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Abstract
Nowadays, deep learning is becoming increasingly important in our daily life. The appearance of deep learning in many 
applications in life relates to prediction and classification such as self-driving, product recommendation, advertisements 
and healthcare. Therefore, if a deep learning model causes false predictions and misclassification, it can do great harm. This 
is basically a crucial issue in the deep learning model. In addition, deep learning models use large amounts of data in the 
training/learning phases, which contain sensitive information. Therefore, when deep learning models are used in real-world 
applications, it is required to protect the privacy information used in the model. In this article, we carry out a brief review 
of the threats and defenses methods on security issues for the deep learning models and the privacy of the data used in such 
models while maintaining their performance and accuracy. Finally, we discuss current challenges and future developments.
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Introduction

Deep learning has many applications in life such as speech 
processing, biometric security, self-driving cars, health pre-
diction, financial technology, and retail [1]. Each application 
has its own specific requirements depending on the nature 
of the data and the user’s intent. The researchers proposed 
many models to meet the application requirements, users and 
characteristics of each type of application such as LeNet, 
VGG, GoogleNet, Inception, ResNet. However, major secu-
rity-related weaknesses of the deep learning systems have 
recently been discovered and there have been a number of 
studies published on this issue. Although many researches 

have been published relevant to both attacking and protect-
ing users’ privacy and security techniques, they are still frag-
mented. Before Tramèr proposed the R-FGSM algorithm, he 
has reviewed some attack methods according to FGSM and 
GAN in [2]. In addition, security issues in the deep learning 
model are presented by Xiaoyong Yuan [3]. The above stud-
ies have only focused on the security of the deep learning 
model, which does not have an overview of protecting pri-
vacy in the deep learning model [4, 5]. This article reviews 
attack and prevention techniques in deep learning models, 
and specifically on adversarial examples. In user privacy, 
the article focuses on describing and classifying offensive 
and defensive techniques; in particular, differential privacy 
techniques in protecting privacy.

In deep learning model security, attack techniques are 
classified according to training and testing stages. This study 
focuses on threats at the testing. In addition, the classifica-
tion is based on the attacker’s knowledge and the pattern of 
attacking black boxes and white boxes. In protecting user 
privacy, attack techniques are classified based on system 
architecture and the attacker’s knowledge. In system archi-
tecture, attack techniques are classified into two groups: cen-
tralized and distributed, while the attacker is also divided 
into white-box and black-box attacks according to the knowl-
edge. Defensive techniques are classified based on the stages 
of the deep learning model.

This article is part of the topical collection “Software Technology 
and Its Enabling Computing Platforms” guest edited by Lam-Son 
Lê and Michel Toulouse.
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The content of the article is divided as follows: “Back-
ground” introduces the background of deep learning and 
differential privacy, next “Security in Deep Learning” 
describes the security in deep learning, “Privacy in Deep 
Learning” presents the privacy protection problem in deep 
learning, and the last section offers discussions and future 
directions.

Background

Deep learning models work in layers and a typical model at 
least has three layers which compose of input, hidden, and 
output layers. Each layer which connects each other accepts 
the information from previous and passes it on to the next 
one. Each layer has many neural networks which find asso-
ciations between a set of inputs and outputs as illustrated in 
Fig. 1 and present as shown in Eq. (1):

where n is total input, x is the ith input, w is the ith weights, 
which connects between input and output, σ is the activation 
function, and Y is the output.

In the privacy in deep learning, an input is sent to the 
deep learning model, which responses an output. To reach 
reliable levels of accuracy, models require large datasets 
(datasets compose of unstructured and structured data) to 
learn. To shield individual privacy in this context, differen-
tial privacy method has been used [6, 7].

Definition differential privacy: A randomize mechanism 
M: D → R satisfies (ε, δ)-differential privacy if for any two 
adjacent inputs d, d′ ∈ D and for any subset of outputs S ⊆ R, 
it holds that:

where ε is the privacy budget that controls the privacy level, 
and δ allows for a small probability of failure.

The smaller ε and δ are determined, the more similar 
M(d) and M(d′) are required to be as illustrated in Fig. 2.
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In the security in deep learning, based on the scenarios, 
the assumptions are for deploying specific attacks. The threat 
models are divided based on the adversary’s knowledge, 
attacker’s target and the frequency of attacks.

