
Vol.:(0123456789)

SN Computer Science (2020) 1:207
https://doi.org/10.1007/s42979-020-00210-2

SN Computer Science

ORIGINAL RESEARCH

Improvements in the Large p, Small n Classification Issue

Phuoc‑Hai Huynh1,2 · Van Hoa Nguyen1,2 · Thanh‑Nghi Do3,4

Received: 6 April 2020 / Accepted: 28 May 2020 / Published online: 21 June 2020
© Springer Nature Singapore Pte Ltd 2020

Abstract
Classifying gene expression data is known to contain keys for solving the fundamental problems in cancer studies. However,
this issue is a complex task because of the large p, small n issue on gene expression data analysis. In this paper, we propose
the improvements in the large p, small n classification issue for the study of human cancer. First, a new enhancing sample
size method with generative adversarial network is proposed to improve classification algorithms. Second, we suggest a clas-
sification approach with over-sampling technique using features extracted by deep convolutional neural network. Numerical
test results on fifty very-high-dimensional and low-sample-size gene expression data datasets from the Kent Ridge Biomedi-
cal and Array Expression repositories illustrate that the proposed models are more accurate than state-of-the-art classifying
models. In addition, we also have explored the performance of support vector machines, k nearest neighbors and random
forests, which have improved when apply our approaches.

Keywords Large p, small n classification issue · Synthetic over sampling · Enhancing data · Deep convolutional neural
network · Generative adversarial network · Support vector machines · Gene expression data

Introduction

The large p, small n classification issue is a major challenge
in the analysis of microarray data, where expression levels
of thousands of genes are monitored for a small number of
patients. In gene expression studies, the amount of observa-
tions (n) is less hundreds or thousands, whereas the number
of genes (p) is approximately hundreds of thousands [61].
This is just known as “large p, small n” issue, one of the sev-
eral problems of “curse of dimensionality” [5]. Additionally,
this issue is more deteriorated when independent variables
are in multiple correlations. Therefore, many methodologies

are studied to classify gene expression data [39]. These stud-
ies aim finding effective solutions to diagnose and treat can-
cer [56]. Information of gene expression profile may be used
to find and diagnose diseases or to see how well the body
responds to treatment, so many algorithms are studied to
classify gene expression data [56].

In spite of many methods for the large p, small n problem
has risen during recent years, but these algorithms remain
a critical need to improve accuracy of classification models
[39]. This issue is the main challenge that most state-of-
the-art classification algorithms are facing when dealing
with gene expression data. Besides, it also leads to statisti-
cal challenges because conventional statistical methods give
improper result due to the very high-dimensional data with
a limited number of patterns [57]. In fact, it is not feasible
when to build machine-learning model due to the extremely
large feature sets with millions of features and high com-
puting cost. The challenge of this issue is that training data
sample size is relatively small compared to features vector
size, therefore, the classification models may give poor clas-
sifying performance due to over-fitting. To solve the large p,
small n classification issue, feature extraction and enhancing
data methods are used to improve accuracy classification
models [1, 63].

This article is part of the topical collection “Future Data and
Security Engineering 2019” guest edited by Tran Khanh Dang.

 * Phuoc-Hai Huynh
 hphai@agu.edu.vn

1 Faculty of Information Technology, An Giang University,
Angiang, Vietnam

2 Vietnam National University Ho Chi Minh City,
Ho Chi Minh City, Vietnam

3 College of Information Technology, Can Tho University,
Cantho, Vietnam

4 UMI UMMISCO 209 (IRD/UPMC), Sorbonne University,
Pierre and Marie Curie University, Paris 6, France

http://orcid.org/0000-0001-8348-9267
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00210-2&domain=pdf

 SN Computer Science (2020) 1:207207 Page 2 of 19

SN Computer Science

In this study, we extend our previous papers [34, 35] to
explore the performance of support vector machines [66], k
nearest neighbors [25], random forests [9] and decision trees
[44, 59] algorithms to address the large p, small n issue for
gene expression data classification. The experiments are
extend on fifty microarray gene expression datasets that is
very-high-dimensional and low-sample-size to evaluate per-
formance between the proposed approaches.

In first approach, we propose enhancing the performance
of classifier using Generative Adversarial Networks (GAN)
[27]. The GAN generates synthetic data from original datasets
which is implemented in order to increase training samples.
This model is used in conjunction with various classification
algorithms that efficiently classify gene expression data. This
approach take advantages of GAN algorithm that tackle the
large p , small n classification issue.

In second approach, a new learning algorithms for the
precise classification of gene expression data of various algo-
rithms with over-sampling SMOTE technology [14] using fea-
tures extracted by deep convolutional neural network (DCNN).
The algorithms perform the training task with three main steps.
First of all, we use new DCNN model to extract latent features
from original data. Second, SMOTE algorithm is proposed to
enhance data using new features extracted by DCNN. Finally,
two algorithms are used in coupling with the classification
algorithms to predict gene expression data. The approach take
advantages of both DCNN and SMOTE algorithms that solve
effectively the large p, small n classification problem.

Numerical test results on fifty microarray gene expression
datasets from Kent Ridge Biomedical [37] and Array Expres-
sion repositories [8] indicate that our models are more accurate
than state-of-the-art classifying algorithms. From the obtained
results, it is observed that our approaches can improve clas-
sification accuracy of support vector machines [66], random
forests [9] and k nearest neighbors [25] algorithms.

The rest of this paper is organized as follows:
Sect. “Related Works” discusses related works and their
application in the context of gene expression data classifi-
cation. Section “Methods” presents our models for the large
p, small n classification issue. Section “Evaluation” presents
a comparison of predictive performances of our models on
50 gene expression datasets. Section “Conclusion and Future
Works” shows our conclusion, along with some of the ideas
we are planning to explore along the lines of the present
paper.

Related Works

Our proposal is in some aspects related to approaches for
the large p, small n classification issue. These methods
consist enhancing data, extraction features and classifying
algorithms.

On the one hand, to solve the low-sample-size issue of
gene expression data, the synthetic data generation algo-
rithms are used to increase efficiency samples in classifica-
tion models. In practice, microarray experiments are often
performed with a small number of patients, resulting in low
statistical power for detecting differentially expressed genes.
Consequently, the collecting of large-scale gene expres-
sion data is impracticable because the number patients of
microarray studies is limited due to expensive cost of this
technologies. The low-sample-size issue could addressed
using the artificial samples of the synthetic data generation
algorithms. These models are learned from data distribution
of original data to generate synthetic data. The new data is
generated by these methods that update to original datasets.
In the next step, the updated data is classified using the clas-
sification algorithms. There are many approaches to enhance
data such as generative model, over-sampling methods. The
generative adversarial network [27] is a deep neural net-
work that learns from training data to generate synthetic data
similar to the training ones. This model has not only been
successfully applied to image data [21, 46], medical data
[19] but also biology data [18, 52]. The GAN has been used
to solve the problem of limited data by enhancing synthetic
data because the effective classification model requires a
good amount of quality data. Therefore, we use the GAN to
enhance gene expression data to address the large p, small
n classification issue. The low-sample-size issue is solved
by generating new data to enlarge original datasets. To
date, very few studies have assessed power of GAN in gene
expression data classification.

On the other hand, so as to address the very high-dimen-
sional problem, the feature extraction methods transform
the original data into a new representation with a reduced
number of variables, instead of eliminating irrelevant genes.
This approach is usually better than gene selection method
in terms of causing less information loss [30]. Therefore the
large p, small n classification problem can be improved using
extraction feature method to reduce dimension of original
data. Many studies have used extraction feature methods
in context “large p, small n” problem. For instance, prin-
cipal component analysis (PCA) use the covariance matrix
and its eigenvalues and eigenvectors [38, 45, 53]. In addi-
tion, there are some nonlinear methods for gene expression
classification including Kernel PCA [48, 60], Independent
Components Analysis (ICA) [12, 24, 47]. In recent decades,
the deep learning approaches are a current trend to extract
features from original data. However, the application of
deep learning approaches in the field of classifying gene
expression data is rare. Deep neural network has emerged as
popular machine learning models due to their ability to auto-
matically learn feature representations from input data. Deep
convolutional neural network (DCNN) has achieved remark-
able results in computer vision [43], text classification [41],

SN Computer Science (2020) 1:207 Page 3 of 19 207

SN Computer Science

biology data [51]. These algorithms aim reduce dimension
of original data to improve performance of classification
models. Consequently, DCNN has used to extract latent fea-
tures from gene expression data to address the large p, small
n classification issue in our study.

