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Abstract
Classifying gene expression data is known to contain keys for solving the fundamental problems in cancer studies. However, 
this issue is a complex task because of the large p, small n issue on gene expression data analysis. In this paper, we propose 
the improvements in the large p, small n classification issue for the study of human cancer. First, a new enhancing sample 
size method with generative adversarial network is proposed to improve classification algorithms. Second, we suggest a clas-
sification approach with over-sampling technique using features extracted by deep convolutional neural network. Numerical 
test results on fifty very-high-dimensional and low-sample-size gene expression data datasets from the Kent Ridge Biomedi-
cal and Array Expression repositories illustrate that the proposed models are more accurate than state-of-the-art classifying 
models. In addition, we also have explored the performance of support vector machines, k nearest neighbors and random 
forests, which have improved when apply our approaches.

Keywords Large p, small n classification issue · Synthetic over sampling · Enhancing data · Deep convolutional neural 
network · Generative adversarial network · Support vector machines · Gene expression data

Introduction

The large p, small n classification issue is a major challenge 
in the analysis of microarray data, where expression levels 
of thousands of genes are monitored for a small number of 
patients. In gene expression studies, the amount of observa-
tions (n) is less hundreds or thousands, whereas the number 
of genes (p) is approximately hundreds of thousands [61]. 
This is just known as “large p, small n” issue, one of the sev-
eral problems of “curse of dimensionality” [5]. Additionally, 
this issue is more deteriorated when independent variables 
are in multiple correlations. Therefore, many methodologies 

are studied to classify gene expression data [39]. These stud-
ies aim finding effective solutions to diagnose and treat can-
cer [56]. Information of gene expression profile may be used 
to find and diagnose diseases or to see how well the body 
responds to treatment, so many algorithms are studied to 
classify gene expression data [56].

In spite of many methods for the large p, small n problem 
has risen during recent years, but these algorithms remain 
a critical need to improve accuracy of classification models 
[39]. This issue is the main challenge that most state-of-
the-art classification algorithms are facing when dealing 
with gene expression data. Besides, it also leads to statisti-
cal challenges because conventional statistical methods give 
improper result due to the very high-dimensional data with 
a limited number of patterns [57]. In fact, it is not feasible 
when to build machine-learning model due to the extremely 
large feature sets with millions of features and high com-
puting cost. The challenge of this issue is that training data 
sample size is relatively small compared to features vector 
size, therefore, the classification models may give poor clas-
sifying performance due to over-fitting. To solve the large p, 
small n classification issue, feature extraction and enhancing 
data methods are used to improve accuracy classification 
models [1, 63].
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In this study, we extend our previous papers [34, 35] to 
explore the performance of support vector machines [66], k 
nearest neighbors [25], random forests [9] and decision trees 
[44, 59] algorithms to address the large p, small n issue for 
gene expression data classification. The experiments are 
extend on fifty microarray gene expression datasets that is 
very-high-dimensional and low-sample-size to evaluate per-
formance between the proposed approaches.

In first approach, we propose enhancing the performance 
of classifier using Generative Adversarial Networks (GAN) 
[27]. The GAN generates synthetic data from original datasets 
which is implemented in order to increase training samples. 
This model is used in conjunction with various classification 
algorithms that efficiently classify gene expression data. This 
approach take advantages of GAN algorithm that tackle the 
large p , small n classification issue.

In second approach, a new learning algorithms for the 
precise classification of gene expression data of various algo-
rithms with over-sampling SMOTE technology [14] using fea-
tures extracted by deep convolutional neural network (DCNN). 
The algorithms perform the training task with three main steps. 
First of all, we use new DCNN model to extract latent features 
from original data. Second, SMOTE algorithm is proposed to 
enhance data using new features extracted by DCNN. Finally, 
two algorithms are used in coupling with the classification 
algorithms to predict gene expression data. The approach take 
advantages of both DCNN and SMOTE algorithms that solve 
effectively the large p, small n classification problem.

Numerical test results on fifty microarray gene expression 
datasets from Kent Ridge Biomedical [37] and Array Expres-
sion repositories [8] indicate that our models are more accurate 
than state-of-the-art classifying algorithms. From the obtained 
results, it is observed that our approaches can improve clas-
sification accuracy of support vector machines [66], random 
forests [9] and k nearest neighbors [25] algorithms.

The rest of this paper is organized as follows: 
Sect. “Related Works” discusses related works and their 
application in the context of gene expression data classifi-
cation. Section “Methods” presents our models for the large 
p, small n classification issue. Section “Evaluation” presents 
a comparison of predictive performances of our models on 
50 gene expression datasets. Section “Conclusion and Future 
Works” shows our conclusion, along with some of the ideas 
we are planning to explore along the lines of the present 
paper.

Related Works

Our proposal is in some aspects related to approaches for 
the large p, small n classification issue. These methods 
consist enhancing data, extraction features and classifying 
algorithms.

On the one hand, to solve the low-sample-size issue of 
gene expression data, the synthetic data generation algo-
rithms are used to increase efficiency samples in classifica-
tion models. In practice, microarray experiments are often 
performed with a small number of patients, resulting in low 
statistical power for detecting differentially expressed genes. 
Consequently, the collecting of large-scale gene expres-
sion data is impracticable because the number patients of 
microarray studies is limited due to expensive cost of this 
technologies. The low-sample-size issue could addressed 
using the artificial samples of the synthetic data generation 
algorithms. These models are learned from data distribution 
of original data to generate synthetic data. The new data is 
generated by these methods that update to original datasets. 
In the next step, the updated data is classified using the clas-
sification algorithms. There are many approaches to enhance 
data such as generative model, over-sampling methods. The 
generative adversarial network [27] is a deep neural net-
work that learns from training data to generate synthetic data 
similar to the training ones. This model has not only been 
successfully applied to image data [21, 46], medical data 
[19] but also biology data [18, 52]. The GAN has been used 
to solve the problem of limited data by enhancing synthetic 
data because the effective classification model requires a 
good amount of quality data. Therefore, we use the GAN to 
enhance gene expression data to address the large p, small 
n classification issue. The low-sample-size issue is solved 
by generating new data to enlarge original datasets. To 
date, very few studies have assessed power of GAN in gene 
expression data classification.

On the other hand, so as to address the very high-dimen-
sional problem, the feature extraction methods transform 
the original data into a new representation with a reduced 
number of variables, instead of eliminating irrelevant genes. 
This approach is usually better than gene selection method 
in terms of causing less information loss [30]. Therefore the 
large p, small n classification problem can be improved using 
extraction feature method to reduce dimension of original 
data. Many studies have used extraction feature methods 
in context “large p, small n” problem. For instance, prin-
cipal component analysis (PCA) use the covariance matrix 
and its eigenvalues and eigenvectors [38, 45, 53]. In addi-
tion, there are some nonlinear methods for gene expression 
classification including Kernel PCA [48, 60], Independent 
Components Analysis (ICA) [12, 24, 47]. In recent decades, 
the deep learning approaches are a current trend to extract 
features from original data. However, the application of 
deep learning approaches in the field of classifying gene 
expression data is rare. Deep neural network has emerged as 
popular machine learning models due to their ability to auto-
matically learn feature representations from input data. Deep 
convolutional neural network (DCNN) has achieved remark-
able results in computer vision [43], text classification [41], 
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biology data [51]. These algorithms aim reduce dimension 
of original data to improve performance of classification 
models. Consequently, DCNN has used to extract latent fea-
tures from gene expression data to address the large p, small 
n classification issue in our study.

