publish/subscribe mechanisms as part of the features.

(b)	� Unstructured The only solution here, PAC’nPOST is 
based on a purely distributed overlay, hence pure P2P 

(unstructured). Therefore, semantic searching using 
probabilistic search methods is performed. Each node 
handles its own data but replicates it to other nodes to 
for data availability guarantees, in addition to imple-
menting a pub/sub mechanism.

Single‑Overlay Hybrid OSNs

The component discussion here also considers the base over-
lay and follows. 

(a)	� Structured These OSNs had differing methods in how 
the storage is handled, but all use replication to sup-
port data availability. PeerSoN uses local storage with 
replication to other nodes based on OpenDHT’s algo-
rithm. Safebook utilizes nodes directly connected to 
the local node and arranged in a concentric circle as 
the replicating nodes, while Cuckoo uses the server 
cloud to support data replication. HorNet implements 
a DHT that relies on a storage service API and Lotus-
Net relies on the local DHT and replicates to trusted 
contacts. PeerSoN, Safebook, HorNet and LotusNet 
rely on semantic-free lookup mechanisms for data 
location, with Cuckoo relying on a combination of 
semantic-free lookup and semantic-based search. 
Finally, Cuckoo, HorNet and LotusNet incorporate a 
pub/sub mechanism.

(b)	� Unstructured The OSNs in this category implement 
different techniques to handle storage, and no two 
OSNs have the same method. This is expected in 
unstructured overlays as the network does not offer any 
distributed data structures such as DHTs, but allows 
the designers to develop novel techniques to handle 
data management. Data availability is guaranteed 

Table 10   (continued)

Structure Type Proposal Infrustructural Aspects

Overlay Storage mecha-
nism

Lookup/search 
mechanism

Data redundancy 
mechanism

Pub/sub 
mecha-
nism

Multi-overlay Cachet Pastry/Kademlia 
& Social overlay

Local storage Semantic-free Replication ✓

Twister Bitcoin, Kadem-
lia, BitTorrent 
swarm

Local storage, Bit-
Torrent network

Semantic-free Replicaion ✓

DiDuSoNet Pastry & social 
overlay

Local storage Semantic-free Replication to ego 
network

✓

SEDOSN TomP2P & Bit-
Torrent

Local storage, 
SQLite database 
for metadata

BitTorrent pro-
tocol (Client/
Tracker)

– ✗

Blogracy Two BitTorrent 
DHTs

Local storage Semantic-free Replication ✓



SN Computer Science (2020) 1:299	 Page 41 of 51  299

SN Computer Science

Table 11   Security features of the P2P-based OSNs

Overlay struc-
ture

Structure type Proposal Security aspects

Identity crea-
tion

Identity verifi-
cation

Access Con-
trol

Confidentiality Integrity Anonymity

Single-overlay 
distributed

Structured LifeSocial.
KOM/ 
LibreSocial

Public key as 
Unique ID

Public key User-centric 
settings + 
Access Con-
trol Lists

Symmetric 
encryption

Digital signa-
tures

✓

Porkut/My3 No informa-
tion

No informa-
tion

✗ ✗ ✗ ✓

Megaphone Concatenated 
hash of user-
name and 
public key

Public key Session keys 
+ Asymmet-
ric encryp-
tion

Asymmetric 
encryption

Digital signa-
tures

✗

eXO Hash on 
user-specific 
detail

User ID User-centric 
configura-
tions

✗ ✗ ✓

DECENT Random ID as 
User ID

User ID Attribute-
based poli-
cies

Asymmetric 
attribute-
based 
encryption

Digital signa-
tures

✓

PESCA Hash of 
user’s email 
address

Global ID Virtual ID + 
symmetric 
key

Broadcast 
encryption

Digital signa-
tures

✗

WebP2P Asymmetric 
key from 
username 
and pass-
wordA

Public key as 
Chord ID

Identity-based 
access 
control

Asymmetric 
encryption

Digital signa-
tures

✗

Unstructured PAC’nPOST No informa-
tion

No informa-
tion

✗ ✗ ✗ ✗

Single-overlay 
hybrid

Structured PeerSoN Hash of user’s 
email

Globally 
unique ID 
(GUID)

✗ Asymmetric 
encryption

✗ ✗

Safebook TIS-generated 
ID and pseu-
donym

Node ID and 
pseudonym

Attribute-
based poli-
cies

Asymmetric 
encryption

Digital signa-
tures

✓

Cuckoo Server gener-
ated ID

Not required ✗ ✗ ✗ ✗

HorNet Public key Public key 
certificate

Access control 
list

✗ Digital signa-
tures

✗

LotusNet Public key 
and OpenID 
to obtain 
certificate

Likir ID Access control 
grants

Nonce-based 
two-way 
authentica-
tion

Digital signa-
tures

✓



	 SN Computer Science (2020) 1:299299  Page 42 of 51

SN Computer Science

by replication in all cases, and with the exception of 
SuperNova and HPOSN, the remaining OSNs integrate 
a pub/sub mechanism.

Multi‑Overlay OSNs

The proposed OSNs in this group all incorporate an addi-
tional data storage mechanisms in addition to the local stor-
age that relies on the DHT mechanisms. Twister incorpo-
rates the BitTorrent network and SEDOSN incorporates 
an SQLite database to handle metadata, while the rest rely 
solely on the local storage. All solutions with the excep-
tion of SEDOSN, for which no information was provided, 
ensure data availability via replication, and similarly with 
the exception of SEDOSN, all include a pub/sub mechanism.

Security Considerations

Any discussion about OSNs without paying special atten-
tion to the aspect of security management is incomplete. 
In Table 11, a summary of key security features identified 
in the analyzed P2P OSNs is shown. At the minimum, it is 
desired that they provide some form of identity creation and 
verification, include an access control mechanism, guaran-
tee confidentiality and ensure data integrity, while ensur-
ing user anonymity. In the survey of the P2P OSNs, it is 
seen that only LibreSocial, DECENT, LotusNet, Safebook, 
Cachet, SEDOSN and Blogracy incorporate all the required 
security mechanisms to ensure secure communications and 
guarantee user privacy. However, it is important to note that 

Table 11   (continued)

Overlay struc-
ture

Structure type Proposal Security aspects

Identity crea-
tion

Identity verifi-
cation

Access Con-
trol

Confidentiality Integrity Anonymity

Unstructured Litter No informa-
tion

User ID (UID) ✗ Encrypted IP 
tunnels

Digital signa-
tures

✗

SuperNova Username, 
location and 
interests

Userlist at 
superpeers

✗ Threshold-
based secret 
sharing 
[249]

✗ ✗

Vegas No informa-
tion

No informa-
tion

Asymmetric 
encryption

Symmetric + 
asymmetric 
encryption

Digital signa-
tures

✓

Tran et al. 
[235]

Registration 
servers

Super peers super peer 
controlled

✗ ✗ ✗

HPOSN Servers Globally 
unique ID

Asymmetric 
encryption

Asymmetric 
encryption 
(Onion rout-
ing)

✗ ✗

Multi-overlay Cachet User ID User ID Attribute-
based poli-
cies

Asymmetric 
attribute-
based 
encryption

Digital signa-
tures

✓

Twister Unique user 
ID

Username and 
password

✗ Ellliptic Curve 
Integrated 
Encryption 
Scheme

Digital signa-
tures

✗

DiDuSoNet Unique Social 
ID

Social ID ✗ ✗ ✗ ✗

SEDOSN User’s email 
address

Global ID Attribute-
based 
encryption

Symmetric 
encryption

Digital signa-
tures

✓

Blogracy Public key and 
username

Public key Ciphertext-
policy attrib-
ute-based 
encryption

Asymmetric 
encryption

Digital signa-
tures

✓



SN Computer Science (2020) 1:299	 Page 43 of 51  299

SN Computer Science

the microblogs generally have a tendency to not implement 
all the security requirement because, as an unwritten rule, 
microblogs do not guarantee privacy, as users are able to 
access all the messages in the network, and in many cases, 
view the profiles of other users whether known directly/indi-
rectly or not known and as well as follow/unfollow other 
users.

Lessons Learned

Building social networks that are designed to operate in a 
fully distributed environment is not a new idea and has been 
studied quite extensively. In particular, using P2P networks 
as a platform for building decentralized online social net-
works (DOSNs) has been taunted as a solution to the prob-
lems due to the accumulated costs for centralized operations 
[4, 13] and security and privacy concerns [5, 19]. However, 
as has been show, any functional P2P-based OSN must at 
least achieve desired functional requirements for OSNs and 
at best the non-functional requirements so as to effectively 
address the concerns raised (see section “Design Require-
ments for OSNs”) while ensuring users enjoy the best ser-
vices. During the course of undertaking this study and com-
piling this survey, some lessons were learned that are worth 
considering.

Need for agreeable P2P protocol standards Different pro-
posed solutions achieve the functional and non-functional 
requirements using different combinations of P2P mecha-
nisms. This is an indication of the need for adoption of a 
standard for P2P technologies. An attempt has been made to 
create a standard by the Internet Architecture Board (IAB) 
that was published as RFC 5694 [250] in November 2009. 
However, this standard was based on the early P2P technolo-
gies which have since experienced a considerable metamor-
phosis. Therefore, a newer standard must be tabled within 
the research community and eventually adopted. That said, 
the fact that there is much that has been done is an indica-
tion of the diversity of solutions for any given problem in 
P2P technology, and the ease in which it can be adapted 
to achieve a desired functionality. In general, most applica-
tions, and in particular OSNs, designed on the P2P plat-
form, seem to follow a general format for the architecture: 
an overlay, required services on top of the overlay (here 
referred to as the framework) and the application. Similar 
layouts have been suggested in [15] This may well be a pre-
cursor to an adoptable standard for P2P applications. In line 
with this need to achieve a standard, we have undertaken a 
general survey of individual P2P component solutions that 
have been proposed in literature that we see meet the basic 
technical requirements for the P2P architecture (defined in 

section “Technical Requirements for a P2PFramework for 
Social Networks”).