In addition, over-sampling technologies also is used to
solve the low-sample-size problem. Synthetic Minority
Over-sampling Technique (SMOTE) was first introduced by
[14] that generates samples with expected mean and vari-
ance similar to that of the original minority class data. The
main idea of algorithm is that the minority class is over-
sampled by creating synthetic examples rather than by over-
sampling with replacement. However, SMOTE is less effec-
tive for very high-dimensional data [49]. Therefore, it often
is combined with reduce dimension methods including fea-
ture selection or feature extraction [64]. These methods aim
to reduce dimension of original data before using SMOTE.
We take advantage of DCNN and SMOTE to solve the large
p, small n issue. The DCNN is used to extract latent features
of gene expression data, then the SMOTE algorithm gen-
erates synthetic data from the features of DCNN has been
implemented.

Methods

In this section, we present two approaches to address the
large p, small n classification issue. Moreover, we also
briefly describe classification algorithms in our models. We
provide insights strengths and weaknesses of algorithms for
the large p, small n classification issue. The below-men-
tioned analysis outlines reasons to propose our algorithms.

Data Augmentation Using Generative Adversarial
Network

In first our approach, we use GAN to tackle the large p, small
n classification issue. Our algorithm is composed of three
phases that is illustrated in Fig. 1. First, a new GAN is used
to enhance generate data from original data. Second, we
use linear support vector machines algorithm (LSVM) [66]
to set label for new data. Finally, these algorithms are used
in conjunction with the various classifiers learn to classify
efficiently.

A GAN [27] is a deep-neural-network architecture make
up of two networks: a generator network (denoted by G) and
a discriminator network (denoted by D). Through multiple
cycles of generation and discrimination, both networks train
each other, while simultaneously trying to outwit each other
(Fig. 2). The GAN is used to generate new samples that
are indistinguishable from the data distribution. The D is
optimized to distinguish samples from the real data distri-
bution Pdata from those of the generated data distribution

pg . The G takes vector noise z ≈ pz as input networks and
generates samples G(z) with distribution pg. The generated
data samples generated by model G are then sent to the D to
determine their similarity with original training data. GAN
optimization finds a Nash equilibrium [27] between the G
and D. The GAN architecture in the first approach has two
deep-neural-network models: a generator G model and dis-
criminator D model (Fig. 2).

In our GAN model, the generator G takes a noise vector
from 100 random numbers to draw from a uniform distri-
bution as an input layer. The output of G is a vector gene
expression. The network architecture consists of five hidden
layers with the following layer sizes: 32, 64, 128, 256, and
512. The Tanh activation function is used at the output layer.
The discriminator network D has a typical neural-network
architecture that takes the input data of a vector gene expres-
sion. D consists of five hidden layers with sizes 512, 256,
128, 64, and 32. The sigmoid activation function is used at
the output layer.

Moreover, we also use batch normalization for generator
G and discriminator D networks. It works by normalizing
the input features of a layer to have zero mean and unit vari-
ance [36]. In addition, the model uses leaky rectified linear
unit (ReLU) activations [50] in the discriminator networks.

ORIGINAL DATA

GAN

TRAINING DATA

GENERATE DATA SET LABEL BY LSVM

CLASSIFIERS

Fig. 1 Using GAN to address the large p, small n classification issue

Fig. 2 Architecture of GAN

 SN Computer Science (2020) 1:207207 Page 4 of 19

SN Computer Science

Leaky ReLU makes it possible to pass a small gradient
signal for negative values. Therefore, it makes the gradi-
ents from the discriminator flows stronger in the generator.
Instead of passing a gradient of zero in the back-prop pass,
it passes a small negative gradient. The Adam optimizer has
been used for all networks (learning rate of lr = 0.0002 and
decay rates of � = 0.5).

For the large n, small p classification problem, one of the
challenges in the classification tasks is how to cope with
low-sample-size datasets [54]. Especially, the effective clas-
sification models that need labeled data and a large sample
size. Therefore, the new gene expression vectors are gener-
ated by GAN in order to increase sample size of original data
[40]. Support vector machines algorithm is used to set label
for new generate data because it is outperform the stage-of-
the-art algorithms in context the large p, small n classifica-
tion issue [22, 58]. In order to improve the classification
algorithms accuracy, GAN is proposed to train model from
original datasets to generate new samples for enlarging the
training datasets, following which various algorithms learns
to classify gene expression data including support vector
machines [66], random forests [9], k nearest neighbors [25],
and decision trees [44, 59].

Enhancing New Features Extracted by Deep
Convolutional Neural Network

In second our approach, DCNN and SMOTE are used to
solve the large p, small n classification issue. The approach
is composed of three steps that is illustrated in Fig. 3.
First, the new DCNN is used to extract new features
from original data. Second, we use SMOTE algorithm
(SMOTE) to enhance data using new features extracted

by DCNN. Finally, these algorithms are used in conjunc-
tion with the various classifiers learn to classify efficiently.

In our algorithm, a new DCNN architecture is imple-
mented that extracts new features from gene expression
data. It is a multi-layer neural network architecture that
is directly inspired by the visual cortex of the human
brain [32]. In network structure, the successive layers are
designed to learn progressively higher-level features, until
the last layer which produces categories. Once training
processing is completed, the last layer, which is a linear
classified operating on the features extracted by the previ-
ous layers.

The architecture of DCNN in our model consists of two
convolutional layers, two pooling layers, and a fully con-
nected layer which is shown in Fig. 4. The layers are, respec-
tively, named CONV1, POOLING1, CONV2, POOLING2,
and output (numbers indicate the sequential position of the
layers).

The input layer receives the gene expression in the 2-D
matrix format. We embedded each high-dimensional vector
expression data into a 2-D image by adding some zeros at
the last line of the image. The first CONV1 layer contains 4
feature maps and kernel size (3 × 3).

The second layer, POOLING1 layer, is taken as input of
the average pooling output of the first layer and filter with
(2 × 2) sub-sampling layer. CONV2 uses convolution ker-
nel size (3 × 3) to output two feature maps POOLING2 is
a (2 × 2) sub-sampling layer. We propose to use the Tanh
activation function as neurons.

The final layer has a variable number of maps that com-
bine inputs from all map in POOLING2. The feature maps of
the final sub sampling layer are then fed into the actual clas-
sifier consisting of an arbitrary number of fully connected

Fig. 3 Using DCNN and
SMOTE to address the large p,
small n classification issue

ORIGINAL
DATA DCNN NEW

FEATURES

SMOTE

TRAINING
DATA

SYNTHETIC
DATA

CLASSIFIERS

SET LABEL
BY LSVM

Fig. 4 A new DCNN architec-
ture for feature extraction in
processing gene expression data

Input

CONV1
kernel size: (3x3)
4 feature maps

POOLING1
kernel size: (3x3)

CONV2
kernel size: (3x3)
2 feature maps

POOLING2
kernel size: (3x3)

new features

SN Computer Science (2020) 1:207 Page 5 of 19 207

SN Computer Science

layers. The output layer uses to extract new features from
original gene expression data.

The large p, small n problem become complicated when
the sample size p is substantially smaller than the number
of dimension n . The usual way to handle the problem is to
reduce the number of dimension by using variable selection
[10] or projecting them to lower dimension using principal
component or other related methods [6]. However, most of
the existing methods for variable selection or projections are
based on linear relationship between the response and the
features which may not be very realistic [30]. Further, the
problem is more deteriorated for gene expression data when
independent variables are in multiple correlations.

In order to address the large p classification task, a new
DCNN is implemented to extract new features from original
data. This approach has take advantage of DCNN is that this
model can learn latent features from very-high-dimensional
input spaces. This process can be viewed as projection of
data from higher dimensional space to a lower dimensional
space. Moreover, these new features improve the dissimi-
larity power of data representations and thus obtain higher
accuracy rate than original features.

In addition, we also propose a new SMOTE algorithm
(1) that generates new synthetically data from new features
extracted of DCNN. In machine learning, a classifying sys-
tem requires a good amount of quality data to predict pre-
cise. Consequently, this approach aim to use the SMOTE
algorithm to enhance data for new features extracted by
DCNN. Our models solve both problems the very-high-
dimensional and low-sample-size of gene expression data.
SMOTE generates synthetic data which has almost similar
characteristics of the training data points. Synthetic data
points (xnew) are generated in the following way. First, the
algorithm takes the feature vectors and its nearest neighbors,
computes the distance between these vectors. Second, the
difference is multiplied by a random number (�) between 0
and 1, and it is added back to feature vector. This causes the
selection of a random point along the line segment between
two specific features. Then, linear support vector machine
is used to set label for generating samples with constant C
= 103 . An amount of new samples (p%) and k nearest neigh-
bors are hyper parameters of the algorithm.