In addition, over-sampling technologies also is used to 
solve the low-sample-size problem. Synthetic Minority 
Over-sampling Technique (SMOTE) was first introduced by 
[14] that generates samples with expected mean and vari-
ance similar to that of the original minority class data. The 
main idea of algorithm is that the minority class is over-
sampled by creating synthetic examples rather than by over-
sampling with replacement. However, SMOTE is less effec-
tive for very high-dimensional data [49]. Therefore, it often 
is combined with reduce dimension methods including fea-
ture selection or feature extraction [64]. These methods aim 
to reduce dimension of original data before using SMOTE. 
We take advantage of DCNN and SMOTE to solve the large 
p, small n issue. The DCNN is used to extract latent features 
of gene expression data, then the SMOTE algorithm gen-
erates synthetic data from the features of DCNN has been 
implemented.

Methods

In this section, we present two approaches to address the 
large p, small n classification issue. Moreover, we also 
briefly describe classification algorithms in our models. We 
provide insights strengths and weaknesses of algorithms for 
the large p, small n classification issue. The below-men-
tioned analysis outlines reasons to propose our algorithms.

Data Augmentation Using Generative Adversarial 
Network

In first our approach, we use GAN to tackle the large p, small 
n classification issue. Our algorithm is composed of three 
phases that is illustrated in Fig. 1. First, a new GAN is used 
to enhance generate data from original data. Second, we 
use linear support vector machines algorithm (LSVM) [66] 
to set label for new data. Finally, these algorithms are used 
in conjunction with the various classifiers learn to classify 
efficiently.

A GAN [27] is a deep-neural-network architecture make 
up of two networks: a generator network (denoted by G) and 
a discriminator network (denoted by D). Through multiple 
cycles of generation and discrimination, both networks train 
each other, while simultaneously trying to outwit each other 
(Fig. 2). The GAN is used to generate new samples that 
are indistinguishable from the data distribution. The D is 
optimized to distinguish samples from the real data distri-
bution Pdata from those of the generated data distribution 

pg . The G takes vector noise z ≈ pz as input networks and 
generates samples G(z) with distribution pg. The generated 
data samples generated by model G are then sent to the D to 
determine their similarity with original training data. GAN 
optimization finds a Nash equilibrium [27] between the G 
and D. The GAN architecture in the first approach has two 
deep-neural-network models: a generator G model and dis-
criminator D model (Fig. 2).

In our GAN model, the generator G takes a noise vector 
from 100 random numbers to draw from a uniform distri-
bution as an input layer. The output of G is a vector gene 
expression. The network architecture consists of five hidden 
layers with the following layer sizes: 32, 64, 128, 256, and 
512. The Tanh activation function is used at the output layer. 
The discriminator network D has a typical neural-network 
architecture that takes the input data of a vector gene expres-
sion. D consists of five hidden layers with sizes 512, 256, 
128, 64, and 32. The sigmoid activation function is used at 
the output layer.

Moreover, we also use batch normalization for generator 
G and discriminator D networks. It works by normalizing 
the input features of a layer to have zero mean and unit vari-
ance [36]. In addition, the model uses leaky rectified linear 
unit (ReLU) activations [50] in the discriminator networks. 

ORIGINAL DATA

GAN

TRAINING DATA

GENERATE DATA SET LABEL BY LSVM

CLASSIFIERS

Fig. 1  Using GAN to address the large p, small n classification issue

Fig. 2  Architecture of GAN
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Leaky ReLU makes it possible to pass a small gradient 
signal for negative values. Therefore, it makes the gradi-
ents from the discriminator flows stronger in the generator. 
Instead of passing a gradient of zero in the back-prop pass, 
it passes a small negative gradient. The Adam optimizer has 
been used for all networks (learning rate of lr = 0.0002 and 
decay rates of � = 0.5).

For the large n, small p classification problem, one of the 
challenges in the classification tasks is how to cope with 
low-sample-size datasets [54]. Especially, the effective clas-
sification models that need labeled data and a large sample 
size. Therefore, the new gene expression vectors are gener-
ated by GAN in order to increase sample size of original data 
[40]. Support vector machines algorithm is used to set label 
for new generate data because it is outperform the stage-of-
the-art algorithms in context the large p, small n classifica-
tion issue [22, 58]. In order to improve the classification 
algorithms accuracy, GAN is proposed to train model from 
original datasets to generate new samples for enlarging the 
training datasets, following which various algorithms learns 
to classify gene expression data including support vector 
machines [66], random forests [9], k nearest neighbors [25], 
and decision trees [44, 59].

Enhancing New Features Extracted by Deep 
Convolutional Neural Network

In second our approach, DCNN and SMOTE are used to 
solve the large p, small n classification issue. The approach 
is composed of three steps that is illustrated in Fig.  3. 
First, the new DCNN is used to extract new features 
from original data. Second, we use SMOTE algorithm 
(SMOTE) to enhance data using new features extracted 

by DCNN. Finally, these algorithms are used in conjunc-
tion with the various classifiers learn to classify efficiently.

In our algorithm, a new DCNN architecture is imple-
mented that extracts new features from gene expression 
data. It is a multi-layer neural network architecture that 
is directly inspired by the visual cortex of the human 
brain [32]. In network structure, the successive layers are 
designed to learn progressively higher-level features, until 
the last layer which produces categories. Once training 
processing is completed, the last layer, which is a linear 
classified operating on the features extracted by the previ-
ous layers.

The architecture of DCNN in our model consists of two 
convolutional layers, two pooling layers, and a fully con-
nected layer which is shown in Fig. 4. The layers are, respec-
tively, named CONV1, POOLING1, CONV2, POOLING2, 
and output (numbers indicate the sequential position of the 
layers).

The input layer receives the gene expression in the 2-D 
matrix format. We embedded each high-dimensional vector 
expression data into a 2-D image by adding some zeros at 
the last line of the image. The first CONV1 layer contains 4 
feature maps and kernel size (3 × 3).

The second layer, POOLING1 layer, is taken as input of 
the average pooling output of the first layer and filter with 
(2 × 2) sub-sampling layer. CONV2 uses convolution ker-
nel size (3 × 3) to output two feature maps POOLING2 is 
a (2 × 2) sub-sampling layer. We propose to use the Tanh 
activation function as neurons.

