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Abstract
Creating a convincing affective robot behavior is a challenging task. In this paper, we are trying to coordinate between dif-
ferent modalities of communication: speech, facial expressions, and gestures to make the robot interact with human users 
in an expressive manner. The proposed system employs videos to induce target emotions in the participants so as to start 
interactive discussions between each participant and the robot around the content of each video. During each experiment of 
interaction, the expressive ALICE robot generates an adapted multimodal behavior to the affective content of the video, and 
the participant evaluates its characteristics at the end of the experiment. This study discusses the multimodality of the robot 
behavior and its positive effect on the clarity of the emotional content of interaction. Moreover, it provides personality and 
gender-based evaluations of the emotional expressivity of the generated behavior so as to investigate the way it was perceived 
by the introverted–extroverted and male–female participants within a human–robot interaction context.

Keywords  Speech synthesis · Facial expressions modelling · Gesture synthesis · Embodiment of affective robot behavior · 
Human perception of the robot behavior

Introduction

Robots are moving into human social spaces and collaborat-
ing in different tasks. An intelligent social robot is required 
to adapt the affective content of its generated behavior to 
the context of interaction and to the profile of the user to 
increase the credibility and appropriateness of its interactive 
intents. Speech, facial expressions, and gestures can express 
synchronized affective information that can enhance behav-
ior expressivity [18]. Gestures and facial expressions play 
an important role in explaining speech particularly in case 
of any speech signal deterioration [28].

Different studies in the literature of Human–Robot Inter-
action (HRI) and Human–Computer Interaction (HCI) 
discussed synthesizing affective speech [40, 58] and facial 
expressions [13, 65] in addition to gesture generation [20, 

61]. Besides, other studies investigated the effect of multi-
modal information of speech and facial expressions on emo-
tion recognition (compared to unimodal information) [17]. 
However, to our knowledge, these studies, among others, 
have not proposed a general framework to bridge between 
affective speech1 (Sect. “Affective Speech Synthesis”) on 
one side and both adaptive gestures [1, 3–5] and facial 
expressions (Sect. “Facial Expressivity”) on the other side, 
as illustrated in our current study. The proposed framework 
allows for an explicit control on prosody parameters so as 
to better express emotion. In addition, it considers the rela-
tionship between emotion and gestures, which allows for 
adapting the generated robot gestural behavior to the char-
acteristics of the synthesized affective speech2 according to 
the proposed context of interaction in this study. The illus-
trated system architecture in Sect. “System Architecture” 
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1  Mary-TTS, an open-source multilingual text-to-speech engine, is 
used to synthesize affective speech in the experiments.
2  We generated adapted gestures [6, 81] to the synthesized affective 
speech instead of using human speech directly because not all the 
participants are able to show an affective content in speech when 
describing a scene, unless they are describing a personal experience 
they have been through (this describes the difference between emo-
tion perception and emotion experience as explained in Schreuder 
et al. [74]), which is not the case in this study.
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guarantees a direct human–robot interaction context3, which 
allows for generating and evaluating affective speech, adap-
tive gestures, and facial expressions so as to address the 
effect of the robot behavioral multimodality on interaction 
with a wide scope (Sect. “Effect of the Robot Behavioral 
Multimodality on Interaction”). Additionally, we discuss 
another evaluation for the generated affective behavior of 
the robot based on the behavioral determinant factors of the 
participants: personality extraversion [33] and gender.

The important role that affective speech, gestures, and 
facial expressions could play in enhancing the robot behavior 
expressivity during social interaction is investigated through 
three experimental hypotheses of interaction between the par-
ticipants and ALICE robot, where the robot behaviors with 
combined—at least two modalities of—speech, gestures, and/
or facial expressions are compared to those with less affective 
cues4 (Sect. “Hypotheses”). During the experiments, each 
participant watches a set of videos that aims at eliciting spe-
cific target emotions upon which interactive discussions with 
the robot start, where the participant evaluates the character-
istics of the generated robot behavior (Sect. “Effect of the 
Robot Behavioral Multimodality on Interaction”). Moreover, 
we report personality and gender-based evaluations for the 
robot behavior to find out any differences in the way it was 
perceived by the introverted–extroverted and male–female 
participants within a human–robot interaction context so as to 
bridge between affective perception of the robot behavior and 
human profile (Sects. “Human Personality-Based Evaluation 
of the Affective Robot Behavior” and “Gender-Based Evalu-
ation of the Affective Robot Behavior”). Last but not least, 
we discuss the findings of this study and propose research 
directions for future work (Sect. “Discussion”).

Related Work

The correlation between emotion and speech has 
been  extensively investigated in the related literature [26]. 
Speech prosody can reflect human emotion through varia-
tions in the basic features, like pitch, volume, and intensity 
[59]. The variations in the characteristics of voice prosody 
that can influence the conveyed affective meaning of speech 

in case of different emotions, such as anger, disgust, fear, 
pleasure and sadness, were studied in Sauter et al. [72]. 
Emotion perception and the needed time for emotion rec-
ognition using prosodic features were discussed in Pell and 
Kotz [62]. The evolutionary nature of emotion was investi-
gated in Aly and Tapus [2, 8] through a perceptual model, 
where mixtures of basic emotions could compose complex 
emotions (e.g., fear + sadness = desperation).

The literature reveals different approaches towards 
synthesizing speech so as to improve both Human–Robot 
Interaction (HRI) and Human–Computer Interaction (HCI). 
Murray and Arnott [58] discussed a primary initiative to 
synthesize affective speech using a rule-based formant syn-
thesis technique but the quality was low. Edgington [27] 
presented a concatenation-based technique that attained 
a little success in emotion expression. This last approach 
was further developed so that it employed the unit selec-
tion technique that avoids interference with the recorded 
voice to obtain a better quality of speech, and it reported 
some success in expressing anger, happiness, and sadness 
[40]. Similarly, deep learning approaches for speech syn-
thesis have attracted attention over the last decade [31, 66, 
92]; however, these approaches focused mainly on neu-
tral speech synthesis. Moreover, end-to-end models (e.g., 
Tacotron model [90]) have been recently used in affective 
speech synthesis [51, 86]. However, these systems imitate a 
generic style of speaking in a few predefined emotions with a 
limited ability to control the affective expressivity of speech, 
which deprives them of flexibility and ease of use in our 
study considering the required large amount of data for train-
ing them. Generally, the previously discussed techniques, 
among others, do not have explicit control on the parameters 
of speech prosody to better express emotion. Therefore, in 
this work, we use the well-known pre-trained text-to-speech 
engine, Mary-TTS [75], to generate affective robot behavior 
expressed through speech (beside other modalities of com-
munication, such as facial expressions and/or head–arm ges-
tures) during interaction.