From research systems to active systems Research on P2P-
based OSN has matured and many of the proposals have to 
a large degree aimed at solving one or more challenge expe-
rienced in the centralized OSNs in a unique manner. As yet, 
with few exceptions, the viability and behavior of these pro-
posed systems in the real world is yet to be seen. To compete 
with the centralized OSNs, the designers of the P2P-based 
OSNs must strive to ensure that the product they offer gets 
to the users and find ways to inform users of their presence. 
Although in many cases the focus has been on a secure and 
private solution, there is need for finding a balance between 
security/privacy and system usability. This may be achiev-
able by having the proposal deployed and monitoring the 
behavior of the users against the behavior of the system and 
then making appropriate adjustments.

Motivating user communities Even though the proposed sys-
tems are brought online, it is another thing to get users to 
start using them. DOSNs have been around for some time 
yet the user communities have not grown at the same rate 
as centralized OSNs. DOSNs founded on federated solu-
tions such as Diaspora14, Friendica15 and Mastodon16 have 
been able to get user communities but the numbers are far 
much smaller than those of the centralized OSNs. Gener-
ally, DOSNs promise to offer many features such as more 
security and privacy control, but the greatest uphill task 
faced is convincing the users of centralized OSN users to 
migrate and use them, as the centralized OSNs have large, 
established user bases, are easily accessible worldwide, and 
boast of a mature infrastructure [5]. The ability to monetize 
the user’s data by the providers of the OSNs stands out as a 
major reason for the continued growth and establishment of 
centralized OSNs. Thus far, it appears to the users that the 
accrued benefits of using centralized OSNs are way better 
than what DOSNs offer.

Pure vs hybrid In the early days of P2P technology, most 
proposed P2P-based OSNs tended towards two directions: 
either pure P2P (structured, unstructured or combinations) 
or P2P augmented with centralized technology (hybrid). A 
major drawback experienced in pure P2P applications is the 
need for an always online bootstrap node, which may not 
always be achievable, to ensure that the network formed is 
kept alive which in turn affects profile and content avail-
ability as well as content distribution [4]. On the other hand, 

14  https​://diasp​orafo​undat​ion.org/.
15  https​://frien​di.ca/.
16  https​://joinm​astod​on.org/.

https://diasporafoundation.org/
https://friendi.ca/
https://joinmastodon.org/


	 SN Computer Science (2020) 1:299299  Page 44 of 51

SN Computer Science

hybrid P2P systems, despite overcoming these challenges 
faced in pure P2P systems, reintroduce the shortfalls of 
centralized systems that affect the OSNs. Therefore, solu-
tions proposed in either line must weigh the pros and cons 
associated, and what system designers are willing to make 
compromises vis-à-vis what the users are willing to tolerate.

Conclusion

This survey was divided into three major sections. The first 
section laid a foundation for the P2P-based OSNs by intro-
ducing social networks in general, providing a clear road 
map for the entire study. The second section of the study 
was a comprehensive breakdown and discussion of the key 
enabling features of P2P networks that support implemen-
tation of applications, and in particular, implementation 
of online social networks. However, the technology is fast 
evolving and there are many changes that have since been 
observed. This section highlighted the various developments 
and proposals that have been presented in literature, consid-
ering each key feature. The final section was an analysis of 
selected proposed P2P-based OSNs, highlighting key P2P 
features implement.

From the analysis done on the P2P-based OSNs, there are 
some positives that can be highlighted. It is important to note 
that the P2P-based OSNs, have been as a result of seeking 
to bring to face a solution that meets the shortfalls seen in 
the centralized OSNs, by providing a decentralized platform 
that was not only privacy-preserving, secure and scalable but 
also achievable. The P2P platform has shown capabilities of 
meeting all these goals, but only after the implementation of 
novel solutions to meet application specific challenges that 
guarantee robustness, storage, data availability, reliable com-
munication as well as security. A brief summary of some of 
the solutions to achieve this have been discussed.

From the analysis of the P2P-based solutions, it is seen 
that some of these proposals fail in meeting all the mini-
mum requirements to guarantee maximum user experi-
ence. The analysis considered if the defined requirements 
(functional and non functional) are achieved. Further, the 
P2P components implemented in the proposals were com-
pared. Additionally, the security features were analyzed as 
a key ingredient in the OSNs, and in particular because the 
P2P-based OSNs are designed with a goal of being able to 
provide security and privacy. A major concern observable 
with all the P2P-based OSNs, excluding Twister, is that all 
of them are not online, or indeed have never been online. 
This may probably be due to several factors: (a) most P2P-
based OSNs have been research projects so that beyond the 
initial work no one undertakes further development, (b) the 
number of critical network users in the P2P-based OSNs 
is not easily achieved (chicken–egg problem), and (c) lack 

of monetization of the P2P-based OSNs hence no motiva-
tion for further system development due to the absence of 
any meaningful financial gain. This means that although in 
theory, these systems are better than the current centralized 
implementations, they are not seen to make an impact in 
terms of user communities that utilize them.

Funding  Open Access funding provided by Projekt DEAL.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Ajami R, Ramadan N, Mohamed N, Al-Jaroodi J. Security chal-
lenges and approaches in online social networks: a survey. Int J 
Comput Sci Netw Secur (IJCSNS). 2011;11(8):1–12.

	 2.	 Heidemann J, Klier M, Probst F. Online social networks: a survey 
of a global phenomenon. Comput Netw. 2012;56(18):3866–78.

	 3.	 Caviglione L, Coccoli M, Merlo A. A taxonomy-based model of 
security and privacy in online social networks. Int J Comput Sci 
Eng. 2014;9(4):325–38.

	 4.	 Maqsood T, Khalid O, Irfan R, Madani SA, Khan SU. Scal-
ability issues in online social networks. ACM Comput Surv. 
2016;49(2):40:1–42.

	 5.	 Kayes I, Iamnitchi A. Privacy and security in online social net-
works: a survey. Online Soc Netw Media. 2017;3–4:1–21.

	 6.	 Chen Y, Cheung ASY. The transparent self under big data profil-
ing: privacy and chinese legislation on the social credit system. 
J Comparat Law. 2017;12(2):326–78 (University of Hong Kong 
Faculty of Law Research Paper No. 2017/011).

	 7.	 Liang F, Das V, Kostyuk N, Hussain MM. Constructing a data-
driven society: China’s social credit system as a state surveillance 
infrastructure. Policy Internet. 2018;10(4):415–53.

	 8.	 Li M, Zhu H, Gao Z, Chen S, Yu L, Hu S, Ren K. All your 
location are belong to us: breaking mobile social networks for 
automated user location tracking. In: Proceedings of the 15th 
ACM international symposium on mobile ad hoc networking and 
computing, MobiHoc ’14; 2014, pp. 43–52.

	 9.	 Ahmad S, Asghar MZ, Alotaibi FM, Awan I. Detection and 
classification of social media-based extremist affiliations using 
sentiment analysis techniques. Hum-Centric Comput Inf Sci. 
2019;9(1):24.

http://creativecommons.org/licenses/by/4.0/


SN Computer Science (2020) 1:299	 Page 45 of 51  299

SN Computer Science

	 10.	 Almoqbel M, Xu S. Computational mining of social media to 
Curb terrorism. ACM Comput Surv. 2019;52(5):87:1–25.

	 11.	 Pallis G, Zeinalipour-Yazti D, Dikaiakos MD. Online social 
networks: status and trends. New Direct Web Data Manag. 
2011;1:213–34.

	 12.	 Juste PS. A peer-to-peer architecture for social networking appli-
cations. In: Ph.D. thesis, University of Florida, Herbert Wertheim 
College of Engineering, Department of Electrical and Computer 
Engineering; 2014.

	 13.	 Guidi B, Conti M, Ricci L: P2P architectures for distributed 
online social networks. In: International conference on high 
performance computing & simulation, HPCS 2013, Helsinki, 
Finland; 2013, pp. 678–681.

	 14.	 Korzun D, Gurtov A. Hierarchical architectures in struc-
tured peer-to-peer overlay networks. Peer-to-Peer Netw Appl. 
2014;7(4):359–95.

	 15.	 Paul T, Famulari A, Strufe T. A survey on decentralized Online 
Social Networks. Comput Netw. 2014;75:437–52.

	 16.	 Greschbach B, Kreitz G, Buchegger S: The devil is in the meta-
data—new privacy challenges in Decentralised Online Social 
Networks. In: 2012 IEEE international conference on pervasive 
computing and communications workshops; 2012, pp. 333–339.

	 17.	 Taheri-Boshrooyeh S, Küpçü A, Özkasap Ö: Security and pri-
vacy of distributed online social networks. In: 2015 IEEE 35th 
international conference on distributed computing systems work-
shops; 2015, pp. 112–119.

	 18.	 De Salve A, Mori P, Ricci L. A survey on privacy in decentral-
ized online social networks. Comput Sci Rev. 2018;27:154–76.

	 19.	 Oukemeni S, Rifà-Pous H, Puig JMM. Privacy analysis on micro-
blogging online social networks: a survey. ACM Comput Surv. 
2019;52(3):60:1–36.

	 20.	 Chowdhury SR, Roy AR, Shaikh M, Daudjee K. A taxonomy of 
decentralized online social networks. Peer-to-Peer Netw Appl. 
2015;8(3):367–83.

	 21.	 Malatras A. State-of-the-art survey on P2P overlay networks 
in pervasive computing environments. J Netw Comput Appl. 
2015;55:1–23.

	 22.	 Spaho E, Barolli L, Xhafa F. Data replication strategies in P2P 
systems: a survey. In: 2014 17th international conference on 
network-based information systems; 2014. pp. 302–309.