The final layer has a variable number of maps that com-
bine inputs from all map in POOLING2. The feature maps of 
the final sub sampling layer are then fed into the actual clas-
sifier consisting of an arbitrary number of fully connected 

Fig. 3  Using DCNN and 
SMOTE to address the large p, 
small n classification issue

ORIGINAL
DATA DCNN NEW

FEATURES

SMOTE

TRAINING
DATA

SYNTHETIC
DATA

CLASSIFIERS

SET LABEL
BY LSVM

Fig. 4  A new DCNN architec-
ture for feature extraction in 
processing gene expression data
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layers. The output layer uses to extract new features from 
original gene expression data.

The large p, small n problem become complicated when 
the sample size p is substantially smaller than the number 
of dimension n . The usual way to handle the problem is to 
reduce the number of dimension by using variable selection 
[10] or projecting them to lower dimension using principal 
component or other related methods [6]. However, most of 
the existing methods for variable selection or projections are 
based on linear relationship between the response and the 
features which may not be very realistic [30]. Further, the 
problem is more deteriorated for gene expression data when 
independent variables are in multiple correlations.

In order to address the large p classification task, a new 
DCNN is implemented to extract new features from original 
data. This approach has take advantage of DCNN is that this 
model can learn latent features from very-high-dimensional 
input spaces. This process can be viewed as projection of 
data from higher dimensional space to a lower dimensional 
space. Moreover, these new features improve the dissimi-
larity power of data representations and thus obtain higher 
accuracy rate than original features.

In addition, we also propose a new SMOTE algorithm 
(1) that generates new synthetically data from new features 
extracted of DCNN. In machine learning, a classifying sys-
tem requires a good amount of quality data to predict pre-
cise. Consequently, this approach aim to use the SMOTE 
algorithm to enhance data for new features extracted by 
DCNN. Our models solve both problems the very-high-
dimensional and low-sample-size of gene expression data. 
SMOTE generates synthetic data which has almost similar 
characteristics of the training data points. Synthetic data 
points ( xnew ) are generated in the following way. First, the 
algorithm takes the feature vectors and its nearest neighbors, 
computes the distance between these vectors. Second, the 
difference is multiplied by a random number ( � ) between 0 
and 1, and it is added back to feature vector. This causes the 
selection of a random point along the line segment between 
two specific features. Then, linear support vector machine 
is used to set label for generating samples with constant C 
= 103 . An amount of new samples ( p% ) and k nearest neigh-
bors are hyper parameters of the algorithm.

Algorithm 1: SMOTE(S, p, k)
Data: number of samples S; amount of SMOTE p%; number of nearest neighbors k

Result: : (p/100) * S synthetic samples
initialization;
p = (int)(p/100);
nf = number of attributes;
data: array for original data;
count: number of synthetic data generated;
synthetic: array for synthetic data;
(*Compute k nearest neighbors for each sample*);
for i ← 1 to S do

Compute k nearest neighbors for i, save the indices → nnarray;
*Generate data from original data* ;
while p �= 0 do

Choose a random number between 1 and k call it nn.;
In this step chooses one of the k nearest neighbors of i;
for f ← 1 to nf do

dif = data[nnarray[nn]][f ]− data[i][f ] ;
synthetic[k][f ] = data[i][f ] + random(0, 1) ∗ dif ;

count++ ;
p = p− 1 ;

In second approach, although the dimension has reduced 
by DCNN but training data sample size is relatively diminu-
tive compared to feature vector size, so that algorithms may 
give poor classification performance due to over-fitting. To 
overcome this situation, SMOTE is proposed to generate 
synthetic samples from features extracted by DCNN. In 
our approach, in the very-high-dimensional data setting 
only kNN classifiers based on the Euclidean distance seem 
to benefit substantially from the use of SMOTE, provided 
that feature extraction by DCNN is performed before using 
SMOTE. For traditional SMOTE algorithm, it is not effec-
tive for very-high-dimensional data and this problem has 
tackled by DCNN model in our approach. The SMOTE 
generates new training data following which the classifiers 
learns to classify gene expression data efficiently in this 
phase. The classifiers consist support vector machines [66], k 
nearest neighbors [25], random forest [9] and decision trees 
[44, 59] that are used to classify data generated by DCNN 
and SMOTE.

Classification Algorithms

The classification algorithms which we consider for this 
purpose are support vector machines (SVM) [66], k nearest 
neighbors (kNN) [25], random forests (RF) [9] and decision 
trees (C4.5) [44, 59].

SVM algorithm was invented by Vapnik [67]. It is sys-
tematic and properly motivated by the statistical learning 
theory. SVM has been widely applied to areas as diverse as 
image analysis, microarray gene expression classification, 
and many other fields where data exists with n much less 
than p [11]. The SVM algorithm identifies the best separat-
ing plane furthest from the different classes such that the 
resulting degree of separation is as large as possible (Fig. 5). 
To achieve this purpose, the SVM tries to maximize the 
distance between two boundary hyperplanes to reduce the 
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probability of misclassification. The optimal hyperplane 
found by SVM is maximally distant from the two classes of 
labeled points located on each side .

In addition to performing linear classification, the SVM 
has been very successful in building highly non-linear clas-
sifiers by means of kernel-based learning methods [20]. 
The methods aim to transform the input space into higher 
dimensions, such as a radial basis function (RBF), sigmoid 
function, and polynomial function. The most widely used 
kernel is the Gaussian radial basis function (RBF) [20]. In 
both our approaches, a non-linear SVM with an RBF kernel 
is proposed for classifying gene expression after using GAN, 
DCNN and SMOTE.

The second algorithm which we suggest for this purpose 
is k nearest neighbors algorithm (kNN) [25]. k-nearest neigh-
bors (kNN) algorithm uses feature similarity to predict the 
values of new datapoints which further means that the new 
data point will be assigned a value based on how closely it 
matches the points in the training set [25]. The kNN algo-
rithm is one of the most popular algorithms in machine 
learning, because it is simple to implement and works fast 
and effectively. [69]. Unfortunately, in high dimensional 
spaces, points that are drawn from a probability distribu-
tion, tend to never be close together. Therefore, kNN would 
be especially sensitive to this problem. In order to overcome 
the curse of dimensionality, GAN as well as SMOTE are 
used to increases the size of the data space when using the 
kNN algorithm.

Random forests [9] is the third algorithm that we sug-
gest for this task. This algorithm creates a collection of 
unpruned decision trees (built so that at each node the best 
split is done from a randomly chosen subset of attributes) 
from bootstrap samples (sampling with replacement from 
the original dataset). The generalization error of a forest 
depends on the strength of the individual trees in the for-
est and on the dependence between them. The algorithm 
constructs unpruned trees for keeping low bias and uses the 

randomization for controlling high diversity between trees in 
the forest. In practice, many studies have shown that random 
forests algorithm can achieve high accuracy in classifying 
high dimensional data [15, 23].