Algorithm 1: SMOTE(S, p, k)
Data: number of samples S; amount of SMOTE p%; number of nearest neighbors k

Result: : (p/100) * S synthetic samples
initialization;
p = (int)(p/100);
nf = number of attributes;
data: array for original data;
count: number of synthetic data generated;
synthetic: array for synthetic data;
(*Compute k nearest neighbors for each sample*);
for i ← 1 to S do

Compute k nearest neighbors for i, save the indices → nnarray;
Generate data from original data ;
while p �= 0 do

Choose a random number between 1 and k call it nn.;
In this step chooses one of the k nearest neighbors of i;
for f ← 1 to nf do

dif = data[nnarray[nn]][f]− data[i][f] ;
synthetic[k][f] = data[i][f] + random(0, 1) ∗ dif ;

count++ ;
p = p− 1 ;

In second approach, although the dimension has reduced
by DCNN but training data sample size is relatively diminu-
tive compared to feature vector size, so that algorithms may
give poor classification performance due to over-fitting. To
overcome this situation, SMOTE is proposed to generate
synthetic samples from features extracted by DCNN. In
our approach, in the very-high-dimensional data setting
only kNN classifiers based on the Euclidean distance seem
to benefit substantially from the use of SMOTE, provided
that feature extraction by DCNN is performed before using
SMOTE. For traditional SMOTE algorithm, it is not effec-
tive for very-high-dimensional data and this problem has
tackled by DCNN model in our approach. The SMOTE
generates new training data following which the classifiers
learns to classify gene expression data efficiently in this
phase. The classifiers consist support vector machines [66], k
nearest neighbors [25], random forest [9] and decision trees
[44, 59] that are used to classify data generated by DCNN
and SMOTE.

Classification Algorithms

The classification algorithms which we consider for this
purpose are support vector machines (SVM) [66], k nearest
neighbors (kNN) [25], random forests (RF) [9] and decision
trees (C4.5) [44, 59].

SVM algorithm was invented by Vapnik [67]. It is sys-
tematic and properly motivated by the statistical learning
theory. SVM has been widely applied to areas as diverse as
image analysis, microarray gene expression classification,
and many other fields where data exists with n much less
than p [11]. The SVM algorithm identifies the best separat-
ing plane furthest from the different classes such that the
resulting degree of separation is as large as possible (Fig. 5).
To achieve this purpose, the SVM tries to maximize the
distance between two boundary hyperplanes to reduce the

 SN Computer Science (2020) 1:207207 Page 6 of 19

SN Computer Science

probability of misclassification. The optimal hyperplane
found by SVM is maximally distant from the two classes of
labeled points located on each side .

In addition to performing linear classification, the SVM
has been very successful in building highly non-linear clas-
sifiers by means of kernel-based learning methods [20].
The methods aim to transform the input space into higher
dimensions, such as a radial basis function (RBF), sigmoid
function, and polynomial function. The most widely used
kernel is the Gaussian radial basis function (RBF) [20]. In
both our approaches, a non-linear SVM with an RBF kernel
is proposed for classifying gene expression after using GAN,
DCNN and SMOTE.

The second algorithm which we suggest for this purpose
is k nearest neighbors algorithm (kNN) [25]. k-nearest neigh-
bors (kNN) algorithm uses feature similarity to predict the
values of new datapoints which further means that the new
data point will be assigned a value based on how closely it
matches the points in the training set [25]. The kNN algo-
rithm is one of the most popular algorithms in machine
learning, because it is simple to implement and works fast
and effectively. [69]. Unfortunately, in high dimensional
spaces, points that are drawn from a probability distribu-
tion, tend to never be close together. Therefore, kNN would
be especially sensitive to this problem. In order to overcome
the curse of dimensionality, GAN as well as SMOTE are
used to increases the size of the data space when using the
kNN algorithm.

Random forests [9] is the third algorithm that we sug-
gest for this task. This algorithm creates a collection of
unpruned decision trees (built so that at each node the best
split is done from a randomly chosen subset of attributes)
from bootstrap samples (sampling with replacement from
the original dataset). The generalization error of a forest
depends on the strength of the individual trees in the for-
est and on the dependence between them. The algorithm
constructs unpruned trees for keeping low bias and uses the

randomization for controlling high diversity between trees in
the forest. In practice, many studies have shown that random
forests algorithm can achieve high accuracy in classifying
high dimensional data [15, 23].

The last algorithm which we consider for this purpose
is decision tree [44, 59]. The main ideas of decision trees
algorithm is intuitively appealing piecewise functions oper-
ating on a partitioning of the input space. The algorithm is a
tree based model , generates all possible chances of occur-
rence of events and its consequences by observing logical
connection between each features in datasets. However, the
algorithm only selects a single attribute for node splitting,
so that the strength of model is reduced, particularly when
dealing with datasets having dependencies among attributes.
Therefore, that this algorithm is not suitable to solve the
large p, small n classification problem.

Evaluation

We are interested in the classification performance of our
proposal for the large p, small n classification issue. There-
fore, we here report the comparison of the classification per-
formance obtained by our model on the best state-of-the-art
algorithms, including non linear support vector machine
(SVM) [67], linear support vector machine (LSVM) [13], k
nearest neighbors (kNN) [25], random forests (RF) [9] and
decision trees (C4.5) [59].

In order to compare the predictive of the models, we
report the comparison of the classification results obtained
by our models and the algorithms without using GAN.
Besides, we also evaluate performance of classifiers after
using DCNN and SMOTE.

We have implemented GAN, DCNN, and SMOTE and
its others version in Python using Scikit [55] and Tensor-
Flow [2] libraries. Other algorithms like RF, C4.5 in Scikit
library [55]. We also use the highly efficient standard SVM
algorithm LibSVM [13] with one-versus-one strategy for
multi-class. The total classification accuracy measure is used
to evaluate the classification models. We used the Student’s
test to assess classification results of learning algorithms.
All experiments are run under Linux Mint, Intel(R) Xeon(R)
CPU, 3.07 GHz PC and 8GB main memory.

Experiments were conducted with fifty gene expression
datasets from the Biomedical [37] and Array Express reposi-
tories [8]. The characteristics of datasets are presented in
Table 1.

The evaluation protocols are illustrated in the six column
of Table 1. With datasets having training set (trn) and testing
set (tst) available, we use the training data to tune the param-
eters of the algorithms for obtaining a good accuracy in the
learning phase. Then the obtained model is evaluated on the
test set. With a datasets having less than 300 data points, the

Fig. 5 SVM for binary classification

SN Computer Science (2020) 1:207 Page 7 of 19 207

SN Computer Science

Table 1 Description of
microarray gene expression
datasets

ID Dataset #Datapoints #Dimensions #Classes Evaluation
Protocol

Sources

1 Leukemia 72 7129 2 trn-tst [26]
2 Breastr 97 24481 2 trn-tst [65]
3 Colon 62 2000 2 loo [3]
4 Breast cancer 104 22283 2 loo [17]
5 Leukemia 72 12582 2 trn-tst [4]
6 Lung cancer 181 12533 2 trn-tst [7]
7 Lung cancer 180 12533 2 loo [28]
8 Dlblcl 58 7129 2 loo [62]
9 Breast cancer 168 2905 2 loo [29]
10 Leukemia 128 22283 6 loo [16]
11 E-GEOD-30540 35 54675 2 loo [8]
12 E-GEOD-14858 40 54675 2 loo [8]
13 E-GEOD-29354 52 22283 2 loo [8]
14 E-GEOD-39716 53 22215 3 loo [8]
15 E-GEOD-66533 53 33297 3 loo [8]
16 E-GEOD-65106 58 54675 3 loo [8]
17 E-GEOD-31189 59 33297 3 loo [8]
18 E-GEOD-37364 92 54675 2 loo [8]
19 E-GEOD-51024 94 54675 4 loo [8]
20 E-GEOD-3726 96 54675 2 loo [8]
21 E-GEOD-36771 107 54675 2 loo [8]
22 E-GEOD-37751 107 54675 2 loo [8]
23 E-GEOD-43458 110 33252 2 loo [8]
24 E-GEOD-31552 111 33297 3 loo [8]
25 E-GEOD-19804 120 54675 2 loo [8]
26 E-GEOD-62452 130 33297 2 loo [8]
27 E-GEOD-51981 148 54675 2 loo [8]
28 E-GEOD-21122 158 22283 7 loo [8]
29 E-GEOD-73685 183 33297 8 loo [8]
30 E-GEOD-32537 217 22283 7 loo [8]
31 E-GEOD-44077 226 33252 4 loo [8]
32 E-GEOD-30784 229 54675 3 loo [8]
33 E-GEOD-29272 268 22283 2 loo [8]
34 E-GEOD-22470 271 22283 2 loo [8]
35 E-GEOD-68606 274 22283 16 loo [8]
36 E-GEOD-2034 286 22283 2 loo [8]
37 E-GEOD-21050 310 54613 4 10-fold [8]
38 E-GEOD-16134 310 54613 4 10-fold [8]
39 E-GEOD-20685 327 54627 6 10-fold [8]
40 E-GEOD-13070 364 54675 2 10-fold [8]
41 E-GEOD-68468 390 22283 6 10-fold [8]
42 E-GEOD-50409 428 54613 2 10-fold [8]
43 E-GEOD-26253 432 17419 2 10-fold [8]
44 E-GEOD-6532 327 22645 3 10-fold [8]
45 E-GEOD-31312 498 54630 3 10-fold [8]
46 E-GEOD-39582 566 54755 6 10-fold [8]
47 E-GEOD-33315 575 22283 10 10-fold [8]
48 E-GEOD-47460 582 15261 10 10-fold [8]
49 E-GEOD-36376 433 22283 2 10-fold [8]
50 E-GEOD-7307 677 54675 12 10-fold [8]

 SN Computer Science (2020) 1:207207 Page 8 of 19

SN Computer Science

test protocol is leave-one-out cross-validation (loo). For the
others, we use 10-fold cross-validation protocols remains the
most widely to evaluate the performance [68].