The adversary’s knowledge: A black box attack is a case 
when the attacker doesn’t have much information about 
the system, in which case the attacker sends the input and 
receives the output without knowing the system param-
eters. In contrast, in the case of a white box attack, the 

Fig. 1   General deep neural 
network training process [52]
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Fig. 2   Overview of the differential privacy framework
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attacker has access to all system information including the 
structure and parameter values of the model.

Attacker’s target: Targeted attacks identify specific data 
or specific object classes that perform misclassification on 
this data set. These attacks often occur with classification 
systems. For example, in face recognition or authentica-
tion systems, an adversary chooses a specific face, which 
of adversarial examples is misclassified. In contrast, non-
targeted attacks select arbitrary data and are easier to per-
form than targeted attacks.

Frequency of attacks: One-time attacks only take one 
time to create adversarial examples. Otherwise, iterative 
attacks perform multiple updates to generate adversarial 
examples. Iterative attacks always perform better than one-
time attacks, but they require more queries to the deep 
learning system and take more times.

There are two types of security attacks in deep learning: 
adversarial and poisoning attacks. In this study, we focus 
on adversarial attacks. Adversarial attack adds noise to 
normal data during querying into the system. After receiv-
ing the returned results, the attacker uses this data to create 
adversarial examples. This attack is found in areas such as 
image processing, speech, and malware detection. Espe-
cially, in the field of image processing, it can deceive deep 
learning models, but not to humans. This noise value is 
the distance between the source data and the adversarial 
example. This value is measured by Minkowski distance 
as shown in Eq. (3). In addition, adversarial attacks can be 
classified according to the adversary’s knowledge, attack-
er’s target and the frequency of attacks.

where x is original data, xi is attribute ith of original data, y 
is adversarial example, yi is attributed ith of adversarial data.

(3)Lp(x, y) =

(∑n

i=1

|||x
i − yi

|||
P
) 1

P

,

x =
{
x1, x2,… , xn

}
, y =

{
y1, y2,… , yn

}
,

Security in Deep Learning

The Threats in Deep Learning

A.	 Threats
	   Deep learning usually has two stages: training and 

prediction. An attack that uses adversarial examples and 
sends them to the system in the process of classification. 
After that, the system responses a misclassification with 
these inputs. For example, in an animal classification 
system, the input image, which contains a cat, sends to 
the system in the classification process but the system 
does not recognize it. This attack has occurred during 
predicting as shown in Fig. 3. On the other hand, the 
attacker has created adversarial examples to send during 
the training process to destroy the model, which causes 
the model to be misclassified.

B.	 The Attack Model Prediction
	   Attack the white box: Beginning with Szegedy’s 

research, he proposed the idea of using the algorithm, 
which is the targeted attack and named “limited-memory 
Broyden–Fletcher–Goldfarb–Shanno” (L-BFGS) to gen-
erate an adversarial example [8]. The adversarial exam-
ples are done by making slight changes from the original 
image. Although the eyes see no difference between the 
changed image and the original image, the deep learn-
ings see the differences between these two pictures. 
Interference problem is based on finding the value “r” 
optimized by searching linearly so that the value “r” sat-
isfies F (x + r) = l and using the box-constrained L-BFGS 
satisfies the formula:

where x is the set of inputs, l is the set of outputs, r is the 
perturbation. In addition, the optimal “r” in the L-BFGS 
attack is also calculated by the binary search method [9].

Szegedy’s attack is defeated by the defensive distillation 
method that is weaker than the Jacobian-based Saliency Map 

(4)
Min c|r| + lossf (x + r, l) subject to x + r ∈ [0, 1]m,

Fig. 3   Deep learning system 
and the attack model prediction
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Attack (JSMA) [10, 11], which has the main algorithm’s 
idea based on the L0 distance optimization method. This 
Szegedy’s attack is based on a greedy algorithm that chooses 
each pixel to change at each time. It uses gradient F, which 
impacts to each pixel and the results classification, to cal-
culate a Saliency Map. The larger this value of the pixel is 
in the map, the greater the probability of attacked network 
will be.

In addition to JSMA attacks based on function optimi-
zation, there is another attack method, called “Carlini and 
Wagner attack” (C and W attack) [12]. This attack is based 
on the L-BFGS attack but there are three major differences.

