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Abstract
Coresets can be described as a compact subset such that models trained on coresets will also provide a good fit with models 
trained on full data set. Using coresets, we can scale down a big data to a tiny one to reduce the computational cost of a 
machine learning problem. In recent years, data scientists have investigated various methods to create coresets with many 
techniques and approaches, especially for solving the problem of clustering large datasets. In this paper, we make comparisons 
among four state-of-the-art algorithms: ProTraS by Ros and Guillaume with improvements, Lightweight Coreset by Bachem 
et al. Adaptive Sampling Coreset by Feldman et al. and a native Farthest-First-Traversal-based coreset construction. We 
briefly introduce these four algorithms and compare their performances to find out the benefits and drawbacks of each one.

Keywords  Machine learning · Big data · Coreset · Clustering · Farthest-first-traversal · Sampling

Introduction

The development of technology such as smart city and 
IoT has lead to the rapid increasing of data. Consequently, 
machine learning has to face new hard situation: solving 
problems for data that have big amount in volume, variety, 
velocity and veracity. Many methods have been proposed for 
several years to deal with big data. One of the simplest way 
is depending on infrastructure and hardware, but few people 
can afford this. Another option is finding suitable algorithms 
to reduce the computational complexity from the input size 
that may contain millions or billions of data points. The idea 
of finding a relevant subset from original data to decrease the 
computational cost brings scientists to the concept of core-
set, which was first applied in geometric approximation by 
Agarwal et al. [1, 2]. The problem of coreset constructions 

for k-median and k-means clustering was then stated and 
investigated by Har-Peled et al. [17, 18, 19]

In recent years, many coreset construction algorithms 
have been proposed for a wide variety of clustering prob-
lems [10, 12, 13, 22]. These research always try to find good 
algorithms that create samples that are more correct or being 
faster. Even though there are many investigations about this, 
two approaches that fascinates us are the sampling-based 
methods and farthest-first-traversal-based algorithms. In 
each techniques, there are also various researches. In this 
paper, we focus on four state-of-the-art researches as follows

–	 The first one is ProTraS algorithm which is proposed in 
2018 by Ros and Guillaume [29]. In this paper, we use 
the version with improvement proposed in [31].

–	 The second coreset method is an idea based on native 
Farthest-First-Traversal algorithm in [32].

–	 The third coreset construction is Adaptive Sampling by 
Feldman et al. [14].

–	 The last one is the Lightweight Coreset by Bachem et al. 
[7]. The lightweight coreset defines a new type of core-
set, the lightweight form, but the samples created for this 
type can be considered as a coreset which provide a good 
fit with full data set.

–	 Besides, we also use Uniform or Naive Sampling as base-
line for comparison.
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The remaining of this paper is organized as follows. In 
“Background and Related Works”, we discuss some related 
works and background used in this paper. In “Coreset Con-
struction Methods Used for Comparisons”, we introduce 
briefly about these four coreset construction methods. We do 
experiments and comparisons using relative error in “Com-
parative Results” then have discussions about the advantages 
as well as the disadvantages of each method. We end this 
paper by the conclusion in “Conclusions” of this paper.

Background and Related Works

k‑Median and k‑Means Clustering

–	 k-means clustering is a popular method, originally from 
signal processing, for cluster analysis in data mining. The 
standard algorithm was first proposed by Lloyd of Bell 
Labs in 1957, and was published later in [21]. The algo-
rithm was then developed by Inaba et al. [24], Vega et al. 
[33], Matousek [25], or the k-Means++ by Author and 
Vassilvitskii in [4].

–	 k-median clustering is a variation of k-means where 
instead of calculating the mean for each cluster to deter-
mine its centroid, one instead calculates the median. 
There are also plenty research about this algorithm such 
as Arora [3], Charikar et al. [9], etc.