	 23.	 Spaho E, Barolli A, Xhafa F, Barolli L. P2P data replication: 
techniques and applications. In: Xhafa F, Barolli L, Barolli A, 
Papajorgji P, editors. Modeling and processing for next-gener-
ation big-data technologies: with applications and case studies. 
Cham: Springer International Publishing; 2015. p. 145–66.

	 24.	 Risson J, Moors T. Survey of research towards robust 
peer-to-peer networks: search methods. Comput Netw. 
2006;50(17):3485–521.

	 25.	 Kang C. Survey of search and optimization of P2P networks. 
Peer-to-Peer Netw Appl. 2011;4(3):211–8.

	 26.	 Zhang C, Xiao W, Tang D, Tang J. P2P-based multidimensional 
indexing methods: a survey. J Syst Softw. 2011;84(12):2348–62.

	 27.	 Trifa Z, Khemakhem M. Taxonomy of structured P2P overlay 
networks security attacks. Int J Comput Electr Autom Control 
Inf Eng. 2012;6(4):470–6.

	 28.	 Trifa Z, Khemakhem M. Mitigation of sybil attacks in structured 
P2P overlay networks. In: 2012 Eighth international conference 
on semantics, knowledge and grids; 2012. pp. 245–248.

	 29.	 Germanus D, Roos S, Strufe T, Suri N. Mitigating eclipse attacks 
in peer-to-peer networks. In: 2014 IEEE conference on commu-
nications and network security; 2014. pp. 400–408.

	 30.	 Shen X, Yu H, Buford J, Akon M, editors. Handbook of Peer-to-
Peer networking. Boston: Springer; 2010.

	 31.	 Kwok YKR. Peer-to-Peer ccomputing: applications, architecture, 
protocols, and challenges. Boca Raton: CRC Press; 2012.

	 32.	 Garton L, Haythornthwaite C, Wellman B. Studying online social 
networks. J Comput-Mediat Commun. 1997;3:75–105.

	 33.	 Marin A, Wellman B. Social network analysis: an introduction. 
In: Scott J, Carrington PJ (eds) The SAGE handbook of social 
network analysis, chap. 2, pp. 11–25. SAGE Publications; 2011.

	 34.	 Aggarwal CC. An introduction to social network data analytics. 
In: Aggarwal CC, editor. Social network data analytics. Boston: 
Springer; 2011. p. 1–15.

	 35.	 Boyd D, Ellison NB. Social network sites: definition, history, and 
scholarship. J Comput-Mediat Commun. 2007;13(1):210–30.

	 36.	 Kietzmann JH, Hermkens K, McCarthy IP, Silvestre BS. Social 
media? Get serious! Understanding the functional building 
blocks of social media. Bus Horiz. 2011;54(3):241–51 (Special 
issue: social media).

	 37.	 Dunbar RIM. The social brain hypothesis and its implications for 
social evolution. Ann Hum Biol. 2009;36(5):562–72.

	 38.	 Robertson S, Robertson J. Mastering the requirements process: 
getting requirements right. 3rd ed. Boston: Addison-Wesley; 
2012.

	 39.	 Young RR. The requirements engineering handbook. Norwood: 
Artech House; 2004.

	 40.	 Wiegers K, Beatty J. Software requirements. 3rd ed. Washington, 
DC: Microsoft Press; 2013.

	 41.	 Zhang C, Sun J, Zhu X, Fang Y. Privacy and security for online 
social networks: challenges and opportunities. Netw IEEE. 
2010;24(4):13–8.

	 42.	 Aiello LM, Ruffo G. Lotusnet: tunable privacy for distrib-
uted online social network services. Comput Commun. 
2012;35(1):75–88.

	 43.	 Agrawal D, El Abbadi A, Das S, Elmore AJ. Database scalabil-
ity, elasticity, and autonomy in the cloud. In: Yu JX, Kim MH, 
Unland R, editors. Database systems for advanced applications. 
Berlin, Heidelberg: Springer; 2011. p. 2–15.

	 44.	 Lakshman A, Malik P. Cassandra: a decentralized structured stor-
age system. SIGOPS Oper Syst Rev. 2010;44(2):35–40.

	 45.	 Lloyd W, Freedman MJ, Kaminsky M, Andersen DG. Don’t settle 
for eventual consistency. Commun ACM. 2014;57(5):61–8.

	 46.	 Beaver D, Kumar S, Li HC, Sobel J, Vajgel P. Finding a Needle in 
Haystack: Facebook’s Photo Storage. In: Proceedings of the 9th 
USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’10, pp. 47–60. USENIX Association, Berkeley, 
CA, USA 2010.

	 47.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Bur-
rows M, Chandra T, Fikes A, Gruber RE. Bigtable: a distributed 
storage system for structured data. ACM Trans Comput Syst. 
2008;26(2):4:1–26.

	 48.	 Baker J, Bond C, Corbett JC, Furman J, Khorlin A, Larson J, 
Leon JM, Li Y, Lloyd A, Yushprakh V. Megastore: Providing 
scalable, highly available storage for interactive services. In: Pro-
ceedings of the Conference on Innovative Data system Research 
(CIDR). Google; 2011. pp. 223–234.

	 49.	 Brandimarte L, Acquisti A, Loewenstein G. Misplaced confi-
dences: privacy and the control paradox. Soc Psychol Personal 
Sci. 2013;4(3):340–7.

	 50.	 Spiekermann S, Acquisti A, Böhme R, Hui KL. The chal-
lenges of personal data markets and privacy. Electron Markets. 
2015;25(2):161–7.

	 51.	 Kramer ADI, Guillory JE, Hancock JT. Experimental evidence 
of massive-scale emotional contagion through social networks. 
Proc Nat Acad Sci. 2014;111(24):8788–90.

	 52.	 Bakir V, McStay A. Fake news and the economy of emotions. 
Digit Journal. 2018;6(2):154–75.

	 53.	 Bekkers V, Edwards A, de Kool D. Social media monitoring: 
responsive governance in the shadow of surveillance? Govern 
Inf Q. 2013;30(4):335–42.



	 SN Computer Science (2020) 1:299299  Page 46 of 51

SN Computer Science

	 54.	 Stoycheff E. Under surveillance: examining Facebook?s spiral of 
silence effects in the Wake of NSA internet monitoring. Journal 
Mass Commun Q. 2016;93(2):296–311.

	 55.	 Roy R, Gupta N. Digital Capitalism and Surveillance on Social 
Networking Sites: A Study of Digital Labour, Security and Pri-
vacy for Social Media Users. In: Kar AK, Sinha S, Gupta MP, 
editors. Digital India: reflections and practice. Berlin: Springer 
International Publishing; 2018. p. 67–81.

	 56.	 Al-Qurishi M, Al-Rakhami M, Alamri A, Alrubaian M, Rahman 
SMM, Hossain MS. Sybil defense techniques in online social 
networks: a survey. IEEE Access. 2017;5:1200–19.

	 57.	 Gao H, Hu J, Huang T, Wang J, Chen Y. Security issues in online 
social networks. IEEE Internet Comput. 2011;15(4):56–63.

	 58.	 NaliniPriya G, Asswini M. A survey on vulnerable attacks in 
online social networks. In: International confernce on innovation 
information in computing technologies; 2015, pp. 1–6.

	 59.	 Datta A, Buchegger S, Vu LH, Strufe T, Rzadca K. Decentralized 
online social networks. In: Furht B, editor. Handbook of social 
network technologies and applications. Boston: Springer; 2010. 
p. 349–78.

	 60.	 Buchegger S, Datta A. A case for P2P infrastructure for social 
networks-opportunities & challenges. In: Proceedings of the 
Sixth International Conference on Wireless On-Demand Network 
Systems and Services, 2009. WONS 2009; 2009. pp. 161–168.

	 61.	 Paul T, Buchegger S, Strufe T. Decentralizing social networking 
services. In: International tyrrhenian workshop on digital com-
munications; 2010. pp. 1–10.

	 62.	 Graffi K, Podrajanski S, Mukherjee P, Kovacevic A, Steinmetz 
R. A distributed platform for multimedia communities. In: Pro-
ceedings of the IEEE international symposium on multimedia 
(ISM’08), pp. 208–213. IEEE; 2008.

	 63.	 Janiuk J, Mäcker A, Graffi K. Secure distributed data structures 
for peer-to-peer-based social networks. In: 2014 International 
Conference on Collaboration Technologies and Systems, CTS 
2014, Minneapolis, MN, USA; 2014, pp. 396–405.

	 64.	 Al-Aaridhi R, Graffi K. Sets, lists and trees: distributed data 
structures on distributed hash tables. In: 35th IEEE international 
performance computing and communications conference, IPCCC 
2016, Las Vegas, NV, USA; 2016. pp. 1–8.

	 65.	 Al-Aaridhi R, Yuksektepe A, Amft T, Graffi K. Distributed data 
structures improvement for collective retrieval time. In: 19th 
international symposium on wireless personal multimedia com-
munications, WPMC 2016, Shenzhen, China, pp. 85–90. IEEE; 
2016.

	 66.	 Drozd O, Fabian B. Sharing operational costs in business peer-
to-peer systems with a centralized clarke-groves service. 2017. 
https​://ssrn.com/abstr​act=30053​70 or https​://doi.org/10.2139/
ssrn.30053​70.

	 67.	 Koskela T, Kassinen O, Harjula E, Ylianttila M. P2P group man-
agement systems: a conceptual analysis. ACM Comput Surv. 
2013;45(2):20:1–25.

	 68.	 Buford JF, Yu H. Peer-to-peer networking and applications: 
synopsis and research directions. In: Shen X, Yu H, Buford J, 
Akon M (eds.) Handbook of peer-to-peer networking, chap. 1, 
pp. 3–45. Springer; 2010.

