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Abstract
Progress in image captioning is gradually getting complex as researchers try to generalize the model and define the repre-
sentation between visual features and natural language processing. In the absence of any established relationship, every time 
a new dividend is added, it produced very little improvement, not considerable enough to make it general. This work tried 
to define such kind of relationship in the form of representation called Algebraic Amalgamation-based Composed Repre-
sentation (AACR) which generalized the scheme of language modeling and structuring the linguistic attributes (related to 
grammar and parts of speech of language) which will provide a much better structure and grammatically correct sentence. 
AACR enables better and more unique representation and structuring of the feature space and enables transfer learning like 
infrastructure for all machines to interact with the external world (both human and machine) with these representations. A 
large part of the different ways of defining and improving these AACR are discussed and their performance concerning the 
traditional procedures and feature representations are evaluated for image captioning application. The new models achieved 
considerable improvement than the corresponding previous architectures.

Keywords  Language modeling · Representation learning · Tensor product representation · Image description · Sequence 
generation · Image understanding · Automated textual feature extraction

Introduction

Image captioning [62] forms the lifeline of large number 
applications that require transferability between visual fea-
tures, related to images and videos, and textual contents. 
While object detection was made possible through transfer 
learning from highly capable image classification models, 
there is a need to understand the happenings (events) in 
the images for better inference and help in the analysis of 
context, the recommendation of contextual similarity and 
decision making. This gradually drove the planning and 
modeling of image captioning inevitable for researchers 
in academia and industries, which will drive the next gen-
eration innovation in applications and services. Thus will 
enhance the reachability of these services to the unprivileged 

people in the form of assistance, guidance, and support. 
Apart from the inputs traditionally fed into the machines, the 
machine also needs to understand and classify the behavior 
of the end-users to make modern artificial successful. To 
understand means to detect the differences and to classify 
means to the characterization of these. This understands will 
help in the better deliverable and can provide better-per-
sonalized experience than the one-size-fits-all approaches, 
which hardly work for many people. Image captioning archi-
tectures [62] operated on feature generation and combina-
tions for effective sentence generation from visual features 
like Vgg [29], ResNet [13, 21], Inception [79] etc, mostly 
relying on object and attribute detectors to describe images 
[29, 8, 14] and later focused on attention-based model [3, 
91, 58, 79, 86, 13, 47] and semantic factorization [21], video 
captioning using Self-Aware Multi-Space Feature Composi-
tion Transformer [64], Bengali captioning for images [67], 
multi-role crossover [68], aiTPR [69], Coupled-Recurrent 
Unit [70], Tpsgtr [71], Semantic Tensor Product strategies 
[72, 73]. Recent works with top-down objects from image 
regions [46, 1, 71] have used hierarchical models.
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Visual analysis and context understanding require more 
than the probability of co-occurrence of the artifacts and 
assembling all these combinations and make the machine 
understand them is an unfeasible task. When it comes to 
language modeling, Frederick Jelinek made the statement, 
“Every time I fire a linguist, the performance of the speech 
recognizer goes up.” This supports the fact that manual pat-
terns and rule-based approaches are challenging to drive sys-
tems towards artificial intelligence. Also, at the same time, 
the representation must be dynamic to adopt all possible 
combinations, whenever required, just like human beings. 
The focus emphasizes the development of representation to 
incorporate and reciprocate the intricacies of languages in 
the form of grammar, parts of speech and semantic leveling 
that computation can leverage. This can only be achieved 
through deterministic functional approximation and is a 
requirement for scalable systems with topological significant 
and structural data representation. However, the determin-
istic functional approximation is not sufficient as stochastic 
processes like adaptive gradient descent learning cannot be 
relied on to produce structurally correct and reasonable rep-
resentations, instead most of the time they produce some 
useful ones, as mentioned by British statistician George 
Box, “All models are wrong, some are useful.” Unless we 
put provable boundaries, theories, constraints, and ways to 
evaluate them, representation learning can never achieve 
what it is capable of.

As models are getting complex and their ability to gather 
and learn to assemble a large number of distinct features 
and their combinations, the number of network parameters 
is also increasing exponentially and reaches a few million. 
Training of such a model not only requires a consider-
able amount of data and computational resources but also 
involves lots of money, energy and human monitoring. In 
fact, selective training of a model ends up in the generation 
of discriminative features instead of generative ones [65] and 
the prospect to scale up fails and ineffective to handle uni-
dentified or unseen objectives. In disguise, transfer learning

The rest of the document is arranged with problem 
description of language in “Existing Problem of Language 
Understanding”, tensor product theory and representation 
capability in “Theory of Tensor Product”, architectural 
details in “Architecture Description”, description of the 
methodologies in “Methodology”, results and analysis in 
“Results and Analysis”, revisit of the existing works in the 
literature in “Literature Review”, in “Discussion”.

Our main contribution consists of the followings: 1) novel 
architecture and representations for sentence representations 
2) the influence and effect of AACRs for different sentences 
and their constructions 3) the notion of feature decompo-
sition and their interaction for sentences 4) ensemble of 
features fusion and how to effectively utilize the features 
and use them diversely to generate the different styles and 

context of sentences, a mode of naturalism for machines 
5) traditional evaluation criteria is not always correct and 
need to have a better way of feedback evaluation of what is 
being learned by models and machines. Hence reinforce-
ment learning is being used to performance enhancement 
6) hierarchical stochastic decomposition of image features 
through learning to decompose.

Existing Problem of Language 
Understanding

The problem, that persists in images, language, and inter-
changeability, is the confusion created by the linguists 
through defining different rule-based language intricacies 
and baseless complexities. Present-day language generation 
model works on the probability of occurrence of the next 
word based on the previous word and is biased to the short 
term memory of the model. This lacks the proper appearance 
of the actors and the actions in the sentence that are relevant 
to the contexts (image here). Hence, we need some kind of 
generalized and robust structure that can make the machine 
sensitive to the variations it produces and, in reaction, can 
generate a very near correct sequence of objects and events 
detected in the image. However, the objects and events can 
not be perceived individually by the model but can be con-
veyed through a representation, which is an epitome of infor-
mation that helps the machine generate the correct sequence.

However, a similar pattern of images also converges to 
similar kind of representation and machines getting adapted 
to such kind of invariant distribution makes the model inert 
and ineffective. Hence, the representation must be made 
robust so that a large number of different contexts can be 
represented in the framework without convergence and gen-
eralized, which allows non-trained contexts to have equally 
interpretable and distinct representation. Also, the model 
must have the capability to detect variations and differences. 
The representation is crucial, and a robust representation can 
never be generated directly as a transformation, but can only 
be generated when the original context features are decom-
posed and then recomposed to create the representation. This 
work is mainly focused on these kinds of heuristic schemes 
for decomposition and has illustrated these theoretical pros-
pects through experimentation and statistical evaluations.

Literature Review

Image captioning had been solved in many different ways, 
including [45] from CNN features of images and hash-tags 
from users as input [46], template based approach where a 
sentence is generated with ‘template’ with slot locations. 
You et  al. [93] discussed sentiment-conveying image 
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descriptions. Melnek et al. [50] reported the comparison of 
context-aware LSTM captioner and co-attentive discrimina-
tor for image captioning with conditional GAN training, 
enforcing semantic alignment between images and captions 
using two reinforcement learning training procedures known 
as self-critical sequence training (SCST) and Gumbel 
straight through (ST). This paper demonstrated that SCST 
behave in more stable gradient behavior and improved the 
effectiveness of captioning generation than Gumbel ST. Wu 
et al. [85] used question features and image features to gen-
erate question-related captions for visual question answer 
(VQA) dataset and the generated caption creates new knowl-
edge for the VQA system. Here, a joint training occurred 
where the representation was learnt for both caption genera-
tion and VQA application and the joint training procedure 
helped in much better fit and generalization of the machine 
interpret-able representations. Kilickaya et al. [30] proposed 
a data-driven approach where the caption was generated 
based on the comparison made between the image and the 
other relevant training set images through the selection of a 
relevant image. The generated caption is derived out of deep 
learning framework. Here, object-based semantic image rep-
resentation was used in a deep network as features to retrieve 
and select the relevant image(s). Chen et al. [9] introduced 
StructCap, where they used an extra set of features derived 
out the parsing tree that was created from the knowledge of 
the objects gathered from the visual features. The model 
parsed an image into key entities, derived their relations and 
organized them into a visual parsing tree. This visual parsing 
tree was transformed into an embedding using an sequence-
to-sequence framework and visual attention. Jiang et al. [26] 
used a sequence-to-sequence framework by adding an extra 
set of component called guiding network, whose work was 
to introduce a feature space consisting of the different attrib-
utes from the images. However, the paper did not specify 
explicitly what attributes were used for their experiments, 
but it was clearly a multi-layer non-linear transformation 
from the images and constant training of this multi-layer 
non-linear parameters helped it fit the data in proper shape. 
Wu et al. [83] introduced a dual temporal modal which cre-
ated a word-conditional semantic attention from word 
embedding for image caption generation. Word-conditional 
semantic attention was generated from object and attribute 
words from the images and a combination of these attributes 
word embedding was used for attention. Fu et al. [19] dis-
cussed image-text surgery for image description generation. 
Here, the model synthesized pseudo image-sentence pairs 
which were generated under the guidance of a knowledge 
base, with syntax from a MSCOCO data set and visual infor-
mation from an existing large-scale ImageNet image base. 
Pseudo data helped in learning the novel concepts of the 
captioning model without any human-labeled pairs. This was 
far more autonomous than the crowd sourced data driven 