The basic definition of gesture was given by Kendon [45] 
and McNeill [56]. They defined a gesture as a synchronized 
body movement with speech, which is related in a parallel or 
complementary way to the meaning of an utterance. Ekman 
and Friesen [29] proposed a primary categorization of ges-
tures: (1) affect displays (e.g., facial expressions), (2) adap-
tors (e.g., scratching), (3) regulators (e.g., using arm–hand 
movements to control turn-taking within a conversation), 
(4) illustrators (e.g., pointing), and (5) emblems (e.g., wav-
ing). This categorization was further adapted by Kendon 
[46]—due to neglecting language while it is a fundamental 
interactive phenomenon—who proposed a new gesture cat-
egorization: (1) signs (i.e., sign language), (2) pantomime 
(i.e., sequence of gestures with a narrative structure), (3) 
emblems, and (4) gesticulation. McNeill [56] named the 

4  For example, the robot behavior that employs combined speech, 
facial expressions, and gestures is compared to the robot behaviors 
expressed through speech only, speech and facial expressions, and 
speech and gestures so as to examine their effects on interaction

3  Unlike the case if the participants were evaluating offline videos for 
the robot doing different behaviors without any interaction, which is 
out of interest in this study. Considering that we need to generate and 
model affective behavior on the robot, we decided to create a con-
text of affective interaction. Consequently, we used videos with affec-
tive content from the database of Hewig et al. [36] whose content is 
centered around emotion elicitation as a base for interaction between 
each participant and the robot.
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continuum of Kendon’s gesture categorization as ‘Kendon’s 
Continuum’ in his honor, and proposed another widely cited 
gesture typology of four categories, which could be consid-
ered as gesticulations (according to Kendon’s classification): 
(1) metaphorics (i.e., gestures referring to abstract ideas), 
(2) beats (e.g., rhythmic finger movements), (3) iconics (i.e., 
gestures with a close semantic correlation with speech that 
refer to images of specific entities), and (4) deictics (e.g., 
pointing). These categories represent the evolution of the 
described images and ideas in a speaker’s mind.

The related literature in Human–Computer Interaction 
(HCI) and Human–Robot Interaction (HRI) shows active 
research towards generating iconic and metaphoric gestures 
that constitute a major part of the human nonverbal behav-
ior during interaction [56]. Pelachaud [61] introduced the 
rule-based 3D agent GRETA that can generate a multimodal 
synchronized behavior using an input text. It can generate 
gestures of different categories regardless of the context and 
domain of interaction, contrarily to other 3D conversational 
agents (e.g., MAX agent) [48]. Cassell et al. [20] introduced 
a rule-based gesture generator; BEAT toolkit that can pro-
duce an animation script for both virtual agents (e.g., the 
agent REA) [19] and robots [9] from an input text. This 
toolkit can synthesize gestures of different categories such 
as iconic gestures, except for metaphoric gestures. Le et al. 
[50] proposed a rule-based framework for generating syn-
chronized multimodal behaviors using the agent GRETA 
and robots. Generally, the majority of the rule-based gesture 
generation approaches do not consider the effect of emotion 
on body language, which could introduce a difficulty when 
adapting the generated robot behavior to human emotion 
detected through speech prosody [57] and gesture character-
istics. Similarly, several deep learning approaches focused, 
increasingly, on gesture synthesis over the last years. Chiu 
et al. [22] proposed a data-driven framework for predicting 
gestures from speech; however, the model uses only pre-
defined categories of annotated gesture data, which limits 
the shape of the produced gestures to those used in train-
ing with their language dependencies. Moreover, the model 
outputs gesture category labels rather than motion curves; 
therefore, it can not be used directly with 3D agents and 
robots. Hasegawa et al. [34] discussed a data-driven model 
for metaphoric gesture motion synthesis for a stick figure 
based on a speech input in Japanese; however, the gener-
ated gestures were rated relatively lower than the original 
gestures in semantic consistency. This model was further 
improved through motion representation learning to ame-
liorate gesture motion synthesis [49] but using the same 
language. Yoon et al. [91] introduced a data-driven end-
to-end robot model for generating different categories of 
gestures (including iconic and metaphoric gestures) based 
on an input text and not a direct speech, which is similar to 
the rule-based gesture generators explained earlier. Besides, 

this model requires a very large amount of data for train-
ing. Therefore, in this paper, we present a complementary 
human–robot interaction study to our work [5] that discussed 
a framework for generating arm and head gestures adapted to 
speech prosody that correlates with emotion. These gestures 
are modeled on the robot in parallel with affective speech 
and/or facial expressions to examine the effect of the robot 
behavioral multimodality on interaction with human users.

The correlation between speech and facial expressions 
has been extensively investigated in the literature. Kalra 
et al. [41] showed that speech prosody and the movement of 
face muscles can change in a synchronous manner to express 
different emotions. The unimodal perception of human emo-
tion through audio or visual information was discussed in 
Silva et al. [79]. Additionally, Busso et al. [17] discussed 
the complementarity and combination of both modalities 
that can increase the perception of human emotion. Kar-
ras et al. [43] presented a Convolutional Neural Network 
(CNN) model that can synthesize 3D facial animation from 
speech—in different languages—expressing emotion. Other 
deep learning approaches have been discussed in Taylor 
et al. [83] and Vougioukas et al. [88] for facial animation 
synthesis from speech. These approaches, among others, are 
mostly limited to animating face models without focusing 
on generating facial expressions in different affective states.

In robotics and computer-based applications, modeling 
and synthesis of facial expressions have attracted much 
attention over the last decades. Platt and Badler [65] dis-
cussed a 3D face model that controls the responsible mus-
cular actions for facial expressions following the Facial 
Action Coding System (FACS). Spencer-Smith et al. [80] 
presented a realistic 3D face model that can create differ-
ent stimuli with 16 FACS units. Modeling credible facial 
expressions on robots was a rich topic of research in the 
last years due to their mechanical constraints compared to 
virtual agents that have a higher flexibility in creating facial 
expressions. Breazeal [15] presented the robot-head Kis-
met that employs eyes, mouth, and ears to model different 
emotions expressing sadness, surprise, happiness, disgust, 
and anger. Breemen et al. [16] introduced the robot iCat 
that can express fear, anger, sadness, and happiness. Beira 
et al. [13] developed the iCub robot that can model differ-
ent emotions using gestures and facial expressions, such as 
happiness, anger, surprise, and sadness. Lutkebohle et al. 
[52] presented the robot-head Flobi that can express dif-
ferent emotions, such as fear, anger, surprise, sadness, and 
happiness. Hoffman et al. [37] developed the conversation 
companion Kip1, which can reflect emotion using a few 
degrees of freedom, like expressing fear through a shivering 
motion. Similarly, designing facial expressions on android 
robots has been a subject of extensive research to investigate 
the way to create convincing facial expressions considering 
the rules of human emotion expression [64]. Vlachos and 
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Schärfe [87] investigated designing facial expressions on an 
android robot, where the findings showed the incapability 
of the robot to reproduce the ‘fear’ and ‘disgust’ emotions 
due to mechanical limitations in the face. These previous 
approaches for modeling facial expressions on 3D agents 
and robots, among others, show serious efforts towards cre-
ating expressive facial behaviors with specific emotions, 
and they report in the same time some limitations when 
modeling emotions with a wide scope. This indicates the 
importance of the robot behavioral multimodality, where 
each behavior modality enhances the other modalities 
so as to improve the clarity of the robot behavior during 
interaction.