The last algorithm which we consider for this purpose 
is decision tree [44, 59]. The main ideas of decision trees 
algorithm is intuitively appealing piecewise functions oper-
ating on a partitioning of the input space. The algorithm is a 
tree based model , generates all possible chances of occur-
rence of events and its consequences by observing logical 
connection between each features in datasets. However, the 
algorithm only selects a single attribute for node splitting, 
so that the strength of model is reduced, particularly when 
dealing with datasets having dependencies among attributes. 
Therefore, that this algorithm is not suitable to solve the 
large p, small n classification problem.

Evaluation

We are interested in the classification performance of our 
proposal for the large p, small n classification issue. There-
fore, we here report the comparison of the classification per-
formance obtained by our model on the best state-of-the-art 
algorithms, including non linear support vector machine 
(SVM) [67], linear support vector machine (LSVM) [13], k 
nearest neighbors (kNN) [25], random forests (RF) [9] and 
decision trees (C4.5) [59].

In order to compare the predictive of the models, we 
report the comparison of the classification results obtained 
by our models and the algorithms without using GAN. 
Besides, we also evaluate performance of classifiers after 
using DCNN and SMOTE.

We have implemented GAN, DCNN, and SMOTE and 
its others version in Python using Scikit [55] and Tensor-
Flow [2] libraries. Other algorithms like RF, C4.5 in Scikit 
library [55]. We also use the highly efficient standard SVM 
algorithm LibSVM [13] with one-versus-one strategy for 
multi-class. The total classification accuracy measure is used 
to evaluate the classification models. We used the Student’s 
test to assess classification results of learning algorithms. 
All experiments are run under Linux Mint, Intel(R) Xeon(R) 
CPU, 3.07 GHz PC and 8GB main memory.

Experiments were conducted with fifty gene expression 
datasets from the Biomedical [37] and Array Express reposi-
tories [8]. The characteristics of datasets are presented in 
Table 1.

The evaluation protocols are illustrated in the six column 
of Table 1. With datasets having training set (trn) and testing 
set (tst) available, we use the training data to tune the param-
eters of the algorithms for obtaining a good accuracy in the 
learning phase. Then the obtained model is evaluated on the 
test set. With a datasets having less than 300 data points, the 

Fig. 5  SVM for binary classification
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Table 1  Description of 
microarray gene expression 
datasets

ID Dataset #Datapoints #Dimensions #Classes Evaluation 
Protocol

Sources

1 Leukemia 72 7129 2 trn-tst [26]
2 Breastr 97 24481 2 trn-tst [65]
3 Colon 62 2000 2 loo [3]
4 Breast cancer 104 22283 2 loo [17]
5 Leukemia 72 12582 2 trn-tst [4]
6 Lung cancer 181 12533 2 trn-tst [7]
7 Lung cancer 180 12533 2 loo [28]
8 Dlblcl 58 7129 2 loo [62]
9 Breast cancer 168 2905 2 loo [29]
10 Leukemia 128 22283 6 loo [16]
11 E-GEOD-30540 35 54675 2 loo [8]
12 E-GEOD-14858 40 54675 2 loo [8]
13 E-GEOD-29354 52 22283 2 loo [8]
14 E-GEOD-39716 53 22215 3 loo [8]
15 E-GEOD-66533 53 33297 3 loo [8]
16 E-GEOD-65106 58 54675 3 loo [8]
17 E-GEOD-31189 59 33297 3 loo [8]
18 E-GEOD-37364 92 54675 2 loo [8]
19 E-GEOD-51024 94 54675 4 loo [8]
20 E-GEOD-3726 96 54675 2 loo [8]
21 E-GEOD-36771 107 54675 2 loo [8]
22 E-GEOD-37751 107 54675 2 loo [8]
23 E-GEOD-43458 110 33252 2 loo [8]
24 E-GEOD-31552 111 33297 3 loo [8]
25 E-GEOD-19804 120 54675 2 loo [8]
26 E-GEOD-62452 130 33297 2 loo [8]
27 E-GEOD-51981 148 54675 2 loo [8]
28 E-GEOD-21122 158 22283 7 loo [8]
29 E-GEOD-73685 183 33297 8 loo [8]
30 E-GEOD-32537 217 22283 7 loo [8]
31 E-GEOD-44077 226 33252 4 loo [8]
32 E-GEOD-30784 229 54675 3 loo [8]
33 E-GEOD-29272 268 22283 2 loo [8]
34 E-GEOD-22470 271 22283 2 loo [8]
35 E-GEOD-68606 274 22283 16 loo [8]
36 E-GEOD-2034 286 22283 2 loo [8]
37 E-GEOD-21050 310 54613 4 10-fold [8]
38 E-GEOD-16134 310 54613 4 10-fold [8]
39 E-GEOD-20685 327 54627 6 10-fold [8]
40 E-GEOD-13070 364 54675 2 10-fold [8]
41 E-GEOD-68468 390 22283 6 10-fold [8]
42 E-GEOD-50409 428 54613 2 10-fold [8]
43 E-GEOD-26253 432 17419 2 10-fold [8]
44 E-GEOD-6532 327 22645 3 10-fold [8]
45 E-GEOD-31312 498 54630 3 10-fold [8]
46 E-GEOD-39582 566 54755 6 10-fold [8]
47 E-GEOD-33315 575 22283 10 10-fold [8]
48 E-GEOD-47460 582 15261 10 10-fold [8]
49 E-GEOD-36376 433 22283 2 10-fold [8]
50 E-GEOD-7307 677 54675 12 10-fold [8]
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test protocol is leave-one-out cross-validation (loo). For the 
others, we use 10-fold cross-validation protocols remains the 
most widely to evaluate the performance [68].

Tuning Parameters

As for training our models, we tune the parameters for algo-
rithms including GAN, DCNN, SMOTE and classification 
algorithms.

In order to train GAN model, the Adam optimizer [42] 
has been used for all networks (learning rate of � = 0.0002 
and decay rates of � = 0.5). We have have been attempted 
to tune the epoch parameter from 50 to 100 to find the best 
experiment results. The Linear SVM use C = 105 for the set 
label for the generated data. The number of samples gener-
ated is chosen from 30 to 600.

In order to train DCNN, we use Adam optimizer [42] 
and batch size is 8–32. We start to train with a learning rate 
of 0.00002 for all layers, and then rise it manually every 
time when the validation error rate stopped improving. The 
number of epochs is 200. In SMOTE algorithm, the k neigh-
bors nearest is chosen in { 1, 3, 5, 7, 9 } . The samples are 
over-sampled (p) at 100%, 200% and 300% of its original 
samples.