techniques. Chen et al. [3] introduced another attribute-
driven attention for image captioning, where the attributes 
used were the objects detected in the images. However, a 
separate RNN network was used for detection of these good 
objects from the images in a sequence that can be favorable 
for better caption generation. Here, the model leveraged on 
co-occurrence dependencies among object attributes and 
used an inference representation based on it. Cornia et al. 
[12] reported image captioning approach in which a genera-
tive recurrent neural network was used to focus different 
sectors of the image during the generation of the caption, by 
exploiting the conditioning provided through a salient pre-
diction model which was capable of distinguishing and seg-
regating different parts of the image as salient and contex-
tual. Zhao et  al. [98] introduced an architecture named 
MLAIC which consisted of several components and cooper-
ated to generate better representation that can be exploited 
for image caption generation. These components included a 
multi-objective (word and syntax classification) classifica-
tion model that learned rich category-aware image represen-
tations using a CNN image encoder, a syntax generation 
model capable of learning better through syntax aware 
LSTM based decoder and lastly an image captioning model 
that generated image descriptions in text, sharing its CNN 
encoder and LSTM decoder with the object classification 
task and the syntax generation task. Here, the image caption-
ing model was benefited from the additional object catego-
rization and syntax knowledge and joint training for better 
representation. Li et al. [38] proposed a text-guided attention 
model for image caption where the attention was derived 
using the associated captions for training. A dataset associ-
ated with MS-COCO with Chinese sentences and tags was 
introduced. A recommendation-assisted collective annota-
tion system was introduced which automatically correlate 
several tags and sentences as relevant with respect to the 
visual content. Chen et al. [4] introduced reference based 
long short term memory (R-LSTM) model which operated 
on references from images and solved the difficult problem 
of determination of which part of the images were essential 
and correlate with the sentences and this lead to mistraining 
during the training phase and during caption generation 
phase, it leads to misgeneration of caption. The reference 
scheme would gather information in prioritizing and char-
acterizing the relevant information that can be related to 
sentence generation instead of just depending on transforma-
tion heuristics for everything to happen. Tavakoliy et al. [76] 
studied the difference between the bottom-up saliency-based 
visual attention and manual object referrals in scene descrip-
tion construction as image description is generated from 
them. Bottom-up saliency-based visual attention was gener-
ated from RCNN model, while manual description came 
from external involvements. Chen et  al. [5] introduced 
Show-and-Fool, where they used crafted adversarial 
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examples for neural image captioning and studied the effect 
of adversarial conditions for the models and the robustness 
of language to adversarial deformations for machine percep-
tion based on its vision. This work was marked by the 
attempt whether adversarial training could help in effective 
caption generation. Ye et al. [92] discussed ALT, which 
worked on attentions based on the high-dimensional trans-
formation matrix from the image feature space to the context 
vector space and used that processed matrix for caption gen-
eration, while the traditional models worked on learning 
spatial or channel-wise attention from the images, which 
were generated as part of the region based object detection. 
ALT was claimed to learn various relevant feature abstrac-
tions, including spatial attention, channel-wise attention and 
visual dependence. It combined global and local context vec-
tor along with attention probabilities for this purpose. Wang 
et al. [81] introduced a coarse-to-fine method where the 
image was used to generate series of skeleton sentence and 
its attributes and then use these skeleton sentence and attrib-
ute phrases to construct the caption for the image. All the 
skeleton sentence and attribute phrases came from decom-
position of the image where the attributes were associated 
with skeleton sentences and when these attributes were 
incorporated into the caption, they generated much better 
captions. Chen et al. [6] discussed a caption generating sys-
tem that could generate based on different specific styles 
including humorous, romantic, positive, and negative. The 
model was trained using a special set of data where the sen-
tences, related to images, were categorized with specific 
categories. This kind of applications would help in describ-
ing the image content semantically accurately. Chen et al. 
[7] introduced a phenomenon where the model could incor-
porate information like structural relevance and structural 
diversity and accordingly produced image captions based 
what had been perceived. This helped in producing captions 
that contained diverse or relevant information into the sen-
tences and thus moved towards an optimal collaborative 
captioning. Liu et al. [41] reported a model that utilized the 
multimodal attention model that was used as state-of-the-art 
sequence-to-sequence generator in machine translation 
scheme and the attention was composed of several sequence 
of detected objects feed in place of the original visual fea-
tures to the encoder. Harzig et al. [23] introduced amodel 
that can generated captions and can also detect the popular 
brands in the images. This was mainly motivated by the fact 
that the caption must be able to generate certain descriptions 
of the different brands in the image. This kind of specific and 
customized captioning had very high impact in many busi-
nesses. Liu et al. [42] reported an image captioning model 
where a self-retrieval module was used as training guidance. 
The self-retrieval module helped in generation of discrimi-
native sentences and generated gradient for additional learn-
ing session for the model. In comparison to reinforcement 

learning, this concept is similar but with a separate set of 
unlabeled images, whose diversification was utilized and 
also made to involve and incorporated into the training ses-
sion of the model. Chunseong et al. [10] discussed a scheme 
for generation of descriptions for images through the use and 
aware of different user vocabularies accounting for prior 
vocabulary knowledge of such user through the usage of 
their previous documents. This was highly personalized 
scheme of image captioning being introduced and can be 
described a mimicry of a person and his/her style of writing. 
Sharma et al. [59] introduced a new dataset of image caption 
annotations and called it as Conceptual Captions with wider 
variety of captions for the images and contained enormous 
amount of images compared to the MS-COCO dataset, and 
also represented different specific varieties of both images 
and image caption styles. This data is capable of more spe-
cific identification of the happening and is more specific of 
the subcategories of the objects and even characterization of 
humans and celebrities. Yao et al. [90] experimented convo-
lutional neural networks with recurrent neural networks 
image captioning framework for detection of describing 
novel objects in captions. This was another deviation effort 
being made from the traditional generalization towards per-
sonalization and specialization and construction of sentences 
with unique objects. Zhang et al. [97] studied actor-critic 
reinforcement learning based image captioning training 
where the optimization was achieved with non-differentiable 
quality metrics of interest like CIDEr, BLEU_N etc. The 
actor critic was achieved through a separate set of instrumen-
tal optimizer that acted on the model through a validation 
set other than the loss validation set. Fu et al. [18] introduced 
visual captioning with region-based image features as atten-
tion and with scene-specific contexts that could relate differ-
ent specific places as context instead of general statements. 
This was also one kind of personalization where the caption 
generator will be able to definitely specify and recognize 
entities. Ren et al. [57] used a combination of policy network 
and a value network coordinate to generate sentence as 
description for images. Here, policy network served as a 
local embedding as a confidence of predicting the next word 
based on the current state, while value network provides the 
necessary global embedding or a look-ahead guidance, eval-
uating possibilities of extensions from the current state. Liu 
et  al. [40] enhanced performance with prior MIXER 
approach as a reinforcement learning based training, that 
was mixing maximum likelihood estimation training with 
policy gradient, for image captioning through the use of a 
linear weighted combination of SPICE and CIDEr known as 
SPIDEr. Cohn-Gordon et al. [11] introduced a new concept 
that can provide image captions that can distinguish between 
similar kind of images and thus created the scope for diver-
sification of the caption quality through attention representa-
tions and high end sensitivity of the models. This attention 
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was regarded as pragmatically information and its objective 
was far more realistic than just truth. Liu et al. [43] discussed 
an approach with the purpose of evaluating and improving 
the correctness of attention in neural image captioning mod-
els. Here, the correctness and evaluation was made on the 
selection of regional visual features of the image through 
network transformation while generating the caption based 
on the manually prescribed selection. Yao et al. [91] pio-
neered long short-term memory with attributes (LSTM-A) 
where there was successful hybridization of the convolu-
tional neural networks and recurrent neural networks for 
image captioning and the whole process operated as a 
sequence-to-sequence or end-to-end manner. Lu et al. [44] 
introduced an adaptive attention model with a visual sentinel 
where the adaption was made on selection of the regions of 
the image through models and networks known as visual 
sentinel. Instead of providing rigid attention and unstruc-
tured attention, this architecture focused on adaptively 
changing the transformation function or selected function 
based on the progress of the generated caption. Vinyals et al. 
[78] studied generative model based on a deep recurrent 
architecture, where it used combination of the recent 
advancement in computer vision and machine translation, 
connecting computer vision with natural language process-
ing through generation of natural sentences and describing 
images. Anderson et al. [1] introduced bottom-up mecha-
nism for image regions based feature tensor, to be selected 
through Faster R-CNN, to be used as weighted features in a 
top-down model for image caption generation. Here, the 
combinations of the regions to be used was determined heu-
ristically through a model and was dependent on the training 
session, without paying much attention on the sequentiality 
and correctness of the arrival and combinations. Zhang et al. 
[96] discussed an adaptive re-weight scheme for the loss of 
different samples to be used as optimization of the weights 
of the network. These re-weighted loss function was based 
on online positive recall and used two-stage optimization 
strategy. Park et al. [55] introduced personalized image cap-
tioning through the generation of descriptive sentences with 
prior knowledge of a person’s habit of using specific words 
known as active vocabulary or even writing styles through 
estimation of the likelihood of the person’s active words 
from previous documents. Wang et  al. [80] used an 
sequence-to-sequence model with deep bidirectional Long 
Short-Term Memory component for image captions, where 
the images were transformed using a deep convolutional 
neural network and two separate LSTMs predicted the next 
generated word for captions. Rennie et al. [58] introduced a 
new optimization approach called self-critical sequence 
training (SCST), through estimating a baseline to normalize 
the rewards and reduce variance through utilization of the 
output of its own test-time inference and normalization of 
the rewards. Wu et al. [82] experimented high-level concepts 

attention of a CNN-RNN model and achieved considerable 
improvement on the state-of-the-art performance in both 
image captioning and visual question answering [66]. Here 
attribute prediction layer was used for high level semantic 
concept layer. Vinyals et al. [79] introduced a generative 
model based on a deep recurrent units combining recent 
advances of computer vision based visual features and 
machine translation based attention combinations for genera-
tion of natural and grammatically correct sentences describ-
ing an image. Karpathy et al. [28] proposed a bidirectional 
retrieval model capable of retrieving description of images 
through the construction of sentences through a deep, multi-
modal embedding of visual and natural language data, where 
they used the inner product of image segments and sentence 
fragment to create fragment similariy or image-sentence 
similarity. Xu et al. [86] discussed CNN features based 
attention model to describe the content and relationships 
among contents in the image to construct the descriptive 
sentences. Fang et al. [16] introduced image descriptor capa-
ble of visual detectors, language models, and multimodal 
similarity models. Here no image features were used, no 
RNN network but only word from objects for sentence gen-
eration. This model used multiple instance learning to train 
visual detectors for words that commonly occur in captions, 
including many different parts of speech such as nouns, 
verbs, adjectives etc. Karpathy et al. [29] studied a model 
consisting of convolutional neural networks for image region 
selection and bidirectional recurrent neural networks for 
sentence construction, trained with a datasets of images and 
their sentence descriptions. This model learned the inter-
modal connection between language and visual data and 
aligned the two modalities through a multimodal embed-
ding. Anne et al. [2] introduced deep compositional cap-
tioner for the task of generating descriptions of novel objects 
that were not present in the training set as paired image sen-
tence in dataset. This approach leveragedlarge object recog-
nition datasets and external text corpora and through trans-
ferring knowledge between semantically similar concepts. 
Chen et al. [8] discussed a recurrent neural network by 
dynamically building a visual representation of the scene as 
a caption automatically. Here, the model learned to remem-
ber long-term visual concepts and generalized well for all 
the images and was capable of generating novel captions 
from visual features, and also reconstruction of visual fea-
tures from an image description. Devlin et al. [13] intro-
duced a pipeline combining a set of candidate words gener-
ated by a convolutional neural network being trained on 
images and a maximum entropy language model used to 
arrange these words into a coherent sentence. The penulti-
mate activation layer of the convolutional neural network 
was used as input for the network for sentence generation. 
Donahue et al. [15] experimented an end-to-end trainable 
recurrent convolutional network architecture for benchmark 
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video recognition tasks for activity recognition, image 
description, retrieval problems and video narration or video 
description challenges. Gan et al. [20] introduced StyleNet 
that did the task of generating attractive captions for images 
and videos with different styles and the styles were gathered 
through attention. Jin et al. [27] studied a model exploiting 
the parallel structures between images and sentences. Here 
the process of generating the next word based on previous, 
was aligned with visual perception experience with shifting 
attention among the visual regions creating a sense of visual 
ordering. Kiros et al. [31] introduced a framework for learn-
ing distributed representations of attributes like characteris-
tics of text based representations and can be jointly learned 
with word embedding. Kiros et al. [32] proposed a frame-
work for distributed representations generation for word 
embedding while keeping in mind that we can also jointly 
learn other language attributes including document indica-
tors like sentence representation vector, language indicators 
like distributed language representations and other meta-data 
and side information like characteristic traits including age, 
gender of a blogger etc or even some kind of representations 
for authors. It is considered as a third-order model where the 
word context and attribute information representation col-
laborate through multiplication to predict the sequence. Mao 
et al. [47] discussed two sub-networks based model consist-
ing of deep recurrent neural network for sentences and a 
deep convolutional network for images and this multimodal 
layer, capable of interaction with each other, is known as 
m-RNN model because of the multimodal combination of 
features for attention at different levels of the network. 
Memisevic et al. [51] introduced a probabilistic model for 
learning rich, distributed representations of image through 
transformations. This model was trained to learn a general-
ized transformations of its inputs using a factorial set of 
latent variables. Pu et al. [56] studied representation based 
on variational autoencoder for the image representation to 
associate labels or captions. This was regarded as deep gen-
erative deconvolutional network and worked on the gener-
ated latent image feature with the help of decoder while 
convolutional neural network acted as a encoder for the 
image feature extraction and to approximate the distribution 
for the latent deep generative deconvolutional network fea-
tures. This latent code was directly linked to generative mod-
els for labels generation. Socher et al. [60] introduced DT-
RNN model through the use of dependency trees embedding 
for sentence generation. Here, the dependency trees were 
converted into a vector space in order to retrieve images that 
were described by those sentences. Sutskever et al. [74] dis-
cussed RNN model, trained with the new Hessian-Free opti-
mizer by applying them to character-level language mode-
ling tasks. Here, a new character level embedding was 
introduced and was derived from the words of the objects. 
The character level embedding stack was converted as a 