The robot behavioral multimodality refers to coordinat-
ing and combining different modalities of communication 
in the robot (agent) behavior, which has been a challenging 
research topic over the last years [38, 84]. In facial expres-
sions and gestures coordination, among others, Clavel 
et al. [23] discussed the positive effect of facial and bod-
ily expressions on the affective expressivity of a virtual 
character (and consequently emotion recognition), and 
Costa et al. [25] proved that gestures can effectively help 
in recognizing the facial expressions of a robot. In speech 
and gestures coordination, among others, Salem et al. [71] 
discussed the positive effect of gestures and speech multi-
modality on the evaluation of the robot behavior. In speech, 
gestures, and facial expressions coordination, among oth-
ers, Castellano et al. [21] and Schirmer and Adolphs [73] 
reported the positive effect of multimodal information on 
emotion recognition compared to less-modal informa-
tion. The related literature on the affective expressivity of 
the robot behavior has largely focused on unimodal (and 
bimodal) behaviors [38] considering the difficulty to gen-
erate a synchronized multimodal behavior, compared to 
virtual agents, with reasonably expressive speech, facial 
expressions, and gestures. This is due to the limited facial 
expressivity of robots that restricts generating a wide range 
of credible facial expressions, mechanical limitations 
that restrict generating gestures smoothly, and inability 

to synthesize affective speech for a wide range of emo-
tions. In this work, we try to take a step forward towards 
creating a multimodal framework for generating affective 
robot behavior with more than two combined modalities 
of communication. Besides, we propose designs for mod-
eling affective speech and facial expressions, in addition 
to gestures5, which can inspire other researchers in social 
robotics with solutions when examining hard-to-model 
emotions. Furthermore, we discuss the participants’ evalu-
ations of the generated robot behavior considering their 
gender and personality, which is useful for future studies 
in human–robot interaction.

In this paper, we use the expressive ALICE robot for 
the purpose of modeling and evaluating a multimodal 
robot behavior expressed through combined, at least two 
modalities of, speech, facial expressions, and/or head–arm 
gestures compared to the robot behaviors with less com-
bined affective cues. The paper is organized as follows: 
Sect. “System Architecture” discusses the system archi-
tecture, Sect. “Experimental Setup” illustrates the experi-
mental hypotheses, design, and scenario of interaction, 
Sects. “Experimental Results” and “Discussion” provide a 
description of the experimental results and a discussion of 
the outcome of the study, and finally, Sect. “Conclusion” 
concludes the paper.

System Architecture

This study presents a series of interaction experiments 
between humans and a robot, where the generated gestures 
and facial expressions of the robot depend on the synthe-
sized affective speech, as indicated in Fig. 1, so as to create 
a multimodal affective robot behavior. The proposed frame-
work is coordinated through the following subsystems:

1.	 Speech Recognition, which is the HTML5 multilingual 
Google API.

2.	 Emotion Detection, where predefined emotion-referring 
keywords are detected in the recognized speech of the 
participant, which correspond to his/her opinion about 
the projected video during each interaction experiment 
so as to label the emotional content of each video6,7.

Fig. 1   Overview of the system architecture

5  In the proposed framework (Fig. 1), facial expressions and gestures 
are generated adaptively to speech.
6  The robot asks the participant to express his/her opinion about the 
content of a projected video. Afterwards, it detects and segments pre-
defined keywords, in a dictionary, from the comment of the partici-
pant, such as “This is disgusting!” or “This video is expressing sad-
ness!”. This helps in detecting the video’s emotional content (from 
the participant’s point of view) to trigger an adaptive robot behavior.
7  We used a video database for emotion induction in the participants 
[36]. More details are available in Sect. “Database”.
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3.	 Mary-TTS Engine, which converts the story texts8 with 
the detected emotion labels of the employed videos to 
affective speech (Sect. “Affective Speech Synthesis”).

4.	 Body Gesture Generator, which uses the generated 
speech by Mary-TTS engine to generate synchronized 
head–arm gestures9 [5].

5.	 Facial Expressions Modeling, where facial expressions 
are modeled on the robot face in synchrony with the 
synthesized speech (Sect. “Facial Expressivity”).

6.	 ALICE Robot, which is the test bed platform in the con-
ducted experiments with the participants (Sect. “Experi-
mental Setup”).

In the following sections of the paper, we illustrate the sub-
systems of the proposed framework and describe the experi-
mental setup in detail.

Affective Speech Synthesis

The text-to-speech Mary-TTS engine is used for adding 
prosody and accent cues to a predefined text, which sum-
marizes the storyline of a video under discussion [75]. This 
engine could help in making the robot able to engage in 
conversation with each participant using adaptive affec-
tive speech to the displayed story in the video. Mary-TTS 
engine uses a high-level markup language (SSML: Speech 
Synthesis Markup Language) to define the vocal pattern of 
the synthesized speech [82] as it provides different efficient 
features such as adding periods of silence between words 
in addition to providing an easy control on speech charac-
teristics (i.e., pitch contour and baseline, and speech rate) 
(Fig. 2). This could make it a helpful tool for the vocal 

design of the target emotions described in this study. It 
should be recalled that Mary-TTS engine is not yet pre-
pared for synthesizing emotional speech in English in a 
human-like manner (same as other TTS engines); however, 
to our knowledge, Mary-TTS engine provides better vocal 
design capabilities and a higher flexibility than the other 
available engines. This makes the proposed vocal design in 
this work as an approximate step towards communicating 
the meaning of each expressed emotion during interaction. 
Thus, the robot behavioral multimodality is important for 
emphasizing the meaning of the expressed behavior, where 
each modality enhances the expressiveness of the other 
modalities.

Table 1 illustrates the proposed vocal patterns of the tar-
get emotions in which pitch contours are characterized by 
sets of parameters inside parentheses10. Speech rates of the 
target emotions vary between the rates of the ‘sadness’ emo-
tion (lowest rate) and the ‘anger’ emotion (highest rate). The 
inter and intra-sentence break times were imposed experi-
mentally on the proposed vocal design to enhance the affec-
tive expressivity of speech. The indicated inter-sentence 
break time with each emotion represents the silence periods 
that separate sentences at which both the lips and jaw of the 
robot make particular expressions to clarify the expressed 
emotion (Sect. “Facial Expressivity”). Besides, the intra-
sentence break time indicates the silence periods of short 
duration within a sentence, which are necessary to clarify 
the expressivity of the ‘sadness’ and ‘fear’ emotions. The 
experimental parameters shown in Table 1 are an example 
of the prosody patterns of parts of the texts converted to 
speech for each emotion. The vocal patterns of the remaining 
parts of the texts differ slightly with respect to the indicated 
parameters in Table 1 so as to further clarify tonal variation 
over the text. Some emotions required using interjections 
(with tonal stress) to enhance their expressivity, like ‘Ugh’ 
and ‘Yuck’ for the ‘disgust’ emotion, and ‘Oh my God’ for 
the ‘fear’ emotion.

Facial Expressivity

The proposed design of facial expressions for the target 
emotions is grounded on the well-known coding system of 
facial actions (FACS) [30]. This design is clearly explained 
in Table 2, which shows the corresponding joints to each 
emotion in the face of the robot and the designed gestures 
to clarify the meaning of facial expressions. The corre-
sponding FACS units to emotions, in bold font, represent 
the most observed prototypical units between subjects [76], 
whereas the other units are observed at lower percentages. 

Fig. 2   SSML specification of the ‘sadness’ emotion

8  Story Comments: are the predefined comments of the robot on 
the employed videos in the experiments. These story texts help in 
creating an interaction context between the participant and the robot 
associated with an adapted robot behavior—combining at least two 
modalities of emotional speech, facial expressions, and/or gestures—
to the affective content of each video.
9  This provides an implicit validation for the expressivity of the syn-
thesized speech in which the more natural it is, the more natural will 
be the generated gestures (to be evaluated by the participants).

10  The first parameter in each set followed by “%” denotes a percent-
age of the text duration, while the second parameter followed by “st” 
denotes the associated variation in baseline pitch in semitone.
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The underlined action units are the units with corresponding 
relative joints in the face of the robot.