The first difference is the optimal formula g definition:

where D is a distance metric that includes L0, L2, and L∞, 
f(x) is an objective function in which f(x′) = l′ if and only if 
g(x) ≤ 0 and c > 0 is a properly chosen constant. This modi-
fication enables Eq. (5) to be solved by the existing opti-
mization. This attack is defeated the example adversarial 
prevention methods.

Secondly, instead of using box-constraint like L-BFGS 
to find a minimal disturbance in L-BFGS attack, C and W 
attack uses w parameter instead of box-constraint with w 
satisfying r = 1

2
(tan h (w) + l) − x.

Finally, the C&W attack gives three measurement param-
eters as compared to L-BFGS method. These three measure-
ments show three different attacks: L0 attack, L2 attack, and 
L∞ attack. The defensive distillation prevention method is 
defeated by L2 attack, the distance L2 attack is calculated as 
the formula:

In other white-box attack, Deepfool method is a simple 
and accurate method to fool deep neural networks that is 
other optimal attack solution proposed by Moosavi-Dez-
fooli in 2016 [13]. When Deepfool algorithm compares to 
L-FBGS algorithm with the same level of jamming, the exe-
cution time of L-FBGS algorithm is much slower. Deepfool 
method does noises in two cases of binary and multi-layered 
classifications. This method is used to find the closest dis-
tance from the original input to the decision boundary of the 
adversarial examples. To overcome the non-linearity at the 
height, they performed a repeat attack with a linear approxi-
mation. In this method, Deepfool added less noise to the 
original data than L-FBGS method.

To continue developing from the Deepfool algorithm, 
Moosavi-Dezfooli launched a universal adversarial pertur-
bations (UAP) attack [14]. To implement this attack, the 
author offers a formula to find satisfactory vector universal 
perturbation:

(5)
Min D(x, x + r) + c.f(x + r) such that x + r ∈ [0, 1]n,

(6)
min

w

‖‖‖‖
1

2
(tan h(w) + l)

‖‖‖‖2
+ c. f

(
1

2
(tan h(w) + l)

)
.

where ε limits the size of universal perturbation, and δ con-
trols the failure rate of all the adversarial samples.

Data set X is a sample image set. The UAP algorithm 
looks for a universal perturbation until most of the X data 
sets are fooled. For each iteration, the author used the 
deepfool method to get minimum noise sample for each 
input and update the noises to the total noises. This loop 
will not stop until most of the data samples are fooled 
(P < (1 − δ)). From the experiments in the paper, universal 
perturbation can be generated using a small fraction of 
data samples instead of the total dataset [14].

The other method is called fast gradient sign method 
(FGSM), which is the first algorithm to use gradient inputs 
to create adversarial examples [15]. In this algorithm, the 
direction in each pixel is determined by the computed 
slope using the backward propagation method. Their per-
turbation can be expressed as:

where ε is the magnitude of the perturbation. The generated 
adversarial example x′ is calculated as x′ = x + r, and lx is the 
true label of x.

In addition, Kurakin improved FGSM method. If the 
FGSM method only performs one time, the I-FGSM algo-
rithm attacks multiple times [16]. The author changed the 
step of new inputs repeatedly as a formula:

where lx is the true label of x, Clipx,�
{
x
′} the function per-

forms clipping on image per-pixel.
Besides that, Yinpeng Dong improved the I-FGSM 

algorithm by adding momentum [17]. Momentum is used 
to step out the local maximum optimal and iterations are 
used to achieve optimized stability level.

White-box attack has the gradient parameter to generate 
the adversarial example, but the black-box attack method 
does not have this parameter. When attacking by black-box 
method, it has to build a deep learning system to create the 
adversarial example. To have data to build a deep learn-
ing system, an attacker performs the aggregated data by 
performing multiple queries on the deep learning system. 
Then, it uses the aggregated data to build a deep learning 
model. This model is used to generate adversarial exam-
ples that are to attack the target model [18, 19].

(7)‖r‖p < 𝜀,

P
(
x� ≠ f (x)

)
≥ 1 − �,

(8)r = � ⋅ sign
(
∇xJ�(x, l)

)
,

(9)x0 = x,

xi+1 = Clipx,�
{
xi + � ⋅ sign

(
∇xLoss

(
xi, lx

))}
,
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Defense Techniques in Deep Learning

A.	 Adversarial Training
	   The idea of the method is that the source data and the 

adversarial examples are involved in the model training 
time. The use of adversarial examples in training time 
makes the deep learning system more accurate and reli-
able. Goodfellow evaluated this method on the MNIST 
dataset [15]. During the training time, at each step, they 
used a half of the original data and a half of adversarial 
examples. Experimental results showed that they were 
resistant to adversarial examples of once-step examples 
such as FGSM, but this method was not effective for iter-
ative attacks like I-FGSM. Kurakin also pointed out the 
use of adversarial examples in training time to increase 
the accuracy and reliability of building deep learning 
models with small data sets such as the MNIST dataset 
[16].