In relation to parameters of classifiers, we propose to 
use RBF kernel type in SVM models because it is gen-
eral and efficient [31]. Finally, an attempt was made to 
tune parameters C and � of the RBF kernel to obtain good 
accuracy for the nonlinear SVM. The cost C is chosen in 
{101, 102, 103, 104, 105 , and the hyper-parameter � of RBF 
kernel is tried among 10−5, 10−4, 10−3, 10−2, 10−1 , 1/the num-
ber of features } . All the optimal parameters of GAM-SVM 
and DCNN-SMOTE-SVM are presented in Table 2. The RF 
algorithm learns 200 trees for classifying all datasets. The 
kNN uses k among 1, 3, 5, 7, 9. The C = 105 is used for 50 
datasets for the LSVM.

Classification Results

Tables 3, 4, 5, 6 and 7 provide results of the models on the 
50 gene expression datasets. The improved results are pre-
sented in bold. Figure 6 show comparison mean accuracy 
classification of models. The plot charts in Figs.  7 and  8 
visualize classification results. Table 8 summarizes results 
of these statistical tests with paired Student ratio test present 
the mean accuracy of these models. The significant results 
indicating excess of p values just below 0.05 ( < 0.05 ) and 
are reported in bold. The p alues higher than 0.05 ( > 0.05 ) 
are not statistically significant.

First, we evaluate GAN enhancing data algorithm. 
Therefore, we compare accuracy of classifiers (SVM, 
LSVM, kNN, RF and C4.5) on the original data and 
classifier trained on the augmented set (GAN-SVM, 

GAN-LSVM, GAN-kNN, GAN-RF and GAN-C4.5). 
In Table 8 and Fig. 6, it is clear that GAN-SVM, GAN-
LSVM, GAN-kNN, GAN-RF, GAN-C4.5 significantly 
increases the mean accuracy of 3.31, 1.88, 1.25, 0.95, 
1.97, percent points compared to SVM, LSVM, kNN, RF 
and C4.5, respectively. All p-values are less than 0.05. 
In Fig. 7 GAN-SVM has 29 wins, 11 ties, and 10 defeats 
(p value = 1.80E−03) against SVM. GAN-LSVM has 32 
wins, 10 ties, and 8 defeats (p value = 3.22E−03) com-
pared with LSVM. Using kNN to classify, the GAN-kNN 
has 27 wins, 6 ties, and 17 defeats (p value = 2.35E−02) 
compared with kNN. GAN-RF has 25 wins, 10 ties, 15 
defeats compared with RF (p value = 4.52E−02). From 
the results and Figs. 6, 7 and 8, it can be seen that the data 
augmentation improve the accuracy of the classifiers.

Especially, GAN-SVM outperforms GAN-kNN, GAN-
RF and GAN-C4.5. Table 8 shows GAN-SVM obviously 
increases the mean accuracy of 6.63, 3.09, 8.99% points 
compared to GAN-RF, GAN-kNN and GAN-C4.5, respec-
tively. All p-values are less than 0.05. GAN-SVM is slightly 
superior to GAN-LSVM with 22 wins, 16 ties, and 12 
defeats (p value = 6.89E−01).

Second, we evaluate DCNN and SMOTE. Table 8 show 
that DCNN-SMOTE-SVM, DCNN-SMOTE-LSVM, 
DCNN-SMOTE-kNN, DCNN-SMOTE-RF obviously rise 
the mean accuracy of 4.83, 3.37, 3.9, 2.08 percent points 
compared to SVM, LSVM, kNN and RF, respectively. All 
p values are less than 0.05. In detail, DCNN-SMOTE-SVM 
has good performances compared to SVM with 29 wins, 11 
ties, 10 defeats, p value = 1.33E−3. DCNN-SMOTE-LSVM 
has 33 wins, 8 ties, 9 defeats (p value = 8.72E−3) compared 
to LSVM in Table 4 and Fig. 7. Table 5 and Fig. 8 show that 
DCNN-SMOTE-kNN outperforms compared to kNN (27 
wins, 6 ties, 17 defeats). Besides, DCNN-SMOTE-RF has 
29 wins, 3 ties, 18 defeats (p value = 2.78E−2) compared to 
RF. These results show effective of DCNN and SMOTE that 
improve accuracy of SVM, LSVM, RF and kNN.

Remarkably, it becomes apparent that DCNN-SMOTE-
SVM shows the best performance compared with other 
models (See in Table 8). All p values are less than 0.05 that 
results statistically meaningful. Moreover, DCNN-SMOTE-
SVM model efficiently classify more than various versions. 
In detail, DCNN-SMOTE-SVM gives good performances 
compared to DCNN-SMOTE-LSVM, DCNN-SMOTE-
kNN, DCNN-SMOTE-RF and DCNN-SMOTE-C4.5 
which improves the mean accuracy of 0.63, 5.67, 3.47, 9.7, 
respectively.

Furthermore, DCNN and SMOTE models also enhance 
the accuracy of classifiers compared to the algorithms classi-
fications using the features extraction from DCNN. It is clear 
that DCNN-SMOTE→[SVM, LSVM, kNN, RF] increase the 
mean accuracy of 0.98, 1.09, 3.15, 1.06% points compared 
to DCNN →[SVM, LSVM, kNN, RF]. These results show 
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Table 2  Parameters of GAN-
SVM, DCNN-SMOTE-SVM 
for 50 gene expression datasets