tensor used for modeling instead of the traditional image 
features. Sutskever et al. [75] introduced multi-layered long 
short-term to map the input sequence to a fixed dimension 
representation, and then another deep LSTM to decode the 
target sequence from the representation. LTran et al. [37] 
proposed an approach for spatiotemporal feature learning 
using deep 3-dimensional convolutional networks called 3D 
ConvNets and were trained on a large scale supervised video 
database. Tran et al. [77] introduced image caption system 
that automatically described images, generating high quality 
caption with respect to human judgments, out-of-domain 
data handling and low latency required in many applications. 
This deep vision model helped in detection of a broad range 
of visual concepts, entity recognition (that identifies celebri-
ties and landmarks), and caption outputs. Wu et al. [84] pro-
posed a method of incorporating high-level semantic con-
cepts into the CNN-RNN approach instead of the traditional 
image features to text approach for image captioning and 
visual question answering applications. High-level informa-
tion was refereed to word level and object level feature 
spaces. Yang et al. [87] discussed RNN decoders with both 
CNN and RNN encoders, where thought vectors were used 
as the input of the attention mechanism in the decoder. The 
review network organized a number of review steps with 
attention on the encoder hidden states and outputted a 
thought vector after each review step. You et al. [94] intro-
duced a model with semantic attention, that learned to select 
different attention based on semantic concepts and fused 
them into hidden states and outputs of recurrent neural net-
works for caption prediction. Young et al. [95] studied visual 
denotations of linguistic expressions to define novel denota-
tional similarity metrics for comapring different images for 
captions and were as beneficial as distributional similarities 
for two tasks as semantic inference. Farhadi et al. [17] intro-
duced a space of meanings as attention of the network 
model. This space of meanings resided in between the space 
of sentences and the space of images for generation of cap-
tion from images. Gan et al. [21] pioneered a semantic com-
positional network (SCN) for sentence generation from 
images, where series of semantic concepts were utilized 
from the image as attention for the SCN model. The proba-
bility of semantic layer was used for composition of the 
parameters of LSTM network. The SCN network extended 
each weight matrix of the LSTM to an ensemble of tag-
dependent weight matrices. Girshick et al. [22] introduced a 
R-CNN based model containing high-capacity convolutional 
neural networks for bottom-up region selection in order to 
localize and segment objects and in scarcity of labeled train-
ing data, a supervised pre-training for an auxiliary task was 
used for the regions, followed by domain-specific fine-tun-
ing, yielding a significant boost in performance. Hodosh 
et al. [24] discussed captioning as a frame for sentence-based 
image annotation as the task of ranking a given pool of 
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captions. This was done through the association of the 
images with natural languages based sentences and based on 
what had been detected as objects and attributes in the 
images. Jia et al. [25] introduced an extension of the long 
short term memory called gLSTM through the use of seman-
tic information extracted from the image as an extra attention 
to each unit of the LSTM block, aiming to guide the model 
towards caption generation that was highly correlated and 
tightly coupled to image contents. Here, semantic represen-
tation was generated using normalized Canonical Correla-
tion Analysis scheme. Krishna et al. [34] proposed the Vis-
ual Genome dataset that helped in proper modeling the 
relationships and interactions among different components 
and attributes of images through generation of graphs with 
dense annotations of objects, attributes, and relationships 
within different images. Kulkarni et al. [35] introduced 
model for generation of natural language descriptions from 
images, where two different components, namely content 
planning and recognition algorithms helped automatically 
generate captions. Content planning helped in smoothing the 
output of computer vision-based detection while recognition 
algorithms helped in determination of the best content words 
to use to describe an image with the help of statistics mined 
out of large pools of visually descriptive texts. Li et al. [39] 
studied an effective phenomenon for automatic composition 
of image descriptions from the visual features and using 
web-scale n-grams, unlike previous works where thetask was 
retrieval of related pre-existing text relevant to the image. It 
pioneered the task of generation of sentences from scratch 
with n-gram word sequence as feed. Kuznetsova et al. [36] 
introduced a new tree based approach to composing expres-
sive image descriptions, making use of the naturally occur-
ring web images with captions. Two related tasks, image 
caption generalization and generation were investigated 
where the former was an optional subtask of the latter. The 
high-level concept of this approach was to leverage the 
phrases expressive as tree fragments from existing image 
descriptions and then composing the new description by 
selectively combining the extracted tree fragments. Mao 
et al. [48] discussed a transposed weight sharing scheme 
which enhanced the caption generation capability of the 
m-RNN model and more suitable for the novel concept 
learning task. The transposed weight sharing scheme was 
generated using an auto-encoder and the objects of the 
images that were present in the sentence. Mathews et al. [49] 
introduced a model that can describe an image based on dif-
ferent emotions like positive or negative sentiments using 
switching recurrent neural network with word-level regulari-
zation with sentiments. It was able to produce emotional 
image captions using a training session of only 2000+ train-
ing captions tagged with different sentimental emotions. 
Mitchell et al. [52] proposed a model capable of human like 
description of the images through a computer vision detector 

system. This model leveraged syntactically informed word 
co-occurrence statistics, the generator filters and constrains 
the noisy detection output to generate syntactic trees that can 
summarize the vision and correlation of the computer vision 
system. Ordonez et al. [53] demonstrated automatic image 
description methods using a large captioned photo collec-
tion, where the Flicker was queried using captions and then 
the images were filtered to gather one million images with 
associated visually relevant captions. Yang et al. [88] intro-
duced a sentence generation strategy that transferred an 
images into description consisting of the most likely nouns, 
verbs, scenes and prepositions that made up the core sen-
tence structure from them. These descriptions in the form 
nouns, verbs, scenes and prepositions were derived using 
state of the art trained detectors and were very noisy esti-
mates of the attributes of the images.

Theory of Tensor Product

Tensor Product is the systematic composition of a series of 
tensors that can be utilized for special representation with 
structured interpretation and has nice algebraic properties 
that can retrieve the nearest composite components. How-
ever, for our applications, we are dealing with some special 
situation of tensor products where one of them consists of 
orthogonal structures and thus creating the perfectly orthog-
onal segments of feature space to represent the data and the 
cumulative representation can be well utilized for inference, 
while the reverse multiplication of the orthogonal represen-
tation can retrieve the original space representations. While 
there can be different ways of generation of tensor prod-
ucts, we have concentrated on deterministic approaches with 
Hadamard matrix and due to its limitations, we switched to 
deterministic approximation techniques for tensor product 
generation.

Tensor Product Representation

Tensor Product Representation (TPR) [63] and [54] has tre-
mendous potential to revolutionize the language problem and 
lack of structured representations problem. Apart from being 
able to help in inference, TPR is marked by reversibility and 
unification of representation and rules in separate forms that 
can be controlled, learned and utilized. Mathematically, TPR 
is generated by the product of the functional representation 
� and the component representation � . While component 
representation is uncontrolled due to global interpretation, 
functional representation � must help in understanding the 
pattern of the topology and their significance, help in the 
interpretation of the language attributes, and can be con-
trolled to diversify the sentence construction. This is accom-
plished through structuring the functional representation � 
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as unique and uncombined (such as orthogonal or orthonor-
mal). We provided a brief description of the deterministic 
Tensor Product Representation formulation and how it can 
be utilized for natural languages. Tensor Product Represen-
tation uses the concept of linear independence with trans-
formation and inverse transformation, assuming that the 
inner product will help localization. However, the linearly 
independence criteria can be relaxed and represent the ten-
sor product with other semi-independent vectors and rely on 
the assumption that tensors are far apart to interfere and the 
high dimension of � (or if needed � ) will provide adequate 
independence space for each of them. Generalized TPR can 
be represented as �(�) as,

where � is the feature vector, and {� → � ∶ � ∈ �e} is the 
transformation, �e is the raw features or the embedding vec-
tors for features which minimizes the context function such 
a s  W o r d 2 V e c  f o r  k  c o n t e x t s  a s 

W2V_Fn = min
∑
i

k∑
j=1

���i − �j��2 , � is the independence 

imposer for the TPR. This kind of tensor product creates a 
combined representations of the whole feature space and is 
unique, reduced in dimension and with the following decou-
pling equation,

where we can generate back the complete original vector � 
from {� → � ∶ min

∀i∈N
arg({�i} − � )} without any error. We have 

N sample instances and min
∀i∈N

arg({�i} − � ) points to the closest 
possible sample i. So what we can conclude that this �(�) 
instantiate a much better comprehensive and compressed 
state of the samples than the whole feature space and can be 
help many learning algorithms to create models that can 
understand and differentiate the representations without 
explicitly supervising it to learn that these are different and 
need to be differentiated. At the same time, the feature rep-
resentation can be migrated to its original form in constant 
time. Previous approaches for transferring min

∀i∈N
arg({�i} − � ) 

point to the closest possible sample i ∈ N were cosine dis-
tances or nearest neighbor with distance norm. However, the 
same task is possible in constant time as a transformation 
max
∀i∈N

arg�f � = �i through posing the problem as a probabil-
ity distribution as we tune our model to gradient error recti-
fication and learning schemes.