	 69.	 Androutsellis-Theotokis S, Spinellis D. A survey of peer-to-
peer content distribution technologies. ACM Comput Surv 
(CSUR). 2004;36(4):335–71.

	 70.	 Harjula E, Ylianttila M, Ala-Kurikka J, Riekki J, Sauvola 
J. Plug-and-play application platform: towards mobile peer-
to-peer. In: Proceedings of the 3rd international conference 
on mobile and ubiquitous multimedia, MUM ’04; 2004. pp. 
63–69.

	 71.	 Nhat BM. Searching in P2P networks: a survey. in: Tech. Rep. 
TKK T-110. 5190, Department of Computer Science and Engi-
neering, School of Science and Technology, Aalto University; 
2009.

	 72.	 Cooper BF. Trading off Resources Between Overlapping Over-
lays. In: Steen Mv, Henning M (eds) Middleware 2006, ACM/
IFIP/USENIX 7th International Middleware Conference, Mel-
bourne, Australia, Proceedings, lecture notes in computer sci-
ence, vol. 4290; 2006. pp. 101–120.

	 73.	 Mao Y, Loo BT, Ives Z, Smith JM. MOSAIC: declarative 
platform for dynamic overlay composition. Comput Netw. 
2012;56(1):64–84.

	 74.	 Artigas MS, Lopez PG, Ahullo JP, Skarmeta AFG: Cyclone: a 
novel design schema for hierarchical dhts. In: Fifth IEEE inter-
national conference on peer-to-peer computing (P2P’05); 2005. 
pp. 49–56.

	 75.	 Babaoglu O, Canright G, Deutsch A, Caro GAD, Ducatelle F, 
Gambardella LM, Ganguly N, Jelasity M, Montemanni R, Mon-
tresor A, Urnes T. Design patterns from biology for distributed 
computing. ACM Trans Auton Adapt Syst. 2006;1(1):26–66.

	 76.	 Balasubramaniam S, Leibnitz K, Lio P, Botvich D, Murata M. 
Biological principles for future internet architecture design. IEEE 
Commun Mag. 2011;49(7):44–52.

	 77.	 Amft T. The impact of resource sharing on coexisting P2P over-
lays and stacked overlay modules. In: Ph.D. thesis, Department 
of Computer Science, Faculty of Mathematics and Natural Sci-
ences; 2017.

	 78.	 Gross C, Stingl D, Richerzhagen B, Hemel A, Steinmetz R, 
Hausheer D. Geodemlia: a robust peer-to-peer overlay supporting 
location-based search. In: 2012 IEEE 12th international confer-
ence on peer-to-peer computing (P2P); 2012, pp. 25–36.

	 79.	 Amft T, Graffi K. Moving peers in distributed, location-based 
peer-to-peer overlays. In: 2017 international conference on 
computing, networking and communications (ICNC); 2017. pp. 
906–911.

	 80.	 Amft T, Guidi B, Graffi K, Ricci L. FRoDO: Friendly routing 
over dunbar-based overlays. In: 2015 IEEE 40th conference on 
local computer networks (LCN); 2015. pp. 356–364.

	 81.	 Singh A, Ngan TW, Druschel P, Wallach DS. Eclipse attacks 
on overlay networks: threats and defenses. In: INFOCOM 2006. 
25th ieee international conference on computer communications. 
Proceedings. IEEE, Barcelona, Spain; 2006.

	 82.	 Giuli TJ, Maniatis P, Baker M, Rosenthal DS, Roussopoulos M. 
Attrition defenses for a peer-to-peer digital preservation system. 
In: Proceedings of the 2005 USENIX Annual Technical Confer-
ence, Anaheim, CA, USA, pp. 163–178. USENIX Association; 
2005.

	 83.	 Puttaswamy KP, Zheng H, Zhao BY. Securing structured over-
lays against identity attacks. IEEE Trans Parallel Distrib Syst. 
2009;20(10):1487–98.

	 84.	 Stutzbach D, Rejaie R. Understanding Churn in Peer-to-peer Net-
works. In: Proceedings of the 6th ACM SIGCOMM conference 
on internet measurement, IMC ’06; 2006, pp. 189–202.

	 85.	 Cohen B. The bittorrent protocol specification; 2008.
	 86.	 Rowstron A. Druschel P. Pastry: scalable, decentralized object 

location, and routing for large-scale peer-to-peer systems. In: 
Middleware 2001, IFIP/ACM International Conference on 
Distributed Systems Platforms Heidelberg, Germany, Proceed-
ings, Lecture Notes in Computer Science, vol. 2218; 2001. pp. 
329–350.

	 87.	 Zhao BY, Kubiatowicz J, Joseph AD. Tapestry: an infrastruc-
ture for fault-tolerant wide-area location and routing. In: Tech-
nical report, University of California at Berkeley, Berkeley, 
CA, USA; 2001.

https://ssrn.com/abstract=3005370
https://doi.org/10.2139/ssrn.3005370
https://doi.org/10.2139/ssrn.3005370


SN Computer Science (2020) 1:299	 Page 47 of 51  299

SN Computer Science

	 88.	 Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan 
H. Chord: a scalable peer-to-peer lookup service for internet 
applications. In: Proceedings of the ACM SIGCOMM 2001 
Conference on Applications, Technologies, Architectures, and 
Protocols for Computer Communication, San Diego, CA, USA; 
2001.

	 89.	 Maymounkov P, Mazieres D. Kademlia: A peer-to-peer 
information system based on the xor metric. In: Druschel P, 
Kaashoek MF, Rowstron AIT (eds) Peer-to-peer systems, first 
international workshop, IPTPS 2002, Cambridge, MA, USA, 
revised papers, lecture notes in computer science, vol. 2429; 
2002. pp. 53–65.

	 90.	 Clarke I. A distributed decentralised information storage and 
retrieval system. In: Master’s thesis, Division of Informatics, 
University of Edinburgh; 1999.

	 91.	 Clarke I, Sandberg O, Willey B, Hong TW. Freenet: a distrib-
uted anonymous information storage and retrieval system. In: 
Federrath H, editor. Designing privacy enhancing technologies: 
international workshop on design issues in anonymity and unob-
servability Berkeley, CA, USA, July 25–26, 2000 Proceedings. 
Berlin, Heidelberg: Springer; 2001. p. 46–66.

	 92.	 Jennings C, Lowekamp B, Rescorla E, Baset S, Schulzrinne H. 
REsource LOcation And Discovery (RELOAD) base protocol. 
RFC 6940. 2014. https​://doi.org/10.17487​/RFC69​40. https​://rfc-
edito​r.org/rfc/rfc69​40.txt

	 93.	 Traversat B, Arora A, Abdelaziz M, Duigou M, Haywood C, 
Hugly JC, Pouyoul E, Yeager B. Project JXTA 2.0 super-peer 
virtual network. Technical report, Sun Microsystems, Inc.; 2003.

	 94.	 Leibowitz N, Ripeanu M, Wierzbicki A. Deconstructing the 
Kazaa network. In: Internet Applications. WIAPP 2003. Pro-
ceedings. The Third IEEE Workshop on, pp. 112–120. IEEE; 
2003.

	 95.	 Liang J, Kumar R, Ross KW. The FastTrack overlay: a measure-
ment study. Comput Netw. 2006;50(6):842–58.

	 96.	 Banerjee S, Bhattacharjee B, Kommareddy C. Scalable appli-
cation layer multicast. SIGCOMM Comput Commun Rev. 
2002;32(4):205–17.

	 97.	 Xu Z, Min R, Hu Y. HIERAS: a DHT based hierarchical P2P 
routing algorithm. In: 2003 International conference on parallel 
processing, 2003. Proceedings; 2003. pp. 187–194.

	 98.	 Castro M, Costa M, Rowstron A. Should we build Gnutella 
on a structured overlay? SIGCOMM Comput Commun Rev. 
2004;34(1):131–6.

	 99.	 Apel S, Buchmann E. Biology-inspired optimizations of Peer-to-
Peer overlay networks. Praxis der Informationsverarbeitung und 
Kommunikation. 2005;28(4):199–205.

	100.	 Hoh CC, Hwang RH. P2P File sharing system over MANET 
based on swarm intelligence: a cross-layer design. In: 2007 IEEE 
wireless communications and networking conference; 2007. pp. 
2674–2679.

	101.	 Brocco A, Malatras A, Hirsbrunner B. Enabling efficient infor-
mation discovery in a self-structured grid. Future Gener Comput 
Syst. 2010;26(6):838–46.

	102.	 Forestiero A, Leonardi E, Mastroianni C, Meo M. Self-Chord: a 
bio-inspired P2P framework for self-organizing distributed sys-
tems. IEEE/ACM Trans Netw (TON). 2010;18(5):1651–64.

	103.	 Peng F, Malatras A, Hirsbrunner B, Courant M. AntOM: Con-
structing multi-layer overlays for pervasive environments. In: 
2012 IEEE international conference on pervasive computing 
and communications workshops; 2012. pp. 649–654.

	104.	 Giordanelli R, Mastroianni C, Meo M. Bio-inspired P2P sys-
tems: the case of multidimensional overlay. ACM Trans Auton 
Adapt Syst. 2012;7(4):35:1–28.

	105.	 Forestiero A, Mastroianni C. A Swarm algorithm for a self-
structured P2P information system. IEEE Trans Evol Comput. 
2009;13(4):681–94.

	106.	 Dhurandher SK, Misra S, Pruthi P, Singhal S, Aggarwal S, 
Woungang I. Using bee algorithm for peer-to-peer file search-
ing in mobile ad hoc networks. Dependable multimedia com-
munications: systems, services, and applications. J Netw Com-
put Appl. 2011;34(5):1498–508.

