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Abstract
The Internet of Things (IoT) is a promising technology which interconnects the available resources to offer reliable and 
effective smart objects. The smart objects act as a definitive building block in the development of interdisciplinary cyber-
physical systems and smart ubiquitous frameworks. The IoT revolution is improving the potential of healthcare infrastructures 
for providing quality care to patients and assisted living. IoT is renovating the traditional healthcare system with promising 
technical, economic and social forecasts. The current researches in the IoT have opened more possibilities in the field of 
medicine that aims to improve the quality of healthcare with minimum cost. This survey paper explores the advances in 
Human Healthcare Internet of Things  (H2IoT) and analyses the present-day networks, architectures, topologies, platforms, 
services and applications in healthcare. This paper also surveys the challenges in  H2IoT design, privacy, security, threats 
and attack classification.
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Introduction

The vision of IoT aims at the interconnection of physical 
objects in an efficient, practical and standardized way via 
internet [1]. A global vision of such objects is accompanied 
with one single concept IoT with the use of sensors, and the 
whole physical infrastructure is tightly coupled through com-
munication technologies, where network enabled embedded 
devices provide a smart monitoring and management system 
[2]. The remunerations characteristically embrace the intelli-
gent connectivity between the devices, systems and services 
that goes beyond machine-to-machine (M2M) circumstances 
[3]. As a result, task automation is convincing all the fields. 
It provides solutions for widespread of applications such as 

smart home, smart city, smart grid, industrial internet, con-
nected vehicles, connected health, wearable’s, smart retail, 
smart supply chain and smart farming.

One of the most noticeable application areas of IoT is 
health care and medical care, which will transform the tradi-
tional healthcare from hospital-centric to patient-centric [4]. 
The ubiquitous and personalized services of  H2IoT renovated 
the healthcare from career-centric to patient-centric [5–7]. 
The key benefits of IoT sensors and technologies influenced 
plenty of application areas. In particular, implanted sensors 
on patients collect the data remotely which aided to provide 
anticipatory healthcare by predicting the health problems 
earlier via the monitoring of vital signs. Implantable sensors 
have a cumulative history of success and deep impact on the 
persistent quality of patient’s life.

Such transforming healthcare scenario with IoT is shown 
in Fig. 1. The IoT is likely to result in boom for many appli-
cations including chronic disease management, fitness main-
tenance, remote health monitoring systems and ambulatory 
caregiving to elder-parents. Amenability with treatment and 
prescription at home by medical practitioners are also one of 
the important potential applications. The healthcare smart 
objects such as medical devices, sensors, imaging and diag-
nostic devices constitutes a primary section of the IoT. IoT-
enabled healthcare services reduced the medical expenses, 
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improved the quality of life and also reduced the device idle 
time through remote sensing. By 2020, IoT will be present 
in 85 percent of healthcare organizations and 75 percent 
of healthcare industries are expected to be transformed for 
providing quality services.

A wide range of researches has been identified in order 
to monitor patient’s conditions which includes diabetes and 
parkinson’s disease [8, 9]. Some of the research looks to 
provide a continuous monitoring of patients for aiding reha-
bilitation [10]. Yin et al. [11] used various wireless physi-
ological sensors which read and transmits the physiological 
factors of a person via a wireless communication medium. 
Plenty of determinations have been made in health monitor-
ing and control [12], patient-centric drug identification [13], 
and ubiquitous healthcare [14, 15]. Many of the researchers 
and organizations have been dedicated to the development of 
IoT-enabled medical applications with the aim at increasing 
the abilities of healthcare systems [16, 17]. Remote moni-
toring system increases the efficiency of solving the patient 
accessibility problems. In USA, only 9% of physicians work-
ing in rural areas for 20% of total population and the past 
works revealed the healthcare inequalities faced by the rural 
residents [18]. Urban residents used to travel twice or thrice 
to consult a physician, specialist and through which they 
experiences the problematic effects for some common health 
conditions like diabetes and heart attack [19, 20]. Wearable 
sensors and remote health monitoring systems enhanced the 
reachability of physicians in urban areas to rural areas and 
reduced the disparities. This survey paper deals with:

• Categorizing and summarizing the  H2IoT frameworks 
into three different arenas.