The complexity behind modeling emotion on the face 
of the robot lies in the absence of equivalent joints to spe-
cific FACS descriptors (e.g., cheek raiser and nose wrin-
kler). Therefore, and inspired by the experimental designs 
of McColl and Nejat [55] and Wallbott [89]11, we imposed 
some additional body gestures experimentally in order to 
reduce the negative effect of the absent joints on affective 
expressivity. These additional gestures do not include neither 
head gestures nor arm–hand gestures, which are generated 
by the gesture generator [5] (except for the italic-font ges-
tures indicated in Table 2, which are required to enhance 
the affective expressivity of the robot)12. For example, the 
combination of the additional gestures neck rotation and 
raising front-bent arms is helpful for better expressing the 
‘disgust’ emotion (Fig. 3), which can give the participant the 
feeling that the robot does not like the interaction context. In 
a similar way, the emotions of ‘sadness’, ‘fear’, and ‘anger’ 
are assigned the gestures of bowing head and covering-eyes 
with hand, mouth-guard with hand, and down head-shak-
ing, respectively, to emphasize their affective expressivity 
(Fig. 3). The main role of the additional right smile and 

left smile face joints of the ‘fear’ emotion is to depress the 
corners of the open mouth so as to enhance its affective 
expressivity; however, both joints do not have equivalent 
FACS descriptors (Table 2). Generally, modeling persuasive 
facial expressions on a robot is not a trivial task because of 
the mechanical limitations of its joints (unlike the case with 
3D agents). Therefore, the robot behavioral multimodality 
can play an important role in enhancing its affective expres-
sivity during interaction, where each behavior modality can 
clarify the other modalities.

Figure 4 demonstrates the eyelids animation script where 
three points of the motion path are described through posi-
tion and time. In order  to achieve a temporal alignment 
between eyelids animation and speech, if the synthesized 
speech duration is longer or shorter than the eyelids anima-
tion duration, the model determines the corresponding new 
time instants to animation points based on speech duration, 
animation duration, and the previous time instants of anima-
tion points. The segmentation of human speech is achieved 
through an embedded voice activity detection algorithm in 
the speech recognition system, which can efficiently label 
speech and silence segments. In case the silence period rep-
resents an inter-sentence break time that was discussed in 
Sect. “Affective Speech Synthesis”, both of the robot jaw 
and lips perform specific animations (e.g., pulling the cor-
ners of the lips to express happiness) which could enhance 
the meaning of the expressed emotion (Fig. 3). This is due 
to the robot mechanical constraints that prevent the synchro-
nization between lips motion and speech while performing 
an animation with both the jaw and lips at the same time. 
Meanwhile, if the silence period corresponds to an intra-
sentence break time, the jaw of the robot opens to express 
fear and closes to express sadness during the silence period 
(Sect. “Affective Speech Synthesis”).

Table 1   The design of the vocal pattern and contour behavior of each target emotion

Emotion Baseline Pitch Pitch Contour Speech Rate
Contour Features

Break Time
Start Behavior End

Sadness -4st (0%,+0st)(100%,-0st) -30% Negative Constant Negative Inter/Intra-Sentence
Disgust +4st (0%,-5st)(40%,-9st)(75%,-12st)(100%,-12st) +8% Negative Exponential Negative Inter-Sentence

Happiness +2st (0%,+8st)(30%,+16st)(50%,+14st)(100%,+11st) +7% Positive Parabola Positive Inter-Sentence
Anger +5st (0%,-18st)(50%,-14st)(75%,-10st)(100%,-14st) +12% Negative Parabola Negative Inter-Sentence
Fear +6st (0%,+2st)(50%,+5st)(75%,+8st)(100%,+5st) +7% Positive Parabola Positive Inter/Intra-Sentence

Table 2   The design of facial expressions, modeled on the robot, for each target emotion
serutseGydoBlanoitiddAstnioJecaFtoboRgnidoCSCAFnoitomE

Sadness
Brow Lowerer + Lip Corner Depressor + Inner Brow Raiser +

Cheek Raiser + Nasolabial Deepener + Chin Raiser
Left Smile + Right Smile + Brows

Covering-Eyes Hand + Bowing Head +
Narrowing Eyes + Eyes Blinking + Closing Jaw

Disgust
Lip Pressor + Brow Lowerer + Nose Wrinkler +

Upper Lip Raiser+Chin Raiser
Jaw + Brows

Neck Rotation + Raising Front-Bent Arms +
Narrowing Eyes

Happiness Lip Corner Puller + Lips Part + Cheek Raiser Left Smile + Right Smile + Jaw Eyes Blinking

Anger
Brow Lowerer + Lid Tightener + Lip Pressor + Lip Tightener +

Upper Lip Raiser + Chin Raiser + Nasolabial Deepener
Jaw + Brows + Eyelids Down Head-Shaking + Short Mouth-Opening

Fear
Inner Brow Raiser+ Brow Lowerer + Lip Stretcher +

Lips Part + Outer Brow Raiser + Upper Lid Raiser + Jaw Drop
Left Smile + Right Smile +

Jaw + Brows + Eyelids
Mouth-Guard Hand

11  These studies discuss the characteristics of body behavior in dif-
ferent emotions employing arm gestures. McColl and Nejat [55] used 
the gesture hanging arms to express the sadness emotion using the 
robot Brian-2, while Wallbott  [89] used the gesture crossed in front 
of chest to describe the disgust emotion. The final implementation of 
these gestures on ALICE robot was made according to the mechani-
cal limitations of the robot arms.
12  The metaphoric gesture generator [5] synthesizes the most appro-
priate head–arm gestures based on its own learning algorithm. Conse-
quently, it is possible that the predefined additional gestures (in italic 
font, Table 2) might not be generated during the interaction. Thus, we 
added them, experimentally, at particular moments of speech with a 
higher priority than the synthesized gestures by the generator.
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Experimental Setup

In this section, we discuss the employed database for emo-
tion induction in the participants. In addition, we present the 
experimental hypotheses, design, and scenario of interac-
tion between the participant and ALICE robot developed 
by RoboKind13.

Database

The employed database contains 20 silent videos excerpted 
from feature films (with duration varying from 29 to 236 s) 
for inducing 6 target emotions in the participants: neu-
tral, disgust, anger, happiness, fear, and sadness14. Hewig 
et al. [36] discussed and validated the efficiency of the data-
base in eliciting emotions in humans. Consequently, in this 
paper, we will not focus on measuring the level of emotion 
induction in the participants15. During the experiments, we 
used 12 expressive videos from the database to elicit the 
target emotions. This means that six main videos were used 
during the experiments, and six standby videos (i.e., one 
standby video per emotion) were used automatically in case 
any of the main videos failed to elicit the corresponding 
target emotion (Table 3).

Hypotheses

Human emotion experience is generally characterized by 
different cognitive constructs, such as (1) emotion clarity 
(i.e., the clear and definite representation of emotion) [24], 
(2) emotion differentiation, which is the ability to accurately 
identify and represent emotion into discrete categories (e.g., 
sadness, disgust, and happiness). This is conceptually cor-
relating with emotion clarity, where each construct could 
enhance the other one [14], (3) emotional complexity (i.e., 
the broad range of emotion experiences associated with a 
tendency to accurately differentiate between emotion catego-
ries) [42], and (4) emotional awareness (i.e., the knowledge 
complexity of emotion, which represents the ability to be 
aware of emotion) [54]. Each of these constructs is measured 
through calculated indices from subjects’ self-reports [44].