Hadamard TPR

Hadamard TPR is generated with the assistance of orthog-
onal row vectors of Hadamard matrix as � . As � is the 
predictable tensor, it helps in coding the continuous valued 

(1)�(�) =
∑

fi ⊗ rT
i
,

(2)� = �(�)⊗ � = �⊗ �,

features into orthogonal forms and thus prevent mixing up 
the features and assists in re-generation and reciprocity. 
Hadamard matrix is a (2n × 2n) square matrix, consisting 
of {−1, 1} and each of the rows are orthogonal to all the 
others. The consequence is that, it can be used to gener-
ate mutually independent vectors for the TPRs. Hadamard 
Code TPR was build on top of Hadamard Coded matrix 
using the following equations:

H2n ∈ ℝ
nnnn×nnn
0∕1

 mostly consists of zeros and ones. The rows 
and columns of H2 ⊗ H2n−1 are symmetric and form bases of 
Hadamard matrix where we have ⊗ as the Kronecker prod-
uct, 1

ck−1
 is the normalization factor, where ck−1 = (

∑�xi�2)
1

2 
with Frobenius norm or L2−norm of any row as the normal-
izing coefficient. If we consider (k − 1) = 2 , then the most 
fundamental Hadamard matrix with c2 = c(k−1)=2 = (

∑�xi�2)
1

2 
is denoted as the following:

This matix forms the starting matrix for all other high 
dimensional Hadamard matrix generation.

In Hadamard Coding, the filler consists of multiplica-
tion of the Hadamard matrix row (Eq. 3) rT

i
= (H2n )i, and 

the individual feature representations fi = (�)i from fea-
ture space � like in case of natural languages, fi = (�e)wk

 
is the word embedding vector for corresponding word wk 
from �e.

The Hadamard Code TPR individual is generated as an 
inner product of the rows {(H2n )ri ∶ i ∈ {1,… , p}} of p−
level Hadamard matrix (with {1, p} dimension) and 
{Fj ∶ j ∈ {1,… , ⌈ d

q
⌉}} , the corresponding segment vector 

(with {q, 1} dimension) of the d−dimensional features of 
the samples as denoted by {Fj}{(H2n )ri}

T  to generate a 
{q, p} matrix. Essentially we have p = 2k , p ≥ ⌈ d

q
⌉ and 

symbolically F = f (�) . Therefore, the overall Hadamard 
Code TPR is denoted as

where we can generate back the features � as � → � and

This procedure helps in the easiest and efficient way of 
generating and dealing with tensor product representation 
through linear transformation of the weighted representa-
tions of the original features to the mutual orthogonal spaces. 
In addition, TPRs �H , generated from this procedure, have 

(3)H2n =
1

ck−1

[
H2n−1 H2n−1

H2n−1 − H2n−1

]
=

1

ck−1
H2 ⊗ H2n−1 ,

(4)H2 = {
1

c2
}

[
1 1

1 − 1

]
=

[
0.707 0.707

0.707 − 0.707

]
.

(5)�H(�) =
∑

i

{Fi}⊗ {(H2n )ri}
T ,

(6)� = �H ⊗ (H2n ).
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very distinct, non-overlapping, and unique feature space for 
the samples. This created a discrete learning phenomenon, 
which sometimes goes against the variation tolerance and 
regularization compatible network-based training models. 
In such models, connectedness and relatedness, how insig-
nificant it may be, is an inevitable part of the learning. This 
is why directly dealing with Hadamard Code TPR may not 
help, and there is some additional procedural requirement 
for the system to work. Next, we will describe the procedural 
flow for image captioning applications in detail, mainly deal-
ing with natural languages.

Let we have sentence with word w1,… ,wn and word 
embedding �e ∈ ℝ

v×e , we can transfer one hot vector for 
each word wi as (�e)iℝ

1×e , we have

for wj = i and �H is the TPR.
Conversely, to retrieve the information from the TPR, for 

each j ∈ N , we have

and if we consider the nearest neighbor for (wp)j in �e , we 
find that

We have tested that the retrieval rate is 100% correct for 
word embedding like Word2Vec, GloVe for any dimension. 
The accuracy of the retrieval is not because of the dimension 
or the embedding, but due to the mutual orthogonal matrix 
which creates space for real fi to be segregated when ri is 
multiplied with firTi  as firTi ri.

Properties and Characteristics of TPR

TPR can be generated in various ways and functional 
approximation has even created an enumerable number of 
opportunities for TPR generation that can facilitate specific 
applications and their needs. However, TPR is expected to 
satisfy a majority subset of these following properties as 
these will facilitate many computations privileges.

•	 Tensor product composition : � = � ⊗ � . Matrix multi-
plication based representation ensembles two identities 
into a common platform and helps the creation of an 
algorithm that abides by the utility and constraints. For 
example, in the case of language, there is grammar, con-
texts of thoughts, and words. Each of these reorganizes 
itself to form a sentence that is grammatically correct and 
makes sense. However, there are hardly any concrete and 

(7)�H =
∑

(�e)i ∗ fj,

(8)(wp)j = �H ∗ fj,

(9)
(wp)j = argmin

k
{(�e)k ∣ min ||(�e)k − (wp)j||}

= (�e)k=i = (�e)i = wj.

scalable rules, but the model must be able to produce and 
combine very near approximations, whose variations can 
be suppressed mathematically. So, if there are n number 
of r vector and m number of f vectors, there are possibili-
ties of m × n number of (� ⊗ � ) combinations possible.

•	 Relative tensor interpretation : � = � ⊗ � ≠ �� ∀ �� ∈ � , 
where �� = � � ⊗ � . Now, each sentence consists of sev-
eral elements of topologically significant sequence of 
(� ⊗ � ) as the contributing features for the representation. 
As each (� ⊗ � ) is different, any linear and non-linear 
combinations forming T will be distinct provided r is 
mutually orthogonal to all other r for every f. However, 
each T is a relative point in representation space and the 
algebraic property helps to decompose and extract them.

•	 Reversibility : � = �(� , �) then � = �(�, �) for some 
function � and � , considering � as the orthogonal com-
poser. Reversibility is inevitable for natural language 
applications to counter the differences in structural com-
prehension and gap in between human interpretation and 
machine interpretation. Reversibility will help machine 
deal with the most efficient representation T and at the 
same time can effectively transform between the sentence 
and T and can transfer the knowledge with the external 
world. TPR has this property of reversibility and can be 
widely used in many applications for better effectiveness.

•	 Accountability : � = �(� , �) then � � = �(�, �) for some 
function � and � , minimization of closeness is manda-
tory as min �(� , � �) where � is the distance metric for 
measurement. This accountability criteria will help in 
reverse check of what has been learned by the procedure 
and what does the representations represent. A prominent 
approximation can suppress the variations in T, arising 
due to approximations, through non-linear transformation 
and help in better accountability and reversibility.

•	 Compressible : dim(T) <<< (dim(f1) + dim(f2) +…) . 
Compression is another important criteria that will help 
in better modeling and quick optimization. Both Had-
amard matrix-based TPR and approximation TPR from 
Deep Networks help in producing an effective representa-
tion. However, there are fundamental differences between 
the representation learning and representation generation. 
In representation learning, there is an effort to converge 
several diverge samples to similar feature space or to a 
distribution, which turns out to be a distribution learning. 
While in representation generation, each of the combina-
tions of features is provided such a feature space that is 
unique and can help in Reversibility and Accountability.

•	 Generalization : � = �(f1, f2,… , �) , �(�, �) = (f1, f2,…) , 
where � ∈ � with � as representation space, any new 
test case �� ∈ � should have min �(�pred, �real) with � as 
distance metric or max �(�pred, �real) with � as similarity. 
Generalization helps in providing the perfect functional 
approximation and high accuracy for Reversibility and 
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Accountability for the model. While most of the mod-
eling application expects that the model will learn to 
behave for the distribution of the data, representation 
learning deals with large number of unique tensors gath-
ered as combination of symbolic features and also pro-
vide the functional approximation that can effectively 
decode other unavailable representations that are avail-
able in the space.

•	 Non-discriminatory approach for representation : Non-
discriminatory approach is a global approach that is not 
specific to limited application, but the approach must also 
hold important contributions to other applications. So, 
the same approach can be interpreted for all applications 
for the creation of global representation among all sys-
tems.

•	 Mapping : � = �(f1, f2,… , �) , �(�, �) = (f1, f2,…) for 
single topologically significance one to one mapping or 
�(�, �) = {f1, f2,…} for multiple topologically signifi-
cance retrieve. Mapping is an important criteria for dis-
tinguishing different representations and hence one to 
one mapping is ideal, but reverse may demand many to 
one and depend on application. Like, for bag-of-word 
approaches, several bag-of-word will converge to the 
same representation if the words are considered in alpha-
betical order, while the reverse will consider them to 
n
ℙk =

n!

(n−k)!
 possible observations with k = n .

•	 Mandatory global initialization : � = �(� , �) then 
� = �(�, �) for some function � and � and ∀ f = fi , i is 
unique. Mandatory global initialization of many features 
is required to support Reversibility criteria and there is 
requirement to involve transfer learning based pipeline 
for involvement of better feature representation that has 
been derived with context and other real world datasets. 
Mandatory global initialization will ensure enhanced pre-
diction for Reversibility and also can interact with other 
applications which rely on similar benchmarks.