Tuning Parameters

As for training our models, we tune the parameters for algo-
rithms including GAN, DCNN, SMOTE and classification
algorithms.

In order to train GAN model, the Adam optimizer [42]
has been used for all networks (learning rate of � = 0.0002
and decay rates of � = 0.5). We have have been attempted
to tune the epoch parameter from 50 to 100 to find the best
experiment results. The Linear SVM use C = 105 for the set
label for the generated data. The number of samples gener-
ated is chosen from 30 to 600.

In order to train DCNN, we use Adam optimizer [42]
and batch size is 8–32. We start to train with a learning rate
of 0.00002 for all layers, and then rise it manually every
time when the validation error rate stopped improving. The
number of epochs is 200. In SMOTE algorithm, the k neigh-
bors nearest is chosen in { 1, 3, 5, 7, 9 } . The samples are
over-sampled (p) at 100%, 200% and 300% of its original
samples.

In relation to parameters of classifiers, we propose to
use RBF kernel type in SVM models because it is gen-
eral and efficient [31]. Finally, an attempt was made to
tune parameters C and � of the RBF kernel to obtain good
accuracy for the nonlinear SVM. The cost C is chosen in
{101, 102, 103, 104, 105 , and the hyper-parameter � of RBF
kernel is tried among 10−5, 10−4, 10−3, 10−2, 10−1 , 1/the num-
ber of features } . All the optimal parameters of GAM-SVM
and DCNN-SMOTE-SVM are presented in Table 2. The RF
algorithm learns 200 trees for classifying all datasets. The
kNN uses k among 1, 3, 5, 7, 9. The C = 105 is used for 50
datasets for the LSVM.

Classification Results

Tables 3, 4, 5, 6 and 7 provide results of the models on the
50 gene expression datasets. The improved results are pre-
sented in bold. Figure 6 show comparison mean accuracy
classification of models. The plot charts in Figs. 7 and 8
visualize classification results. Table 8 summarizes results
of these statistical tests with paired Student ratio test present
the mean accuracy of these models. The significant results
indicating excess of p values just below 0.05 (< 0.05) and
are reported in bold. The p alues higher than 0.05 (> 0.05)
are not statistically significant.

First, we evaluate GAN enhancing data algorithm.
Therefore, we compare accuracy of classifiers (SVM,
LSVM, kNN, RF and C4.5) on the original data and
classifier trained on the augmented set (GAN-SVM,

GAN-LSVM, GAN-kNN, GAN-RF and GAN-C4.5).
In Table 8 and Fig. 6, it is clear that GAN-SVM, GAN-
LSVM, GAN-kNN, GAN-RF, GAN-C4.5 significantly
increases the mean accuracy of 3.31, 1.88, 1.25, 0.95,
1.97, percent points compared to SVM, LSVM, kNN, RF
and C4.5, respectively. All p-values are less than 0.05.
In Fig. 7 GAN-SVM has 29 wins, 11 ties, and 10 defeats
(p value = 1.80E−03) against SVM. GAN-LSVM has 32
wins, 10 ties, and 8 defeats (p value = 3.22E−03) com-
pared with LSVM. Using kNN to classify, the GAN-kNN
has 27 wins, 6 ties, and 17 defeats (p value = 2.35E−02)
compared with kNN. GAN-RF has 25 wins, 10 ties, 15
defeats compared with RF (p value = 4.52E−02). From
the results and Figs. 6, 7 and 8, it can be seen that the data
augmentation improve the accuracy of the classifiers.

Especially, GAN-SVM outperforms GAN-kNN, GAN-
RF and GAN-C4.5. Table 8 shows GAN-SVM obviously
increases the mean accuracy of 6.63, 3.09, 8.99% points
compared to GAN-RF, GAN-kNN and GAN-C4.5, respec-
tively. All p-values are less than 0.05. GAN-SVM is slightly
superior to GAN-LSVM with 22 wins, 16 ties, and 12
defeats (p value = 6.89E−01).

Second, we evaluate DCNN and SMOTE. Table 8 show
that DCNN-SMOTE-SVM, DCNN-SMOTE-LSVM,
DCNN-SMOTE-kNN, DCNN-SMOTE-RF obviously rise
the mean accuracy of 4.83, 3.37, 3.9, 2.08 percent points
compared to SVM, LSVM, kNN and RF, respectively. All
p values are less than 0.05. In detail, DCNN-SMOTE-SVM
has good performances compared to SVM with 29 wins, 11
ties, 10 defeats, p value = 1.33E−3. DCNN-SMOTE-LSVM
has 33 wins, 8 ties, 9 defeats (p value = 8.72E−3) compared
to LSVM in Table 4 and Fig. 7. Table 5 and Fig. 8 show that
DCNN-SMOTE-kNN outperforms compared to kNN (27
wins, 6 ties, 17 defeats). Besides, DCNN-SMOTE-RF has
29 wins, 3 ties, 18 defeats (p value = 2.78E−2) compared to
RF. These results show effective of DCNN and SMOTE that
improve accuracy of SVM, LSVM, RF and kNN.

Remarkably, it becomes apparent that DCNN-SMOTE-
SVM shows the best performance compared with other
models (See in Table 8). All p values are less than 0.05 that
results statistically meaningful. Moreover, DCNN-SMOTE-
SVM model efficiently classify more than various versions.
In detail, DCNN-SMOTE-SVM gives good performances
compared to DCNN-SMOTE-LSVM, DCNN-SMOTE-
kNN, DCNN-SMOTE-RF and DCNN-SMOTE-C4.5
which improves the mean accuracy of 0.63, 5.67, 3.47, 9.7,
respectively.

Furthermore, DCNN and SMOTE models also enhance
the accuracy of classifiers compared to the algorithms classi-
fications using the features extraction from DCNN. It is clear
that DCNN-SMOTE→[SVM, LSVM, kNN, RF] increase the
mean accuracy of 0.98, 1.09, 3.15, 1.06% points compared
to DCNN →[SVM, LSVM, kNN, RF]. These results show

SN Computer Science (2020) 1:207 Page 9 of 19 207

SN Computer Science

Table 2 Parameters of GAN-
SVM, DCNN-SMOTE-SVM
for 50 gene expression datasets

ID GAN-SVM DCNN-SMOTE-SVM

Generate
samples

C � # k neighbors p (%) C �

1 30 1E+04 1E−04 3 100 1E+06 1.E−01
2 100 1E+04 2E−05 9 200 1E+05 1.E−02
3 100 1E+04 2E−05 9 100 1E+06 1.E−01
4 100 1E+04 2E−05 3 100 1E+06 1.E−02
5 50 1E+04 5E−05 3 100 1E+07 1.E−05
6 50 1E+04 1E−04 11 200 1E+06 1.E−01
7 200 1E+03 1E−04 3 100 1E+06 1.E−02
8 100 1E+04 2E−05 5 300 1E+07 1.E−04
9 62 1E+04 5E−04 9 200 1E+06 1.E−02
10 30 1E+04 1E−04 3 100 1E+06 1.E−01
11 100 1E+04 8E−05 3 300 1E+06 1.E−02
12 100 5E+04 3E−05 3 100 1E+06 1.E−01
13 200 1E+04 2E−05 11 200 1E+06 1.E−01
14 200 1E+04 2E−05 9 100 1E+06 1.E−01
15 100 1E+04 4E−05 9 300 1E+05 1.E−05
16 100 1E+04 4E−05 3 100 1E+06 1.E−03
17 100 1E+04 2E−05 3 100 1E+06 1.E−01
18 100 1E+04 3E−05 9 100 1E+07 1.E−05
19 100 1E+04 3E−05 9 100 1E+06 1.E−01
20 111 1E+04 3E−05 3 100 1E+05 1.E−04
21 100 1E+01 2E−05 9 100 1E+07 1.E−02
22 100 5E+04 4E−05 3 100 1E+06 1.E−03
23 100 1E+01 3E−05 9 200 1E+07 1.E−05
24 100 1E+02 2E−05 3 100 1E+07 1.E−01
25 100 1E+04 1E−04 9 400 1E+06 1.E−04
26 100 5E+04 3E−04 3 100 1E+06 1.E−03
27 200 5E+04 8E−05 3 100 1E+07 1.E−01
28 100 5E+04 8E−05 11 200 1E+07 1.E−02
29 200 1E+04 1E−04 3 100 1E+06 1.E−02
30 100 1E+02 4E−05 3 150 1E+06 1.E−02
31 100 1E+04 3E−05 9 200 1E+07 1.E−01
32 200 1E+04 1E−04 3 100 1E+05 1.E−01
33 200 1E+04 1E−04 9 100 1E+06 1.E−01
34 100 1E+04 4E−05 11 150 1E+06 1.E−03
35 200 1E+04 4E−05 3 100 1E+06 1.E−01
36 286 1E+04 1E−04 5 400 1E+07 1.E−02
37 200 1E+04 1E−04 3 100 1E+00 1.E−05
38 310 1E+04 1E−04 9 100 1E+05 1.E−01
39 100 1E+02 2E−05 3 100 1E+06 1.E−02
40 200 1E+03 4E−05 9 200 1E+06 1.E−02
41 100 5E+04 2E−05 9 100 1E+06 1.E−03
42 200 1E+04 4E−05 9 150 1E+06 1.E−01
43 200 1E+04 2E−05 3 100 1E+06 1.E−05
44 432 1E+04 6E−05 9 100 1E+07 1.E−02
45 100 1E+04 4E−05 9 200 1E+03 1.E−04
46 200 1E+04 2E−05 9 100 1E+05 1.E−01
47 566 1E+04 2E−05 9 200 1E+07 1.E−03
48 200 1E+04 4E−05 3 100 1E+06 1.E−04
49 528 1E+04 7E−05 3 100 1E+06 1.E−01