• Identifying and comparing the wireless communication 
technologies available for  H2IoT.

• Providing an inclusive study on  H2IoT sensing devices 
and technologies.

• Discussing on the security and privacy issues from  H2IoT 
perspective.

• Emphasizing the various applications arenas of  H2IoT.
• Highlighting the major technologies that modernized the 

healthcare domain using IoT.

H2IoT Network Design Taxonomy

The main intension of IoT is to provide access and control to 
a wide variety of pervasive and uniquely identifiable objects 
and devices. The network design taxonomy is a major con-
stituent of the  H2IoT and it acts as a channel for the sending 
and receiving of healthcare data among connected medical 
devices. As shown in Fig. 2, this section presents the idea 
of  H2IoT network design taxonomy into three categories 
such as  H2IoT network topology, architecture and platform. 
However, taxonomy will support in defining the structural 
requirements for  H2IoT from high level insight [21].

1. H2IoT Network Topology The  H2IoT network topology 
depicts physical organization of the healthcare elements such 
as physiological sensors, actuators and gateways from com-
munication perspective. The factors to be taken into account 
while choosing the appropriate network topology and IoT 
protocols for medical systems are cost, energy consump-
tion, communication and reliability. These factors must be 
analyzed with respect to the characteristics, capabilities and 
performance of the network topologies.

Latency: Latency is a time taken by a network to transmit 
the data from medical sensor node to the gateway node and 
vice versa. In general, latency decides the speed of the  H2IoT 
network, when the latency of a network decreases then the 
network speed will increase.

Throughput: Throughput is the total amount of data trans-
mitted over an  H2IoT network within a given period of time. 
Thus, the systems providing high throughput are well suited 
for transmitting real-time data transmission.

Fig. 1  Transforming healthcare scenario with IoT
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Fig. 2  H2IoT network design taxonomy
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Fault Tolerance: In case of failure in the wireless com-
munication between the medical sensor nodes and gateway, 
the system must reconfigure its path transmission and ensure 
the delivery of packet to its destination.

Scalability: The framework of  H2IoT system must adapt 
to the situation of adding any number of medical sensor 
nodes into the network.

Range and Number of Hops: The range denotes the maxi-
mum available distance between one to any other node of 
the network. For transmitting of data packet from medical 
sensor node to gateway, it has to travel through ‘n’ number 
of medical sensor nodes, where ‘n’ is the number of hops.

Figure 3 demonstrates a remote health monitoring sys-
tem based on wearable sensors, in which healthcare data is 
collected using body-worn wireless sensors and transferred 
to the medical practitioner through the gateway for further 
interventions [22]. Wearable sensors (e.g., heart/pulse rate 
and respiratory rate) are deployed as per clinical require-
ments to monitor vital signs and movement sensors would 
be incorporated for increasing the efficiency of home-based 

rehabilitation when patients are suffering from severe heart 
disease, respiratory syndrome or any lung disorders.

This topology uses the wireless communication technolo-
gies such as Bluetooth, ZigBee or Wireless Local Area Net-
work (WLAN) to transfer patient’s data to a mobile or access 
point gateway and then it is forwarded to remote data storage 
center via internet. Finally, family members and caregivers 
are notified during emergency situations for instant medical 
assistance.

Figure 4 describes the general IoT-based health monitor-
ing system that has three important components such as area 
sensor network, gateways and cloud data center [23]. The 
sensed physiological data of patient’s made availed to the 
caregivers or authorized end-users, enables them to monitor 
the health status from remote location at any time. In this 
topological view, gateways act as a middleware between sen-
sor network and cloud data center. The nature of gateway is 
to narrow down the mobility and location of users and it uses 
self-controlled resources such as processing power, energy 
consumption and network bandwidth.