B.	 Detecting Adversarial
	   This method solved the problem based on the idea of 

binary classification. It means that when giving an input 
into the system, the detector will classify that this input 
is the original input or adversarial example. There are 
several suggested ways to solve this problem. Metzen 
created an extraneural network that detected adversar-
ial examples. This sub-neural network task performed 
binary classification [20], while Lu proposed the Safe-
tynet system to add a binary classification threshold on 
nodes in the deep learning network to detect adversarial 
examples [21].

Besides that, Hendrycks provided a way to differentiate 
clean and original data based on the output effect of a neural 
network. The main method builds that PCA coefficients of 
adversarial examples are larger and higher variance for high-
frequency components. Inputs are classified as the clean and 
adversarial examples by fitting two Gaussians to use in a 
likelihood comparison, one for clean examples and another 
for adversarial example [22].

Moreover, Song proposed to use a generative model of 
images to detect and defend against adversarial examples 
[23]. This model defines the joint distribution over all pixels 
by factoring it into a product of conditional distributions (p 
values). The author used p-values as a measure to detect 
noise in the input data as shown in Eq. (10). The empirical 
results are given that this approach can detect adversarial 
examples generated by FGSM, I-FGSM, Deepfool and 
C&W attack.

(10)pCNN(X) =
∏

i
pCNN

(
xi
|||x1∶(i−1)

)
.

Privacy in Deep Learning

The Threats in Deep Learning

There are two types of leaking personal information in 
deep learning: inference attacks as shown in Fig. 4 and 
system organization as shown in Fig. 8. These types have 
four attack methods as shown in Table 1.

A.	 Inference Attack
	   Inference attacks in deep learning fall into two funda-

mental categories, including tracing (membership infer-
ence) attacks and reconstruction attacks [24].

	   In the reconstruction attacks category as illustrated in 
Fig. 5, the attacker’s objective is to extract training data 
from outputted model predictions. According to Fre-
drikson’s experiment, the constructed model inversion 
attacks for deep models use the output of the model to 
infer certain features of the training set [25]. Especially, 
in facial recognition, Fredrikson’s research has shown 
that training data can be reconstructed from the model 
[26]. It means that the principle behind model inversion 
uses features synthesized from the model to generate an 
input that maximizes the likelihood of being predicted 
with a certain label. Furthermore, the adversary’s objec-
tive is to train a substitute model F′ that is capable of 
mimicking a target model F [27]. To build model F′, it is 
based on the leakage of information that is implemented 
in the extraction time. In model extraction, the adver-
sary only has to access the prediction API of a target 
model and query the target model iterative using “natu-
ral” or synthetic samples. These samples are specifically 

Table 1   The classification attack: black-box and white-box

Attack Black-box White-box

Steal the model ✓
Reconstruction attack ✓
Inference membership attack ✓
Steal the sensitive information of 

the user
✓

Fig. 4   Inference attack general [53]
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crafted to maximize the extraction of information about 
the model internals from the predictions returned by the 
model F.

	   In tracing attacks category, an adversary, who identi-
fies input and output formats, is given black-box access 
to a target model without knowing its internal param-
eters and wants to infer whether a particular record is 
included in the training set [28]. The authors trans-
formed the membership inference attack into a classifi-
cation task [24]. There are three steps to implement on 
this attack, such as queries, data collection and shadow 
models building. In the first step, the adversary queries 
the target record t and uses the target classifiers’ pre-
dictions on t to infer the membership status of t. For 
each record t, there are two possible classes: class label 
“in”, which means that the record is in the training set, 
and class label “out”, which represents that the record 
is not in the training set. For the next step, the “shadow” 
training technique is built to use for the membership 
classification task. Multiple “shadow models” that are 

trained by the adversary use the same machine learn-
ing algorithm on records sampled from the data in the 
first step. These shadow models are used to simulate 
the behavior of the target model and generate a set of 
training records with labeled membership information. 
Specifically, the adversary queries each shadow model 
with two sets of records, including the training set of the 
shadow model and a disjoint test set. For each record, 
a new feature vector is generated by concatenating the 
record’s original attributes with the shadow classifier’s 
predictions on that record. A new class label is created to 
reflect membership, i.e., “in” for records in the training 
set, “out” for records in the test set. In the final step, after 
using the labeled dataset, the adversary trains a model as 
“attack” classifier and uses it to infer the membership of 
a target record t as shown in Fig. 6.