ID GAN-SVM DCNN-SMOTE-SVM

# Generate 
samples

C � # k neighbors p (%) C �

1 30 1E+04 1E−04 3 100 1E+06 1.E−01
2 100 1E+04 2E−05 9 200 1E+05 1.E−02
3 100 1E+04 2E−05 9 100 1E+06 1.E−01
4 100 1E+04 2E−05 3 100 1E+06 1.E−02
5 50 1E+04 5E−05 3 100 1E+07 1.E−05
6 50 1E+04 1E−04 11 200 1E+06 1.E−01
7 200 1E+03 1E−04 3 100 1E+06 1.E−02
8 100 1E+04 2E−05 5 300 1E+07 1.E−04
9 62 1E+04 5E−04 9 200 1E+06 1.E−02
10 30 1E+04 1E−04 3 100 1E+06 1.E−01
11 100 1E+04 8E−05 3 300 1E+06 1.E−02
12 100 5E+04 3E−05 3 100 1E+06 1.E−01
13 200 1E+04 2E−05 11 200 1E+06 1.E−01
14 200 1E+04 2E−05 9 100 1E+06 1.E−01
15 100 1E+04 4E−05 9 300 1E+05 1.E−05
16 100 1E+04 4E−05 3 100 1E+06 1.E−03
17 100 1E+04 2E−05 3 100 1E+06 1.E−01
18 100 1E+04 3E−05 9 100 1E+07 1.E−05
19 100 1E+04 3E−05 9 100 1E+06 1.E−01
20 111 1E+04 3E−05 3 100 1E+05 1.E−04
21 100 1E+01 2E−05 9 100 1E+07 1.E−02
22 100 5E+04 4E−05 3 100 1E+06 1.E−03
23 100 1E+01 3E−05 9 200 1E+07 1.E−05
24 100 1E+02 2E−05 3 100 1E+07 1.E−01
25 100 1E+04 1E−04 9 400 1E+06 1.E−04
26 100 5E+04 3E−04 3 100 1E+06 1.E−03
27 200 5E+04 8E−05 3 100 1E+07 1.E−01
28 100 5E+04 8E−05 11 200 1E+07 1.E−02
29 200 1E+04 1E−04 3 100 1E+06 1.E−02
30 100 1E+02 4E−05 3 150 1E+06 1.E−02
31 100 1E+04 3E−05 9 200 1E+07 1.E−01
32 200 1E+04 1E−04 3 100 1E+05 1.E−01
33 200 1E+04 1E−04 9 100 1E+06 1.E−01
34 100 1E+04 4E−05 11 150 1E+06 1.E−03
35 200 1E+04 4E−05 3 100 1E+06 1.E−01
36 286 1E+04 1E−04 5 400 1E+07 1.E−02
37 200 1E+04 1E−04 3 100 1E+00 1.E−05
38 310 1E+04 1E−04 9 100 1E+05 1.E−01
39 100 1E+02 2E−05 3 100 1E+06 1.E−02
40 200 1E+03 4E−05 9 200 1E+06 1.E−02
41 100 5E+04 2E−05 9 100 1E+06 1.E−03
42 200 1E+04 4E−05 9 150 1E+06 1.E−01
43 200 1E+04 2E−05 3 100 1E+06 1.E−05
44 432 1E+04 6E−05 9 100 1E+07 1.E−02
45 100 1E+04 4E−05 9 200 1E+03 1.E−04
46 200 1E+04 2E−05 9 100 1E+05 1.E−01
47 566 1E+04 2E−05 9 200 1E+07 1.E−03
48 200 1E+04 4E−05 3 100 1E+06 1.E−04
49 528 1E+04 7E−05 3 100 1E+06 1.E−01
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using DCNN-SMOTE is effectively more than our paper 
previous [33].

As for using C4.5 to classify, the classification results 
present that this algorithm fail in context gene expression 
data classification. GAN-C4.5 is slightly superior to C4.5, 
with 31 wins, 4 ties, and 15 defeats, p value = 5.39E−02. In 
the comparison between DCNN-SMOTE-C4.5 with C4.5, 
DCNN-SMOTE-C4.5 slightly superior to decision tree of 
C4.5 with 27 wins, 2 ties, 21 defeats, p value = 1.06E−01 
(not significant different).

Lastly, we compare performance of DCNN and GAN in 
the large p, small n classification issue. For kNN and RF, 
experiment results show that GAN slightly superior DCNN to 
improve performance of kNN and RF algorithms. GAN-kNN, 
GAN-RF increase the mean accuracy of 1.42, 0.13% points 
compared to kNN, RF. However, p values higher than 0.05 

are not statistically significant. As for SVM, LSVM and C4.5, 
Table 8 show that DCNN-SVM, DCNN-LSVM, DCNN-C.4.5 
slightly rise the mean accuracy of 0.21, 0.08, 0.63 percent 
points compared to SVM, LSVM, and C4.5, respectively. 
Despite all these initial findings, we still do not have a general 
characterization of which aspects of the data drive the perfor-
mances of each method. Indeed, it is important to emphasize 
that the no free lunch theorem applies more potently here, in 
the sense that there is no panacea that universally applies to all 
gene expression datasets.

Table 2  (continued) ID GAN-SVM DCNN-SMOTE-SVM

# Generate 
samples

C � # k neighbors p (%) C �

50 500 1E+04 2E−05 9 100 1E+07 1.E−01

Table 3  Classification results 
of our models using non linear 
SVM classifier

ID SVM GAN DCNN DCNN-SMOTE ID SVM GAN DCNN DCNN-SMOTE
SVM SVM SVM SVM SVM SVM

1 97.06 97.06 97.06 97.06 26 80.00 80.00 80.77 81.54
2 63.16 73.68 73.68 89.47 27 77.03 79.73 79.73 80.41
3 85.48 87.10 87.10 88.71 28 86.71 87.34 87.34 87.34
4 90.08 98.08 98.08 98.08 29 80.87 81.97 80.33 80.33
5 86.67 100 100 100 30 77.88 79.26 79.72 79.72
6 98.66 99.33 98.66 99.33 31 99.56 99.56 99.12 99.56
7 82.87  99.45 100 98.90 32 91.70 91.27 90.83 92.14
8 55.17 60.34 58.62 63.79 33 99.25 99.25 99.25 99.25
9 78.98 78.57 84.52 78.57 34 91.51 91.51 91.14 91.88
10 83.59 82.81 85.16 85.94 35 100 100 100 100
11 74.29 77.14 74.29 80.00 36 73.08 88.11 89.51 88.11
12 87.50 87.50 87.50 87.50 37 43.91 68.17 95.08 95.09
13 79.25 77.36 79.25 79.25 38 95.49 95.81 96.14 96.46
14 86.79 88.68 90.57 90.57 39 88.01 88.93 89.93 89.35
15 96.55 93.10 96.55 96.55 40 50.54 70.83 71.42 69.77
16 74.58 74.58 71.19 71.19 41 63.38 93.90 94.37 95.93
17 56.52 67.39 72.83 73.91 42 76.21 76.66 74.11 75.54
18 80.85 79.79 79.79 79.11 43 65.94 67.11 66.66 64.57
19 95.83 97.92 96.88 98.96 44 91.45 92.31 91.45 91.45
20 96.15 92.31 94.23 96.15 45 86.41 86.76 97.99 97.99
21 93.46 90.65 91.59 92.52 46 84.73 84.67 83.69 83.86
22 87.96 89.42 89.81 87.96 47 87.46 87.45 88.01 88.00
23 98.18 98.18 98.18 99.09 48 81.01 81.68 80.44 79.81
24 88.29 91.35 89.19 89.19 49 100.00 100 79.60 100
25 94.17 95.83 95.83 95.83 50 82.90 82.90 82.31 82.89
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Conclusion and Future Works

Throughout this paper, we have proposed two approaches for 
the large p, small n classification issue. In first approach, a 
new enhancing sample size method with generative adver-
sarial network is proposed to improve classification algo-
rithms. Second method, we propose a classification model of 
several classifying algorithms with SMOTE algorithm using 
features extracted by deep convolutional neural network. 
We have presented a thorough comparison of the predictive 
performances of our proposed classification methods on 50 
very-high-dimensional and low-sample-size datasets. This 
means that the performance of support vector machines, k 
nearest neighbors and random forests, which have improved 

when apply our approaches, concerning accuracy, for gene 
expression datasets. We further discussed limitations of the 
approach and promising directions of future research.

Although our approaches hold promise, they are not 
the silver bullets and cannot provide perfect results. There 
remain many challenges, including imbalanced data, inter-
pretation of deep learning results, and selection of an appro-
priate architecture and hyper-parameters. Furthermore, to 
fully exploit the abilities of deep learning and acceleration 
of deep learning require further studies. In the near future, 
we intend to provide more empirical test on large bench-
marks evaluate classification models with various measures 
metrics. A promising future research aims at automatically 
tuning the hyper-parameters of the classifiers.