Figure 5 visualizes the e-Health tele-monitoring system 
which comprises of various components like smart home, 
gateway, application server and healthcare data center [24]. 
Smart home integrates a Body Area Network (BAN), a 
Wireless Personal Area Network (WPAN) and a WLAN 
within itself. The BAN contains a Body Gateway (BG) 
which collects the vital clinical parameters from patient’s 
body and then transmits the data to the Base Station (BS) 
through WPAN.

The BS transfers the data to the Residential Gateway 
(RG) via WLAN, which incorporates the various network-
ing technologies used in smart home and Public Packet 
Network (PPN). The PPN is essential for transmitting the 
data from RG to the healthcare center and it supports the 
carrying of remedies to the patient’s from healthcare provid-
ers. The extended gateway comprises of ETSI/Parlay SCSs 
and Sensor Networks SCSs allows e-health tele-monitoring Fig. 3  Wearable sensors-based remote health monitoring system

Fig. 4  General IoT-based health monitoring system
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system to provide services under standardized and secured 
framework mechanisms. Such servicers are deployed on the 
application server, which is connected with a profile data-
base for storing the patient and subject profiles.

The design considerations of  H2IoT network topology 
would attained the concentration on certain things such as 
network terminal, complexity of topological structure, reset-
ting of network resources and changes. In addition, design-
ing of  H2IoT topology will create a significant impact on IoT 
network performance. It is necessary to identify the relation-
ship between the topological structure change and network 

performance prior to the resetting of network resources 
which may improve the network performance [25]. This 
research study discovers the comparison results of the  H2IoT 
topologies based on various attributes is shown in Table 1.

2. H2IoT Network Architecture The IoT architecture can be 
referred as an outline of a physical, virtual or a hybrid sys-
tem, which includes physical devices, sensors, actuators, 
user-specific protocols, cloud platforms, communication lay-
ers, functional organization and its working principles. Fig-
ure 6 presents the architecture of Home Health Hub Internet 

Fig. 5  e-Health tele-monitoring system [24]

Table 1  Comparison of topologies

Topologies Technologies-used Services offered IoT interoperability Data center

Sensor 
networks

Mobile Remote 
monitoring

Patient tracking Medical 
intervention

WPAN WLAN Analytics Deci-
sion 
making

Figure 3 Yes Yes Yes Yes Yes Yes Yes No No
Figure 4 Yes No Yes No Yes No Yes Yes Yes
Figure 5 Yes No Yes No No Yes Yes No No
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of Things  (H3IoT), established for monitoring the elderly 
people resides at home [26].  H3IoT incorporates the medi-
cal sensors, communication technologies, microcontrollers, 
gateways, internet and applications with respect to economi-
cal and mobility perspectives. It is a five layered framework 
architecture which includes User Application Layer (UAL), 
Internet Application Layer (IAL), Information Process-
ing Layer (IPL), Local Communication Layer (LCL), and 
Physiological Sensor Layer (PSL).The core job of the PSL 
is to sense the physiological factors like Electrocardiogram 
(ECG), Electroencephalogram (EEG), and Electromyogram 
(EMG). The sensed raw data is forwarded to the next upper 
layer LCL for further processing. The LCL consists of com-
munication technologies used for transmitting the data from 
PSL to upper layers and the communication technologies 
range from 10 to 900 m.

The third layer IPL acts as a soul of  H3IoT architecture 
and it a hardware platform that receives the raw data from 
LCL and process the data for performing further actions in 
higher layers. This also includes a gateway (network point) 
that provides a communication link for transferring informa-
tion from IPL to IAL. The next layer is IAL which is con-
sidered as the backbone of the system, receives the medical 
data from IPL and is transferred to android or cloud platform 
for future analysis and visualizations. The top-most layer is 

UAL of  H3IoT architecture through which end-users (i.e., 
physician, relative, hospital and caregiver) can monitor the 
real-time information about the patients.