B.	 System Organization
	   In the system organization, there are two privacy 

threats in deep learning architecture: central and col-
laborative learning system. For the central system, after 

Fig. 5   Reconstruction attack 
[54]
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Fig. 6   Tracing attack [27]
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companies provide deep learning models and services 
to the public such as machine learning as a service like 
Microsoft Azure Learning, Google, Amazon, BigML, 
etc. [29]. Data owner sends data to the server and public 
model service to the client. The adversary sends an input 
to public machine learning service and receives an out-
put. Using the inputs and outputs pair, the attacker can 
train his own local model which is similar to the target 
model as illustrated in Fig. 7 [30].

   
In a collaborative learning system, clients train a batch 

locally and then calculate the gradient that is applied to 
its weights to minimize the cost function. Finally, it sends 
the gradient to the parameter server. If the adversary has 
taken the role of model server, they receive the client’s 
gradient. This is called “model steal attack”. In addition, 
the adversary has taken the role of participants that attack 
to steal other participant information from the training 
set. This attack is based on exploiting the real-time nature 
of model learning, which allows the adversary to train a 
GAN that generates prototypical samples of the private 
training set as illustrated in Fig. 8 [31].

The Defenses by Differential Privacy in Deep 
Learning

By applying differential privacy to the deep learning models, 
the training data can be protected from the inversion attacks 
or inference attacks when the model parameters are released. 
There are many researches that utilize differential privacy to 
deep learning models. Such methods assume that the train-
ing datasets and parameters of the model are the database 
and prove that their algorithms satisfy Eq. (2). Depending 
on where the noise is added as illustrated in Fig. 9, such 
approaches can be divided into three groups: gradient-level, 
function-level, and label-level (Table 2).

A.	 Gradient-Levels
	   The gradient level approach, in which the client adds 

noise into the gradients of the parameters before send-
ing to server, solves the issue in the collaborative learn-
ing as illustrated in Fig. 10 [32]. From the beginning 
of Shokri’s proposal, instead of sending the entire data 
sets to the server, the clients can train data sets to create 
a model of the system. The client then sends the model 
parameters to the server, and this server collects these 
parameters and finds the optimal parameter. However, in 
this way, the server can rely on the model’s parameters 
to infer the trained set of the clien’s data set. Therefore, 

Fig. 7   The model extract attack 
in the central learning system

Fig. 8   The threat in collabora-
tive learning system
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Fig. 9   Protect privacy in the 
deep learning model
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Table 2   The defense approach 
in the learning system

Defense approach Algorithm Centralized learning 
system

Collabora-
tive learning 
system

Gradient-level DP-SDG [33] ✓
DPGAN [40] ✓
DPGM [35] ✓
DP model publishing [41] ✓

Function-level dPA [55] ✓ ✓
dCDBN [43] ✓ ✓
AdLM [31] ✓ ✓

Label-level PATE [45] ✓ ✓
Scale private learning [46] ✓ ✓

Fig. 10   The collaborator learn-
ing architecture with Differen-
tial Private Stochastic Gradient 
Descent. W represents the 
parameter and G represents the 
gradient information

Parameter Server: W’ = W – r*G

W G W G W G

Par�cipants Par�cipants Par�cipants

Private
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Dataset



SN Computer Science (2020) 1:253	 Page 9 of 15  253

SN Computer Science

Abadi proposed improving the Differentially Private sto-
chastic gradient descent (DPSGD) algorithm by protect-
ing the privacy of the gradients [33]. This method is usu-
ally applied to white-box attacks, when the attacker has 
information on system architecture such as gradients, 
patterns, etc. Abadi also suggested the tracing to see 
when there is a loss of privacy. Limiting the disclosure 
of privacy, the noise method was used by the Gauss-
ian mechanism. The author proposed the calculating 
moments method to track the loss of privacy as formula 
Eq. (11). He also pointed out the hyper-parameter tuning 
parameter related to the balance of privacy, accuracy and 
performance.