In this paper, we refer k-clustering for both k-median and 
k-means. The k-clustering problems can be stated as follows:

Let X ⊂ ℝ
d , the k-clustering problems are to find Q ⊂ ℝ

d 
with |Q| = k such that these functions are minimized

Equations (1) and (2) are for k-median and k-means 
respectively.

Coresets for k‑Median and k‑Means Clustering

If the data set X mentioned above is big enough, it is hard 
and expensive to solve these k-median and k-means prob-
lems properly. Therefore, instead of solving on X, one of 
the classical techniques is the extraction of small amount 
information from the given data, and performing the com-
putation on this extracted subset. However, in many cir-
cumstances, it is not easy to find this most relevant subset. 
Consequently, attention has shifted to developing approxi-
mation algorithms. The goal now is to compute an (1 + �)

(1)�X(Q) =
∑

x∈X

d(x,Q) =
∑

x∈X

min
q∈Q

||x − q||

(2)�X(Q) =
∑

x∈X

d(x,Q)2 =
∑

x∈X

min
q∈Q

||x − q||2

-approximation subset, for some 0 < 𝜀 < 1 . The framework 
of coresets has recently emerged as a general approach to 
achieve this goal [2].

The definition of coresets for k-median and k-means can 
be stated as:

Definition 1  Coresets for k-median and k-means cluster-
ing. Let 𝜀 > 0 , the weighted set C is a (k, �) - coreset of X if 
for any Q ⊂ ℝ

d of cardinality at most k

this also equivalent to

Coreset Construction Methods Used 
for Comparisons

Many coreset construction algorithms have been proposed 
in recent years for clustering problems. As a result, various 
approaches have been investigated such as exponential grids 
[11], bounding points [19] or dimension reduction [15]. In 
this paper, we focus on two other techniques that have been 
used in recent researches: farthest-first-traversal-based algo-
rithms and sampling-based methods.

Farthest‑First‑Traversal (FFT)‑Based Algorithm

In computational geometry, the FFT of a metric space is a 
set of points selected sequently; after the first point is chosen 
arbitrarily, each next successive point is located as the farthest 
one from the set of previously selected points. The first use 
of the FFT was by Rosenkrantz et al. [30] in connection with 
heuristics for the traveling salesman problem. Then, Gonzalez 
[16] used it as part of a greedy approximation algorithm for 
the problem of finding k clusters that minimize the maximum 
diameter of a cluster. Later, Arthur and Vassilvitskii [4] use a 
FFT-like algorithm to propose k-means++ algorithm.

Algorithm 1 Farthest-First-Traversal algorithm
Require: dataset X with |X| = n
Ensure: C ⊂ X with |C| = m ≤ n
1: Pick C = {x0}
2: while (|C| < m) do
3: Find T = {t|min d(t, x),∀x ∈ C}
4: Find x∗ = max(T )
5: C = C ∪ {x∗}
6: end while
7: return C

In 2018, Ros and Guillaume proposed DENDIS [27], 
DIDES [28] and ProTraS [29] which are based on FFT algo-
rithm. These are iterative algorithms based on the hybridi-
zation of distance and density concepts. They differ in the 

(3)|�X(Q) − �C(Q)| ≤ ��X(Q);

(4)(1 − �)�X(Q) ≤ �C(Q) ≤ (1 + �)�X(Q).



SN Computer Science (2020) 1:215	 Page 3 of 12  215

SN Computer Science

priority given to distance or density, and in the stopping 
criterion defined accordingly. After these proposal methods, 
there are plenty of improvements for coreset constructions 
that are also based on FFT. Two state-of-the-art methods are 
proposed in [31] and in [32]. We use these two for compari-
sons in next chapter.

ProTraS Post‑Processing Improvement

Authors in [31] proposed an improvement for ProTraS. The 
idea of this improvement is the post-processing task of Pro-
TraS by replacing a representative in the sample obtained by 
ProTraS by the center of the group represented by it. Thereby, 
objects located at the boundary side of clusters will be replaced 
by interior ones of those. The new obtained sample, thus, has 
separated clusters. This helps to improve the quality of cluster-
ing process. This algorithm is described in Algorithm 2.