 SN Computer Science (2020) 1:207207 Page 10 of 19

SN Computer Science

using DCNN-SMOTE is effectively more than our paper
previous [33].

As for using C4.5 to classify, the classification results
present that this algorithm fail in context gene expression
data classification. GAN-C4.5 is slightly superior to C4.5,
with 31 wins, 4 ties, and 15 defeats, p value = 5.39E−02. In
the comparison between DCNN-SMOTE-C4.5 with C4.5,
DCNN-SMOTE-C4.5 slightly superior to decision tree of
C4.5 with 27 wins, 2 ties, 21 defeats, p value = 1.06E−01
(not significant different).

Lastly, we compare performance of DCNN and GAN in
the large p, small n classification issue. For kNN and RF,
experiment results show that GAN slightly superior DCNN to
improve performance of kNN and RF algorithms. GAN-kNN,
GAN-RF increase the mean accuracy of 1.42, 0.13% points
compared to kNN, RF. However, p values higher than 0.05

are not statistically significant. As for SVM, LSVM and C4.5,
Table 8 show that DCNN-SVM, DCNN-LSVM, DCNN-C.4.5
slightly rise the mean accuracy of 0.21, 0.08, 0.63 percent
points compared to SVM, LSVM, and C4.5, respectively.
Despite all these initial findings, we still do not have a general
characterization of which aspects of the data drive the perfor-
mances of each method. Indeed, it is important to emphasize
that the no free lunch theorem applies more potently here, in
the sense that there is no panacea that universally applies to all
gene expression datasets.

Table 2 (continued) ID GAN-SVM DCNN-SMOTE-SVM

Generate
samples

C � # k neighbors p (%) C �

50 500 1E+04 2E−05 9 100 1E+07 1.E−01

Table 3 Classification results
of our models using non linear
SVM classifier

ID SVM GAN DCNN DCNN-SMOTE ID SVM GAN DCNN DCNN-SMOTE
SVM SVM SVM SVM SVM SVM

1 97.06 97.06 97.06 97.06 26 80.00 80.00 80.77 81.54
2 63.16 73.68 73.68 89.47 27 77.03 79.73 79.73 80.41
3 85.48 87.10 87.10 88.71 28 86.71 87.34 87.34 87.34
4 90.08 98.08 98.08 98.08 29 80.87 81.97 80.33 80.33
5 86.67 100 100 100 30 77.88 79.26 79.72 79.72
6 98.66 99.33 98.66 99.33 31 99.56 99.56 99.12 99.56
7 82.87 99.45 100 98.90 32 91.70 91.27 90.83 92.14
8 55.17 60.34 58.62 63.79 33 99.25 99.25 99.25 99.25
9 78.98 78.57 84.52 78.57 34 91.51 91.51 91.14 91.88
10 83.59 82.81 85.16 85.94 35 100 100 100 100
11 74.29 77.14 74.29 80.00 36 73.08 88.11 89.51 88.11
12 87.50 87.50 87.50 87.50 37 43.91 68.17 95.08 95.09
13 79.25 77.36 79.25 79.25 38 95.49 95.81 96.14 96.46
14 86.79 88.68 90.57 90.57 39 88.01 88.93 89.93 89.35
15 96.55 93.10 96.55 96.55 40 50.54 70.83 71.42 69.77
16 74.58 74.58 71.19 71.19 41 63.38 93.90 94.37 95.93
17 56.52 67.39 72.83 73.91 42 76.21 76.66 74.11 75.54
18 80.85 79.79 79.79 79.11 43 65.94 67.11 66.66 64.57
19 95.83 97.92 96.88 98.96 44 91.45 92.31 91.45 91.45
20 96.15 92.31 94.23 96.15 45 86.41 86.76 97.99 97.99
21 93.46 90.65 91.59 92.52 46 84.73 84.67 83.69 83.86
22 87.96 89.42 89.81 87.96 47 87.46 87.45 88.01 88.00
23 98.18 98.18 98.18 99.09 48 81.01 81.68 80.44 79.81
24 88.29 91.35 89.19 89.19 49 100.00 100 79.60 100
25 94.17 95.83 95.83 95.83 50 82.90 82.90 82.31 82.89

SN Computer Science (2020) 1:207 Page 11 of 19 207

SN Computer Science

Conclusion and Future Works

Throughout this paper, we have proposed two approaches for
the large p, small n classification issue. In first approach, a
new enhancing sample size method with generative adver-
sarial network is proposed to improve classification algo-
rithms. Second method, we propose a classification model of
several classifying algorithms with SMOTE algorithm using
features extracted by deep convolutional neural network.
We have presented a thorough comparison of the predictive
performances of our proposed classification methods on 50
very-high-dimensional and low-sample-size datasets. This
means that the performance of support vector machines, k
nearest neighbors and random forests, which have improved

when apply our approaches, concerning accuracy, for gene
expression datasets. We further discussed limitations of the
approach and promising directions of future research.

Although our approaches hold promise, they are not
the silver bullets and cannot provide perfect results. There
remain many challenges, including imbalanced data, inter-
pretation of deep learning results, and selection of an appro-
priate architecture and hyper-parameters. Furthermore, to
fully exploit the abilities of deep learning and acceleration
of deep learning require further studies. In the near future,
we intend to provide more empirical test on large bench-
marks evaluate classification models with various measures
metrics. A promising future research aims at automatically
tuning the hyper-parameters of the classifiers.

Table 4 Classification results
of our models using LSVM
classifier

ID LSVM GAN DCNN DCNN ID LSVM GAN DCNN DCNN
LSVM LSVM SMOTE-LSVM LSVM LSVM SMOTE-LSVM

1 97.06 97.06 97.01 97.06 26 80.00 81.54 80.77 80.77
2 63.16 84.21 63.16 89.47 27 79.05 79.73 79.73 79.73
3 80.65 82.26 82.26 88.71 28 87.34 87.34 87.34 85.44
4 97.12 97.12 98.08 98.08 29 80.33 81.42 80.87 78.69
5 86.67 100 100 100 30 77.97 78.34 78.80 80.18
6 98.66 99.33 98.66 99.33 31 99.56 99.11 99.12 99.12
7 100 99.45 98.90 98.90 32 92.14 91.70 90.39 92.14
8 56.90 56.90 55.17 62.07 33 99.25 99.25 99.25 99.25
9 76.19 78.57 77.38 76.79 34 90.45 91.51 90.77 91.51
10 84.38 85.94 84.38 85.94 35 100 100 100 100
11 74.29 77.14 74.29 80.00 36 87.41 87.06 87.76 87.76
12 74.29 85.00 85.00 85.00 37 62.38 67.34 94.02 94.08
13 71.70 77.36 77.36 79.25 38 93.55 96.45 96.14 94.86
14 90.57 86.78 90.57 90.57 39 84.43 86.45 89.93 87.74
15 96.55 96.55 96.55 96.55 40 76.31 70.27 69.79 65.13
16 74.58 74.58 71.19 59.53 41 97.20 94.19 94.37 96.17
17 69.57 70.65 71.74 72.83 42 72.90 77.61 72.18 74.10
18 73.40 80.85 78.72 78.72 43 66.38 64.35 63.46 84.51
19 95.83 96.88 96.88 97.92 44 89.53 90.52 90.54 89.66
20 90.38 92.31 92.31 96.15 45 86.14 86.57 97.98 97.79
21 92.52 94.39 91.59 92.52 46 83.10 83.41 83.68 83.32
22 84.26 85.19 84.23 83.33 47 83.51 88.36 87.84 85.25
23 98.18 98.18 98.18 99.09 48 80.68 81.14 80.27 77.16
24 87.39 88.29 87.39 88.29 49 100 100 100 100
25 94.17 95.00 95.00 95.00 50 74.01 82.60 81.27 81.42