with neighboring databases d, d′ ∈ Dn, a mechanism M, 
auxiliary input aux, and an outcome o ∈ R, define the 
privacy loss at o

	   The new Differentially Private SGD algorithm is 
evaluated on small data sets such as MNIST, CIFAR-
10. There are many questions having to be solved such 
as the privacy protection for large data sets or the pri-
vacy problem solving in the long short-term memory 
(LSTM) architecture when applying this algorithm. In 
2018, McMahan continued to assess the privacy level of 
the DPSGD model on LSTM architecture [34].

	   Acs proposed the algorithm of the differentially pri-
vate generative model (DPGM) to improve Differentially 
Private SGD (DP-SGD) [35]. If DP-SGD randomly 
selects T data set as training data, DPGM chooses T data 
sets on the same layers that are divided by the k-mean 
algorithm for the original data set [36, 37]. These will 
be transferred to training models such as restricted boltz-
mann machine (RBM) and variational auto-encoder 
(VAE) [38, 39]. But before using the k-mean algorithm 
to divide the original data set into k layers, the author 
proposed using Fourier series transforms to reduce the 
number of projections. Acs is just like Abadi just testing 
the algorithmic model on a small data set of MINST, not 
using a large data set model.

	   To solve the problem of privacy protection for small 
data sets, Xie proposed the differentially private genera-
tive adversarial network (DPGAN) framework [40]. The 
author made adding noises to the parameters during the 
training process, which were different from the previous 
algorithms that added noise after training the model. 
The author also empirically pointed out the relationship 
between privacy and output of deep learning models that 
were related to the parameter ∈ . The smaller the output 
blurs, the higher the privacy is. The smaller the ∈ is, the 
blurrier the output is and the higher privacy is.

(11)c
(
o;M, aux, d, d�

)
≜ log

Pr [M(aux, d) = o]

Pr [M(aux, d�) = o]
,

	   If Abadi used a fixed number of molecules in the 
batch to calculate the privacy level during the training, 
then Yu recommended taking a different number of sam-
ples for each iteration of DPSGD for the implementation 
of dynamic privacy. In addition, the author also intro-
duced a new concept of concentrated differential privacy 
(CDP), this concept was suitable for systems that needed 
to perform a large number of calculations to train the 
model [41].

B.	 Function-Levels
	   There are many proposed issues related to the objec-

tive function. For example, the differentially private 
logistic regression’s parameters of Monteleoni are 
trained based on the perturbed objective function [30]. 
Besides that, in 2016, Phan implemented private auto-
encoder (PA) as depicted in Fig. 11 based on three main 
ideas. Firstly, the cross-entropy error functions of the 
data reconstruction and soft-max layer were converted 
to polynomials by implementing the Taylor Expansion. 
Secondly, the author added noises to polynomial func-
tions to meet ε-differential privacy during the training 
process. Finally, he added a step of normalization layer 
on top of the hidden layer to protect the ε-differential 
privacy when the system uses many auto-encoders, 
which is called deep private auto-encoder (dPA).

	   In addition to the variational auto-encoder, there is 
other generated model which is called convolutional 
deep belief networks (CDBN) [42]. In 2017, Phan et. al. 
proposed a framework of differential privacy in convolu-
tional deep belief networks (pCDBN) [43]. The pCDBN 
framework has the same idea as dPA is to add Laplace 
noise into the activation functions but there are a few 
different ideas. The first different idea is that pCDBN 
protects privacy for convolutional deep belief networks, 
while dPA protects the auto-encoder model. Next, dPA 
uses Taylor Expansion to approximate the cross-entropy 

Fig. 11   Simple schema of a basic auto-encoder
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error functions, while pCDBN uses Chebyshev expan-
sion.

	   However, dPA only meets the function-level privacy 
protection for specific cases, which are the deep auto-
encoder, and the pCDBN for model convolutional deep 
belief network. Phan has developed a novel mechanism, 
called adaptive laplace mechanism (AdLM), to preserve 
differential privacy in deep learning [44]. The main idea 
of the algorithm is to add more “noises” and “less rel-
evant” features to the model’s output, and vice versa. 
The author used Laplace noise to calculate the layer-
wise relevance propagation (LRP) to estimate the level 
of privacy and the relationship between each input fea-
ture and the model’s output [29].

