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Abstract
This paper focuses on the achievement of effective human–computer interaction using only webcam by continuous locating 
or tracking and recognizing the hand region. We detected the region of interest (ROI) in the captured image range and classify 
hand gestures for specific tasks. Firstly, background subtraction is used based on the main frame captured by webcam, and 
some preprocessing are done, and then YCrCb skin segmentation is used on RGB subtracted image. The ROI is detected using 
Haar cascade classifier for hand palm detection. Next, kernelized correlation filters tracking algorithm is used to avoid noise 
or background influences for tracking the ROI, and the median-flow tracking algorithm is used for depth tracking. The ROI 
is converted to a binary channel (black and white), resized to 54 × 54. Then gesture recognition is done using a 2D convolu-
tional neural network (CNN) by entering the preprocessed ROI on the architecture. Two predictions are made based on skin 
segmented frame and image dilated frame, and gesture is recognized from the maximum value of those two predictions. The 
tracking and recognition process is continued until the ROI is presented on the frames. Finally, after validation, the proposed 
system has successfully obtained a recognition rate of 98.44%, which is usable for the practical and real-time application.
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Introduction

In computer science and language technology, gesture rec-
ognition [1] is getting emphasized. Hand, face, and other 
bodily motion are engaged to originate different types of ges-
tures. Gestures are helpful to control electronic devices with-
out physically touching them. Using cameras and computer 
vision algorithms [2, 3], interpretation of sign language [4] 

is easily made and different signs have given different mean-
ing to perform electronic devices functionalities.

Detection, tracking, and recognition are essential parts to 
achieve success in gesture recognition work. Following this, 
hand gesture recognition needs these three parts as well. In 
addition, two types of hand gestures are important which are 
static hand gesture and dynamic hand gesture. Static hand 
gestures can be created using static hand sign or fixed hand 
sign [5] and the dynamic hand gestures [6] can be created 
by recognizing the movement of the hand with sign, e.g., 
grabbing or swiping [7].

Recently, Microsoft introduced its depth camera and 
named as Kinect [8]. By the influence of Kinect depth cam-
era, many methods that are based on depth information have 
evolved with directive knowledge. For example, Memo et al. 
[9] and Keskin et al. [10] proposed two frameworks in which 
they used some effective machine learning algorithms such 
as the random forest [11] to train up the architecture for cap-
turing the skeletal structure of the hand. But comparing with 
a typical web camera, such depth cameras are expensive and 
the environment can affect to obtain a better result, which is 
limitations. In recent years, several human device interac-
tion frameworks are developed based on sensor technology 
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[12–15], computer vision [16–19], deep learning [20], 
smartphone [21, 22] and Internet of Things (IoT) [23–25] 
for different purposes.

The pipeline of the proposed system is as follows. Some 
preprocessing techniques are applied to detect the hand such 
as background subtraction, skin color segmentation, and 
noise processing. Cascade classifier is used to find the hand 
from skin segmented frame. Initially, background subtrac-
tion is done with the captured frame to remove an unneces-
sary region; then dilate effect or skin segmentation is applied 
to prepare frame to apply hand cascade classifier that obtains 
the desired hand region, our ROI in this work. The track-
ing algorithm is initialized after detecting the palm using 
a Haar cascade palm detector from the frame that entering 
on the lens of the webcam. Then the ROI is resized and 
passed into the CNN network to recognize the gesture. The 
tracking is then continuing with the ROI without detect-
ing again the hand until the ROI exist in the frames and 
the CNN network continues to recognize the ROI. In the 
recognition phase, five different classes of the hand are rec-
ognized by 2D CNN with “ReLU” activation function and 
“softmax” activation function in the last layer and “adam” 
optimizer to compile the architecture by setting loss equal 
to categorical “cross_entropy.” Distinguishing between ROI 
and background skin color is a difficult task in a dynamic 
environment. Other problems are raised due to the changes 
of intensity of light in different environments and variations 
of human skin color. Because of these, the background selec-
tion of the running system is a very sensitive task by avoid-
ing those disturbances.

The remaining parts of the paper are organized as follows. 
“Materials and Methods” section describes the hand detec-
tion and tracking methods and designs the CNN network 
architecture for the recognition of hand gestures. The experi-
mental results are shown in “Experimental Results Analysis” 

section. Finally, the conclusions and future research with 
potential direction are discussed in “Conclusion” section.