 SN Computer Science (2020) 1:207207 Page 12 of 19

SN Computer Science

Table 5 Classification results of
our models using kNN classifier

ID kNN GAN DCNN DCNN ID kNN GAN DCNN DCNN
kNN kNN SMOTE-kNN kNN kNN SMOTE-kNN

1 88.24 91.18 91.18 97.06 26 71.54 72.31 77.69 77.69
2 47.37 63.16 52.63 57.89 27 59.46 63.51 66.22 69.59
3 85.48 83.87 80.64 85.48 28 82.91 82.91 85.44 81.01
4 90.38 95.19 98.08 93.27 29 78.69 78.14 74.32 75.96
5 99.33 93.33 100 99.33 30 75.58 74.19 78.80 80.18
6 96.64 97.32 100 99.33 31 98.23 99.56 97.34 97.79
7 99.45 100 92.82 93.92 32 88.21 86.03 85.15 89.51
8 58.62 56.90 55.17 50.00 33 99.25 99.25 99.25 99.25
9 67.86 68.45 70.24 71.43 34 88.19 86.35 85.98 87.45
10 73.44 75.00 64.84 72.65 35 77.37 88.69 88.32 100
11 60.00 65.71 68.57 71.43 36 82.87 85.31 79.37 81.81
12 85.00 85.00 85.00 85.00 37 54.75 59.32 93.40 92.70
13 69.81 73.58 77.36 79.25 38 88.99 88.69 88.36 88.42
14 84.91 81.13 90.57 90.57 39 74.40 77.07 69.63 71.75
15 93.10 91.38 93.10 93.10 40 56.62 62.36 55.47 61.02
16 55.93 59.32 54.24 61.02 41 89.78 90.84 88.32 84.13
17 57.61 55.43 55.43 63.04 42 57.70 60.35 61.45 61.21
18 76.60 75.53 76.60 76.60 43 58.13 57.40 57.20 58.50
19 93.75 93.75 93.75 92.70 44 88.99 90.38 89.93 90.84
20 94.23 94.23 92.31 96.15 45 71.87 74.09 96.80 98.39
21 85.98 84.26 81.31 85.05 46 68.01 71.17 98.76 83.52
22 80.56 84.26 83.33 85.19 47 62.99 71.74 73.70 75.66
23 96.36 95.45 93.63 95.45 48 77.15 77.90 75.66 76.16
24 79.28 73.87 77.48 77.48 49 96.53 95.62 100 100
25 88.33 88.33 85.00 87.50 50 82.27 82.61 92.46 82.88

SN Computer Science (2020) 1:207 Page 13 of 19 207

SN Computer Science

Table 6 Classification results of
our models using RF classifier

ID RF GAN DCNN DCNN ID RF GAN DCNN DCNN
RF RF SMOTE-RF RF RF SMOTE-RF

1 82.36 94.12 67.65 85.29 26 82.31 81.54 81.54 81.54
2 73.68 73.68 73.68 78.95 27 66.89 70.27 68.24 68.24
3 79.52 83.87 80.65 80.65 28 85.44 85.44 84.81 84.81
4 92.17 94.23 94.23 96.15 29 77.60 78.69 79.23 79.23
5 86.67 86.67 100 100 30 77.46 76.96 79.72 80.18
6 100 100 97.32 99.33 31 98.32 98.67 97.79 98.23
7 97.78 98.80 93.92 95.58 32 88.21 89.52 88.65 90.39
8 59.62 58.62 51.72 51.72 33 99.25 99.25 99.25 99.25
9 69.13 75.00 70.83 70.24 34 85.63 85.24 85.24 84.50
10 76.56 74.22 75.00 75.00 35 100 100 100 100
11 71.43 74.29 71.43 74.29 36 86.71 86.36 80.07 82.86
12 71.43 87.50 85.00 88.00 37 72.44 72.57 95.05 94.44
13 71.70 71.70 77.36 79.24 38 92.27 92.56 92.56 92.29
14 79.25 77.36 86.79 90.57 39 85.79 86.81 76.76 77.72
15 89.66 90.89 93.10 91.38 40 68.13 68.36 62.33 68.34
16 61.02 61.02 59.32 67.80 41 94.16 93.13 100 84.38
17 59.78 58.70 56.52 58.69 42 65.19 65.46 66.60 65.40
18 76.60 78.72 75.53 75.83 43 60.25 62.29 62.48 61.52
19 95.83 95.83 96.88 96.88 44 91.06 92.31 91.14 91.45
20 96.15 94.23 92.31 92.30 45 84.75 84.58 97.19 98.19
21 92.52 87.04 86.92 87.85 46 78.52 79.82 98.41 98.24
22 89.81 87.04 87.96 88.89 47 80.33 82.11 75.80 76.18
23 94.55 97.27 95.45 96.36 48 78.52 78.39 76.17 78.38
24 86.49 89.19 87.39 87.39 49 99.30 99.31 99.77 100
25 95.83 95.83 95.83 95.83 50 82.93 82.90 93.20 94.99

 SN Computer Science (2020) 1:207207 Page 14 of 19

SN Computer Science

Table 7 Classification results of
our models using C4.5 classifier

ID C4.5 GAN DCNN DCNN ID C4.5 GAN DCNN DCNN
C4.5 C4.5 SMOTE-C4.5 C4.5 C4.5 SMOTE-C4.5

1 91.18 91.18 85.29 85.29 26 62.31 73.85 70.00 73.08
2 63.16 68.42 63.16 78.95 27 71.62 69.59 62.84 64.86
3 74.19 78.52 66.13 77.41 28 70.89 68.99 68.99 61.39
4 92.31 91.35 85.58 86.54 29 75.96 66.12 64.48 63.93
5 86.67 93.33 100 100 30 62.74 58.99 74.65 76.04
6 90.60 91.95 70.47 91.94 31 94.32 95.58 94.25 94.25
7 93.37 95.58 87.85 91.71 32 83.41 84.28 85.59 86.03
8 56.90 60.34 62.07 55.17 33 97.01 98.51 97.76 98.50
9 80.95 72.62 63.10 74.40 34 78.87 81.92 80.07 83.39
10 68.75 70.31 71.88 65.63 35 100 100 100 100
11 51.43 62.86 60.00 68.57 36 83.94 80.07 78.32 73.78
12 51.43 80.00 80.00 85.00 37 59.85 60.84 90.87 86.91
13 58.49 69.81 71.70 73.58 38 85.84 87.41 88.71 88.41
14 84.91 73.58 67.92 79.25 39 68.89 62.87 53.46 51.75
15 77.59 87.93 79.31 75.86 40 59.88 62.08 59.33 59.34
16 64.41 74.58 55.93 66.10 41 95.44 87.70 100 78.03
17 45.65 58.70 55.43 63.04 42 60.12 62.82 61.22 60.92
18 87.23 73.40 65.96 75.00 43 51.25 58.74 52.07 57.08
19 91.67 91.67 92.71 89.58 44 83.39 86.54 85.29 91.45
20 87.50 84.62 82.69 82.69 45 64.64 69.61 94.21 96.79
21 85.98 85.98 86.91 85.98 46 60.03 60.08 92.17 89.41
22 79.63 78.93 82.41 81.30 47 69.33 70.48 56.30 50.91
23 91.82 94.55 94.55 93.64 48 65.29 64.79 65.97 70.96
24 77.48 81.08 72.07 74.77 49 97.68 95.16 97.23 99.77
25 85.00 95.83 90.00 90.00 50 63.81 69.00 84.93 75.03

Fig. 6 Comparison mean accu-
racy classification of models

SV
M

GA
N-
SV
M

DC
NN

-S
M
OT

E-
SV
M

LS
VM

GA
N-
LS
VM

DC
NN

-S
M
OT

E-
LS
VMkN

N

GA
N-
kN
N

DC
NN

-S
M
OT

E-
kN
NRF

GA
N-
RF

DC
NN

-S
M
OT

E-
RFC4

.5

GA
N-
C4
.5

DC
NN

-S
M
OT

E-
C4
.5

76

78

80

82

84

86

88

83.34

86.66

88.17

84.64

86.52

87.54

78.77

80.03

82.5182.62
83.57

84.7

75.7

77.66
78.47M

ea
n
ac

cu
ra
cy

(%
)