Approximation of Tensor Product Representation 
as Algebraic Amalgamation Composed 
Representation (AACR)

In the mathematical field of model theory, the amalgamation 
property is a property of collections of structures that guar-
antees, under certain conditions, that two structures in the 
collection can be regarded as substructures of a larger one. 
- Wikipedia. Algebraic Amalgamation Composed Represen-
tation (AACR) is a special case of Tensor Product Represen-
tation (TPR). It is made scalable and functionally enhanced 
by approximating the variations and thus deviating the ten-
sors from being completely orthogonal and using a series 
of non-linearity and memory network parameter estima-
tions. However, the AACR’s effectiveness comes from the 

uniqueness of the feature space and the AACR itself. Even, 
the potential of the AACR to be able to help in generaliza-
tion is immense as new representations get generated from 
contexts (image features) and can be said to have the same 
representation that could have been generated by the corre-
sponding caption of that image. Consider an image I, with 
caption � . Assume that a caption consists of n words includ-
ing the start of a sentence and stop of a sentence. We define 
�x = [(�x)1, (�x)2,… , (�x)n] , where (�x)t ∈ ℝ

V is a one-hot 
encoding vector of dimension V and V is the size of the vocab-
ulary. The length n usually varies from a caption to another 
caption. �e ∈ ℝ

d×V is a word embedding matrix, the i-th col-
umn of which is the embedding vector of the i-th word in the 
vocabulary; it is obtained by the Stanford GLoVe algorithm 
with zero mean. We varies the value of d = 32, 50, 100 . The 
unbinding vector or the first attention �t ∈ ℝ

d is derived from 
the image features and is given by

where � ∈ ℝ
d×d is a normalized Hadamard matrix as 

in Eq.  3; where �g(.) is the logistic sigmoid function; 
�

au
∈ ℝ

d×512 , �
su
∈ ℝ

d×1024 , �̃t−1 ∈ ℝ
d×d is the represen-

tational AACR of all the decoded words up to time t − 1 and 
is defined by

where �i is the role vector for word �i , and �T
i

 is transpose 
of �i . Since a Hadamard matrix is an orthogonal matrix, 
we have �t = �t at time (t = 1,… , n) . The feature vector 
�t ∈ ℝ

2048 is given by

where the operator ⊙ denotes the Hadamard product (ele-
mentwise product); where �

av
∈ ℝ

2048×512 , �
sv
∈ ℝ

2048×d2 . 
The second attention of the image is considered as �t ∈ ℝ

d×d 
of word �t is obtained by

where �h(.) is the hyperbolic tangent function; 
�s ∈ ℝ

d×d×2048 . Alternate �h and �h helps in abstraction of 
the propagated information in discrete form to be beneficial 
for language decoder. The “filler vector” �t = �t ∈ ℝ

d
→ 

“unbound” from the AACR representation �t with the 
“unbinding vector” �t → obtained by Eq. 14:

Use LSTM to decode �t(t = 1,… , n) . The input of the LSTM 
is � at (t = 0) , �t at time t(t = 1,… , n) , decision feedback 
�t−1 at time t. This is the overall architecture of the AACR 

(10)�t = 𝜎g(�au
�t−1 +�

su
�̃t−1)�,

(11)�̃t−1 =

t−1∑

i=1

�e(�x)i�
T
i
=

t−1∑

i=1

�i�
T
i
,

(12)�t = �⊙ 𝜎g(�av
�t−1 +�

sv
�̃t−1),

(13)�t = �h(�s�t),

(14)�t = �t�t.
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architectural details. Equation 14 produces the final Alge-
braic Amalgamation Composed Representation (AACR) for 
the model. The positional significance of AACR is demon-
strated pictorially in Figs. 1 and 2. In Eqs. 10 and 12, the ini-
tial � comes with the initial states �0 and �0 are initialized as 
the followings and hence considered as a diversified image 
based attention, different from the regular one:

(15)�0 = fc(�),

where functions fc(.) and fh(.) are realized by two sepa-
rate multilayer perceptrons (MLPs) (say, 3 layers). Finally, 
LSTM produces a decoded word (�x)t ∈ ℝ

V , �t ∈ ℝ
d by

where �s(.) is a softmax function; �x ∈ ℝ
V×512.

(16)�0 = fh(�),

(17)(�x)t = �s(�x�t),

(18)�t =�e(�x)t,

Fig. 1   Basic architectures with 
CNN features as prime source 
of feature generation

Fig. 2   Advanced architectures with RCNN features as prime source of feature generation and CNN as secondary sources
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In the end-to-end training, the objective function is a sum of 
the cross-entropy plus Q(�(u)t ) , where function Q(.) is defined 
by

Function Q generates a bias favoring attention vectors �(u)t  
that are 1-hot. The first term of Q is minimized when each 
component of � satisfies ai = [�]i ∈ {0, 1} ; the second term 
is minimized when ||a||2

2
= 1 . The sum of these terms is 

minimized when � is 1-hot. Q drives learning to produce 
weights in the final network that generate �t vectors that 
are approximately 1-hot, but there is no mechanism within 
the network for enforcing (even approximately) 1-hot vec-
tors. Figure 3 has provided a diagrammatic overview of the 
AACR generator along with the other generator and decoder 
segments. Here, the whole set up works as a end-to-end net-
work and helps in initialization of the decoder with proper 
direction related to the objects in the image. Whether, AACR 
can provide valuable inputs regarding the predicate of the 
sentence is yet to be estimated.

Architecture Description

Context from visual images consists of a diverse range 
of embedded objects, and when these are utilized for 
image captioning, a weighted combination of a regional 
or focused object gets highlighted as attention instead of 
the individuals. The main problem is a lack of activation 
for the memory network, which generates the likelihood 
of diverse activities and objects for the composition of the 
sentence. However, if the visual feature is decomposed 
through heuristics (transformation based focus) and then 

(19)Q(�) =
∑

(ai)
2(1 − ai)

2 + (
∑

(ai)
2 − 1)2.

placed in the model as a generator or attention, it can help 
in better caption generation. In this section, we have fea-
tured different types of decomposition techniques, their 
utility, and their effectiveness and placement in the tra-
ditional memory networks. Our experimental approaches 
are also marked by analysis of the different decomposed 
feature fusion notions of the deep learning architecture and 
memory networks through utilization of these principles 
and provided a qualitative and quantitative comparison 
overview. Traditional LSTM, as a generator, is initialized 
with the visual features as �0 and �0 and represented by the 
following set of equitation:

The estimation of the categorical likelihood is performed as

�t is evaluated through convergence to the categorization 
distribution through softmax layer defined as

where we have �(�t) ∈ ℝ
C ∈ [0, 1]C with C as the set of 

categories. In addition, we have �t ∈ ℝ
m , �t ∈ ℝ

C , 
�hy ∈ ℝ

C×d  ,  �, � , �, �, � ∈ ℝ
d  ,  �t ∈ ℝ

m�  ,  �t ∈ ℝ
d  , 

�x∗ ∈ ℝ
d×m , �A∗ ∈ ℝ

d×m� , �h∗,�c∗ ∈ ℝ
d×d , �∗ ∈ ℝ

d . The 
objective minimization function is def ined as 
J(�) = argmin

1

2s

∑
∀s

∑
i

��yt,i − y�
t,i
��2 = argmin

1

2s

∑
∀s

���t − ��
t
��2 

and s number of training samples. The parameters are 
updated with � �J(�)

��
 . Value of � determines the learning rate 

for adaption with the changing topology of the objective 
function space. Here, at any point of time to generate �t , 
attention is generated through previous sequential flow �t−1 
and sequential evidence �t . The problem with �t−1 and �t is 
that they are focused, unidirectional, biased and insensitive 
to variations. This is why we need additional focus features 
through decomposition and construct new context combina-
tions for the generation of captions. LSTM network can be 

(20)�t = �(�xi�t +�hi�t−1 + �i),

(21)�t = �(�xf �t +�hf�t−1 + �f ),

(22)�t = �(�xo�t +�ho�t−1 + �o),

(23)�t = tanh(�xg�t +�hg�t−1 + �g),

(24)�t = �t ⊙ �t−1 + �t ⊙ �t,

(25)�t = �t ⊙ tanh(�t).

(26)�t = �t�hy,

(27)
�t = �(�t) =

exp(�t)

C∑
k=1

exp((yt)k)

,

Fig. 3   Algebraic amalgamation composed representation (AACR) 
generator, here � is AACR​
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made to behave as a decomposition and composition net-
work architecture. However, here we are more interested in 
understanding the relative effects of the different external 
decomposed tensors and how they affect overall perfor-
mance through statistical interpretation and qualitative 
evaluation of the difference in focus in the selection of words 
for sentences.

Hierarchical Stochastic Decomposition

Hierarchical Stochastic Decomposition decomposes the 
image features into a series of known vectors, which can be 
predicted to generate the sentence. However, this kind of heu-
ristic decomposition requires the model to be able to correlate 
the image vector to the corresponding object representations. 
Hierarchical stochastic decomposition of image features can 
also be done through transfer learning like R-CNN. In this 
work, we have considered the decomposition of features using 
stochasticity of the learning of the models for better repre-
sentation definition and gathering the representation for better 
decision making. Decomposition of features occurs when the 
image features are factorized and an approximate factorization 
occurs through weight multiplication, where the weights are 
learned. This kind of stochasticity and randomness in learning 
and selection helps generate many randomized and approxima-
tion algorithms to replace many deterministic algorithms for 
NP-hard problems. With the development of supervised learn-
ing, the models were upgraded to deterministic approximation 
algorithms through functional approximation and had a certain 
performance guarantee. Mathematically, the model consists of 
the following equations: ∗= i∕f∕o∕g

where we have the LSTM equations as follows:

(28)�∗,t−1 =�x,∗mS ⊙�x,∗n�t−1,

(29)�∗,t−1 =�h,∗mS ⊙�h,∗n�t−1,

Figures 4 and 5 has provided an overview of the overall 
LSTM structure and the LSTM+AACR structure from a 
very high-level prospective.

Embedding + AACR​

In this scheme, we decomposed the word Embedding only and 
analyzed its interaction with the AACR. The decomposition 
is done using an approximate factorization method where the 
weights decide which part of the image features to be selected 
for caption analysis. Mathematically, the model possesses the 
following set of equations: ∗= i∕f∕o∕g

The notable portion is the decomposition of word embed-
ding and AACR interaction:

(30)�t = �(�xi�i,t−1 +�hi�i,t−1 + �i),

(31)�t = �(�xf �f ,t−1 +�hf�f ,t−1 + �f ),

(32)�t = �(�xg�g,t−1 +�hg�g,t−1 + �g),

(33)�t = �(�xo�o,t−1 +�ho�o,t−1 + �o),

(34)�t = �t ⊙ �t−1 + �t ⊙ �t,

(35)�t = �t ⊙ tanh(�t).

(36)�∗,t−1 = �x,∗mS ⊙�x,∗n�t−1.

(37)�t = �(�xi�i,t−1 +�hi�t−1 +�Ti� + �i),

(38)�t = �(�xf �f ,t−1 +�hf�t−1 +�Tf� + �f ),

(39)�t = �(�xg�g,t−1 +�hg�t−1 +�Tg� + �g),

Fig. 4   Overall architecture with LSTM
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Decomposition of embedding and its interaction with the 
image features is something new and has never been tried 
before, and it will be interesting to observe the interactions 
and it outperformed some of the existing works in image 
captioning.

Hidden + AACR​

This architecture is dedicated to the study of the interac-
tion between the decomposed hidden layer and the AACR. 
We have denoted this scheme as (Hidden and AACR) in 
Table 1. Mathematically, the model equations are as follows: 
∗= i∕f∕o∕g:

Here, only �t undergoes the factorization and interacts with 
the AACR for caption generation:

(40)�t = �(�xo�o,t−1 +�ho�t−1 +�To� + �o),

(41)�t = �t ⊙ �t−1 + �t ⊙ �t,

(42)�t = �t ⊙ tanh(�t).

(43)�∗,t−1 = �h,∗mS ⊙�h,∗n�t−1.