	107.	 Ghanea-Hercock RA, Wang F, Sun Y. Self-organizing and 
adaptive Peer-to-Peer network. IEEE Trans Syst Man Cybern 
Part B (Cybern). 2006;36(6):1230–6.

	108.	 Snyder PL, Greenstadt R, Valetto G. Myconet: a fungi-inspired 
model for superpeer-based peer-to-peer overlay topologies. In: 
2009 Third IEEE international conference on self-adaptive and 
self-organizing systems; 2009. pp. 40–50.

	109.	 Walfish M, Balakrishnan H, Shenker S. Untangling the Web 
from DNS. In: 1st symposium on networked systems design 
and implementation (NSDI 2004), San Francisco, California, 
USA, Proceedings, vol. 4, pp. 225–238. USENIX Association; 
2004.

	110.	 Hellerstein JM. Toward network data independence. ACM SIG-
MOD Record. 2003;32(3):34–40.

	111.	 Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD, Kubiato-
wicz JD. Tapestry: a resilient global-scale overlay for service 
deployment. IEEE J Sel Areas Commun. 2004;22(1):41–53.

	112.	 Harvey NJA, Jones MB, Saroiu S, Theimer M, Wolman A: Skip-
net: a scalable overlay network with practical locality proper-
ties. In: 4th USENIX symposium on internet technologies and 
systems, USITS’03, Seattle, Washington, US, vol. 34. USENIX 
Association; 2003.

	113.	 Pugh W. Skip lists: a probabilistic alternative to balanced trees. 
In: Dehne FKHA, Sack J, Santoro N (eds) Algorithms and data 
structures: workshop WADS ’89 Ottawa, Canada, Proceedings, 
lecture notes in computer science, vol. 382; 1989. pp. 437–449.

	114.	 Aspnes J, Shah G. Skip graphs. ACM Trans Algorithms (TALG). 
2007;3(4):37.

	115.	 Feldotto M, Scheideler C, Graffi K. HSkip+: a self-stabilizing 
overlay network for nodes with heterogeneous bandwidths. In: 
14th IEEE international conference on peer-to-peer computing; 
2014. pp. 1–10.

	116.	 González-Beltrán A, Milligan P, Sage P. Range queries over skip 
tree graphs. Comput Commun. 2008;31(2):358–74.

	117.	 Jagadish HV, Ooi, BC, Vu QH. BATON: a balanced tree structure 
for peer-to-peer networks. In: Proceedings of the 31st interna-
tional conference on very large databases, Trondheim, Norway, 
pp. 661–672. VLDB Endowment; 2005.

	118.	 Han D, Yu Y. Keyword search in unstructured Peer-to-Peer net-
works. In: Shen X, Yu H, Buford J, Akon M, editors. Handbook 
of Peer-to-Peer networking. Boston: Springer; 2010. p. 405–26.

	119.	 Barjini H, Othman M, Ibrahim H, Udzir NI. Shortcoming, prob-
lems and analytical comparison for flooding-based search tech-
niques in unstructured P2P networks. Peer-to-Peer Netw Appl. 
2012;5(1):1–13.

	120.	 Crespo A, Garcia-Molina H. Routing indices for peer-to-peer 
systems. In: Proceedings of the 22nd international conference on 
distributed computing systems (ICDCS’02), Vienna, Austria, pp. 
23–32. IEEE Computer Society; 2002.

	121.	 Harren M, Hellerstein JM, Huebsch R, Loo BT, Shenker S, 
Stoica I. Complex queries in DHT-based peer-to-peer networks. 
In: Druschel P, Kaashoek MF, Rowstron AIT (eds) Peer-to-peer 
systems, first international workshop, IPTPS 2002, Cambridge, 
MA, USA, Revised Papers, lecture notes in computer science, 
vol. 2429; 2002. pp. 242–250.

	122.	 Bongers E, Pouwelse J. A survey of P2P multidimensional index-
ing structures. CoRR abs/1507.05501. 2015. arXiv​:1507.05501​.

	123.	 Ferdous MS, Chowdhury F, Moniruzzaman M. A taxonomy of 
attack methods on peer-to-peer network. In: Proceedings of the 
1st Indian Conference on computational intelligence and infor-
mation security (ICCIIS, 07); 2007. pp. 132–138.

https://doi.org/10.17487/RFC6940
https://rfc-editor.org/rfc/rfc6940.txt
https://rfc-editor.org/rfc/rfc6940.txt
http://arxiv.org/abs/1507.05501


	 SN Computer Science (2020) 1:299299  Page 48 of 51

SN Computer Science

	124.	 Christin N, Weigend AS, Chuang J. content availability, pollution 
and poisoning in file sharing peer-to-peer networks. In: Proceed-
ings of the 6th ACM conference on electronic commerce, EC 
’05; 2005. pp. 68–77.

	125.	 Druschel P, Rowstron A. PAST: A large-scale, persistent peer-
to-peer storage utility. In: Hot topics in operating systems, 2001. 
Proceedings of the Eighth Workshop on; 2001. pp. 75–80.

	126.	 Dabek F. A Cooperative File System. Master’s thesis, Massachu-
setts Institute of Technology; 2001.

	127.	 Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, Geels 
D, Gummadi R, Rhea S, Weatherspoon H, Weimer W, Wells C, 
Zhao B. OceanStore: an architecture for global-scale persistent 
storage. SIGARCH Comput Archit News. 2000;28(5):190–201.

	128.	 Caron S, Giroire F, Mazauric D, Monteiro J, Pérennes S. P2P 
storage systems: study of different placement policies. Peer-to-
Peer Netw Appl. 2014;7(4):427–43.

	129.	 Shalini K, Surekha Y. Effective file replication and consistency 
maintenance mechanism in P2P systems. In: Global journal of 
computer science and technology; 2011.

	130.	 Gray J, Helland P, O’Neil P, Shasha D. The dangers of replica-
tion and a solution. In: Proceedings of the 1996 ACM SIGMOD 
international conference on management of data, SIGMOD ’96; 
1996. pp. 173–182.

	131.	 Martins V, Pacciti E, Valduriez P. Survey of data replication 
in P2P systems. In: Tech. Rep. RR-6083, Institut National de 
Recherche en Informatique et en Automatique; 2006.

	132.	 Saito Y, Shapiro M. Optimistic Repl. ACM Comput Surv 
(CSUR). 2005;37(1):42–81.

	133.	 Lv Q, Cao P, Cohen E, Cohen E, Li K, Shenker S. Search and 
replication in unstructured peer-to-peer networks. In: Proceed-
ings of the 16th international conference on supercomputing, ICS 
’02; 2002. pp. 84–95

	134.	 On G, Schmitt J, Steinmetz R. The effectiveness of realistic 
replication strategies on quality of availability for peer-to-peer 
systems. In: Proceedings third international conference on peer-
to-peer computing (P2P2003); 2003. pp. 57–64

	135.	 Ktari S, Zoubert M, Hecker A, Labiod H. Performance evaluation 
of replication strategies in DHTs Under Churn. In: Proceedings 
of the 6th international conference on mobile and ubiquitous 
multimedia, MUM ’07; 2007. pp. 90–97.

	136.	 Bhagwan R, Moore D, Savage S, Voelker GM. Replication 
strategies for highly available peer-to-peer storage. In: Schiper 
A, Shvartsman AA, Weatherspoon H, Zhao BY, editors. Future 
directions in distributed computing: research and position Papers. 
Berlin: Springer; 2003. p. 153–8.

	137.	 Goel S, Buyya R. Data Replication Strategies in Wide-Area Dis-
tributed Systems, chap. 9. Hershey; 2019.

	138.	 Leontiadis E, Dimakopoulos V, Pitoura, E. Creating and main-
taining replicas in unstructured peer-to-peer systems. In: Euro-
Par 2006 parallel processing, lecture notes on computer science, 
vol. 4128, pp. 1015–1025. Springer; 2006.

	139.	 Kangasharju J, Ross KW, Antipolls SATD. Optimal content rep-
lication in P2P communities. In: Tech. rep., TU Darmstadt; 2002.

	140.	 Monteiro J. Modeling and analysis of reliable peer-to-peer stor-
age systems. In: Ph.D. thesis, Université Nice Sophia Antipolis; 
2010.

	141.	 Hamming RW. Error detecting and error correcting codes. Bell 
Syst Tech J. 1950;29(2):147–60.

	142.	 Rabin MO. Efficient dispersal of information for security, load 
balancing, and fault tolerance. J ACM. 1989;36(2):335–48.

	143.	 Reed IS, Solomon G. Polynomial codes over certain finite fields. 
J Soc Ind Appl Math. 1960;8(2):300–4.

	144.	 Dimakis AG, Godfrey PB, Wu Y, Wainwright MJ, Ramchandran 
K. Network coding for distributed storage systems. IEEE Trans 
Inf Theory. 2010;56(9):4539–51.

	145.	 Duminuco A, Biersack E. Hierarchical codes: how to make eras-
ure codes attractive for peer-to-peer storage systems. In: Peer-to-
Peer Computing, 2008. P2P’08. Eighth International Conference 
on; 2008. pp. 89–98.

	146.	 Sharma R, Datta A. SuperNova: super-peers based architecture 
for decentralized online social networks. In: 2012 fourth inter-
national conference on communication systems and networks 
(COMSNETS 2012); 2012. pp. 1–10.

	147.	 Di Pasquale A, Nardelli E. Scalable distributed data structures: a 
survey. In: Proceedings in Informatics, 3rd International Work-
shop on Distributed Data and Structures (WDAS’00), vol. 9, pp. 
87–111. Carleton-Scientific, L’Aquila, Italy; 2000.

	148.	 Gribble SD, Brewer EA, Hellerstein JM, Culler D. Scalable, 
distributed data structures for internet service construction. In: 
Proceedings of the 4th conference on symposium on operating 
system design & Implementation—Vol. 4, OSDI’00. USENIX 
Association, Berkeley, CA, USA; 2000.