SN Computer Science (2020) 1:207 Page 15 of 19 207

SN Computer Science

Table 8 Summary of the
accuracy comparison

Model Means Win Tie Lose p value

SVM 83.83
GAN-SVM 86.66
DCNN-SVM 87.19
DCNN-SMOTE-SVM 88.17
LSVM 84.64
GAN-LSVM 86.52
DCNN-LSVM 86.45
DCNN-SMOTE-LSVM 87.54
RF 82.62
GAN-RF 83.57
DCNN-RF 83.70
DCNN-SMOTE-RF 84.70
kNN 78.77
GAN-kNN 80.03
DCNN-kNN 81.45
DCNN-SMOTE-kNN 82.51
C4.5 75.70
GAN-C4.5 77.66
DCNN-C4.5 77.04
DCNN-SMOTE-C4.5 78.03
GAN-SVM & SVM 29 11 10 1.8E-03
GAN-LSVM & LSVM 32 10 8 3.22E-03
GAN-RF & RF 25 10 15 4.52E-02
GAN-kNN & kNN 27 6 17 2.35E-03
GAN-C4.5 & C4.5 31 4 15 5.39E-02
GAN-SVM & DCNN-SVM 17 13 20 4.82E−01
GAN-LSVM & DCNN-LSVM 24 14 12 9.16E−01
GAN-RF & DCNN-RF 25 10 15 9E−01
GAN-kNN & DCNN-kNN 24 5 21 2.22E−01
GAN-C4.5 & DCNN-C4.5 29 4 17 6.68E−01
DCNN-SMOTE-SVM & GAN-SVM 24 13 13 3.11E-02
DCNN-SMOTE-LSVM & GAN-LSVM 20 13 17 2.26E−01
DCNN-SMOTE-RF & GAN-RF 20 5 25 2.15E-01
DCNN-SMOTE-kNN & GAN-kNN 31 3 16 1.52E−01
DCNN-SMOTE-C4.5 & GAN-C4.5 21 2 27 5.37E−01
DCNN-SMOTE-SVM & SVM 29 11 10 1.33E-03
DCNN-SMOTE-LSVM & LSVM 33 8 9 8.72E-03
DCNN-SMOTE-RF & RF 29 12 18 2.78E-02
DCNN-SMOTE-kNN & kNN 27 6 17 2.26E-03
DCNN-SMOTE-C4.5 & C4.5 27 2 21 1.06E-01
DCNN-SMOTE-SVM & DCNN-SVM 23 17 10 8.20E-02
DCNN-SMOTE-LSVM & DCNN-LSVM 22 15 13 1.59E-01
DCNN-SMOTE-RF & DCNN-RF 27 13 0 7.05E-02
DCNN-SMOTE-kNN & DCNN-kNN 31 8 11 8.45E-02
DCNN-SMOTE-C4.5 & DCNN-C4.5 26 6 18 1.47E-01
DCNN-SMOTE-SVM & SVM 29 11 10 1.33E-03
DCNN-SMOTE-SVM & LSVM 33 11 6 4.68E-04
DCNN-SMOTE-SVM & RF 41 5 4 6.01E-09
DCNN-SMOTE-SVM & kNN 48 1 1 5.57E-09
DCNN-SMOTE-SVM & C4.5 46 1 3 2.91E-12
DCNN-SMOTE-SVM & DCNN-SMOTE-LSVM 29 17 4 2.09E-01

 SN Computer Science (2020) 1:207207 Page 16 of 19

SN Computer Science

Table 8 (continued) Model Means Win Tie Lose p value

DCNN-SMOTE-SVM & DCNN-SMOTE-kNN 40 8 2 2.27E-08
DCNN-SMOTE-SVM & DCNN-SMOTE-RF 35 8 7 6.99E-05
DCNN-SMOTE-SVM & DCNN-SMOTE-C4.5 46 3 1 6.17E-11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

50

60

70

80

90

100

Datasets

A
cc
ur

ac
y
(%

)

DCNN-SMOTE-SVM GAN-SVM SVM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
50

60

70

80

90

100

Datasets

A
cc
ur

ac
y
(%

)

DCNN-SMOTE-LSVM GAN-LSVM LSVM

Fig. 7 Comparison the accuracy of DCNN-SMOTE-SVM, GAN-SVM and SVM, DCNN-SMOTE-LSVM, GAN-LSVM and LSVM on 50 data-
sets (%)

SN Computer Science (2020) 1:207 Page 17 of 19 207

SN Computer Science

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Aarthi P, Gothai E (2014) Enhancing sample classification for
microarray datasets using genetic algorithm. In: International con-
ference on information communication and embedded systems
(ICICES2014). IEEE, pp 1–3.

 2. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,
Corrado GS, Davis A, Dean J, Devin M, et al. Tensorflow: large-
scale machine learning on heterogeneous systems. 2015. Software
available from tensorflow.org. https ://www.tenso rflow .org; 2019.

 3. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D,
Levine AJ. Broad patterns of gene expression revealed by cluster-
ing analysis of tumor and normal colon tissues probed by oligo-
nucleotide arrays. Proc Nat Acad Sci. 1999;96(12):6745–50.

 4. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer
ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer
SJ. MLL translocations specify a distinct gene expression profile
that distinguishes a unique leukemia. 30(1):41–47. https ://doi.
org/10.1038/ng765 . http://www.natur e.com/artic les/ng765 z.

 5. Bellman R. Dynamic programming treatment of the travelling
salesman problem. J ACM. 1962;9(1):61–3.

 6. Bernardo J, Bayarri M, Berger J, Dawid A, Heckerman D, Smith
A, West M. Bayesian factor regression models in the “large p,
small n” paradigm. Bayesian Stat. 2003;7:733–42.

 7. Bhattacharjee A, et al. Classification of human lung carcinomas
by mRNA expression profiling reveals distinct adenocarcinoma
subclasses. Proc Natl Acad Sci. 2001;98(24):13790–5.

 8. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abey-
gunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara
GG. ArrayExpress a public repository for microarray gene expres-
sion data at the EBI. Nucleic Acids Res. 2003;31(1):68–71.

 9. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

50

60

70

80

90

100

Datasets

A
cc
ur

ac
y
(%

)

DCNN-SMOTE-kNN GAN-kNN kNN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
50

60

70

80

90

100

Datasets

A
cc
ur

ac
y
(%

)

DCNN-SMOTE-RF GAN-RF RF

Fig. 8 Comparison the accuracy of DCNN-SMOTE-RF, GAN-RF and RF, DCNN-SMOTE-kNN, GAN-kNN and kNN on 50 datasets (%)

https://www.tensorflow.org
https://doi.org/10.1038/ng765
https://doi.org/10.1038/ng765
http://www.nature.com/articles/ng765z

 SN Computer Science (2020) 1:207207 Page 18 of 19

SN Computer Science

 10. Brown MP, et al. Knowledge-based analysis of microarray gene
expression data by using support vector machines. Proc Nat Acad
Sci. 2000;97(1):262–7.

 11. Burges CJ. A tutorial on support vector machines for pattern rec-
ognition. Data Min Knowl Disc. 1998;2(2):121–67.

 12. Cao L, Chua KS, Chong W, Lee H, Gu Q. A comparison of PCA,
KPCA and ICA for dimensionality reduction in support vector
machine. Neurocomputing. 2003;55(1–2):321–36.

 13. Chang CC, Lin CJ. LIBSVM: a library for support vector
machines. ACM Trans Intell Syst Technol. 2011;2(3):27.

 14. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote:
synthetic minority over-sampling technique. J Artif Intell Res.
2002;16:321–57.

 15. Chen X, Ishwaran H. Random forests for genomic data analysis.
Genomics. 2012;99(6):323–9.

 16. Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Man-
delli F, Ritz J, Foa R. Gene expression profile of adult t-cell
acute lymphocytic leukemia identifies distinct subsets of
patients with different response to therapy and survival. Blood.
2004;103(7):2771–8.

 17. Chowdary D, Lathrop J, Skelton J, Curtin K, Briggs T, Zhang
Y, Yu J, Wang Y, Mazumder A. Prognostic gene expression
signatures can be measured in tissues collected in RNAlater
preservative. J Mol Diagn. 2006;8(1):31–9.

 18. Costa P, Galdran A, Meyer MI, Niemeijer M, Abràmoff M, Men-
donça AM, Campilho A. End-to-end adversarial retinal image
synthesis. IEEE Trans Med Imaging. 2017;37(3):781–91.

 19. Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta
B, Bharath AA. Generative adversarial networks: an overview.
IEEE Signal Process Mag. 2018;35(1):53–65.

 20. Cristianini N, Shawe-Taylor J. An introduction to support vector
machines and other kernel-based learning methods. Cambridge:
Cambridge University Press; 2000.