C.	 Label-Levels
	   Differently from the gradient and function levels, 

the label-level approach injects noise into the knowl-
edge transfer phase of the teacher-student framework as 
depicted in Fig. 12. For the label-level, it is suggested 
that the semi-supervised knowledge transfer model—
the Private Aggregation of Teacher Ensembles (PATE) 
mechanism by Papernot proposed [45]. PATE is a type 
of teacher-student model, and its purpose is to train a 
differentially private classifier (student) based on an 
ensemble of non-private classifiers (teacher). Moreover, 
the moment accountant is utilized to trace the cumu-
lated privacy budget in the learning process by PATE 
and PATE also ensures safety intuitively and in terms 
of the DP, respectively.

	   Later, the PATE was extended to operate on a large-
scaled environment by introducing a new noisy aggre-
gation mechanism by Papernot [46]. It is shown that 
the improved PATE outperforms the original PATE on 
all measures and has high utility with a low privacy 
budget in the large dataset such as street view house 
numbers (SVHN). Furthermore, Triastcyn and Faltings 
applied the PATE to build the differential private GAN 
framework [47]. Using PATE as a discriminator of GAN 
frameworks that a type of classifier determines whether 

the input data is real or fake, the generator trained with 
the discriminator is also differential private.

	   In the summary, we show the main ideas, advantages 
and disadvantages of the defenses to compare, synthe-
size and help the later researches for identifying the 
issues to solve (Table 3).

Discussion and Future Works

During the research, development and operation, organiz-
ers should promulgate laws and regulations against privacy 
violations that include the following article such as building 
tools that allow users to monitor user privacy when provid-
ing data to deep learning systems. In addition, deep learning 
systems are often based on deep learning frameworks such 
as Tensorflow, Torch, Caffe, and Opencv… The vulnerabili-
ties in these frameworks also affect the deep learning sys-
tem built on these frameworks. From the vulnerabilities, an 
adversary attacks a black or white box into a deep learning 
system. Black box attacks rely on a lot of system queries to 
get a large amount of data from which to build substitute 
models. But deep learning systems now limit the number 
of queries into the system, and Tramér’s black box attacks 
require the knowledge of the architecture of the attack sys-
tem [27]. Moreover, deep learning systems have additional 
parts to prevent attacks and these additional parameters are 
not disclosed, so it is difficult for attackers to implement. In 
addition, a thorough understanding of deep learning systems 
is an urgent issue today. Changing the input or changing 
the function in a node in a neural network layer can lead to 
false results. The problem is that you need to understand the 
operating model, and how each node operates in each deep 
neural network to provide effective prevention methods as 
well as ways to find vulnerabilities for the attack of the sys-
tem. In the adversarial example prevention techniques, the 
study focuses on two main groups of solutions: adversarial 
training and detect adversarial. The idea of the adversarial 

Fig. 12   The Private Aggrega-
tion of Teacher Ensembles 
(PATE) mechanism
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training method is to use adversarial example as part of the 
training data set. Adversarial example is created from other 
machine learning models. The idea of the detect adversarial 
method is to use the deep learning system to distinguish 
whether a record is an adversarial example or not.

The differential privacy is a method to prevent mem-
ber inference attacks. The main idea of this method is to 
satisfy the highest accuracy while minimizing the ability 
to identify a specific record when querying from a statis-
tical database. To protect user privacy, it has to remove 
individual features. There are three ways to eliminate 
individual features such as gradient, loss function, and 
label. In addition to the differential privacy method, there 
is a homomorphic encryption method, which is based on 
coding individual features and then sending them to the 
server to perform the training. Instead of coding individual 
features, we propose an idea to prevent the disclosure of 
individual feature information by obscuring it before send-
ing it back to the server. This method is often used in the 
secure multi-party computation. We also propose a data 
privacy-preserving framework to receive raw data, process 
it to preserve data privacy then send the processed data to 
the machine learning services. The framework transforms 
the original data into another form that is still utilizable for 
learning models but has less privacy risk. Instead of send-
ing raw data directly to machine learning services, data 

owners send them along with some anonymization policies 
to the proposed framework. Those policies are prepared 
with the help of data experts, based on the requirements 
from the current domain, learning models and the level 
of privacy preservation. As a result, the framework can 
provide different datasets to the learning services from on 
raw data and depend on different policies provided from 
data owners (Fig. 13).