Figure 7 demonstrates the architecture of smart e-health 
gateway which consists of five major components such as 
Medical Sensors and Actuators Network, communication 
protocols, smart e-health gateway, internet and remote data 
center [23]. Initially, medical sensors and actuator network 
sense the condition of patient and environmental factors 
and the data are forwarded to the smart e-health gateway 
through the protocols such as ZigBee, Bluetooth, Wi-Fi or 
6LoWPAN. The gateway is designed to support as many 
communication protocol standards required to increase the 
interoperability and flexibility of the system. Based on the 
studies [27–37] have identified that the Bluetooth, Wi-Fi, 
ZigBee or 6LoWPAN are the basic communication proto-
cols that act between the sensor networks and the gateway. 
Each gateway performs the necessary protocol conversions 
on data received from various sub-networks and also it pro-
vides other services like data aggregation, filtering, fusion, 
compression, analysis, local storage, and actuation. Finally, 
gateway itself performs investigation operation on data and 
displays it on remote data center via internet [38]. Smart 
e-Health Gateway Architecture has used a fog computing 
paradigm which offers a hierarchical system architecture 
and a more reactive design [39]. It acts as an intermediary 
component between the cloud and end-users that accomplish 
the merits by providing priority-based services. The identi-
fied advantages of this architecture on comparing it with the 
architecture of Home Health Hub Internet of Things  (H3IoT) 
are shown in Table 2. 

3. H2IoT Network Platform H2IoT network platform is an 
application that offers both network and computing platform 
that connects the IoT devices with cloud. The conventional 
components of an IoT platform can manage, control, moni-
tor and also deploy a secure connectivity between connected 
devices [40–46]. Designed a semantic platform architec-
ture which provides interoperability among the diversified 
devices with the help of four kinds of ontologies. In terms 
of separating the IoT into hardware and software platforms, 
it is identified that many of the vendors focused on the hard-
ware platforms. Only very few vendors offering IoT software 
platforms, and 13 top ranked IoT software platforms were 
identified [47].

Figure 8 shows,  H2IoT Big Data Platform for managing 
the real-time healthcare data sets have been presented. It 
enables the integration and storing of huge volume and 
wide variety of healthcare data. This can eventually pro-
vide highly configurable data ingestion, alerts for real-
time patient engagement, data customization using parsers, 
active managing and monitoring are mandatory to make Fig. 6  Architecture of home health hub Internet of Things  (H3IoT)
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sure the quality of data to be used in medical intervention. 
Additionally it provides automated analytics and sends 
messages to patients, healthcare providers to enable deci-
sion making.

Figure 9 depicts the components of Microsoft Azure IoT 
Architecture in which IoT devices transmits the collected 
data to the cloud gateway for processing by back-end ser-
vices [48–50]. After processing, back-end services distribute 
the data to business applications or dashboards.

Figure 10 shows the 4-Tier  H2IoT model, which allows 
to integrate different hardware with the help of respective 
protocols, topology and software. The base layer of 4-Tier 
 H2IoT platform model is medical things comprises of medi-
cal sensors, medical devices, wearables and mobile apps for 
observing the vital signs of the patients.

Fig. 7  Smart e-Health gateway 
architecture

Table 2  Comparison of Architectures

Parameters Figure 6 Figure 7

Adaptivity Low High
Data transmission Latency High Low
Energy efficiency level Low High
interoperability High High
Level of security Low High
Local data storage Yes Yes
Mobility support Low High
Priority-based data transmission No Yes
Quality of service (QoS) Low High
Re-configurability Yes Yes
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The connectivity layer of 4-Tier  H2IoT model is respon-
sible for carrying the data generated by the base layer to the 
next layer. The third layer is the management service act 
as a central-tier for the 4-Tier  H2IoT platform model which 
facilitates various functionalities to take place in cloud infra-
structure. The top most layer comprised of vertical specific 
data analytics components provides the intelligence for 
healthcare applications.