 21. Dosovitskiy A, Springenberg JT, Tatarchenko M, Brox T. Learn-
ing to generate chairs, tables and cars with convolutional net-
works. IEEE Trans Pattern Anal Mach Intell. 2016;39(4):692–705.

 22. Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination
methods for the classification of tumors using gene expression
data. J Am Stat Asso. 2002;97(457):77–87.

 23. Díaz-Uriarte R, De Andres SA. Gene selection and classifica-
tion of microarray data using random forest. BMC Bioinform.
2006;7(1):3.

 24. Engreitz JM, Daigle BJ Jr, Marshall JJ, Altman RB. Independ-
ent component analysis: mining microarray data for funda-
mental human gene expression modules. J Biomed Inform.
2010;43(6):932–44.

 25. Fix E, Hodges J. Discriminatory analysis-nonparametric discrimi-
nation: Small sample performance. Tech. rep., California Univ.
Berkeley; 1952.

 26. Golub TR, Slonim KD, Tamayo P, Huard C, Gaasenbeek
M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligi-
uri MA. Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. Science.
1999;286(5439):531–7.

 27. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv
Neural Info Process Syst. 2014;2014:2672–80.

 28. Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE,
Ramaswamy S, Richards WG, Sugarbaker DJ, Bueno R. Transla-
tion of microarray data into clinically relevant cancer diagnostic
tests using gene expression ratios in lung cancer and mesothe-
lioma. Cancer Res. 2002;62(17):4963–7.

 29. Gravier E, Pierron G, Vincent-Salomon A, Gruel N, Raynal V,
Savignoni A, De Rycke Y, Pierga JY, Lucchesi C, Reyal F. A
prognostic DNA signature for t1t2 node-negative breast cancer
patients. Genes. 2010;49(12):1125.

 30. Hira ZM, Gillies DF. A review of feature selection and feature
extraction methods applied on microarray data. Adv Bioinform.
2015;20:15.

 31. Hsu CW, Chang CC, Lin CJ. A practical guide to support vector
classification; 2003.

 32. Hubel DH, Wiesel T. Shape and arrangement of columns in cat’s
striate cortex. J Physiol. 1963;165(3):559–68.

 33. Huynh PH, Nguyen VH, Do TN. A coupling support vector
machines with the feature learning of deep convolutional neural
networks for classifying microarray gene expression data. Mod-
ern approaches for intelligent information and database systems.
Berlin: Springer; 2018. p. 233–43.

 34. Huynh PH, Nguyen VH, Do TN. A combined enhancing and fea-
ture extraction algorithm to improve learning accuracy for gene
expression classification; 2019. pp. 255–273.

 35. Huynh PH, Nguyen VH, Do TN. Enhancing gene expression clas-
sification of support vector machines with generative adversarial
networks. J Inf Commun Convergence Eng. 2019;17:14–20.

 36. Ioffe S, Szegedy C. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: International
conference on machine learning; 2015. pp. 448–56.

 37. Jinyan L, Huiqing L. Kent ridge bio-medical data set repository.
Technical report; 2002.

 38. Jonnalagadda S, Srinivasan R. Principal components analysis
based methodology to identify differentially expressed genes in
time-course microarray data. BMC Bioinform. 2008;9(1):267.

 39. Kalantari A, Kamsin A, Shamshirband S, Gani A, Alinejad-Rokny
H, Chronopoulos AT. Computational intelligence approaches for
classification of medical data: State-of-the-art, future challenges
and research directions. Neurocomputing. 2018;276:2–22.

 40. Kim SY. Effects of sample size on robustness and prediction
accuracy of a prognostic gene signature. BMC Bioinform.
2009;10(1):147.

 41. Kim Y. Convolutional neural networks for sentence classification.
In: Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP); 2014. pp. 1746–51.

 42. Kingma DP, Ba JA. A method for stochastic optimization. In:
Proceedings of the 3rd international conference on learning rep-
resentations (ICLR); 2014.

 43. Krizhevsky et al. Imagenet classification with deep convolu-
tional neural networks. In: Advances in neural information pro-
cessing systems; 2012. pp. 1097–05.

 44. Breiman L, Friedman J, C.J.S.R.A.O. Classification and regres-
sion trees. L. Breiman J. Friedman, C.J.S.R.A.O. Wadsworth
International Group. 1984;8:452–6.

 45. Landgrebe J, Wurst W, Welzl G. Permutation-validated prin-
cipal components analysis of microarray data. Genome Biol.
2002;3(4):research0019-1.

 46. Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta
A, Aitken A, Tejani A, Totz J, Wang Z, et al. Photo-realistic
single image super-resolution using a generative adversarial
network. In: Proceedings of the IEEE conference on computer
vision and pattern recognition; 2017. pp. 4681–90.

 47. Lee SI, Batzoglou S. Application of independent component
analysis to microarrays. Genome Biol. 2003;4(11):R76.

 48. Liu Z, Chen D, Bensmail H. Gene expression data classifica-
tion with kernel principal component analysis. BioMed Res Int.
2005;2005(2):155–9.

 49. Lusa L, et al. Class prediction for high-dimensional class-imbal-
anced data. BMC Bioinform. 2010;11(1):523.

 50. Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve
neural network acoustic models. Proc ICML. 2013;30:3.

 51. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief
Bioinform. 2016;1:bbw068.

 52. Moeskops P, Veta M, Lafarge MW, Eppenhof KA, Pluim JP.
Adversarial training and dilated convolutions for brain mri

SN Computer Science (2020) 1:207 Page 19 of 19 207

SN Computer Science

segmentation. Deep learning in medical image analysis and
multimodal learning for clinical decision support. Berlin:
Springer; 2017. p. 56–64.

 53. Nikulin V, McLachlan GJ. Penalized principal component anal-
ysis of microarray data. In: International meeting on computa-
tional intelligence methods for bioinformatics and biostatistics,
pp. 82–96. Springer; 2009.

 54. Novianti PW, Jong VL, Roes KC, Eijkemans MJ. Factors affecting
the accuracy of a class prediction model in gene expression data.
BMC Bioinform. 2015;16(1):199.

 55. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion
B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V.
Scikit-learn: machine learning in python. J Mach Learn Res.
2011;12:2825–30.

 56. Perez-Diez A, Morgun A, Shulzhenko N. Microarrays for cancer
diagnosis and classification. In: Sag D, editor. Microarray technol-
ogy and cancer gene profiling. Berlin: Springer; 2007. p. 74–85.

 57. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Col-
lins C, Kuo W, Chen C, Zhai Y. High resolution analysis of DNA
copy number variation using comparative genomic hybridization
to microarrays. Nat Genet. 1998;20:2.

 58. Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study
of different machine learning methods on microarray gene expres-
sion data. BMC Genom. 2008;9(S1):S13.

 59. Quinlan JR. C4.5: programs for machine learning. San Francisco:
Morgan Kaufmann Publishers Inc.; 1993.

 60. Reverter F, Vegas E, Oller JM. Kernel-pca data integration with
enhanced interpretability. BMC Syst Biol. 2014;8(S2):S6.

 61. Schena M, Shalon D, Davis RW, Brown PO. Quantitative moni-
toring of gene expression patterns with a complementary DNA
microarray. Science. 1995;270(5235):467–70.

 62. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar
RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS. others:
Diffuse large B-cell lymphoma outcome prediction by gene-
expression profiling and supervised machine learning. Nat Med.
2002;8(1):68.

 63. Tan CS, Ting WS, Mohamad MS, Chan WH, Deris S, Ali Shah
Z. A review of feature extraction software for microarray gene
expression data. BioMed Res Int. 2014;20:14.

 64. Van Hulse J, Khoshgoftaar TM, Napolitano A. Experimental
perspectives on learning from imbalanced data. In: Proceedings
of the 24th international conference on Machine learning, pp.
935–942. ACM 2007.

 65. Van’t Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao
M, Peterse HL, Van Der Kooy K, Marton MJ, Witteveen AT. Gene
expression profiling predicts clinical outcome of breast cancer.
Nature. 2002;415(6871):530.

 66. Vapnik. The nature of statistical learning theory. Berlin: Springer;
1995.

 67. Vapnik V. An overview of statistical learning theory. IEEE Trans
Neural Netw. 1998;10(5):988–99.

 68. Wong TT. Performance evaluation of classification algorithms
by k-fold and leave-one-out cross validation. Pattern Recogn.
2015;48(9):2839–46.

 69. Wu X, Kumar V. The top ten algorithms in data mining. Boca
Raton: CRC Press; 2009.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Improvements in the Large p, Small n Classification Issue
	Abstract
	Introduction
	Related Works
	Methods
	Data Augmentation Using Generative Adversarial Network
	Enhancing New Features Extracted by Deep Convolutional Neural Network
	Classification Algorithms

	Evaluation
	Tuning Parameters
	Classification Results

	Conclusion and Future Works
	References