Algorithm 2 ProTraS post-processing improvement [31]
Require: P = {xi}, for i = 1, 2, . . . , n, a tolerance ε > 0.
Ensure: A sample S and D′∗.
1: Call ProTraS for P and ε to obtain S = {yj} and P (yj).
2: S′ = ∅.
3: for all yj ∈ S do
4: y∗

k = argminyk∈P (yj)
∑

yl∈P (yj)
d(yk, yl).

5: S′ = S′ ∪ {y∗
k}.

6: end for
7: Form D∗ the reordered matrix corresponding to S′.
8: Apply iVAT on D∗ to obtain D′∗ and produce I(D′∗).
9: return S and D′∗.

FFT‑Based with Pre‑processing Improvement

ProTraS provides a good method to build coresets, but it still 
has some drawbacks. To overcome these problems, authors in 
[32] use a native FFT with pre-processing strategies to create 
a coreset. The first one is to find a specific initial point instead 
of randomly and the second one is a technique to reduce the 
computational complexity to make the construction much 
more faster. This algorithm is described in Algorithm 3.

Algorithm 3 FFT-based with pre-processing improvement [32]
Require: X = {xi}; i = 1, 2, ..., n; and m
Ensure: C = {cj};T (cj), j = 1, 2, ...,m
1: Pick an initial pattern xinit ∈ X
2: C = {c1 = xinit};T (c1) = {c1}
3: while (|C| < m) do
4: for (xi ∈ X \ C) do
5: Find dnear(xi) = minc∈C d(xi, c)
6: T (ck) = T (ck) ∪ {xi}
7: end for
8: MaxWD = 0
9: for (cj ∈ C) do
10: Find dmax(cj) = d(xmax(cj), cj) = maxxt∈T (cj) d(xt, cj)
11: pj = |T (cj)| ∗ dmax(cj)
12: if (pj > MaxWD) then
13: MaxWD = pj ; c∗ = cj
14: end if
15: end for
16: x∗ = xmax(c∗)
17: C = C ∪ {x∗};T (cnew) = {x∗}
18: end while
19: return C;T (yj), j = 1, 2, ...,m

Sampling‑Based Methods

Sampling is a definition from Statistics. This is the selec-
tion of a subset of individuals from a population or original 
set according to a specific probability or distribution. The 
process of finding coresets based on sampling is quite simple 
and fast. However, it requires a lot of mathematical proofs 
and theorems behind. Like other approaches, there are many 
researches for sampling-based coreset constructions. In this 
paper, along with naive or uniform sampling as the baseline 
for comparisons, we use two most effective and well-proved 
methods: the Adaptive Sampling [14] and the Lightweight 
Coreset [7].

Adaptive Sampling

This algorithm is proposed in [14]. The key idea is to build 
an approximate solution (sample set, C) and to use it to bias 
the random sampling. The first step is achieved by an itera-
tive algorithm that samples a small number of points, and 
removes half of the data set X closest to the sampled points. 
In the second step, the sampling is biased with probabilities, 
for each point in X , which are roughly proportional to their 
squared distance to C. This algorithm is widely used in many 
researches and is described in Algorithm 4.