In this research study, the main objective is to generate a 
well-perceived multimodal robot behavior so as to enhance 
the interaction with a human user. Consequently, the clarity 
and differentiation constructs of emotion would be directly 
addressed through investigating the ability of the partici-
pants to recognize the affective content of the generated 

Fig. 3   Synthesized facial expressions by ALICE robot
13  The humanoid ALICE-R50 robot has an expressive face and a 
total of 36 degrees of freedom in the whole body. The robot has two 
cameras and a sensor set to perceive its surrounding environment. 
The robot face with synthetic skin can efficiently make a variety of 
facial expressions with high credibility (Sect. “Facial Expressivity”).
14  The surprise emotion is not considered in this study because it 
is not included in the video database of Hewig et al. [36], which we 
used for emotion induction.
15  We correlate between emotion induction and recognition using 
videos so that an induced emotion could be correctly recognized by 
the participant.
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robot behavior16. Besides, the participants would evaluate 
the effect of the robot behavioral multimodality on interac-
tion. The subjective evaluation of the generated multimodal 
robot behavior investigates basically the clarity17/expressiv
ity18, and the recognizability (i.e., emotion differentiation) 
of the affective robot behavior in addition to the synchroni-
zation between the behavior modalities, etc. The examined 
hypotheses in this study are:

–	 H1: The combination of facial expressions, speech, and 
arm and head gestures will increase the clarity of the 
affective content of the robot behavior to the participant 
compared to the experimental conditions with less com-
bined affective cues (i.e., less combined modalities of 
communication).

–	 H2: Facial expressions will enhance the recognizability, 
and expressivity, of the robot emotion by the participant 
compared to the experimental conditions without facial 
expressions.

–	 H3: The characteristics of the arm and head gestures of 
the robot (e.g., acceleration) will enhance the expressiv-
ity of the robot behavior so as to help the participant in 
recognizing and distinguishing between emotions com-

pared to the experimental conditions without arm and 
head gestures.

The effect of emotional speech on interaction was not 
examined through an independent hypothesis because this 
requires whether:

–	 Comparing the robot behavior that employs affective 
speech to the robot behavior that does not employ affec-
tive speech (i.e., using neutral or monotone speech). 
However, the proposed system in this study uses the syn-
thesized speech as a basis for generating synchronized 
gestures with facial expressions (Fig. 1). Therefore, syn-
thesizing monotone speech will lead to associated facial 
expressions and gestures with different characteristics 
than those of the facial expressions and gestures gen-
erated using affective speech. Consequently, it is not 
possible to compare between the robot behaviors in 
similar experimental conditions (e.g., the robot behav-
ior expressed through speech and gestures in the case 
of affective speech and the same behavior in the case of 
monotone speech as gestures in both cases will be differ-
ent).

–	 Comparing the robot behavior that employs affective 
speech to the robot behavior that does not employ speech 
at all. This condition does not match the context of the 
non-mute human–robot interaction19.

Consequently, these two cases are excluded from our 
experimental design. Instead, the important role of speech 

Fig. 4   Eyelids animation script

Table 3   The target emotions and their corresponding feature films. 
The main videos were extracted from the bold-font films. Meanwhile, 
the other films represent the standby videos

Emotion Feature Film

Sadness The Champ—An Officer and a Gentleman
Disgust Pink Flamingos—Maria’s Lovers
Happiness On Golden Pond—An Officer and a Gentleman
Anger My Bodyguard—Cry Freedom
Fear Halloween—Silence of the Lambs
Neutral Crimes and Misdemeanors—All the President’s Men

16  This is based on their previous experiences with the target emo-
tions, which are common and basic emotions that each person 
whether experiences internally or perceives through speech, facial 
expressions, and gestures of others in the environment.
17  The maximum possible level of emotional expressivity achieved 
through combining speech, facial expressions, and head–arm gestures 
together (Fig. 6), which is concordant with the definition of emotion 
clarity discussed earlier in the same section [24].
18  A lower level of emotional expressivity achieved through less 
affective cues than in the clarity level (Fig. 6).

19  This study is focusing on investigating the effect of the robot 
behavioral multimodality on interaction with typically developed 
individuals who use speech, facial expressions, and gestures for daily 
communication. Consequently, excluding speech from interaction will 
certainly hinder conveying messages (using only facial expressions 
and/or gestures) in a normal manner unless we use a conventionalized 
sign language in parallel, which is totally away from the scope of the 
current study.
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in enhancing the affective content of interaction would be 
measured directly through analyzing the post-experiment 
questionnaires.

Experimental Design

The experimental design is based on the between-subjects 
design20 through a human–robot interaction context in 
which the synthesized speech by Mary-TTS (text-to-speech) 
engine is used as an input to the gesture generator [5] so 
as to synthesize adapted gestures to the synthesized affec-
tive speech21. This constitutes an implicit validation for the 
expressivity of the synthesized speech using Mary-TTS 
engine in which the more natural (i.e., human-like) the syn-
thesized speech is, the more natural will be the correspond-
ing generated gestures (to be evaluated by the participants). 
Besides, generating adaptive gestures based on speech char-
acteristics is concordant with the cognitive co-production 
process of synchronized speech and gestures that humans 
undergo [56]. The synthesized speech and gestures (in 
addition to facial expressions) are modeled on the robot and 
evaluated by the participants at the end of each conducted 
experiment. The proposed design includes the following 
robot behavior conditions:

–	 The robot produces a multimodal affective behavior 
expressed through facial expressions, speech, and arm 
and head gestures (i.e., condition C1-SFG).

–	 The robot produces a multimodal affective behavior 
expressed through facial expressions and speech (i.e., 
condition C2-SF).

–	 The robot produces a multimodal affective behavior 
expressed through arm and head gestures, and speech 
(i.e., condition C3-SG).

–	 The robot produces a unimodal affective behavior 
expressed through speech (i.e., condition C4-S).

To validate the first hypothesis, the experimental conditions 
C1-SFG, C2-SF, C3-SG, and C4-S were examined. While 
for the second hypothesis, the conditions C2-SF and C4-S 
were examined, and for the third hypothesis, the conditions 
C3-SG and C4-S were examined. We excluded the condi-
tion of the robot producing a unimodal behavior expressed 

through facial expressions or arm and head gestures with-
out using speech, and the condition of the robot producing 
arm and head gestures combined with facial expressions 
without using speech (Sect. “Hypotheses”). The condition 
C3-SG was excluded from validating the second hypothesis 
and the condition C2-SF was excluded from validating the 
third hypothesis because the facial expressions of the robot 
are associated with the additional body gestures detailed in 
Table 2. Consequently, separating between the conditions of 
facial expressions and gestures (i.e., conditions C2-SF and 
C3-SG) could guarantee differentiating between the accom-
panying gestures to the robot facial expressions and the basic 
head–arm gestures synthesized by the generator. This could 
lead to better evaluating the effect of facial expressions and 
gestures on interaction.

The literature reveals serious efforts to elicit emotion in 
humans under laboratory conditions. These emotion induc-
tion methods include: dyadic interaction tasks [70], affective 
imagery [47], music [69], and pictures and film clips [85]. In 
this study, the robot and the participant, in each condition, 
follow an expressive stimulus set of short videos through six 
experiments that mean to elicit six different target emotions 
(Fig. 5) after a short preparation phase22,23. The scenario of 
interaction is described as follows: 

–	 The robot invites the participant to watch some videos 
and discuss their storylines.