Materials and Methods

For the better result of recognition performances, some 
essential preprocessings have done on the initial images, 
background subtraction [26], noise processing, skin segmen-
tation [27] using the YCrCb skin [28] range (0,133,77) to 
(235,173,127). The ROI is detected using the cascade classi-
fier [29]. Then hand tracking is done using KCF and median-
flow algorithm. Finally, the processed images resized to 
54 × 54, converted to binary, and fed into the CNN network 
for gesture recognition. The overall processes of hand ges-
ture recognition are shown in Fig. 1.

Hand Detection Method

The initial step of hand gesture recognition is hand detec-
tion that is performed on webcam captured RGB images. 
Some critical preprocessing techniques are used to meet this 
purpose. Background subtraction, noise processing, skin 
color segmentation, and Haar cascade classifier are used 
for preprocessing the images. The hand detection process 
of the proposed system is demonstrated in Fig. 2 which is 
described as follows.

Background Subtraction

Background subtraction is the most basic technique for 
computer vision preprocessing. Firstly, background sub-
traction is applied to webcam captured image based on the 
previous fifth frame and then again subtracted from the ini-
tial captured basic frame. Gaussian blur function [30], the 

Fig. 1   Overview of the overall 
processes of the hand gesture 
recognition system
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thresholding technique, is associated with performing abso-
lute differentiate between two image frames. The followings 
are the steps of background subtraction.

Step 1: Gaussian Blur function to reduce noise
Step 2: Absolute difference between two image frames
Step 3: Convert color from RGB to gray scale
Step 4: Image thresholding technique for converting 
grayscale image to binary image
Step 5: Morphology function
Step 6: Image dilate effect

Noise Reduction

To get a decent result from CNN architecture, obviously, the 
CNN network requires a noise free and predictable 2D image 
frame. To reduce or preprocess the noises, Gaussian blur, 
median blur, and dilation effect are used on a different part 
of this work. Figure 3 shows the frames altogether.

Skin Segmentation

Then skin color segmentation is associated with that frame 
using YCrCb color channel. Besides, a binary frame is gen-
erated by converting the RGB image to grayscale image and 
applied image dilation effect. Finally, Haar cascade is used 
to detect hand from the preprocessed image frame.

Haar Cascade Classifier

Haar cascade classifiers are effective feature-based object 
detection method proposed by [7]. Haar cascade classifi-
ers are work with face detection, hand detection, and other 
object detection. For training the classifier, a number of posi-
tive images (images of hands) and negative images (images 
without hands) are entered into the algorithm to train the 
classifier. Then classifier is got ready to extract features from 
it.

Figure 3 demonstrates all the frames of this work. Here, 
Fig. 3a and b is the initial image that is used to background 
subtraction and one of Fig. 3a is used for very basic back-
ground image and another is for repeated subtraction. Fig-
ure 3c contains first hand to detect the ROI; then, further 
processes are executed through this image frame. Figure 3d 
shows the background subtracted frame, actually subtraction 
performs two times: first, based on Fig. 3b frame and then 
based on the initial frame. Figure 3e and f is binary images 
generated by thresholding and skin color segmented images, 
respectively. After that, KCF is used to track the hand region 
(ROI), which describes in section below.

Hand Tracking Method

After detecting the hand region as ROI, the second phase is 
hand tracking to determine the movement of ROI. Tracking 
means locating an object in successive frames of a video. 
Different ideas such as dense optical flow, sparse optical 
flow, Kalman filtering, meanshift and camshift, single object 
trackers, and multiple object track finding algorithms are 
exist there. Here, in this proposed system, we considered a 
single object tracker. We used KCF and median-flow single 
object tracker API which is provided by OpenCV as built in 
functionalities. KCF is used for avoiding the interception of 
moving skin color objects. Median-flow is used for zoom-
ing purposes. These two single object trackers are described 
below in brief.

KCF Algorithm

The KCF algorithm [31] can be described into two stages 
shown in Fig. 4. The training stage is the first stage which 
is indicated in Fig. 4 (top). In the training stage, the ini-
tial frame of the ROI (which is detected by the Haar cas-
cade hand palm detection classifier from the background 
subtracted frame or further skin segmented frame) is used 
for the positive sample to train up the algorithm for track-
ing the object. Firstly, multiple training samples (negative 
samples) are generated using this initial ROI frame. Then, 

Fig. 3   a Indicates very basic 
initial background image, b 
indicates initial background that 
is used for repeated subtrac-
tion, c indicates the image with 
first-hand region, d indicates 
background subtracted image, 
e binary image obtaining from 
d, f skin segmented image, g 
detected hand region on binary 
image frame, h detected hand 
region on skin segmented image 
frame

(a)   (b) (c) (d)

(e)  (f) (g) (h)
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each positive and negative sample is fed to train; then based 
on the Gaussian probability density function (PDF) model, 
when a sample is closer to the positive sample, it obtains 
higher PDF value otherwise not.