Table 4  Classification results 
of our models using LSVM 
classifier

ID LSVM GAN DCNN DCNN ID LSVM GAN DCNN DCNN
LSVM LSVM SMOTE-LSVM LSVM LSVM SMOTE-LSVM

1 97.06 97.06 97.01 97.06 26 80.00 81.54 80.77 80.77
2 63.16 84.21 63.16 89.47 27 79.05 79.73 79.73 79.73
3 80.65 82.26 82.26 88.71 28 87.34 87.34 87.34 85.44
4 97.12 97.12 98.08 98.08 29 80.33 81.42 80.87 78.69
5 86.67  100 100 100 30 77.97 78.34 78.80 80.18
6 98.66 99.33 98.66 99.33 31 99.56 99.11 99.12 99.12
7 100 99.45 98.90 98.90 32 92.14 91.70 90.39 92.14
8 56.90 56.90 55.17 62.07 33 99.25 99.25 99.25 99.25
9 76.19 78.57 77.38 76.79 34 90.45 91.51 90.77 91.51
10 84.38 85.94 84.38 85.94 35 100 100 100 100
11 74.29 77.14 74.29 80.00 36 87.41 87.06 87.76 87.76
12 74.29 85.00 85.00 85.00 37 62.38 67.34 94.02 94.08
13 71.70 77.36 77.36 79.25 38 93.55 96.45 96.14 94.86
14 90.57 86.78 90.57 90.57 39 84.43 86.45 89.93 87.74
15 96.55 96.55 96.55 96.55 40 76.31 70.27 69.79 65.13
16 74.58 74.58 71.19 59.53 41 97.20 94.19 94.37 96.17
17 69.57 70.65 71.74 72.83 42 72.90 77.61 72.18 74.10
18 73.40 80.85 78.72 78.72 43 66.38 64.35 63.46 84.51
19 95.83 96.88 96.88 97.92 44 89.53 90.52 90.54 89.66
20 90.38 92.31 92.31 96.15 45 86.14 86.57  97.98 97.79
21 92.52 94.39 91.59 92.52 46 83.10 83.41 83.68 83.32
22 84.26 85.19 84.23 83.33 47 83.51 88.36 87.84 85.25
23 98.18 98.18 98.18 99.09 48 80.68 81.14 80.27 77.16
24 87.39 88.29 87.39 88.29 49 100 100 100 100
25 94.17 95.00 95.00 95.00 50 74.01 82.60 81.27 81.42
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Table 5  Classification results of 
our models using kNN classifier

ID kNN GAN DCNN DCNN ID kNN GAN DCNN DCNN
kNN kNN SMOTE-kNN kNN kNN SMOTE-kNN

1 88.24 91.18 91.18 97.06 26 71.54 72.31 77.69 77.69
2 47.37 63.16 52.63 57.89 27 59.46 63.51 66.22 69.59
3 85.48 83.87 80.64 85.48 28 82.91 82.91 85.44 81.01
4 90.38 95.19 98.08 93.27 29 78.69 78.14 74.32 75.96
5 99.33 93.33 100 99.33 30 75.58 74.19 78.80 80.18
6 96.64 97.32 100 99.33 31 98.23 99.56 97.34 97.79
7 99.45 100 92.82 93.92 32 88.21 86.03 85.15  89.51
8 58.62 56.90 55.17 50.00 33 99.25 99.25 99.25 99.25
9 67.86 68.45 70.24 71.43 34 88.19 86.35 85.98 87.45
10 73.44 75.00 64.84 72.65 35 77.37 88.69  88.32 100
11 60.00 65.71 68.57 71.43 36 82.87 85.31 79.37 81.81
12 85.00 85.00 85.00 85.00 37 54.75 59.32 93.40  92.70
13 69.81 73.58 77.36 79.25 38 88.99 88.69 88.36 88.42
14 84.91 81.13 90.57 90.57 39 74.40 77.07 69.63 71.75
15 93.10 91.38 93.10 93.10 40 56.62 62.36 55.47 61.02
16 55.93 59.32 54.24 61.02 41 89.78 90.84 88.32 84.13
17 57.61 55.43 55.43 63.04 42 57.70 60.35 61.45 61.21
18 76.60 75.53 76.60 76.60 43 58.13 57.40 57.20 58.50
19 93.75 93.75 93.75 92.70 44 88.99 90.38  89.93 90.84
20 94.23 94.23 92.31 96.15 45 71.87 74.09 96.80 98.39
21 85.98 84.26 81.31 85.05 46 68.01 71.17 98.76 83.52
22 80.56 84.26 83.33 85.19 47 62.99 71.74 73.70 75.66
23 96.36 95.45 93.63 95.45 48 77.15 77.90 75.66 76.16
24 79.28 73.87 77.48 77.48 49 96.53 95.62 100  100
25 88.33 88.33 85.00 87.50 50 82.27 82.61 92.46 82.88
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Table 6  Classification results of 
our models using RF classifier

ID RF GAN DCNN DCNN ID RF GAN DCNN DCNN
RF RF SMOTE-RF RF RF SMOTE-RF

1 82.36 94.12 67.65 85.29 26 82.31 81.54 81.54 81.54
2 73.68 73.68 73.68 78.95 27 66.89 70.27 68.24 68.24
3 79.52 83.87 80.65 80.65 28 85.44 85.44 84.81 84.81
4 92.17 94.23 94.23 96.15 29 77.60 78.69 79.23 79.23
5 86.67 86.67 100 100 30 77.46 76.96 79.72 80.18
6 100 100 97.32 99.33 31 98.32 98.67 97.79 98.23
7 97.78 98.80 93.92 95.58 32 88.21 89.52 88.65 90.39
8 59.62 58.62 51.72 51.72 33 99.25 99.25 99.25 99.25
9 69.13 75.00 70.83 70.24 34 85.63 85.24 85.24 84.50
10 76.56 74.22 75.00 75.00 35 100 100 100 100
11 71.43 74.29 71.43 74.29 36 86.71 86.36 80.07 82.86
12 71.43 87.50 85.00 88.00 37 72.44 72.57 95.05 94.44
13 71.70 71.70 77.36 79.24 38 92.27 92.56 92.56 92.29
14 79.25 77.36 86.79 90.57 39 85.79 86.81 76.76 77.72
15 89.66 90.89 93.10 91.38 40 68.13 68.36 62.33 68.34
16 61.02 61.02 59.32 67.80 41 94.16 93.13 100 84.38
17 59.78 58.70 56.52 58.69 42 65.19 65.46 66.60 65.40
18 76.60 78.72 75.53 75.83 43 60.25 62.29 62.48 61.52
19 95.83 95.83 96.88 96.88 44 91.06 92.31 91.14 91.45
20 96.15 94.23 92.31 92.30 45 84.75 84.58 97.19 98.19
21 92.52 87.04 86.92 87.85 46 78.52 79.82  98.41 98.24
22 89.81 87.04 87.96 88.89 47 80.33 82.11 75.80 76.18
23 94.55  97.27 95.45 96.36 48 78.52 78.39 76.17 78.38
24 86.49 89.19 87.39 87.39 49 99.30 99.31 99.77 100
25 95.83 95.83 95.83 95.83 50 82.93 82.90 93.20 94.99
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Table 7  Classification results of 
our models using C4.5 classifier