(44)�t = �(�xi�t−1 +�hi�i,t−1 +�Ti� + �i),

(45)�t = �(�xf �t−1 +�hf�f ,t−1 +�Tf� + �f ),

(46)�t = �(�xg�t−1 +�hg�g,t−1 +�Tg� + �g),

(47)�t = �(�xo�t−1 +�ho�o,t−1 +�To� + �o),

(48)�t = �t ⊙ �t−1 + �t ⊙ �t,

Theoretically, embedding decomposition may not help, also 
embedding helps in the determination of the next character-
istics for captions and keeps the continuity of the grammati-
cal topology for the sentences. While, the perception is that 
the decomposition of the hidden layer helps in the composi-
tion of fusion of the image features and the decomposed tag 
features weighted with hidden tensors. However, it is the 
embedding decomposition that performed well in terms of 
evaluation metrics. There is no way to determine which por-
tion is helping the most for internal composition. However, 
since the performance metrics improved, we can claim that 
the analysis of the representation’s structural composition is 
going on the right track.

Embedding + Hidden + AACR​

If we combine Embedding and Hidden decomposition with 
the AACR, the performance of the LSTM gets enhanced as 
both the representation creates vibration in the model and 
with time, the LSTM model has learned to be sensitive and 
react to the variations of the parameters, while the decom-
posed Embedding and Hidden embedding and estimated 
weights have learned to help up meaningful information 
in-front of the model networks. The main important part of 
the Embedding and Hidden decomposition is the constantly 
changing or shifting mode of operation, which unsaturated 
the long short term model memory and helps prevent the 
appearance of similar kinds of word sequences as sentences. 
Mathematically, the equations for all decomposed models 
consist of the following: ∗= i∕f∕o∕g:

(49)�t = �t ⊙ tanh(�t).

(50)�∗,t−1 =�x,∗mS ⊙�x,∗n�t−1,

Fig. 5   Overall architecture with LSTM+AACR​
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This architecture is the most primitive LSTM and AACR 
attention architecture:

(51)�∗,t−1 =�h,∗mS ⊙�h,∗n�t−1.

(52)�t = �(�xi�i,t−1 +�hi�i,t−1 +�Ti� + �i),

(53)�t = �(�xf �f ,t−1 +�hf�f ,t−1 +�Tf� + �f ),

(54)�t = �(�xg�g,t−1 +�hg�g,t−1 +�Tg� + �g),

(55)�t = �(�xo�o,t−1 +�ho�o,t−1 +�To� + �o),

(56)�t = �t ⊙ �t−1 + �t ⊙ �t,

This architecture can be regarded as a AACR attention-based 
LSTM and it had already out-performed the basic archi-
tecture for the fusion of image features and the semantic 
tag features defined as SCN in [21]. Their model failed to 
achieve this level of performance because of the expansion 
of the model dimension. The increase of the model dimen-
sion diminishes the flow of knowledge in the network. In 
our model, we chained the knowledge and removed bottle-
necks. These are the points, where structural composition 
and proper fusion of knowledge occur, which can be utilized 
and interpreted later. The AACR attention is a generalized 
tensor product representation and their interpretation is 
described in (Fig. 6).

(57)�t = �t ⊙ tanh(�t).

Table 1   Performance evaluation for different LSTM architectures

† Ensemble and reinforcement learning used

Algorithm CIDEr-D Bleu_4 Bleu_3 Bleu_2 Bleu_1 ROUGE_L METEOR SPICE

Human [82] 0.85 0.22 0.32 0.47 0.66 0.48 0.2 –
Neural Talk [29] 0.66 0.23 0.32 0.45 0.63 – 0.20 –
Mind’sEye [8] – 0.19 – – – – 0.20 –
Google [79] 0.94 0.31 0.41 0.54 0.71 0.53 0.25 –
LRCN [15] 0.87 0.28 0.38 0.53 0.70 0.52 0.24 –
Montreal [86] 0.87 0.28 0.38 0.53 0.71 0.52 0.24 –
m-RNN [47] 0.79 0.27 0.37 0.51 0.68 0.50 0.23 –
[25] 0.81 0.26 0.36 0.49 0.67 – 0.23 –
MSR [16] 0.91 0.29 0.39 0.53 0.70 0.52 0.25 –
[27] 0.84 0.28 0.38 0.52 0.70 – 0.24 –
bi-LSTM [80] – 0.244 0.352 0.492 0.672 – – –
MSR Captivator [13] 0.93 0.31 0.41 0.54 0.72 0.53 0.25 –
Nearest Neighbor [14] 0.89 0.28 0.38 0.52 0.70 0.51 0.24 –
MLBL [33] 0.74 0.26 0.36 0.50 0.67 0.50 0.22 –
ATT [94] 0.94 0.32 0.42 0.57 0.73 0.54 0.25 –
[82] 0.92 0.31 0.41 0.56 0.73 0.53 0.25 –
Adaptive [44] 1.085 0.332 0.439 0.580 0.742 – 0.266 –
MSM [91] 0.986 0.325 0.429 0.565 0.730 – 0.251 –
ERD [89] 0.895 0.298 – – – – 0.240 –
Att2in [58] 1.01 0.313 – – – – 0.260 –
Top-Down† [1] 1.054 0.334 – – 0.745 0.544 0.261 0.192
[3] 1.044 0.338 0.443 0.579 0.743 0.549 – –
LSTM [21] 0.889 0.292 0.390 0.525 0.698 – 0.238 –
SCN [21] 1.012 0.330 0.433 0.566 0.728 – 0.257 –
LSTM + S as Attention 0.910 0.317 0.424 0.557 0.716 0.532 0.240 0.172
LSTM + (Embedding + AACR) 1.001 0.332 0.437 0.573 0.736 0.543 0.256 0.184
LSTM + (Hidden + AACR) 1.018 0.334 0.437 0.573 0.736 0.545 0.257 0.186
LSTM + (Hidden + Embedding + AACR) 1.014 0.3352 0.439 0.575 0.737 0.546 0.257 0.1888
LSTM + (Embedding + dAACR) 1.022 0.338 0.443 0.578 0.737 0.546 0.256 0.1862
LSTM + (Hidden + dAACR) 1.0158 0.333 0.437 0.572 0.735 0.544 0.258 0.1864
LSTM + (Hidden + Embedding + dAACR) 1.006 0.331 0.435 0.570 0.734 0.542 0.256 0.186
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Decomposed AACR​

The next set of subsections includes decomposition of the 
AACR (dAACR) and its interaction with different other 
decomposed factors related to image features weighted hid-
den tensor and the word embedding. Decomposed AACR 
(dAACR) is concentrated with the decomposition of the 
AACR with the help of heuristic matrices like learned weights, 
which are dependent on the training and do not change with 
each iteration. Thus this kind of approximate decomposition 
tends to absorb similar topological regions again for interpreta-
tion and caption generation. While AACR is a holistic repre-
sentation, a decomposed AACR will focus on different aspects 

and will provide better information for the memory network 
to dig up: ∗= i∕f∕o∕g:

Figure 7 provided an diagrammatic overview of the decom-
posed AACR based architecture, which is denoted by the 
following extra equation to replace � in LSTM equations.

Embedding + dAACR​

Similar to the above, this Embedding and dAACR architecture 
studied the interaction of the decomposed AACR and decom-
posed word embedding with the hidden states. Mathematically, 

(58)�∗ = �∗mS ⊙ �∗n�.

Fig. 6   Tensor decomposition concept illustration

Fig. 7   Overall architecture with decomposed AACR​
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the equations for this model possesses the following set of 
equations: ∗= i∕f∕o∕g

This architecture performed the best and generated BLEU_4 
value of 33.8% and clearly established the fact that the 
decomposition of the embedding helped. The main reason 
is that most of the embedding is getting trained and updated 
frequently during training. A decomposition will actually 
help in refining the structural integrity for the topological 
dependency of the words in the sentence.

Hidden + dAACR​

(Hidden and dAACR) has its hidden states decomposed 
along with AACR for its interaction embedding for genera-
tion of meaningful representation for captions. Mathemati-
cally, we can describe the model with the following series 
of equations: ∗= i∕f∕o∕g

where we have the LSTM equations as follows:

(59)�∗,t−1 =�x,∗mS ⊙�x,∗n�t−1,

(60)�∗ =�∗mS ⊙ �∗n�,

(61)�t = �(�xi�i,t−1 +�hi�t−1 +�Ti�i + �i),

(62)�t = �(�xf �f ,t−1 +�hf�t−1 +�Tf�f + �f ),

(63)�t = �(�xg�g,t−1 +�hg�t−1 +�Tg�g + �g),

(64)�t = �(�xo�o,t−1 +�ho�t−1 +�To�o + �o),

(65)�t = �t ⊙ �t−1 + �t ⊙ �t,

(66)�t = �t ⊙ tanh(�t).

(67)�∗,t−1 =�h,∗mS ⊙�h,∗n�t−1,

(68)�∗ =�∗mS ⊙ �∗n�,

(69)�t = �(�xi�t−1 +�hi�i,t−1 +�Ti�i + �i),

(70)�t = �(�xf �t−1 +�hf�f ,t−1 +�Tf�f + �f ),

(71)�t = �(�xg�t−1 +�hg�g,t−1 +�Tg�g + �g),

(72)�t = �(�xo�t−1 +�ho�o,t−1 +�To�o + �o),

(73)�t = �t ⊙ �t−1 + �t ⊙ �t,

This architecture studies the interaction of the decomposed 
hidden layer with the decomposed tensors. This architecture, 
with decomposed hidden and dAACR, established itself bet-
ter than the decomposed hidden and only AACR.

Embedding + Hidden + dAACR​

Lastly, we have Embedding and Hidden and dAACR, where 
all the components factorized for structure combination gen-
eration for captions. This architecture is a very weighted archi-
tecture than the previous ones. Mathematically, the model 
equations are as follows: ∗= i∕f∕o∕g:

These weighted parts are plugged into the memory network 
for enhancement of captions as follows:

This architecture sees all the decomposition of hidden, 
embedding, and AACR. Though it diversified the signatures 
of the sentences, it is not optimal with respect to the evalu-
ated metrics.

Extra Image Attention Effect

It would be worthwhile to add extra image attention to under-
stand the effect on the decomposed structures, and hence, we 
also experimented with this. Image feature is used as attention 
to keep a whole image overview for the model all the time 
and to decide upon instead of dealing with a particular subset 
region or decomposed region representation. Mathematically, 
the model is established with the following set of equations: 
∗= i∕f∕o∕g

(74)�t = �t ⊙ tanh(�t).

(75)�∗,t−1 =�x,∗mS ⊙�x,∗n�t−1,

(76)�∗,t−1 =�h,∗mS ⊙�h,∗n�t−1,

(77)�∗ =�∗mS ⊙ �∗n�.