H2IoT Wireless Technologies

This section explores and compares the enabling wire-
less technologies for the  H2IoT. Wireless Sensor Networks 
(WSN) can be referred as a network which is capable to 
function with limited resources such as battery and process-
ing power. Since the sensor nodes are battery powered in IoT 
applications and so these nodes must function for a longer 
period of time. Many studies [5, 27–37] have justified the 
commonly used wireless technologies includes World Wide 
Interoperability for Microwave Access (WiMAX), Blue-
tooth, Wi-Fi, LoRa, Ultra Wide Band (UWB) and ZigBee. 
These are the low power and short range communication 
technologies which belongs to the IEEE 802.11 a/b/g/n and 
IEEE 802.15 standards.

Bluetooth is a communication technology belonging to 
IEEE 802.15.1 standard, can function with low power con-
sumption and replaces the wired connectivity between the 
interactive devices [51, 52]. UWB is a high data rate offering 
technology which belongs to IEEE 802.15.3 standard and it 
consumes low power when compared to other short range 
technologies [53, 54]. The ZigBee was the modified ver-
sion of 802.15.4 LoWPAN, developed by ZigBee alliance. 
This was designed to work with low power consumption and 
to achieve long transmission power [55, 56]. IEEE 802.11 
a/b/g/ac/ah forms a part of IEEE 802.11 WLAN standard, 
which is suited only for high rate indoor communication 
(100 meters) whose frequency band range from 2 to 5 GHz. 
To overcome this range issue, a non-standard version Wi-Fi 
WLAN was developed with enhanced range which operates 
in 900 MHz [57]. The WiMAX is an advance communica-
tion technology that belongs to IEEE 802.16 standard. It 
provides point to multipoint communication. Its transfer rate 
is 75 Mbps and range is up to 3 miles [58]. The Low-Power 
Wide Area Networks (LPWAN) presents a new wireless 
communication technology Low Range (LoRa) to support 
wide range of IoT applications [59]. Table 3 compares the 
different H2IoT enabling wireless technologies in terms of 
discrete parameters.

Fig. 8  H2IoT big data platform
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H2IoT Sensing Devices and Monitoring Systems

Technical improvements in mobile and electronic healthcare 
arenas are transforming the traditional healthcare devices 
into modernized healthcare devices with the capability 
of remote monitoring the biological parameters [70, 71]. 
Thus, innovations provide a new pathway for every indi-
vidual to dynamically take part in remote monitoring of 
clinical parameters in a non-clinical environment [72, 73]. 
Many of the studies [74–76] proved that the routine care 
of acute and chronic diseases increased the patient’s life 
quality. Sensors enable the healthcare providers to monitor, 
track and evaluate physiological factors via the interfaces 
and dashboards [76]. These medical sensors are becoming 
precise and reliable for forecasting the disease [74, 77, 78]. 
Mostly the wearable sensor offers flexibility and comfort 
for patients. The wearable sensors can be worn in any part 
of the body including wrist, ankle, waist, chest, arm, legs, 
and fingers depending on the clinical applications. The sys-
tem designed in [79, 80] monitors the daily activities like 
standing, walking and the postures. The models developed 
in [81–83] monitor the blood oxygen saturation, heart rate, 
body temperature, galvanic skin responses and hand pos-
tures during movements. In addition, some Micro-Electro-
Mechanical System (MEMS)-based inertial sensors like 

accelerometers, gyroscopes and magnetic field sensors are 
commonly used for evaluating the activity related events. In 
G. Ciuti et al. and M. Salerno et al. applied the MEMS accel-
erometers for localization purposes in capsule endoscope 
procedures [97, 98]. To present a patient’s motion tracking 
system in healthcare domain, the studies [100–102] identi-
fied that the accelerometer alone cannot provide an accurate 
data regarding motion and hence the gyroscopes have been 
adopted to perform gait analysis. S.Lapi et al. designed an 
appropriate accelerometer-based system for monitoring the 
breathing and heart rates along with postural changes [99]. 
List of noninvasive sensors with their use cases in detecting 
health conditions are shown in Table 4.

H2IoT Security and Privacy Issues

In near future, the widespread adoption of IoT to the medical 
sector rapidly increases the growth of healthcare technolo-
gies. Thus, it enables the healthcare devices to deal with 
vast amount of private data such as patient’s records, which 
acquires the importance of security. A secured device must 
rely on three essential factors [106, 107] such as

1. Data availability, consistency and accessibility.

Fig. 9  Microsoft azure IoT 
architecture
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2. Providing authentication and authorization to ensure 
privacy of data on transmission.