	149.	 Tanner T. Distributed hash tables in p2p systems-a literary sur-
vey. In: Tech. Rep. T-110.551, Helsinki University of Technol-
ogy; 2005.

	150.	 Alaei S, Toossi M, Ghodsi M. SkipTree: A Scalable Range-Que-
ryable Distributed Data Structure for Multidimensional Data. 
In: Deng X, Du DZ (eds) Algorithms and computation: 16th 
International Symposium, ISAAC 2005, Sanya, Hainan, China, 
Proceedings; 2005. pp. 298–307.

	151.	 Beltran AG, Sage P, Miligan P. Skip tree graph: a distributed 
and Balanced Search Tree for Peer-to-Peer Networks. In: 2007 
IEEE international conference on communications; 2007. pp. 
1881–1886.

	152.	 Ratnasamy S, Francis P, Handley M, Karp R, Shenker S. A scal-
able content-addressable network. In: Proceedings of the 2001 
Conference on Applications, Technologies, Architectures, and 
Protocols for Computer Communications, SIGCOMM ’01, pp. 
161–172. ACM, New York, NY, USA; 2001.

	153.	 Malkhi D, Naor M, Ratajczak D. Viceroy: a scalable and dynamic 
emulation of the butterfly. In: Proceedings of the twenty-first 
annual symposium on principles of distributed computing, 
PODC ’02, pp. 183–192. ACM, Monterey, California; 2002.

	154.	 Crainiceanu A, Linga P, Gehrke J, Shanmugasundaram J. P-tree: 
a P2P index for resource discovery applications. In: Proceedings 
of the 13th international world wide web conference on alternate 
track papers & Posters, WWW Alt. ’04, pp. 390–391. ACM; 
2004.

	155.	 Schmidt C, Parashar M. Flexible information discovery in decen-
tralized distributed systems. In: High performance distributed 
computing, 2003. Proceedings. 12th IEEE International Sym-
posium on, pp. 226–235. IEEE; 2003.

	156.	 Arge L, Eppstein D, Goodrich MT. Skip-webs: efficient distrib-
uted data structures for multi-dimensional data sets. In: Proceed-
ings of the twenty-fourth annual ACM symposium on principles 
of distributed computing, PODC ’05; 2005. pp. 69–76.

	157.	 Awerbuch B, Scheideler C. The hyperring: a low-congestion 
deterministic data structure for distributed environments. In: 
Proceedings of the fifteenth annual ACM-SIAM symposium on 
discrete algorithms, SODA ’04, pp. 318–327. SIAM, Philadel-
phia, PA, USA; 2004.

	158.	 Palomar E, Estevez-Tapiador JM, Hernandez-Castro JC, Rib-
agorda A. Security in P2P networks: survey and research direc-
tions. In: Zhou X, Sokolsky O, Yan L, Jung ES, Shao Z, Mu Y, 
Lee DC, Kim DY, Jeong YS, Xu CZ (eds) Emerging directions 
in embedded and ubiquitous computing; 2006. pp. 183–192.

	159.	 Rguibi MA, Moussa N. Hybrid trust model for Worm mitiga-
tion in P2P networks. J Inf Secur Appl. 2018;43:21–36.

	160.	 Ciccarelli G, Cigno RL. Collusion in peer-to-peer systems. 
Comput Netw. 2011;55(15):3517–32.



SN Computer Science (2020) 1:299	 Page 49 of 51  299

SN Computer Science

	161.	 Nakamoto S. Bitcoin: a peer-to-peer electronic cash system 
bitcoin: a peer-to-peer electronic cash system; 2008.

	162.	 Cigno RL, Ciccarelli G. Collusion in peer-to-peer systems. In: 
Tech. rep., University of Trento; 2009.

	163.	 Popescu A, Constantinescu D, Erman D, Ilie D. A survey of 
reliable multicast communication; 2007.

	164.	 Quinn B, Almeroth K. IP multicast applications: challenges 
and solutions. RFC 3170. 2001. https​://doi.org/10.17487​/
RFC31​70. https​://www.rfc-edito​r.org/rfc/rfc31​70.txt.

	165.	 Nakayama H, Duolikun D, Enokido T, Takizawa M. A P2P 
model of publish/subscribe systems. In: 2014 Ninth interna-
tional conference on broadband and wireless computing, com-
munication and applications; 2014. pp. 383–388.

	166.	 Shen H. Content-based publish/subscribe systems. In: Shen 
X, Yu H, Buford J, Akon M (eds) Handbook of peer-to-peer 
networking, pp. 1333–1366. Springer; 2010.

	167.	 Uzunov AV. A survey of security solutions for distributed pub-
lish/subscribe systems. Comput Secur. 2016;61:94–129.

	168.	 Rowstron A, Kermarrec AM, Druschel P, Castro M. Scribe: 
the design of a large-scale event notification infrastructure. 
In: Crowcroft J, editor. Networked group communication: 
third international COST264 Workshop, NGC 2001 London, 
UK, November 7–9, 2001 Proceedings. Berlin, Heidelberg: 
Springer; 2001. p. 30–43.

	169.	 Zhuang SQ, Zhao BY, Joseph AD, Katz RH, Kubiatowicz J.D. 
Bayeux: an architecture for scalable and fault-tolerant wide-
area data dissemination. In: Proceedings of the 11th interna-
tional workshop on Network and operating systems support for 
digital audio and video, pp. 11–20. ACM; 2001.

	170.	 Mayer TR, Brunie L, Coquil D, Kosch H. On reliability in 
publish/subscribe systems: a survey. Int J Parallel Emergent 
Distrib Syst. 2012;27(5):369–86.

	171.	 Bellavista P, Corradi A, Reale A. Quality of service in wide 
scale publish—subscribe systems. IEEE Commun Surv Tutor. 
2014;16(3):1591–616.

	172.	 Segall B, Arnold D. Elvin has left the building: a publish/
subscribe notification service with quenching. In: Proceedings 
of the 1997 Australian UNLX Users Group (AUUG’1997), pp. 
243–255. Queensland, Australia; 1997.

	173.	 Petrovic M, Burcea I, Jacobsen HA. S-ToPSS: Semantic 
Toronto Publish/Subscribe System. In: Proceedings of the 29th 
international conference on very large data bases—Volume 29, 
VLDB ’03, pp. 1101–1104. VLDB Endowment, Berlin, Ger-
many; 2003.

	174.	 Cugola G, Di Nitto E, Fuggetta A. The JEDI event-based infra-
structure and its application to the development of the OPSS 
WFMS. IEEE Trans Softw Eng. 2001;27(9):827–50.

	175.	 Parzyjegla H, Graff D, Schröter A, Richling J, Mühl G. Design 
and implementation of the Rebeca Publish/Subscribe Middle-
ware. In: Sachs K, Petrov I, Guerrero P, editors. From active data 
management to event-based systems and more: papers in Honor 
of Alejandro Buchmann on the occasion of His 60th birthday. 
Berlin, Heidelberg: Springer; 2010. p. 124–40.

	176.	 Carzaniga A, Rosenblum DS, Wolf AL. Achieving scalability 
and expressiveness in an internet-scale event notification service. 
In: Proceedings of the Nineteenth Annual ACM Symposium on 
Principles of Distributed Computing, pp. 219–227. ACM; 2000.

	177.	 Carzaniga A, Rosenblum DS, Wolf AL. Design and evaluation of 
a wide-area event notification service. ACM Trans Comput Syst 
(TOCS). 2001;19(3):332–83.

	178.	 Gupta A, Sahin OD, Agrawal D, Abbadi AE. Meghdoot: Con-
tent-Based Publish/Subscribe over P2P Networks. In: Proceed-
ings of the 5th ACM/IFIP/USENIX international conference on 
middleware, pp. 254–273; 2004.

	179.	 Ahulló JP, López PG, Gómez-Skarmeta AF. LightPS: lightweight 
content-based publish/subscribe for Peer-to-Peer systems. In: 

Xhafa F, Barolli L, editors. Second international conference 
on complex, intelligent and software intensive systems (CISIS-
2008), March 4th-7th, 2008. Barcelona: Technical University of 
Catalonia; 2008. p. 342–7.

	180.	 Avramidis A, Kotzanikolaou P, Douligeris C, Burmester M. 
Chord-PKI: a distributed trust infrastructure based on P2P net-
works. Comput Netw. 2012;56(1):378–98.

	181.	 Castro M, Druschel P, Ganesh A, Rowstron A, Wallach DS. 
Secure routing for structured peer-to-peer overlay networks. 
ACM SIGOPS Oper Syst Rev. 2002;36(SI):299–314.

	182.	 Merkle RC. Secure communications over insecure channels. 
Commun ACM. 1978;21(4):294–9.

	183.	 Borisov, N. Computational puzzles as sybil defenses. In: Sixth 
IEEE international conference on peer-to-peer computing 
(P2P’06); 2006. pp. 171–176.

	184.	 Rowaihy H, Enck W, McDaniel P, La Porta T. Limiting Sybil 
Attacks in Structured P2P Networks. In: IEEE INFOCOM 
2007—26th IEEE international conference on computer com-
munications; 2007. pp. 2596–2600.

	185.	 Ion M, Russello G, Crispo B. Supporting publication and sub-
scription confidentiality in Pub/Sub networks. In: Jajodia S, Zhou 
J, editors. Security and privacy in communication networks. Ber-
lin, Heidelberg: Springer; 2010. p. 272–89.

	186.	 Probst C, Disterhöft A, Graffi K. Chunked-Swarm: divide and 
conquer for real-time bounds in video streaming. In: Balan-
din S, Andreev S, Koucheryavy Y, editors. Internet of things, 
smart spaces, and next generation networks and systems. Cham: 
Springer; 2015. p. 198–210.