ID C4.5 GAN DCNN DCNN ID C4.5 GAN DCNN DCNN
C4.5 C4.5 SMOTE-C4.5 C4.5 C4.5 SMOTE-C4.5

1 91.18 91.18 85.29 85.29 26 62.31 73.85 70.00 73.08
2 63.16 68.42 63.16 78.95 27 71.62 69.59 62.84 64.86
3 74.19 78.52 66.13 77.41 28 70.89 68.99 68.99 61.39
4 92.31 91.35 85.58 86.54 29 75.96 66.12 64.48 63.93
5 86.67 93.33 100 100 30 62.74 58.99 74.65 76.04
6 90.60 91.95 70.47 91.94 31 94.32 95.58 94.25 94.25
7 93.37 95.58 87.85 91.71 32 83.41 84.28 85.59 86.03
8 56.90 60.34 62.07 55.17 33 97.01 98.51 97.76 98.50
9 80.95 72.62 63.10 74.40 34 78.87 81.92 80.07 83.39
10 68.75 70.31 71.88 65.63 35 100 100 100 100
11 51.43 62.86 60.00 68.57 36 83.94 80.07 78.32 73.78
12 51.43 80.00 80.00 85.00 37 59.85 60.84 90.87 86.91
13 58.49 69.81 71.70 73.58 38 85.84 87.41 88.71 88.41
14 84.91 73.58 67.92 79.25 39 68.89 62.87 53.46 51.75
15 77.59  87.93 79.31 75.86 40 59.88 62.08 59.33 59.34
16 64.41  74.58 55.93 66.10 41 95.44 87.70 100 78.03
17 45.65 58.70 55.43  63.04 42 60.12 62.82 61.22 60.92
18 87.23 73.40 65.96 75.00 43 51.25  58.74 52.07 57.08
19 91.67 91.67 92.71 89.58 44 83.39  86.54 85.29 91.45
20 87.50 84.62 82.69 82.69 45 64.64 69.61 94.21 96.79
21 85.98 85.98 86.91 85.98 46 60.03 60.08 92.17 89.41
22 79.63 78.93 82.41  81.30 47 69.33  70.48 56.30 50.91
23 91.82 94.55 94.55  93.64 48 65.29 64.79 65.97 70.96
24 77.48 81.08 72.07 74.77 49 97.68 95.16 97.23 99.77
25 85.00  95.83 90.00 90.00 50 63.81 69.00 84.93 75.03

Fig. 6  Comparison mean accu-
racy classification of models
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Table 8  Summary of the 
accuracy comparison

Model Means Win Tie Lose p value

SVM 83.83
GAN-SVM 86.66
DCNN-SVM 87.19
DCNN-SMOTE-SVM 88.17
LSVM 84.64
GAN-LSVM 86.52
DCNN-LSVM 86.45
DCNN-SMOTE-LSVM 87.54
RF 82.62
GAN-RF 83.57
DCNN-RF 83.70
DCNN-SMOTE-RF 84.70
kNN 78.77
GAN-kNN 80.03
DCNN-kNN 81.45
DCNN-SMOTE-kNN 82.51
C4.5 75.70
GAN-C4.5 77.66
DCNN-C4.5 77.04
DCNN-SMOTE-C4.5 78.03
GAN-SVM & SVM 29 11 10 1.8E-03
GAN-LSVM & LSVM 32 10 8 3.22E-03
GAN-RF & RF 25 10 15 4.52E-02
GAN-kNN & kNN 27 6 17 2.35E-03
GAN-C4.5 & C4.5 31 4 15 5.39E-02
GAN-SVM & DCNN-SVM 17 13 20 4.82E−01
GAN-LSVM & DCNN-LSVM 24 14 12 9.16E−01
GAN-RF & DCNN-RF 25 10 15 9E−01
GAN-kNN & DCNN-kNN 24 5 21 2.22E−01
GAN-C4.5 & DCNN-C4.5 29 4 17 6.68E−01
DCNN-SMOTE-SVM & GAN-SVM 24 13 13 3.11E-02
DCNN-SMOTE-LSVM & GAN-LSVM 20 13 17 2.26E−01
DCNN-SMOTE-RF & GAN-RF 20 5 25 2.15E-01
DCNN-SMOTE-kNN & GAN-kNN 31 3 16 1.52E−01
DCNN-SMOTE-C4.5 & GAN-C4.5 21 2 27 5.37E−01
DCNN-SMOTE-SVM & SVM 29 11 10 1.33E-03
DCNN-SMOTE-LSVM & LSVM 33 8 9 8.72E-03
DCNN-SMOTE-RF & RF 29 12 18 2.78E-02
DCNN-SMOTE-kNN & kNN 27 6 17 2.26E-03
DCNN-SMOTE-C4.5 & C4.5 27 2 21 1.06E-01
DCNN-SMOTE-SVM & DCNN-SVM 23 17 10 8.20E-02
DCNN-SMOTE-LSVM & DCNN-LSVM 22 15 13 1.59E-01
DCNN-SMOTE-RF & DCNN-RF 27 13 0 7.05E-02
DCNN-SMOTE-kNN & DCNN-kNN 31 8 11 8.45E-02
DCNN-SMOTE-C4.5 & DCNN-C4.5 26 6 18 1.47E-01
DCNN-SMOTE-SVM & SVM 29 11 10 1.33E-03
DCNN-SMOTE-SVM & LSVM 33 11 6 4.68E-04
DCNN-SMOTE-SVM & RF 41 5 4 6.01E-09
DCNN-SMOTE-SVM & kNN 48 1 1 5.57E-09
DCNN-SMOTE-SVM & C4.5 46 1 3 2.91E-12
DCNN-SMOTE-SVM & DCNN-SMOTE-LSVM 29 17 4 2.09E-01
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Table 8  (continued) Model Means Win Tie Lose p value

DCNN-SMOTE-SVM & DCNN-SMOTE-kNN 40 8 2 2.27E-08
DCNN-SMOTE-SVM & DCNN-SMOTE-RF 35 8 7 6.99E-05
DCNN-SMOTE-SVM & DCNN-SMOTE-C4.5 46 3 1 6.17E-11
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Fig. 7  Comparison the accuracy of DCNN-SMOTE-SVM, GAN-SVM and SVM, DCNN-SMOTE-LSVM, GAN-LSVM and LSVM on 50 data-
sets (%)
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