Algorithm 4 Adaptive Sampling [14]
Require: Data set D, ε, δ, k
Ensure: Coreset C = {(γ(x1), x1), ..., (γ(x|C|), x|C|)}
1: D′ ← D;B ← ∅;
2: while (|D′| > 10dk ln(1/δ)) do
3: Sample set S of β = 10dk ln(1/δ) points uniformly at random from D′;
4: Remove �|D′|/2� points x ∈ D′ closest to S (i.e. minimizing dist(x, S)) from D′;
5: Set B ← B ∪ S;
6: end while
7: B ← B ∪D′;
8: for each b ∈ B do
9: Db ← the points in D whose closest point in B is b. Ties broken arbitrarily;
10: end for
11: for each b ∈ B and x ∈ Db do
12: m(x) ← � 5

|Db|
+ dist(x,B)2∑

x′∈D dist(x′,B)2 �;
13: end for
14: Pick a non-uniform random sample C of 10�dk|B|2 ln(1/δ)/ε2� points from D,

where for every x′ ∈ C and x ∈ D, we have x′ = x with probability m(x)∑
x′∈D m(x′) ;

15: for each x′ ∈ C do
16: γ(x′) ←

∑
x∈Dm(x)

|C|.m(x′) ;
17: end for
18: return C

Lightweight Coresets

In inequality (3) of coreset definition, the right term ��X(Q) 
allows the approximation error to scale with the quantization 
error as well as to include both the additive and multiplicative 
errors. Bachem et al. [5, 6, 8, 7] interpret and split these errors 
that lead to the definition of Lightweight Coresets as follows

Definition 2  Lightweight Coresets for k-clustering. Let 
𝜀 > 0 and k ∈ ℕ . Let X ⊂ ℝ

d be a set of points with mean 
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�(X) . The weighted set C is an (�, k)-lightweight coreset of 
X if for any set Q ⊂ ℝ

d of cardinality at most k

In inequality (5), the �
2
�X(Q) term allows the approxima-

tion error to scale with the quantization error and constitutes 
the multiplicative part; while the �

2
�X({�(X)}) term scales 

with the variance of the data and corresponds to the addi-
tive approximation error term that is invariant of the scale 
of the data.

Even though there are differences in definitions between 
Coresets and Lightweight Coresets, Bachem et al. [7] have 
shown that as we decrease � , the true cost of the optimal 
solution obtained on the lightweight coreset approaches the 
true cost of the optimal solution on the full data set in an 
additive manner.

Construction of Lightweight Coresets The construction is 
based on importance sampling. Let q(x) be any probability 
distribution on X and Q any set of k centers in ℝd.The quanti-
zation error can be approximated by sampling m points from 
X using q(x) and assigning them weights inversely propor-
tional to q(x). The q(x) is defined as follows

The construction for lightweight coreset is described as in 
Algorithm 5

Algorithm 5 Lightweight Coreset [7]
Require: Set of data points X, coreset size m
Ensure: Lightweight Coreset C
1: µ ← mean of X
2: for all x ∈ X do
3: q(x) ← 1

2
1

|X| +
1
2

d(x,µ)2∑
x′∈X d(x′,µ)2

4: end for
5: C ← sample points from where each point is sampled with probability and has

weight wx = 1
m.q(x)

6: return lightweight coreset C

Comparative Results

In this section, we do comparisons among these five methods

–	 Uniform Sampling: a naive approach to coreset con-
structions which is based on uniform sub-sampling of 
the data. This may be regarded as the baseline since it is 
commonly used in practice.

–	 ProTraS post-processing improvement: this is described 
in Algorithm 2. The idea is based on ProTraS with the 
post-processing to improve the correctness [31].

–	 FFT-based with pre-processing improvement in Algo-
rithm 3 [32].

(5)|�X(Q) − �C(Q)| ≤
�

2
�X(Q) +

�

2
�X({�(X)})

(6)q(x) =
1

2

1

�X�
+

1

2

d(x,�(X))2
∑

x�∈X d(x
�,�(X))2

–	 Adaptive Sampling: method to construct coresets based 
on Gaussian Mixture Models and is described in Algo-
rithm 4 [14], [23].

–	 Lightweight Coreset: the method mentioned in Algo-
rithm 5. The idea is to perform importance sampling 
where data point is sampled with probability 1

2
 uni-

formly at random or with probability 1
2
 proportional to 

its squared distance to the mean of the data [7].