–	 The robot asks the participant to express his/her opinion 
about the content of the projected video. Afterwards, 
it detects and segments predefined emotion-referring 
keyword(s) from the recognized comment of the par-
ticipant, such as “This is disgusting!”, “This video is 
expressing sadness!”, etc. This helps in detecting the 
video’s emotional content (from the participant’s point of 
view) to trigger a corresponding adaptive robot behavior.

–	 After listening to the participant’s comment on the video, 
the robot makes a comment accompanied by speech, 
facial expressions, and/or head–arm gestures on the con-
tent of the video.

–	 If the displayed video induces, in the participant, another 
emotion than the concerned target emotion so that the 

22  Pre-Experiment Preparation Phase:The experimenter introduced 
the humanoid expressive ALICE robot to the participant and explained 
the task. Each participant signed an informed consent to be notified 
about different points such as nature of the study, duration of interac-
tion, data privacy, statement of risks and benefits, right to get informed 
about results in addition to giving an authorization to get filmed. The 
participant was seated in front of the robot with a table in-between, and 
used a headset microphone to capture his/her own speech during inter-
action [7].
23  Each experiment had a varying duration between 1 and 4 min, 
while the duration of answering each questionnaire was varying 
between 2 and 5 min.

20  Each experimental condition is evaluated through a different group 
of participants.
21  We used the synthesized affective speech by Mary-TTS engine 
to generate a robot gestural behavior instead of using human speech 
directly because not all the participants are able to show an affective 
content in speech when describing a scene, unless they are describ-
ing a personal experience they have been through (this describes the 
difference between emotion perception and emotion experience as 
explained in Schreuder et al. [74]), which is not the case in this study.
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system detects keyword(s) that belong mainly to another 
category of emotion-referring keywords, the robot com-
ments through a neutral behavior. Thereupon, the robot 
asks the participant to watch a different video so as to 
retry to induce the emotion that was failed to be elicited 
using the first video (Table 4).

–	 The experiment terminates for the examined target emo-
tion. Thereupon, the participant evaluates the generated 
behavior of the robot through a 7-point Likert scale ques-
tionnaire. This evaluation focuses on the relevance of the 
robot behavior to the context of interaction in terms of 
its emotional content and expressivity, synchronization 
between the robot behavior modalities (i.e., speech, facial 
expressions, and/or gestures according to the examined 
experimental condition), etc.24 Afterwards, a new experi-
ment of interaction starts for examining a different, ran-
domly selected, target emotion.

–	 After all the experiments terminate, the experimenter and 
the robot express gratitude to the participant for his/her 
time and cooperation.

Table 4 shows that the majority of the target emotions 
were correctly recognized by the participants after watching 
the first videos in the four experimental conditions, while 
the second videos were slightly required. This shows that 
the chosen videos from the employed silent video database25 
had convincing emotional contents [36]. Afterwards, the 
participants were first asked through each post-experiment 

questionnaire to evaluate the characteristics of the generated 
robot behavior in terms of each modality of communica-
tion (i.e., speech, gestures, and facial expressions) indepen-
dently, then they were asked to evaluate and recognize the 
affective content of the generated combined behavior. We 
argue that this supports separating between the emotional 
contents of the videos and the robot behaviors during evalu-
ation—supported by the findings of [35]26—up to the level 
that allows for investigating the experimental conditions 
successfully27.

Experimental Results

A total of 60 participants were recruited to validate the dif-
ferent examined hypotheses in this study. The participants 
have been equally distributed over the experimental con-
ditions (i.e., 6 females and 9 males for every condition). 
The participants were undergraduate and postgraduate stu-
dents and employees at ENSTA-ParisTech (with ages vary-
ing from 20 to 57 years old, M = 29.6 and SD = 9.4 ). The 
participants had a technical background with an average of 
66.7% , and a non-technical background with an average of 
33.3% . Moreover, only 40% of the participants had previous 
interaction experience with robots, while 60% of them did 
not interact with robots beforehand. The effect of synthesiz-
ing adaptive robot behavior on interaction with the partici-
pants in addition to personality and gender-based evaluations 
of the emotional expressivity of the generated behavior are 
illustrated in the following points:

Fig. 5   Interaction experiments between the robot and two different 
participants

24  An example of a Likert scale question that evaluates the clarity of 
the robot behavior during the conducted experiments (1 ⟶ lowest 
score, 7 ⟶ highest score):
  – How do you evaluate the affective expressivity of the generated 
robot behavior?

25  This silent video database was created for serving brain asym-
metry research to avoid affecting asymmetry measures with speech, 
sound, and music [36].

26  Hermans et al. [35] argued that affective priming results from fast-
acting cognitive processes whose effects quickly dissipate after a 
short duration of milliseconds.
27  According to the study of Schreuder et  al.  [74], emotion percep-
tion results from the interpretation of the emotional qualities of the 
stimulus, while emotion experience is a state that results from the 
internal assessment of the percept. This means that a human might 
perceive a stimulus with emotional content (with/without) experienc-
ing any internal emotions depending on the stimulus, the context, and 
the person. Emotion elicitation is the intermediate phase that links 
between emotion perception and emotion experience. The employed 
database in the experiments had been evaluated with emotional elicit-
ing content as discussed in Hewig et  al.  [36]. However, as the pro-
cess of emotion elicitation highly depends on the human and his/her 
previous emotional experience, it is very difficult to define the level 
of emotion elicitation in the recruited participants during the experi-
ments so as to detect if it was sufficient to have any effect on the 
evaluation of the robot behavior. This needs another psycho-cognitive 
study and different experimental conditions to investigate. However, 
based on the findings of Hermans et al. [35], we believe that evaluat-
ing the robot behavior was not influenced by the videos. It might be 
important to notice that the participants evaluated the robot behavior 
freely regardless of the content of the videos so that when the robot 
behavior had a convincing affective content, it received a high evalu-
ation, to the contrary of the case when it had a less convincing affec-
tive content, which supports our proposed experimental design.
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Effect of the Robot Behavioral Multimodality 
on Interaction

For the first hypothesis, a significant difference was found 
by ANOVA analysis in the clarity of the affective robot 
behavior expressed through a combination of speech, facial 
expressions, and head–arm gestures with respect to the 
robot behaviors, with less affective cues, expressed through 
speech, speech and facial expressions, and speech and 
head–arm gestures ( F[3, 356] = 21.15 , p < 0.001 ) (Fig. 6). 
Tukey’s HSD comparisons indicated a significant difference 
in clarity between the robot behavior expressed through 
combined speech, facial expressions, and head–arm gestures 
(i.e., condition C1-SFG) on one side, and the robot behaviors 
expressed through speech (i.e., condition C4-S) ( p < 0.001 ) 
(the lowest among the four conditions), speech and facial 
expressions (i.e., condition C2-SF) ( p < 0.001 ), and speech 
and head–arm gestures (i.e., condition C3-SG) ( p < 0.001 ) 
on the other side. Moreover, no significant difference was 
observed between the conditions C2-SF and C3-SG in the 
clarity of the robot behavior.