(78)�t = �(�xi�i,t−1 +�hi�i,t−1 +�Ti�i + �i),

(79)�t = �(�xf �f ,t−1 +�hf�f ,t−1 +�Tf�f + �f ),

(80)�t = �(�xg�g,t−1 +�hg�g,t−1 +�Tg�g + �g),

(81)�t = �(�xo�o,t−1 +�ho�o,t−1 +�To�o + �o),

(82)�t = �t ⊙ �t−1 + �t ⊙ �t,

(83)�t = �t ⊙ tanh(�t).
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The rest of the equations are similar. �S is used to match the 
hidden dimension of the memory network and may not be 
require. Non-transformed image features had been found to 
be beneficial than a weighted transformed one:

We have compared these models and demonstrated that this 
modification on the LSTM along with the AACR attention 
and factorization of the components helped in the better 
structural enhancement of the tensors that can be trans-
formed into sentences and these sentences can reflect diverse 
contexts, the interaction of objects in images and series of 
image description.

Architecture Description with RCNN 
Features

While we concentrated our work on the fundamental 
approach of image feature-based captions, we used regional 
CNN (RCNN) features extensively. RCNN provided an 
effective way of securing better combinations of contexts. 
Hence, we propose another approach, where we involved 
the RCNN features and performed similar experiments as 
[46] with the same vocabulary (8791 words) and surpassed 
their performance. Work in [1] used a vocabulary of 10,010 
words, where the model is trained with data from both VQA, 
MSCOCO and Visual Genome and hence direct comparison 
will be totally unfair and we reached very close to that per-
formance. They generalized the model with multiple-source 
data training and then fine-tuned the weights for different 

(84)�∗,t−1 =�x,∗mS ⊙�x,∗n�t−1,

(85)�∗,t−1 =�h,∗mS ⊙�h,∗n�t−1,

(86)�∗ =�∗mS ⊙ �∗n�,

(87)S̃ =�SS.

(88)�t = 𝜎(�xi�i,t−1 +�hi�i,t−1 +�Ti�i + S̃ + �i),

(89)�t = 𝜎(�xf �f ,t−1 +�hf�f ,t−1 +�Tf�f + S̃ + �f ),

(90)�t = 𝜎(�xg�g,t−1 +�hg�g,t−1 +�Tg�g + S̃ + �g),

(91)�t = 𝜎(�xo�o,t−1 +�ho�o,t−1 +�To�o + S̃ + �o),

(92)�t = �t ⊙ �t−1 + �t ⊙ �t,

(93)�t = �t ⊙ tanh(�t).

applications and hence the performance is much better. We 
initialized the training with scratch. In this section, we will 
discuss the AACR with RCNN architecture, while the lan-
guage decoder can be replaced by each of the architectures, 
described in “Architecture Description” for both AACR and 
dAACR. Figure 2 provided a detailed pictorial description 
of the AACR+RCNN model, where different levels and 
variations of attention fuse in the language decoder. The 
novelty of this work is that we engage different sources of 
features, starting from the whole image features, which pro-
vide a global overview of the situation, while the variations 
and the lower level details and combinations are generated 
through the help of the weighted summation of the regional 
features and also through the AACR decomposition of the 
sparse CNN features, considered as a semantic probability 
distribution of the situation of the image. The equations for 
this model can be subdivided as the following components: 
Combination Selection Through Global Overview, Weighted 
Combination of the Regions, AACR and Language Decoder.

Combination Selection Through Global Overview

The first component aims at identifying the global over-
view of the image features and helps in identification of the 
weighted sum and conversion of the hidden information 
into topological selection for the recurrent unit. Though this 
component is not directly related to the context of the lan-
guage decoder, it helps preserve the sequentiality to a large 
extent. Combination Selection Through Global Overview 
can be denoted as the following equations,

The initial parameters are initialized as the followings:

�t ∈ ℝ
b×d , �t ∈ ℝ

b×d However, we used the traditional 
mean of the objects RCNN features for more comprehen-
sive understanding of the global view instead of the whole 
image based view, which is reduced through transformation.

Weighted Combination of the Regions

Weighted Combination of the Regions is the intermediate 
transfer layer and can be denoted as the followings:

where �t ∈ ℝ
b×d , �t ∈ ℝ

b×d , �t ∈ ℝ
b×d . The value of �t is 

transferred into probability distribution through softmax 

(94)v =
1

k

i=k∑

i=1

vi,

(95)v = �.

(96)�0, �0 = �h0
v,�c0

v,

(97)�t = �a tanh(�h�t−1),
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operation as the following to prevent over-bulging of the 
image features:

where we have �t ∈ ℝ
× ∈ {a1,t,… , ak,t} and 

∑
�t = 1 . 

Finally, the attention context in place of hidden layer con-
text for the language decoder is denoted as the followings:

Here, we have v̂t ∈ ℝ
b×d where b is the batch size and d is 

the hidden layer dimension.

Language Decoder with AACR​

Overall, we derived the following set of contexts: �t as 
detailed lower level overview, �t as previously generated 
context, and �t as the bounded feature variation:

Equation 14 provides the final version of the AACR �t as

where ⊗ is an algebraic operation. Here, we considered 
⊗ = ⊙ as we try to rectify one context with the other con-
text. Finally, we have the Assembled Selector Layer with 
Language Decoder with AACR attention component. The 
equations for Language Decoder and AACR can be denoted 
as the followings: ∗= i∕f∕o∕g

(98)�t = softmax(�t),

(99)v̂t =

i=k∑

i=1

vi�i,t.

(100)�t = v̂t,

(101)�t =�e�t−1.

(102)�t = f1(�,�t−1,

t−1∑

i=0

�e�i, ) ⊗ f2(�, �t−1,

t−1∑

i=0

�e�i),

(103)�∗,t =�p,∗mS ⊙�p,∗n�t,

(104)�∗,t =�q,∗mS ⊙�q,∗n�t,

We operated different combination of the above three 
equations to generate the variations, like in “Architecture 
Description” to find out which tensor factorization provides 
maximum benefit.

where we define �t as the decoded words of the sentences 
at time t and the qualitative evaluation of MSCOCO data is 
provided in Table 2.

Methodology

Apart from defining the best of the features and the top-
notch learning capable models, there are training criteria 
that need to be fulfilled to get the best out of the models. 
This section mainly deals with several such issues and 
the influence of each of them on the overall performance 
enhancement, achieved through their incorporation. These 
are several minor tweaks that can remove the shackle of 
over-fitting for classification problems and enhance the 
ability to detect diverse variations in representation struc-
tures for longer sentences with descriptive attributes.

(105)�∗,t =�∗mS ⊙ �∗n�t.

(106)�t = �(�pi�i,t +�qi�i,t +�Ti�i,t + �i),

(107)�t = �(�pf�f ,t +�qf�f ,t +�Tf�f ,t + �f ),

(108)�t = �(�po�o,t +�qo�o,t +�To�o,t + �o),

(109)�t = tanh(�pg�g,t +�qg�g,t +�Tg�g,t + �g),

(110)�t = �t ⊙ �t−1 + �t ⊙ �t,

(111)�t = �t ⊙ tanh(�t),

(112)�t = max arg softmax(�hx�t).

Table 2   Performance evaluation for different LSTM architectures with RCNN features

Algorithm CIDEr-D Bleu_4 Bleu_3 Bleu_2 Bleu_1 ROUGE_L METEOR SPICE

NBT† [46] 1.07 0.347 – – 0.755 – 0.271 0.201
LSTM + (Embedding + AACR) + RCNN 1.069 0.349 0.455 0.590 0.747 0.554 0.264 0.196
LSTM + (Hidden + AACR) + RCNN 1.068 0.349 0.456 0.592 0.748 0.554 0.264 0.195
LSTM + (Hidden + Embedding + AACR) + RCNN 1.067 0.348 0.453 0.588 0.746 0.554 0.264 0.195
LSTM + (Embedding + dAACR) + RCNN 1.059 0.349 0.457 0.593 0.748 0.554 0.261 0.193
LSTM + (Hidden + dAACR) + RCNN 1.052 0.347 0.456 0.593 0.747 0.556 0.261 0.192
LSTM + (Hidden + Embedding + dAACR) + RCNN 1.071 0.3502 0.459 0.595 0.751 0.555 0.264 0.195
LSTM + (Hidden + Embedding + dAACR) + RCNN + RL 1.075 0.353 0.458 0.593 0.752 0.557 0.267 0.197
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Application Description

Image captioning not about generating sentences from the 
detected, but being able to derive different attributes and 
their interrelated interactions with each other and the envi-
ronment. While some of the applications related to image 
captioning is mainly focused with clustering similar kinds of 
images and these image captions roughly define such charac-
teristics, we analyze on defining captions with attributes like 
adjectives (hairy dog), descriptions (standing in rain), color 
(blue candy) and precision (like police instead of person). 
All these will elaborate on different narration and precise 
descriptions of the images than mere object detection. While 
the tag features correlate the objects and limited activities, 
the AACR structure (or even the decomposed tensors) 
should be able to capture other information for the model 
and express in the captions.

Dataset Preparation

MS COCO is being used for the experiments and analysis 
and this data is perhaps the most comprehensive data availa-
ble. MSCOCO consists of 123,287 train images and 566,747 
train sentence, where each image is associated with at least 
five sentences from a vocabulary of 8791 words. There are 
5000 images (with 25,010 sentences) for validation and 
5000 images (with 25,010 sentences) for testing. Two sets 
of image feature being used: one is ResNet features with 
2048 dimension feature vector and another is Tag features 
with feature vector of 999 dimension. Tag contributes more 
when used with image features, and the correlation-based 
fusion has been the turning point for these image captioning 
application. This is evident from the fact that, (Tag + Tag) 
fusion in LSTM achieved 32.7% BLEU_4 without AACR 
(even 32.8% BLEU_4 with AACR), (Img + Img) fusion 
in LSTM achieved 26.0% BLEU_4 without AACR, (Tag 
+ Img) fusion in LSTM achieved 33.0% BLEU_4 without 
AACR (even 33.5% BLEU_4 with AACR). The maximum 
is achieved in (Tag + Img) fusion combination, and the rest 
of the results is provided in Table 1.

Different Tensor Regularization

Tensor Regularization through dropout is an essential part for 
extensive variation identification and learning for the mod-
els. Memory network directly assimilates different features to 
create representation, but without dropout it is equivalent to 
weighted average without estimation of importance. Hence, 
a significant amount of dropout is required for each of them 
instead of involving a common framework for the entry point 
of the network. Several dropouts independently feature out 
different combinations and estimation of generalization for dif-
ferent sentences. The optimum amount is kept at 0.5 because 

of the fact that 0.5 helps in protecting at least more than 50% 
of the feature participation for the tensors and thus, the scarcity 
of essential contents of the features can be avoided while at 
the same time opportunity is created for changes in param-
eters. Another important contribution of the regularization 
is enhancement of the sensitivity of the model to the differ-
ent variations of the features and the capability to lock these 
variations.