	187.	 Graffi K, Stingl D, Gross C, Nguyen H, Kovacevic A, Stein-
metz R. Towards a P2P cloud: reliable resource reservations in 
unreliable P2P systems. In: 16th IEEE international conference 
on parallel and distributed systems, ICPADS 2010, Shanghai, 
China; 2010. pp. 27–34.

	188.	 Graffi K, Pussep K, Kaune S, Kovacevic A, Liebau N, Steinmetz 
R. Overlay bandwidth management: scheduling and active queue 
management of overlay flows. In: 32nd Annual IEEE confer-
ence on local computer networks (LCN 2007), 15-18 October 
2007, Clontarf Castle, Dublin, Ireland, Proceedings; 2007. pp. 
334–342.

	189.	 Guidi B, Amft T, De Salve A, Graffi K, Ricci L. Didusonet: a 
P2P architecture for distributed dunbar-based social networks. 
Peer-to-Peer Netw Appl. 2016;9(6):1177–94.

	190.	 Benter M, Divband M, Kniesburges S, Koutsopoulos A, Graffi 
K. Ca-Re-Chord: a churn resistant self-stabilizing chord over-
lay network. In: 2013 conference on networked systems, NetSys 
2013, Stuttgart, Germany; 2013. pp. 27–34.

	191.	 Harrington D, Presuhn R, Wijnen B. An architecture for describ-
ing simple network management protocol (SNMP) management 
frameworks. 2002. https​://doi.org/10.17487​/RFC34​11.

	192.	 von Bochmann G, Hafid A. Some principles for quality of service 
management. Distrib Sys Eng. 1997;4(1):16–27.

	193.	 Albrecht K, Arnold R, Gähwiler M, Wattenhofer R. Aggregating 
information in peer-to-peer systems for improved join and leave. 
In: IEEE P2P ’04: proceedings of the international conference on 
peer-to-peer computing, pp. 227–234. IEEE; 2004.

	194.	 van Renesse R, Bozdog A. Willow: DHT, aggregation, and pub-
lish/subscribe in one protocol. In: Peer-to-Peer Systems III, third 
international workshop, IPTPS 2004, La Jolla, CA, USA, revised 
selected papers, lecture notes in computer science (LNCS), vol. 
3279, pp. 173–183. Springer. 2004.

	195.	 Idreos S, Koubarakis M, Tryfonopoulos C. P2P-DIET: an exten-
sible P2P service that unifies ad-hoc and continuous querying in 
super-peer networks. In: Weikum G, König CA, Deßloch S (eds) 
Proceedings of the ACM SIGMOD international conference on 
management of data, Paris, France, pp. 933–934. ACM; 2004.

https://doi.org/10.17487/RFC3170
https://doi.org/10.17487/RFC3170
https://www.rfc-editor.org/rfc/rfc3170.txt
https://doi.org/10.17487/RFC3411


	 SN Computer Science (2020) 1:299299  Page 50 of 51

SN Computer Science

	196.	 Shen D, Shao Y, Nie T, Kou Y, Wang Z, Yu G. HilbertChord: 
a P2P framework for service resources management. In: Wu S, 
Yang LT, Xu TL (eds) Advances in grid and pervasive comput-
ing, third international conference, GPC 2008, Kunming, China, 
Proceedings; 2008. pp. 331–342.

	197.	 Kempe D, Dobra A, Gehrke J. Gossip-based computation of 
aggregate information. In: 44th symposium on foundations of 
computer science (FOCS 2003), Cambridge, MA, USA, Proceed-
ings; 2003. pp. 482–491.

	198.	 Man T. Gossip-based fast overlay topology construction. Gossip-
ing in distributed systems. Comput Netw. 2009;53(13):2321–39.

	199.	 Blasa F, Cafiero S, Fortino G, Di Fatta G. Symmetric push-sum 
protocol for decentralised aggregation. In: Liotta A, Antonop-
oulus N, Di FG, Hara T, Vu QH (eds) Proceedings of the third 
international conference on advances in P2P Systems (AP2PS) 
2011), pp. 27–32. International Academy, Research, and Industry 
Association (IARIA). 2011.

	200.	 SkyEye: A tree-based peer-to-peer monitoring approach. Perva-
sive Mobile Comput 2017;40:593–610.

	201.	 Graffi K, Kovacevic A, Xiao S, Steinmetz R. SkyEye.KOM: an 
information management over-overlay for getting the oracle view 
on structured P2P systems. In: 2008 14th IEEE international con-
ference on parallel and distributed systems; 2008. pp. 279–286.

	202.	 Bhagwan R, Varghese G, Voelker GM. CONE: augmenting 
DHTs to support distributed resource discovery. In: Technical 
report CS2003-0755, University of California, San Diego; 2003.

	203.	 Li J, Lim DY. A robust aggregation tree on distributed hash 
tables. In: Proceedings of the 4th Annual student oxygen work-
shop held at warren conference center & Inn in Ashland, MA. 
MIT Oxygen Alliance. 2004.

	204.	 Zhang Z, Shi SM, Zhu J. SOMO: self-organized metadata overlay 
for resource management in P2P DHT. In: Kaashoek MF, Stoica 
I, editors. Peer-to-Peer systems II. Berlin, Heidelberg: Springer; 
2003. p. 170–82.

	205.	 Disterhöft A, Sandkuhler P, Ippisch A, Graffi K. Mr.Tree: mul-
tiple realities in tree-based monitoring overlays for peer-to-peer 
networks. In: 2018 international conference on computing, net-
working and communications, ICNC 2018, Maui, HI, USA; 
2018. pp. 354–360.

	206.	 Graffi K, Stingl D, Rueckert J, Kovacevic A, Steinmetz R. Moni-
toring and management of structured peer-to-peer systems. In: 
Schulzrinne H, Aberer K, Datta A (eds) Proceedings P2P 2009, 
Ninth International Conference on Peer-to-Peer Computing, 
USA: Seattle, Washington; 2009. p. 311–20.

	207.	 Graffi KG. Monitoring and management of peer-to-peer systems. 
PhD, Darmstadt University of Technology; 2010.

	208.	 Graffi K, Gross C, Mukherjee P, Kovacevic A, Steinmetz R. 
LifeSocial.KOM: a P2P-based Platform for secure online social 
networks. In: Proceedings of the IEEE international conference 
on peer-to-peer computing (P2P’10), pp. 1–2; 2010.

	209.	 Graffi K, Gross C, Stingl D, Hartung D, Kovacevic A, Steinmetz 
R. LifeSocial. KOM: a secure and P2P-based solution for online 
social networks. In: Proceedings of the 2011 IEEE consumer 
communications and networking conference (CCNC); 2011. pp. 
554–558.

	210.	 Graffi K, Masinde N. LibreSocial: a peer-to-peer framework for 
online social networks. CoRR. 2020. arXiv​:2001.02962​.

	211.	 Graffi K, Mukherjee P, Menges B, Hartung D, Kovacevic A, 
Steinmetz R. Practical security in P2P-based social networks. 
In: Proceedings of the IEEE 34th conference on local computer 
networks, 2009. LCN 2009; 2009. pp. 269–272.

	212.	 Narendula R, Papaioannou TG, Aberer K. Privacy-aware and 
highly-available OSN profiles. In: 2010 19th IEEE international 
workshops on enabling technologies: infrastructures for collabo-
rative enterprises; 2010. pp. 211–216.

	213.	 Narendula R, Papaioannou TG, Aberer K. My3: a highly-availa-
ble P2P-based online social network. In: Peer-to-Peer Computing 
(P2P), 2011 IEEE International Conference on, pp. 166–167. 
IEEE; 2011.

	214.	 Rhea S, Godfrey B, Karp B, Kubiatowicz J, Ratnasamy S, Shen-
ker S, Stoica I, Yu H. OpenDHT: a public DHT service and its 
uses. ACM SIGCOMM Comput Commun Rev. 2005;35:73–84.

	215.	 Perfitt, T, Englert B. Megaphone: fault tolerant, scalable, and 
trustworthy P2P Microblogging. In: 2010 Fifth international 
conference on internet and web applications and services; 2010. 
pp. 469–477.

	216.	 Rivest RL, Shamir A, Adleman L. A method for obtaining digi-
tal signatures and public-key cryptosystems. Commun ACM. 
1978;21(2):120–6.

	217.	 Loupasakis A, Ntarmos N, Triantafillou P. eXO: Decentralized 
autonomous scalable social networking. In: CIDR 2011, fifth 
biennial conference on innovative data systems research, Asilo-
mar, CA, USA, Online Proceedings; 2011. pp. 85–95.

	218.	 Asthana H, Cox IJ. PAC’nPost: A framework for a micro-blog-
ging social network in an unstructured P2P Network. In: Pro-
ceedings of the 21st international conference on world wide web, 
WWW ’12 Companion, pp. 455–456. Lyon, France; 2012.

	219.	 Jahid S, Nilizadeh S, Mittal P, Borisov N, Kapadia A. DECENT: 
a decentralized architecture for enforcing privacy in online social 
networks. In: Pervasive computing and communications work-
shops (PERCOM Workshops), 2012 IEEE international confer-
ence on, pp. 326–332. IEEE; 2012.

	220.	 Raji F, Jazi MD, Miri A. PESCA: a peer-to-peer social network 
architecture with privacy-enabled social communication and data 
availability. IET Inf Secur. 2015;9(1):73–80.

	221.	 Malek B, Miri A. Adaptively secure broadcast encryption with 
short ciphertexts. Int J Netw Secur. 2012;14(2):71–9.

	222.	 Disterhöft A, Graffi K. Protected chords in the web: secure p2p 
framework for decentralized online social networks. In: 2015 
IEEE international conference on peer-to-peer computing (P2P), 
pp. 1–5. IEEE; 2015.