For the second hypothesis, the robot behavior expressed 
though facial expressions and speech was found by the par-
ticipants to be more expressive and adapted to the context 

of interaction than the behavior expressed through speech 
( F[1, 178] = 18.63 , p < 0.001 ). Moreover, the participants 
considered that speech and facial expressions were syn-
chronized with an average score of M = 5.9 , SD = 0.9 . 
Furthermore, they did not find any significant inconsist-
ency in affective content between speech and facial expres-
sions with an average score of M = 1.8 , SD = 1.2 . Over 
and above, they agreed that speech was less expressive 
than facial expressions with an average score of M = 4.4 , 
SD = 1.5 . Table 5 shows that facial expressions improved 
only the score of recognizing the emotion of ‘anger’ in the 
experimental condition C2-SF with reference to the condi-
tion C4-S, which is related to the limitations of Mary-TTS 
engine in designing a highly expressive vocal pattern for 
this particular emotion (Sect. “Affective Speech Synthe-
sis”), so that facial expressions enhanced the affective con-
tent of speech giving the participants the feeling that the 
robot was expressing the ‘anger’ emotion persuasively. To 
the contrary, the facial expressions of the robot had a nega-
tive effect on the score of recognizing the emotion of ‘dis-
gust’ in the experimental condition C2-SF with reference to 
the condition C4-S, which is related to the limited affective 
facial expressivity for this particular emotion (Sect. “Facial 
Expressivity”).

For the third hypothesis, the affective content of the 
robot behavior expressed through both arm and head ges-
tures and speech was considered to be more expressive and 
observable by the participants than that of the behavior 
expressed through speech ( F[1, 178] = 17.16 , p < 0.001 ). 
Furthermore, the participants found that speech and ges-
tures were synchronized with an average score of M = 6.1 , 
SD = 0.7 , and they agreed that the execution of gestures was 
fluid with an average score of M = 5.35 , SD = 1.03 . Over 
and above, the participants found that gestures were more 
expressive than speech with an average score of M = 4.25 , 
SD = 1.43 . The affective content of the arm and head ges-
tures of the robot behavior was reasonably recognized by the 
participants (Table 5). The generated gestures ameliorated 
only the score of recognizing the emotion of ‘anger’ in the 
experimental condition C3-SG with reference to the condi-
tion C4-S, which is related to gesture characteristics such as 
velocity and acceleration, that enhanced the robot expres-
sivity for this emotion.

Figure 6 illustrates the variation in the affective expres-
sivity of the robot behavior in the experimental conditions 
C1-SFG, C2-SF, C3-SG, and C4-S. The robot behavioral 
expressivity in each condition was investigated through a 
different group of 15 participants. The combination of dif-
ferent affective cues (i.e., speech, facial expressions, and 
head–arm gestures in the condition C1-SFG) provided clar-
ity to the robot behavior with respect to the other condi-
tions that employ less affective cues as argued in the first 

Table 4   The recognition scores of the videos’ affective contents in 
the different experimental conditions

Condition Correct Emotion Induction

After the 1st videos After the 2nd videos

C1-SFG 100% 0%
C2-SF 100% 0%
C3-SG 98.9% 1.1%
C4-S 97.8% 2.2%

Fig. 6   Human perception of the emotional expressivity of the robot 
behavior in the four experimental conditions, where the clarity of 
behavior refers to the maximum level of expressivity it can show
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hypothesis28. Meanwhile, no significant difference was 
observed in the robot behavioral expressivity between the 
conditions C2-SF and C3-SG.

A significant result was found by two-way ANOVA 
analysis in the perception of the affective robot behav-
ior with clarity–expressivity of facial expressions (i.e., 
condition C2-SF) and emotion as independent variables 
( F[2, 168] = 4.47 , p = 0.0359 ). However, no significant 
result was found with clarity–expressivity of gestures (i.e., 
condition C3-SG) and emotion as independent variables. 
After running one-way ANOVA analysis on each emotion 
individually, the results showed that both the ‘happiness’ 
and ‘disgust’ emotions were found significantly more clear 
when being expressed through combined speech, facial 
expressions, and head–arm gestures (i.e., condition C1-SFG) 
( F[1, 28] = 3.36 , p = 0.077 ) than when being expressed 
though speech and facial expressions (i.e., condition C2-SF) 
( F[1, 28] = 6.133 , p = 0.0196 ). Meanwhile, no significant 
differences were found for the ‘neutral’, ‘sadness’, ‘fear’, and 
‘anger’ emotions. Over and above, a statistically significant 
main effect was observed for the experimental conditions 
( F[3, 335] = 12.738 , p < 0.001 ) and for the target emotions 
( F[5, 335] = 5.527 , p < 0.001).

Human Personality‑Based Evaluation 
of the Affective Robot Behavior

Personality is a determinant factor in human social interac-
tion, which has a long-term consistent effect on the gen-
erated multimodal human behavior. Reisenzein and Weber 
[67] defined personality as the coherent and collective pat-
tern of emotion, cognition, behavior, and goals over time 
and space. Moreover, Revelle and Scherer [68] discussed 
the strong relationship between personality and emotion. 
Several research studies in neuroscience discussed the cor-
relation between the neurobiological structure of personality 

extraversion and the activation in different brain regions 
involved in emotional responding (which implies perceiving 
the affective content of interaction) [39]. This potential cor-
relation between personality extraversion and emotion per-
ception would be investigated within a human–robot interac-
tion context so as to study the effect of human personality on 
perceiving the emotional expressivity of the robot behavior.

Personality Extraversion‑Based Evaluation of the Affective 
Robot Behavior

Table 6 indicates the numbers of the introverts and extra-
verts in each experimental condition, where the calculation 
of personality scores was based on the online Big5 person-
ality model questionnaire [32]29 that each participant filled 
in at the beginning of the experiments. Figure 7 illustrates 
the effect of the human extraversion personality trait—in 
terms of the introversion and extraversion of personality—
on the perception of the affective expressivity of the robot 
behavior. In the four experimental conditions, both the intro-
verts and extraverts showed a similar tendency in evaluat-
ing the emotional expressivity of the robot behavior, where 
the perception of the extraverted participants for the robot 
behavior was, in general, higher than that of the introverted 
participants. The variance in evaluating the expressivity of 
the robot behavior by the introverted and extraverted par-
ticipants was found statistically significant (through T-Test) 
in the different conditions: C1-SFG ( p < 0.02 ), C2-SF 
( p < 0.03 ), C3-SG ( p < 0.03 ), and C4-S ( p < 0.02).

This evaluation difference between the introverted 
and extraverted participants is concordant with the find-
ings of Shulman and Hemenover [77], Petrides et al. [63], 
and Atta et al. [12], who argued that emotional intelligence30 
is positively correlating with personality extraversion. Con-
sequently, the extraverted participants are expected to have 
a relatively higher emotional intelligence than that of the 
introverted participants so that they gave higher ratings for 
the robot behavior in the four experimental conditions. The 
previous evaluation of the affective expressivity of the robot 
behavior matches the illustrated findings in Fig. 6, where the 

Table 5   The scores of 
recognizing the target emotions, 
modeled on the robot, in 
different conditions

Condition Emotion

Sadness Disgust Happiness Anger Fear Neutral

C2-SF 100% 80% 93.3% 92.9% 100% 100%
C3-SG 100% 93.3% 93.3% 92.3% 100% 100%
C4-S 100% 93.3% 93.3% 80% 100% 100%

28  Clarity and expressivity have been previously defined in Sect. 
“Hypotheses”. An affective robot behavior could have some level 
of expressivity, but it could be not really clear to the participants in 
the same time. For example, the interpretation of a facial expression 
could be ambiguous and confused among different emotions (i.e., it 
is expressive, but not clear enough to be fully perceived), in this case 
speech or gestures could help in interpreting the actual emotion so as 
to enhance its clarity.