Normalization of Images Features and Word Vector

To mitigate the effect of the diverse ranges of different image 
features, transfer learning model features are useful and have 
diverse effects due to the topological and positional differ-
ences of the objects of the images. Normalization of images 
features through mean-shifting helps positioning the features 
to zero mean scaling and neutralizes the variational effects, 
thus helping the models in effective learning. It achieved an 
improvement of (100 × 1∕27 = 3.7%) . Similarly, we can intro-
duce a global vector for all machines, just like vocabulary is 
the same for all persons, and communication will be feasible 
for machines in terms of interpretation, storage, and retrieval. 
While, sometimes, locally trained embedding may be better for 
specific models. Normalization of the Word Vector helped in 
1.5% improvement in BLEU_4 accuracy which is an improve-
ment of (100 × 1.5∕27 = 5.56%) improvement.

Beam Search

Beam Search helped in improvement in BLEU_4 performance 
which is an improvement of (100 × 2.5∕28.0 = 8.93%) . We 
observed that any improvement in BLEU_4 metric could also 
increase other metrics substantially and hence our approaches 
and experiments targeted this. Beam Search helped in the 
exploration of other feasible options that can be considered 
for generating the sentence. Beam search mainly helps in the 
detection of the attributes and interaction parameters of the 
images, which would have been suppressed due to the appear-
ance of other objects and characteristics. However, Beam 
Search is an exhaustive process and is dependent on the selec-
tion of the spreading (beam) parameter. We mostly used a 5 
beam for our experiments, but increasing the beam size can 
provide better results for natural language applications, where 
the generated sequence is of variable length, and longer sen-
tence generation has been observed to be more descriptive and 
with more details.

Results and Analysis

Several experiments were performed on the MSCOCO 
dataset to establish the effects of different feature fusions 
generated through stochastic decomposition and the 



SN Computer Science (2020) 1:229	 Page 21 of 27  229

SN Computer Science

recombination of the memory network. We evaluated with a 
variety of assessment techniques to see whether the enhance-
ment in performance is overall in a different dimension, as 
quality evaluation of language parameters is still undefined 
and is in perception with a wide variety of differences among 
humans. The metrics used for such assessment are mainly 
Bleu_n (n = 1, 2, 3, 4) , METEOR, ROUGE_L, CIDEr-D, 
and SPICE to measure the overall sentence fluency. All these 
evaluation metrics reflect some kind of stature of language, 
while none of them actually reflect the complete significance 
and grammatical correctness. We also provided some quali-
tative evaluations with instances of the generated captions 
from different models.

Quantitative Analysis

In this subsection, we will be discussing the performance 
evaluation based on the metrics Bleu_n (n = 1, 2, 3, 4) , 
METEOR, ROUGE_L, CIDEr-D, and SPICE as these are 
standardized in the research community for image caption-
ing research. However, none of the evaluation is complete 
and reflects a very limited perspective of the generated cap-
tions. Table 1 provided a comparative study of our mod-
els with some of the existing works in this domain using 
these features. It would also be an injustice to compare other 
enhanced models that have used other feature vectors and 
provided the improvements. With this set of features, this 
work can be regarded as the state-of-the-art performance 
with an effort to structure and characterize data features and 
generate longer and more descriptive captions. The main 
functional characteristics of our work are the decomposition 
of the generated/trained structural features and then com-
posed of new representation through different circumstances 
of weights and combinations, thus being able to derive a 
better strategy for decoding and generating the sentences. 
Most of our new architectures performed very well and 
either outperformed or at least the same with the existing 
architectures, which do not have concrete reasoning behind 
their working principles. However, LSTM + (Embedding 
+ dAACR) is the clear winner (with respect to BLEU_4) 
without Reinforcement Learning based training enhance-
ment. With SCST reinforcement learning, LSTM + (Hidden 
+ Embedding + AACR) emerged as the best (with respect 
to BLEU_4), establishing that AACR-based solutions are 
useful and can derive beneficial structural qualities for the 
system.

Reinforcement Learning Effects

Self-critical sequence training (SCST) [58] utilizes rein-
forcement learning [61] for gathering improvements in the 
performance. SCST utilized the gradient of the difference 
in performance between the generated and the referenced or 

baseline captions. In our case, SCST reinforcement learn-
ing is based on the CIDEr-D of the reference sentence and 
the generated caption. The batch-normalized CIDEr-D 
score is used to update the gradient for the updation of the 
prior weights of the models. Since reinforcement learning 
is heuristic-based, it never guarantees improvement and 
less dependable. However, we can always improve these 
decomposition architectures with reinforcement learning but 
requires more experiments. It must be mentioned that SCST 
based reinforcement learning can promise improvement, but 
never guarantee improvement. However, it has been found 
that more experiments can sometimes provide improve-
ment, which is not feasible without high-end GPUs and 
time. SCST based reinforcement learning can be denoted 
with these equations,

where Φ(.) is the evaluation function or the reward func-
tion that evaluates certain aspects of the generated captions 
{y1,… , yc} ∈ � and the baseline captions {y�

1
,… , y�

c
} ∈ �� 

and b is the mini-batch size considered. Table 3 provided 
some evaluations where SCST based reinforcement helped 
in the improvement of the performance and achieved better 
BLEU_4 for architectures.

Qualitative Analysis

The statistical evaluation metrics used hardly reflect many 
aspects of languages, including meaning, grammar, correct 
part-of-speech, etc. These can only be evaluated through 
reading, and hence, this subsection is inevitable and the 
essential part of this research. This will also provide a 
comparison in terms of diversity and descriptive attributes. 
There are no models that can evaluate the quality of writing 
of any language and whether the language denotes what it 
should have conveyed. Figures 8 and 9 have provided some 
examples and comparative instances that are generated by 
different models and how they reflect some true form of 
what is being reflected in the images and can be little far 
from what is there as baseline or reference.

Effects of Topic Attention

Well-trained visual captioning models can produce con-
textual effectiveness and evaluations based on BLEU_4 
etc never justify the structural learning and word impor-
tance. While the style of writing and special influences are 
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Table 3   Performance evaluation for different LSTM architectures with reinforcement learning

Algorithm CIDEr-D Bleu_4 Bleu_3 Bleu_2 Bleu_1 ROUGE_L METEOR SPICE

LSTM + S as Attention 0.989 0.331 0.436 0.572 0.733 0.542 0.253 0.182
LSTM + (Embedding + AACR) 0.991 0.334 0.440 0.576 0.738 0.544 0.253 0.184
LSTM + (Hidden + AACR) 1.001 0.335 0.440 0.576 0.738 0.547 0.255 0.184
LSTM + (Hidden + Embedding + AACR) 1.002 0.338 0.442 0.578 0.738 0.546 0.255 0.185
LSTM + (Embedding + dAACR) 1.003 0.336 0.441 0.577 0.738 0.545 0.255 0.184
LSTM + (Hidden + dAACR) 0.998 0.336 0.439 0.573 0.734 0.543 0.254 0.184
LSTM + (Hidden + Embedding + dAACR) 0.997 0.336 0.443 0.580 0.741 0.545 0.254 0.184

Fig. 8   Qualitative analysis. Part 1
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equally important for the model, it involves in the removal 
of language bias for sentence construction and creates 
scope for better representation variation learning. Hence, 
in this section, we will investigate topic modeling related 
to natural languages and understand whether it is possible 
to influence different topics for these sentences effectively. 
Different attentions can create different ways of inter-
pretation of the images and this is whether the machine 
must develop distinction capability and leverage on it. In 
humans, this comes naturally due to feeling and emotion, 
as they describe the same, differently, based on the situ-
ations. The main aim of this section is to understand the 
diverse topic modeling attention and the corresponding 
selection of vocabulary for sentence.

Effects of Topic Attention Based on Blog Authorship

Authorship influence, in sentence and caption generation, 
is helpful to reduce the machine biases for sentence pat-
terns. This establishes that different authors have differ-
ent structure and vocabulary choices, and the machine 
can easily learn them. We considered 40 different topics 
related to different topics. We used the Blog Authorship 
Corpus dataset for this purpose. This dataset consists of 
blog posts of thousands of bloggers gathered from blogger.
com. Each blog contains a minimum of 200 occurrences 
of commonly used English words.

Fig. 9   Qualitative analysis. Part 2
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Effects of Topic Attention Based on Newsgroups

Another important breakdown of the natural languages is 
in the form of the Newsgroups categories. The categorical 
significance of the news articles lies in the different dis-
tinct topic models of the society and will play an important 
role in the future in the strategic generation of specialized 
articles that serve the purpose of a special group of people 
and won’t sound like the other. We used the Twenty News-
groups dataset, which contains information about news-
groups categories, each with 1000 articles, taken from 20 
different newsgroups.

Label Propagation Algorithm for Visual Captioning

Label Propagation Algorithm (LPA) describes the proce-
dure for the generation of the different topic labels for vis-
ual captioning training data and later use the topic labels 
for the guided generation of captions from test images. The 
Label Propagation Algorithm procedures are organized in 
the following sequence:

•	 Select Labeled Language Data.
•	 Generate the Vocabulary from Language Data.

•	 Select Top X% most frequently appearing Words from 
Vocabulary for each Topic. [Should include the 8.7K 
Words from the MS COCO vocabulary]

•	 Generate 0/1 Topic-Vector for the classes based on the 
Top X% most frequently appearing Words from Vocabu-
lary for a topic.

•	 Generation 0/1 Topic-Vector: From 8.7K Word Vocabu-
lary, consider 0 for all those disjoint words that represent 
other Topics, rest considered 1.

•	 Analysis of the generated captions with 0/1 Topic-Vector.

The algorithm, provided above, detailed the topic modeling 
and label-propagation algorithm for caption generation 
instead of gathering the topic-based training captions. This 
label propagation is based on existing trained models and 
existing topic definition and detection techniques. The label 
propagation accounts on the fact that the distribution of the 
most frequently appearing words and their complex repre-
sentations are generated from combinations and will help in 
the propagation of the knowledge of topics for the testing 
data. Since there is no reference for these kinds of data, we 
limit our analysis of qualitative analysis. Figure 10 provided 
some of the instances where this kind of topic models gener-
ated totally out of the box captions and can be regarded as 
very close to the truth for the image, while the influence is 

Fig. 10   Diversity effects of label propagation algorithm for visual captioning
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gathered from the topic models propagated from other data. 
We used the best model, which is LSTM + (Embedding + 
dAACR), for the caption generation using the topic attention 
vocabulary selection.

Discussion

In this work, we discussed some improvements to the exist-
ing structures of memory networks and feature decomposi-
tion and demonstrated that our approaches are better than 
previous actions in all the possible metrics. We nurtured 
AACR and its interaction with other informative structures 
of the memory network and leveraged for variation genera-
tion and for identification of the attributes and interaction in 
images to appear in the sentences. Our mission is for better 
representation and can be generalized for media features and 
help machines understand what is happening in the images. 
While AACR succeeded in gathering improvement, we uti-
lized different decomposition techniques for the composition 
of structures, which are as good as introducing reinforce-
ment learning to some architectures. The future works can 
be concentrated on introducing more sophistication of the 
features and introduction of other useful components and 
structuring the data that can be differentiated by the mod-
els and generalize the representation to its unique sentence 
counterparts.
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