Data for Experiment

We use 15 datasets from data clustering repository of the 
computing school of Eastern Finland University [34], and 
from GitHub clustering benchmark [35]. These datasets are 
described in Table 1. We display some data examples in 
Fig. 1

Experiment Setup

Since these five algorithms need different input parameters, 
ProTraS and algorithm 2 need the value of � while the others 
need sample size as input. Therefore, we first run ProTraS 
with post-processing in algorithm 2 for � = 0.1 and � = 0.2 , 
then we use the sample size from results of this first step and 
used as the input parameter for the Uniform Sampling, FFT-
based with pre-processing improvement in Algorithm 3 [32], 
Adaptive Sampling in Algorithm 4 [14] and Lightweight 
Coreset in Algorithm 5 [7].

The experiment for each data set is described as follows: 

1.	 Step 1. Use k-means++ [4] to cluster the full data set
2.	 Step 2. Generate coreset by improved ProTraS 

(a)	 Step 2.1. Apply ProTraS algorithm to full data set
(b)	 Step 2.2. Apply algorithm 2 to the sample from 

step 2.1
(c)	 Denote m as the sample size of the coreset 

received from step 2.2

3.	 Step 3. Generate samples by FFT-based construction in 
algorithm 3

4.	 Step 4. Generate samples by Uniform Sampling with 
size m

5.	 Step 5. Generate samples by Adaptive Sampling in algo-
rithm 4 with size m

6.	 Step 6. Generate samples for Lightweight Coreset with 
size m by algorithm 5

7.	 Step 7. Use k-means++ to solve the k-means clustering 
problem on each subsample.

8.	 Step 8. We measure the elapsed time and compute the 
relative error for each method and subsample size com-
pared to the full solution from step 1.
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Since the experiments of uniform sampling and lightweight 
coresets are randomized, we run them 20 times with differ-
ent random seeds and compute sample averages.

All experiments were implemented in Python and run on 
an Intel Core i7 machine with 8-2.8GHz processors and 16 
GB memory.   

Results and Discussion

In the experiments, we compare five coreset construction 
methods:

–	 Uniform sampling as the baseline, denoted as “Uniform”
–	 ProTraS with the post-processing improvements, denoted 

as “iProTraS”
–	 FFT-based coreset with pre-processing improvement, 

denoted as “sizeFFT”
–	 Adaptive Sampling, denoted as “Adaptive”
–	 Lightweight Coreset, denoted as “lwCoreset”

Table 1   Datasets for experiments

Data ID Data name Size No. clusters

D1 Flame 240 2
D2 Jain 373 2
D3 Aggregation 788 7
D4 R15 600 15
D5 D31 3100 31
D6 Unbalance 6500 8
D7 A1 3000 20
D8 A2 5250 35
D9 A3 7500 50
D10 S1 5000 15
D11 S2 5000 15
D12 S3 5000 15
D13 S4 5000 15
D14 t4.8k 8000 6
D15 Birch3 100,000 100

Fig. 1   Some datasets for experiments
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We use relative error as the measurement for correctness 
and the run-time comparison. The results are expressed as 
follows:

–	 The relative errors are shown in Table 2 for � = 0.1 and 
in Table 3 for � = 0.2 . For this type of measurement, 
smaller means better.

–	 The time comparison is shown in Table 4 for � = 0.1 and 
in Table 5 for � = 0.2 . This measurement is estimated in 
second (s) unit. Here, smaller means faster.

–	 Figures 2, 3 and 4 show the relations between relative 
error and subsample sizes.

Discussions

–	 All Figs. 2,3 and4 show that the relative errors decrease 
for all methods as the sample size is decreased. More 
accurate coresets we can receive if we get more points.

–	 In most cases, Uniform Sampling creates the high error 
values, it means Uniform Sampling is the worst coreset 
construction. This is understandable since Uniform Sam-
pling is the simplest and naivest method. However, this 
is the fastest method.