29  http://www.outof​servi​ce.com/bigfi​ve/
30  The ability to perceive others’ emotions through analyzing the 
affective cues of their behaviors [53].

http://www.outofservice.com/bigfive/
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evaluation of the robot behavior in the condition C1-SFG 
was higher than that in the other conditions.

Gender‑Based Evaluation of the Affective Robot 
Behavior

Both of the female and male participants have positively 
perceived the affective expressivity of the generated robot 
behavior in the four experimental conditions (Fig. 8). The 
indicated ratings in the figure show that the perception of the 
male participants for the affective robot behavior in the four 
conditions was generally higher than the perception of the 
female participants. This relatively higher preference of the 
male participants over the female participants for the emo-
tional expressivity of the female ALICE robot matches the 
findings of Siegel et al. [78] and Park et al. [60], where they 
found that the participants considered the opposite-sex robots 
to be more attractive and convincing during interaction.

The variance between the ratings of the male and 
female participants for the emotional expressivity of the 
robot behavior indicated in Fig. 8 was found statistically 
significant (through T-Test) in the different conditions: 
C1-SFG ( p < 0.02 ), C2-SF ( p < 0.03 ), C3-SG ( p < 0.02 ), 
and C4-S ( p < 0.001 ). Furthermore, the male participants 
considered the generated multimodal robot behavior 
more adapted to the emotional content of the videos, and 
consequently the context of interaction, than the female 
participants ( p < 0.01 ), which supports the hypothesis 
of the opposite-sex attraction of human users to robots.

The observable difference between the ratings of the male 
and female participants in the condition C4-S compared to 
those in the conditions C1-SFG, C2-SF, and C3-SG (Fig. 8) 
could be related to the low affective expressivity of the 
robot behavior employing speech only in interaction with 
respect to those that employ speech combined with facial 
expressions and/or gestures (Fig. 6). We argue that facial 
expressions and gestures enhanced the affective content of 
the robot behavior, which slightly improved the perception 
of the female participants to the generated behavior in the 
conditions C1-SFG, C2-SF, and C3-SG while keeping the 
opposite-sex attraction hypothesis of human users to robots 
valid. These findings need; however, a larger number of male 
and female participants to have a clearer visualization for 
their perceptual differences of the robot behavior.

Discussion

We propose an integrated system for generating affective 
robot behavior expressed through speech, gestures, and 
facial expressions within a human–robot interaction con-
text. We investigate the multimodality of the generated 

robot behavior and its positive effect on interaction with 
the participants through three experimental hypotheses 
that compare between the robot behavior with combined, 
at least two modalities of, speech, gestures, and/or facial 
expressions and those with less affective cues. Moreover, 
we investigate any potential effect of human personality 
and gender on the way the robot behavior was perceived 
during interaction.

The proposed framework (Sect. “System Architecture”) 
integrates different subsystems for affective speech synthe-
sis, gesture generation based on speech prosody, and an 
expressive robot with highly credible facial expressions, 
which allows for studying the effect of the robot behavio-
ral multimodality on interaction with a wide scope. The 
obtained results demonstrate the positive role that affec-
tive cues could play in enhancing the expressivity of the 
robot behavior so as to help the participants in perceiving 
its emotional content appropriately. These findings are 
clearly illustrated in Fig. 6, where the robot behavior that 
combines speech, facial expressions, and gestures attained 
a higher level of expressivity (i.e., clarity level) than the 
other robot behaviors with less affective cues.

When searching in the related studies in the literature 
for concordant results with our findings on affect recog-
nition using multimodal information, we found that the 
majority of them were unimodal (and bimodal)—based 
approaches employing, among others, gestures and facial 
expressions, speech and gestures, and speech and physi-
ological signals [38, 93]. Meanwhile, there are a  few 
studies that discussed emotion recognition with more that 
two modalities of information. Castellano et al. [21] used 
speech, gestures, and facial expressions to recognize emo-
tions, and reported that using multimodal data for affect 
recognition highly increased the scores with respect to the 
cases that use less modalities of data [73]. Generally, our 
proposed system shares the same concept of the positive 
effect of multimodality on emotion perception and recog-
nition. However, it is designed to generate and embody 
a multimodal behavior—expressed through speech, ges-
tures, and facial expressions—on ALICE robot so as to 
be positively perceived by the participants, which makes 
it a different contribution than any other approach in the 
related literature.

Table 6   The numbers of the introverted and extraverted participants 
in the four experimental conditions

Personality Dimension Condition (15 Participants/Condition)

C1-SFG C2-SF C3-SG C4-S

Introversion 6 6 8 7
Extraversion 9 9 7 8
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Over and above, the results report some differences 
in the perception of the introverted–extroverted and 
male–female participants for the affective robot behavior, 
where the perception of the extraverted and male partici-
pants for the robot behavior was generally higher than that 
of the introverted and female participants in the different 
conditions of behavior (Figs. 7 and 8). While we tried to 
explain these findings in light of other similar findings 
in the related literature (Sects. “Personality Extraversion-
Based Evaluation of the Affective Robot Behavior” and 
“Gender-Based Evaluation of the Affective Robot Behav-
ior”) so as to support our results, we believe that a larger 
number of introverted–extroverted and male–female par-
ticipants is required in order to figure out their perceptual 
differences of the robot behavior more precisely. However, 
we argue that the current results could give useful insights 
into human perception of the affective robot behavior to 
the other interested researchers in the field of human–robot 
interaction.

Conclusion

This paper introduces a framework for generating an adapted 
multimodal robot behavior, expressed through speech, ges-
tures, and/or facial expressions, to the context of interac-
tion with human users. A set of videos that mean to induce 
target emotions in the participants is employed during the 
experiments upon which interactive discussions start with the 
robot around their affective contents. Each participant is only 
exposed to one of the four experimental conditions of multi-
modal–unimodal robot behaviors during the experiments. The 
system uses Mary-TTS engine to generate emotional speech; 
however, the proposed vocal design requires using interjec-
tions and inter/intra-sentence break times in order to enhance 
the affective content of the synthesized speech. Besides, the 
gesture generator synthesizes adaptive head–arm gestures to 
the generated speech. The proposed design of facial expres-
sions requires using additional body gestures in order  to 
increase their credibility and expressivity to the participants.

Fig. 7   Human personality-based evaluation (in terms of introversion and extraversion of personality) of the affective expressivity of the robot 
behavior

Fig. 8   Gender-based evaluation of the affective expressivity of the robot behavior
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This paper validates the important role of the robot behav-
ioral multimodality in enhancing the clarity of interaction 
compared to interaction conditions with less affective cues. 
Moreover, it discusses the positive effect of the designed 
facial expressions and gestures in enhancing the emotional 
expressivity and recognizability of the robot behavior. 
Over and above, it demonstrates the perceptual differences 
between the introverted–extroverted and male–female par-
ticipants for the generated affective robot behavior. For the 
future work, we are considering to improve the gestural 
expressivity of the system through additional gesture genera-
tors. Moreover, we are considering to ameliorate the affec-
tive expressivity of speech and facial expressions to make 
the generated multimodal robot behavior more persuasive 
and natural. Besides, we are considering to integrate lan-
guage models that can help the robot to understand human 
language with a wider scope instead of parsing keywords as 
with the employed system in the paper [10, 11].
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