	223.	 Buchegger S, Schiöberg D, Vu LH, Datta A. PeerSoN: P2P social 
networking: early experiences and insights. In: Proceedings of 
the second ACM EuroSys workshop on social network systems, 
SNS ’09; 2015. pp. 46–52.

	224.	 Cutillo LA, Molva R, Strufe T. Safebook: Feasibility of transi-
tive cooperation for privacy on a decentralized social network. 
In: 2009 IEEE international symposium on a world of wireless, 
mobile and multimedia networks workshops; 2009. pp. 1–6.

	225.	 Cutillo LA, Molva R, Strufe T. Safebook: a privacy-preserving 
online social network leveraging on real-life trust. Commun Mag 
IEEE. 2009;47(12):94–101.

	226.	 Cutillo LA, Molva R, Önen M. Safebook: privacy preserving 
online social network. In: The IAB workshop on Internet Privacy, 
jointly organized with the W3C, ISOC, and MIT CSAIL, hosted 
by MIT on 8-9 December 2010, pp. 1–2. Internet Architecture 
Board (IAB); 2010.

	227.	 Xu T, Chen Y, Zhao J, Fu X. Cuckoo: towards decentralized, 
socio-aware online microblogging services and data measure-
ments. In: Proceedings of the 2nd ACM international workshop 
on hot topics in planet-scale measurement, no. 4 in HotPlanet 
’10, pp. 4:1–4:6. San Francisco, California; 2010.

	228.	 Xu T, Chen Y, Fu X, Hui P. Twittering by cuckoo: decentralized 
and socio-aware online microblogging services. In: Proceedings 
of the ACM SIGCOMM 2010 conference on applications, tech-
nologies, architectures, and protocols for computer communica-
tions, New Delhi, India; 2010. pp. 473–474.

	229.	 Juste PS, Wolinsky D, Boykin PO, Figueiredo RJ. Litter: a light-
weight peer-to-peer microblogging service. In: Privacy, secu-
rity, risk and trust (PASSAT) and 2011 IEEE third inernational 

http://arxiv.org/abs/2001.02962


SN Computer Science (2020) 1:299	 Page 51 of 51  299

SN Computer Science

conference on social computing (SocialCom), 2011 IEEE third 
international conference on IEEE, pp. 900–903. 2011.

	230.	 Juste PS, Eom H, Lee K, Figueiredo RJ. Enabling decentralized 
microblogging through P2pvpns. In: 2013 IEEE 10th consumer 
communications and networking conference (CCNC); 2013. pp. 
323–328.

	231.	 Iglesias DL, Marques JM, Cabrera G, Rifa-Pous H, Montane A. 
HorNet: microblogging for a contributory social network. IEEE 
Internet Comput. 2012;16(3):37–45.

	232.	 Iglesias DL. A middleware for service deployment in contribu-
tory computing systems. In: PhD., Universitat Oberta de Cata-
lunya, Barcelona, Spain; 2011.

	233.	 Aiello LM, Milanesio M, Ruffo G, Schifanella R. tempering 
kademlia with a robust identity based system. In: 2008 eighth 
international conference on peer-to-peer computing; 2008. pp. 
30–39.

	234.	 Dürr M, Maier M, Dorfmeister F. Vegas—a secure and privacy-
preserving peer-to-peer online social network. In: 2012 inter-
national conference on privacy, security, risk and trust and 
2012 international conference on social computing; 2012. pp. 
868–874.

	235.	 Tran HM, Nguyen VS, Ha SVU. Decentralized online social net-
work using Peer-to-Peer technology. REV J Electron Commun. 
2015;5:1–2.

	236.	 Wang J, Liu F, Li X, Liu H, Zhao X. HPOSN: a novel online 
social network model based on hybrid P2P. In: 2015 international 
conference on cloud computing and big data (CCBD); 2015. pp. 
342–349.

	237.	 Goldschlag D, Reed M, Syverson P. Onion routing. Commun 
ACM. 1999;42(2):39–41.

	238.	 Nilizadeh S, Jahid S, Mittal P, Borisov N, Kapadia A. Cachet: a 
decentralized architecture for privacy preserving social network-
ing with caching. In: Proceedings of the 8th international con-
ference on emerging networking experiments and technologies, 
CoNEXT ’12; 2012. pp. 337–348.

	239.	 Jahid S, Mittal P, Borisov N. EASiER: encryption-based access 
control in social networks with efficient revocation. In: Proceed-
ings of the 6th ACM symposium on information, computer and 
communications security, ASIACCS ’11; 2011. pp. 411–415.

	240.	 Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-
based encryption. In: Security and privacy, 2007. SP’07. IEEE 
Symposium on IEEE, pp. 321–334. 2007.

	241.	 Freitas M. twister—a P2P microblogging platform. CoRR 
abs/1312.7152. 2013.

	242.	 Freitas M. Twister: the development of a peer-to-peer micro-
blogging platform. Int J Parall Emergent Distrib Syst. 
2016;31(1):20–33.

	243.	 Everett M, Borgatti SP. Ego network betweenness. Soc Netw. 
2005;27(1):31–8.

	244.	 Fang Y, Wen Z, Shen Q, Yang Y, Wu Z. SEDOSN: a secure 
decentralized online social networking framework. In: Zhang X, 
Wu Z, Sha X, editors. Embedded system technology. Singapore: 
Springer; 2015. p. 68–74.

	245.	 Rouselakis Y, Waters B. Practical constructions and new proof 
methods for large universe attribute-based encryption. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer 
& Communications Security, CCS ’13; 2013. pp. 463–474.

	246.	 Franchi E, Poggi A, Tomaiuolo M. Blogracy: a peer-to-peer social 
network. Int J Distrib Syst Technol (IJDST). 2016;7(2):37–56.

	247.	 zzz (Pseudonym), Schimmer L. Peer profiling and selection in the 
I2P anonymous network. In: Proceedings of PET-CON 2009.1; 
2013. pp. 59–70.

	248.	 Dingledine R, Mathewson N, Syverson P. Tor: the second-gen-
eration onion router. In: Tech. rep., Naval Research Lab Wash-
ington DC; 2004.

	249.	 Vu LH, Aberer K, Buchegger S, Datta A. Enabling secure secret 
sharing in distributed online social networks. In: 2009 annual 
computer security applications conference, 2009:419–428.

	250.	 Camarillo G. Peer-to-Peer (P2P) Architecture: definition, taxono-
mies, examples, and applicability. RFC 2009:5694 2009. https​://
doi.org/10.17487​/RFC56​94. https​://rfc-edito​r.org/rfc/rfc56​94.txt

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.17487/RFC5694
https://doi.org/10.17487/RFC5694
https://rfc-editor.org/rfc/rfc5694.txt

	Peer-to-Peer-Based Social Networks: A Comprehensive Survey
	Abstract
	Introduction
	Identifying the Gaps
	Our Contributions

	Social Networks
	Social Network Classifications
	The Scope Model
	The Data Model
	The System Model
	The Network Model

	Desired Features for OSNs
	Design Requirements for OSNs
	Functional Requirements
	Non-functional Requirements

	Motivation for Decentralization
	Accumulated Costs for Centralized Operations
	Security and Privacy Concerns
	Mitigating the Concerns
	Decentralized Online Social Network (DOSN)


	Technical Requirements for a P2P Framework for Social Networks
	Overlay Network
	Addressing of Users, Nodes and Data
	Routing
	Security
	Derived Requirements

	P2P Framework
	Single Data Storage
	Reliable Data Redundancy
	Data Access Control for Users and Groups
	Search for Data and Users
	Direct Communication, Multicast and PublishSubscribe
	Optional Derived Requirements

	OSN Plugins and the Graphical User Interface
	Mandatory OSN Plugins
	Optional OSN Plugins
	Graphical User Interface (GUI)


	Peer-to-Peer Networks
	Overlay Structures
	Single-Overlay P2P Networks
	Multi-overlay P2P Networks
	Bio-inspired P2P Networks
	Other Overlay Considerations
	Security Discussion: Overlay

	Overlay Function: Search and Lookup Mechanisms
	Semantic-Free Mechanism for Lookup
	Semantic Mechanisms for Searching
	Multidimensional Indexing Mechanism
	Security Discussion: Search and Lookup Corruption

	Storage Techniques and Redundancy
	Data Availability Through Replication
	Data Availability Through Erasure Coding

	Advanced Storage: Distributed Data Structures
	Hash-Based Schemes
	Order-Based Schemes
	Security Discussion: Storage and Resource Lookup

	Communication: Unicast, Multicast and PublishSubscribe
	Unicast and Multicast Communications
	PublishSubscribe Systems
	Security Discussion: Communication and PublishSubscribe Systems

	Services: Monitoring and Management
	Network Monitoring
	Distributed Monitoring Approaches
	Network Management


	P2P-Based Social Networks
	Single-Overlay Distributed Social Networks
	LifeSocial.KOMLibreSocial
	PorkutMy3
	Megaphone
	eXO
	PAC’nPOST
	DECENT
	PESCA
	WebP2P

	Single-Overlay Hybrid Social Networks
	P2P Social Networking (PeerSoN)
	Safebook
	Cuckoo
	Litter
	SuperNova
	HorNet
	LotusNet
	Vegas
	Decentralized OSN Using P2P Technology
	HPOSN

	Multi-overlay Social Networks
	Cachet
	Twister
	DiDuSoNet
	SEDOSN
	Blogracy


	Comparative Analysis and Summary
	OSN Requirements and System Status
	Single-Overlay Distributed OSNs
	Single-Overlay Hybrid OSNs
	Multi-Overlay OSNs

	Developmental Progression
	Essential P2P Components
	Single-Overlay Distributed OSNs
	Single-Overlay Hybrid OSNs
	Multi-Overlay OSNs

	Security Considerations

	Lessons Learned
	Conclusion
	References