–	 Adaptive Sampling creates coresets having low error in 
most cases, especially if the clusters are well separated. 

Table 2   Experiment results—
relative error values with 
� = 0.1

DataID � = 0.1

Size Uniform iProTraS sizeFFT Adaptive lwCoreset

D1 166 0.0021 0.0007 0.0016 0.0085 0.0128
D2 108 0.0265 0.0272 0.0195 0.0920 0.0852
D3 202 0.0524 0.0256 0.0478 0.1724 0.2205
D4 184 0.0681 0.5659 0.1327 0.2583 0.1080
D5 851 0.0337 0.0247 0.0282 0.4168 0.0261
D6 176 0.1815 0.0369 0.0411 0.3125 0.0711
D7 261 0.1180 0.2564 0.0912 0.1219 0.1704
D8 315 0.0754 0.3161 0.1017 0.4756 0.1063
D9 341 0.3194 0.4441 0.4850 0.2781 0.3290
D10 237 0.5862 0.0241 0.0852 0.3217 0.6890
D11 327 0.1780 0.1596 0.1137 0.3021 0.1513
D12 422 0.0466 0.1804 0.0795 0.2176 0.0581
D13 448 0.1020 0.3030 0.0865 0.1349 0.1967
D14 1532 0.0084 0.0153 0.0093 0.0241 0.0552
D15 424 0.4662 0.5454 0.4736 0.6185 0.4869

Table 3   Experiment results—
relative error values � = 0.2

DataID � = 0.2

Size Uniform iProTraS sizeFFT Adaptive lwCoreset

D1 90 0.0509 0.0246 0.0227 0.0435 0.0852
D2 56 0.0662 0.0136 0.0376 0.1196 0.1696
D3 130 0.2217 0.0030 0.0038 0.1163 0.1396
D4 97 0.4483 0.5308 0.4921 0.3876 0.5478
D5 329 0.2440 0.2821 0.5486 0.5327 0.0173
D6 89 0.3412 0.1132 0.2417 0.2132 0.1877
D7 97 0.7396 0.7936 0.6148 0.8216 0.7588
D8 116 0.5928 0.4947 0.4184 0.5719 0.3260
D9 119 1.4656 1.5380 1.1527 0.9756 1.2776
D10 96 0.7154 1.5268 0.9174 0.9910 1.5437
D11 120 0.6766 0.2340 0.3167 0.8013 0.6150
D12 155 0.4842 0.2953 0.3210 0.4448 0.3965
D13 166 0.2308 0.2725 0.2263 0.2546 0.1273
D14 1126 0.0562 0.0300 0.0238 0.0617 0.0341
D15 153 0.1144 0.8543 0.7910 0.9102 0.8621
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In cases of nearly overlap clusters (D11, D12, D13), this 
method creates worse coresets.

–	 Lightweight Coreset performs well in most cases, it 
is also very fast; in fact, it is just slower than Uniform 
Sampling and faster than other methods. However, light-
weight coreset rarely creates a sample with low error. In 
well-separated clusters, this method is not as good as 
Adaptive Sampling but it is clearly better in some other 
cases.

–	 It is obviously that the improved ProTraS is much more 
slower than the other. ProTraS is built based on the 

farther-first-traversal algorithm in which the points are 
selected sequently while the uniform sampling, adap-
tive sampling and lightweight coreset all are based on 
sampling method which is extremely fast. However, this 
method creates coresets with very low errors.

–	 The FFT-based algorithm creates the best coresets in 
most cases, but also the slowest algorithms. This algo-
rithm takes a very long run-time, nearly the same of the 
improved ProTraS.