With the raw data, the data owners prepare the type iden-
tification metadata of each field. The framework also sup-
ports them in making some risk identification before run-
ning the anonymization processes. Then, we evaluate the 
outcome data to measure the risk as well as the utility of 
the anonymized dataset. Finally, after some iterations of the 
anonymization, we provide the results that have an accept-
able level of utilization and satisfies privacy requirements 
to the learning model. Figure 14 depicts the primary com-
ponents of the framework.

In the type identification and risk identification stage, the 
data experts identify the type (structured, semi-structured, 
and unstructured) of the dataset as well as the domain (envi-
ronmental data, population data…). Next, they categorize 
data attributes into groups: identifying attributes, quasi-
identifying attributes, sensitive attributes, and insensitive 
attributes. They also provide metadata about masking data 
to the framework to run the anonymization algorithms.

Fig. 13   Add a data privacy-pre-
serving platform to the machine 
learning processes
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Based on the provided policies, the framework executes 
different algorithms and models (such as k-anonymity, 
l-diversity, t-closeness) to the dataset and measure the risk 
as well as the utility of the outputs [48, 49]. This process is 
iterated multiple times, using heuristics to find the optimal 
result. We can apply some times and resources constraints to 
the framework to stop the iterations earlier. The data experts 
see not only the chosen optimal solution from the framework 
but also the whole solution space in case they want to use a 
different output.

With support from such a data preserving framework, 
data owners can provide materials to the learning models in 
a better way for data privacy. The framework fully supports 
data experts in configuring the anonymization policy and 
evaluating the results. Based on the training models and the 
privacy requirements, the experts work on the original data-
set to create different strategies. Those include the types of 
configurations such as algorithms, parameters of each algo-
rithm, quasi-identifying attributes and sensitive attributes. 
Because the anonymized data is used in different scenarios, 
the framework also allows data experts to handle different 
utility measurements to evaluate the outcome of the process. 
Besides, they can choose a different solution from the solu-
tion space if they are not satisfied with the proposed one 
from the framework.

Attack and defense methods in deep learning always 
remain to help the deep learning system better. Based on 
the characteristics of the deep learning model, it is possible 
to find new ways to attack deep learning to destroy a model 
or to steal a model as well as deduce member training of the 
training data set. In adversary attack, Lp distance is often 
used to measure the level of perturbations and Lp distance 
uses a deception deep learning system, but not the human 
eye. There is a question for using any measurement that 
can be used to deceive the deep learning system and also 
to deceive humans. Besides, most of the black-box attacks 
use a large number of queries, there is an attack that uses 
a small number of queries but can still effectively attack 
the deep learning system or not. For the defense, to prevent 
destructive attacks, the defender needs to understand how 
each node operates and errors through each layer and select 
the appropriate activation function, as well as deep learning 
systems that monitor unusual queries.

Conclusion and Future Work

Deep learning makes people’s lives more comfortable and 
the security and privacy of deep learning become an issue 
not to be overlooked. Therefore, we have reviewed attack 
and defense methods in a deep learning model.

In the security of the deep learning model, we review 
the offensive and defensive techniques during the test stage 

that is the evasion attack. Depends on the attacker’s knowl-
edge of the deep learning system, we classify the attack sce-
nario into two categories: white-box and black-box. Most 
of these attacks are based on creating adversarial examples 
and the distance measure Lp. But these methods of attack 
only deceive the deep learning system, but not to humans. 
In the future, any kind of attacks can fool not only people 
but also the system. Moreover, attack and defense methods 
are closely related that help the deep learning system to be 
less errors during execution.

Since 2013, the world has entered the fourth industrial 
revolution (4IR), data is considered a valuable resource. 
Thus, the issue of protecting privacy in deep learning sys-
tems is extremely important. In this study, we also describe 
privacy threats in deep learning models and point out the 
points in the deep learning model implemented to protect 
privacy. There are three main methods: gradient-level, func-
tion-level, label-level, which are based on the differential 
privacy theory. Currently, the privacy group issue is getting 
more attention, the methods based on differential theory sat-
isfy the privacy group. More study on deep learning-based 
approaches in the context of security and privacy issues in 
smart cities applications [1, 50, 51] to indentify security 
breaches in the internet of things or e-commerce systems is 
also of our great interest in the future.
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