The tracking phase is the second stage of the KCF algo-
rithm as indicated in Fig. 4 (bottom). Whenever a hand 
comes in the captured frame, the system captures the image 
of the selected ROI of the previous frame; by this time, mul-
tiple samples are produced for displacement. The samples 
and the new frame are prepared for the KCF trained model 
which is indicated in Fig. 4 (top) and using those samples 
correction is calculated. Then, the ROI is modified based on 
the position of the maximum value. The targeted image will 
be repeatedly captured when it finds a new ROI position, 
then trained, and updated the model as indicated in Fig. 4 
(top). When the hand is out of the camera range, the system 
stops its execution.

Median‑Flow Algorithm

This tracker is used to zoom-in and zoom-out any document, 
photograph, and PowerPoint slide. Using this tracker, we 
measured the movement of ROI in a forward or backward 
direction [32]. If the movement is in a forward direction, 
then zoom-in operation will be performed otherwise zoom-
out. Internally, this tracker tracks the object in both forward 
and backward directions in time and calculates the inconsist-
encies between these two trajectories. We realized that this 
tracker works best when the motion is predictable and small.

CNN Architecture for Gesture Recognition

This study proposed a convolutional neural network con-
taining three convolutional and max pooling layers. After a 

tensor is passed through the convolutional layers, it is flatted 
into a vector and passed through the dense layers [33]. The 
overview of the CNN architecture is shown in Table 1 and 
the overall architecture is shown in Fig. 5, which contains 3 
convolutional layers, 3 max-pooling layers, 2 fully connected 
layers, and the final output layer connected to 5 classes to 
recognize gestures of 5 categories. Each step of the CNN 
architecture is as follows.

Convolutional Layer

Convolution layer is the basic building block in CNN [34, 
35]. In the proposed system, we used three convolution lay-
ers with different convolution kernel 32-32-64 sequentially 
and kernel size is 3 × 3 for all. The first layer is given 54 × 54 
sized input image; then, after going through the pooling 
layer, the second convolution layer gets 26 × 26 sized image 
and the last layer gets 12 × 12 sized input image. Also, ReLU 
activation function is performed in every convolution layers.

Fig. 4   Flowchart of the training 
stage of KCF tracking (top) and 
tracking stage of KCF tracking 
(bottom)
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Table 1   Overview of the CNN architecture

Layer Type Kernel size Stride Kernel Input size

1 Conv2D 3 × 3 1 32 54 × 54 × 1
2 Pool 2 × 2 2 – 52 × 52 × 32
3 Conv2D 3 × 3 1 32 26 × 26 × 32
4 Pool 2 × 2 2 – 24 × 24 × 32
5 Conv2D 3 × 3 1 64 12 × 12 × 32
6 Pool 2 × 2 2 – 10 × 10 × 64
7 Full Connected – – 1600 5 × 5 × 64
8 Full Connected – – 64 1600
9 Output – – 5 64
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Pooling Layer

After every convolution layer, the pooling layer is merged 
to downsampling. Consequently, the obtained feature map 
sample by the convolution layer becomes one-fourth of the 
original sample. Max pooling method is used for pooling 
with 2 × 2 kernel. This method takes maximum element 
among the 2 × 2 sized mapped area elements. Around three 
times are used in the architecture, results in a fully con-
nected layer get the input of 5 × 5 sized sample.

Fully Connected Layer

The output of the last pooling layer gets into a fully connected 
layer. In this architecture, two fully connected layers are used 
to classify five common hand gestures. Around 64 neurons 
are set as input parameters. To overcome the overfitting prob-
lem, we add a dropout (0.5) method before fully connected 
layer and “softmax” activation function is used. Finally, after 
network testing is finished, all features are combined.

Tuning Parameters

To initialize the network, weight parameters are randomly 
set in every layer of the network. The network batch size 
is 16, and “categorical_crossentropy” is used as the loss 
function. Adam optimizer is used as an accuracy metric. 
After passing the result using the “softmax” function, the 
“categorical_crossentropy” loss function is used to measure 
the error that occurs between the real label value and the 
result of the prediction. The index of the maximum value 
of predicted output probability array of the five categories 
is used for the gesture selection from the five classes which 
is shown in Fig. 6.