Table 4   Experiment results—
runtime (in second(s)) of each 
sample

DataID � = 0.1

Size Uniform iProTraS sizeFFT Adaptive lwCoreset

D1 166 0.0004 88 90 0.0010 0.0006
D2 108 0.0003 50 46 0.0017 0.0007
D3 202 0.0004 533 498 0.0019 0.0006
D4 184 0.0003 319 287 0.0021 0.0006
D5 851 0.0005 129040 128682 0.0109 0.0009
D6 176 0.0003 3091 2991 0.0068 0.0010
D7 261 0.0003 4290 4176 0.0128 0.0008
D8 315 0.0003 12776 12948 0.0037 0.0009
D9 341 0.0004 23068 22871 0.0216 0.0012
D10 237 0.0004 5804 5862 0.0163 0.0009
D11 327 0.0003 14343 14290 0.0129 0.0010
D12 422 0.0003 29844 30174 0.0114 0.0009
D13 448 0.0004 32860 30857 0.0138 0.0009
D14 1532 0.0007 1928116 1939418 0.3620 0.0015
D15 424 0.0028 559332 557980 0.1756 0.0116

Table 5   Experiment results—
runtime (in second(s)) of each 
sample

DataID � = 0.2

Size Uniform iProTraS sizeFFT Adaptive lwCoreset

D1 90 0.0003 18 25 0.0029 0.0004
D2 56 0.0002 10 13 0.0012 0.0003
D3 130 0.0003 164 153 0.0104 0.0004
D4 97 0.0003 59 48 0.0018 0.0004
D5 329 0.0003 8300 8189 0.0401 0.0006
D6 89 0.0004 500 487 0.0076 0.0009
D7 97 0.0002 294 276 0.0025 0.0006
D8 116 0.0003 806 781 0.0048 0.0007
D9 119 0.0002 1234 1327 0.0062 0.0010
D10 96 0.0003 501 528 0.0046 0.0008
D11 120 0.0003 895 814 0.0061 0.0007
D12 155 0.0003 1789 1625 0.0107 0.0007
D13 166 0.0003 1983 1879 0.0085 0.0009
D14 1126 0.0006 775071 772109 0.2547 0.0012
D15 153 0.0011 32183 31087 0.1670 0.0095
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Fig. 2   Relative error in relation to subsample size
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Fig. 3   Relative error in relation to subsample size



	 SN Computer Science (2020) 1:215215  Page 10 of 12

SN Computer Science

The three sampling-based methods (uniform, adaptive 
and lightweight coreset) create coresets with very high 
errors in some cases and also create coresets with very 
low errors sometimes. However, the average errors of 
sampling-based methods seem to be good enough to use 
in reality.

In most cases, the improved ProTraS and the FFT-based 
algorithm seem to have similar low relative errors and slow 
run-time. Unlike sampling-class methods which can yield 
results very fast, the FFT based algorithms (improved Pro-
TraS and native FFT-based with preprocessing) creates 
coresets by checking point by point in full data set and need 
to calculate many distances during runtime. These ones take 
a lot of time but the result is extremely useful since the 

coresets from these methods have the lowest errors in most 
cases.

Conclusions

In this paper, we introduce and compare four state-of-the-
art coreset constructions, the ProTraS algorithm [29] with 
post-processing improvement [31], FFT-based coreset with 
pre-processing improvement [32], Adaptive Sampling [14], 
and Lightweight Coreset [7] and we use relative errors to 
compare these methods along with uniform sampling as the 
baseline.

Fig. 4   Relative error in relation to subsample size
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Even though FFT-based class methods and its improve-
ment defeat other methods in the experiments, the speed or 
runtime is a big concern when comparing to other sampling-
based ones. This method needs a lot of computation to create 
coresets, that is why it is very slow.

On the other hand, the sampling-based class constructions 
complete all experiments at a glance; however, the correct-
ness of the created sample is still a big problem. Since this 
is sampling-based method, we need to check that the result 
is good enough or not.

Finally, each method mentioned in this paper has its own 
advantages and disadvantages. The options ’Slow but more 
accuracy’ or ’Fast but less correct’ will be weighed before 
applying any of these algorithms in practice.
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