Fig. 5   Architecture of the 2D CNN network

Fig. 6   Five hand gestures with 
the corresponding gesture label

Category 1 Category 2 Category 3 Category 4 Category 5

Mouse Zoom Drag and Drop Scroll Right
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Experimental Results Analysis

This section analyzed the results of our proposed system. 
We fixed the input image size to a ratio of 1:1, resized it 
to 54 × 54, and converted the images to the binary chan-
nel (black and white) to fix the neurons quantity in the 
fully connected layer. In order to recognize the gesture, we 
entered the converted images into the CNN architecture. We 
subtracted most of the background information, detected 
the skin by filtering YCrCb values, and applied some noise 
removal filters (e.g., blurring) to remove the unnecessary 
information so that the complexity of the system can be 
reduced and can be trained the network efficiently and 
faster.

Prepared Data

A number of images are collected for different gestures, 
and a total of 3,000 images are created after preprocessing 
(background subtraction, skin filtering, and using other noise 
removal filters), 600 images for each gesture (5 × 600 = 3000 

images). For training, we used 2,500 images and 500 images 
for each gesture (5 × 500 = 2500 images). These images were 
collected at various angles and different backgrounds, then 
preprocessed, resized to 54 × 54 (a ratio of 1:1), and con-
verted to binary to fed into the network. And finally, 500 
images were used to validate the CNN architecture. Figure 7 
shows some example images after preprocessing.

Performances of the System

The settings of the network parameter for the CNN archi-
tecture are shown in Table 2. We subtract the background 
information and segmented the skin using YCrCb range 
from (0, 133, 77) to (235,173,127). After resizing the 
images and converting them into binary, we fed it into the 
network.

Several performance measures are used to evaluate a sys-
tem like accuracy [36], error rate [37], precision [38], sen-
sitivity [39], specificity [40], f1-score [41, 42], MCC [43], 
AUC [44] etc. In this system, we just considered accuracy 
and loss as evaluation metrics. The recognition results of 
the training set and validation set are shown in Table 3. The 
system successfully achieved the training set accuracy of 
93.25%, loss of 0.19, and validation set accuracy of 98.44%, 
loss of 0.04 for gesture recognition. Figures 8 and Fig. 9 
show the accuracy and loss curve of the CNN architecture, 
respectively, in which the accuracy of validation is higher 
than the accuracy of the training set and the validation loss 
is lower than the training loss.  

Fig. 7   Examples of images after preprocessing at different angles

Table 2   Network parameters for 
the CNN architecture

Tuning parameters Value

Probability of dropout 0.5
Model optimizer Adam
Size of batches 16
No. of epochs 26
Steps per epoch 2000
No. of images in the training set 500 × 5 = 2500 images
No. of images in the validation set 500 images
Preprocessing of images Background subtraction, skin segmentation using YCrCb range 

from (0,133,77) to (235,173,127), binary conversion using dila-
tion

Table 3   Recognition results of the CNN architecture

Performance measures Training set result Valida-
tion set 
result

Accuracy 93.25% 98.44%
Loss 0.19 0.04
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We developed an interface using this CNN architecture 
for human–computer interaction by performing some mouse 
and keyboard operations (e.g., mouse movements, clicking, 
scrolling, drag, and dropping, left key press, right key press, 
etc.). The user interface including all features is depicted in 
Fig. 10.

Conclusions

The achievement of effective human–computer interaction 
using hand gesture recognition is the main focus of our 
study. Hand detection, tracking, and gesture recognition 
are the three main components of our proposed system. For 
the better result of recognition performance, some essential 
preprocessing, background subtraction, noise processing, 
skin segmentation using the YCrCb skin detection range 
have been done on the initial images. The ROI is detected 
using the Haar cascade classifier. Then hand tracking is 
done using KCF and median-flow algorithm. Finally, the 
processed images resized to 54 × 54, converted to binary 
images (black and white), and fed into the 2D convolu-
tional neural network for gesture recognition from the five 
categories. Our proposed system achieved a higher per-
formance result of recognition with validation accuracy 
of 98.44%

For detecting hand, background subtraction, skin segmen-
tation, and noise processing are applied. But sometimes due 
to environmental complexity or in a dynamic environment, 
the developed system behaves unexpected, because in some 
conditions and cases skin segmentation finds some other 
objects that matches with human skin color. As a result, 
hand tracking is humped and the recognition step cannot 

Fig. 8   Accuracy of the proposed system both for training and valida-
tion

Fig. 9   Loss of the proposed system both for training and validation

Fig. 10   User interface of the 
proposed human–computer 
interaction system including all 
features
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occur. Hence, it can be a future research scope to mitigate 
the errors due to the limitations of the environment, lighting 
condition, or color.
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