3. Ensuring System Integrity

In this section, crucial  H2IoT security issues are identified 
and analyzed to address all the factors as shown in Fig. 11.

1. H2IoT Security Essentials The  H2IoT security essentials 
form the basis for providing secured IoT-enabled health-
care services and so it is necessary to focus on the security 
needs specified in Table 5. As shown in Fig. 12 Deltahe-
dron Security Rigidity Model explains the  H2IoT security 

rigorousness with four nodes: human, process, object and 
technological solutions. An object in the  H2IoT systems has 
higher complexity in controlling the clinical sensors, net-
work components, protocols, system and application soft-
ware. The communication between the human and object 
is difficult because  H2IoT network involves in processing 
of more objects. As the  H2IoT is diversified and scalable in 
nature, security issues related to human resources are high 
and that have been represented in the human node. Process 
node explains the way of performing the operations within 
the designed  H2IoT security framework. Since objects are 
being intelligent,  H2IoT systems must comply with various 

Fig. 10  4-Tier  H2IoT model
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Table 3  Comparison of wireless communication technologies for IoT

Technologies 
parameters

Bluetooth [60–62, 
64, 65, 69]

LoRa UWB [53, 54] Wi-Fi [66] WiMAX [58] ZigBee [63, 67, 68]

Authentication Shared key authen-
tication

CCM CBC-MAC/CCM WPA2 CBC-MAC CBC-MAC/Exten-
sion of CCM

Battery life Weeks Years Days Hours Years Months to years
Cost Low High Low High High Low
Data protection 16 Bit CRC 128 Bit CRC 32 Bit CRC 32 Bit CRC 128 Bit CRC 16 Bit CRC 
Data rate 1–24 Mbps 0.3–50 Kbps 110 Mbits per sec-

ond–1.6 GBits 
per second

1 Mbps –6.75 
Gbps

1 Mbps –1 Gbps 250 Kbits/s

Encryption E0 stream cipher AES block cipher AES block cipher RC4 stream cipher 
(WEP), AES 
block cipher

3DES, AES block 
cipher

Stream cipher, AES 
block cipher

Power consump-
tion

Medium Very low Low High Medium Very low

Frequency band 2.4 GHz 868/900 MHz 3.1–10.6 GHz 5–60 GHz 2–66 GHz 868/915 MHz, 
2.4 GHz

Nodes 8 120 128 32 100 65,000
Spreading FHSS Chirp Spread 

Spectrum 
(CSS)

DS-UWB, MB-
OFDM

DSSS, CCK, 
OFDM

OFDM DSSS

Standard IEEE 802.15.1 IEEE 802.15.4 g IEEE 802.15.3 
(Ratified)

IEEE 802.11 
a/c/b/d/g/n

IEEE 802.16 IEEE 802.15.4

Topology Mesh, star, tree Star of stars Star, P2P Star, P2P Radio access 
network, mesh

Tree, P2P, star and 
mesh

Transmission 
range

8–10 m < 30 km 4–20 m 20–100 m < 50 km 10–300 m

Table 4  List of noninvasive sensors used in  H2IoT

Noninvasive sensors Use case/susceptibility

Blood pressure/sphygmomanometer This sensor measures the two kinds of blood pressure in arteries such as systolic and diastolic 
pressure at the time of heart dilation. Blood Pressure is one of the factor for predicting hyper-
tension (cardiovascular disease) and also heart attack [84, 85]

Body position sensor Body positions like standing, sitting, supine, prone, left and right to be monitored for diagnosing 
many diseases

Body temperature sensors It is a prompting vital sign for detecting hypothermia, heat stroke and fever. It must be incor-
porated in a wearable system because it is a supporting factor for diagnosing many clinical 
conditions [86, 87]

Electrocardiogram (ECG) sensor ECG evaluates the functioning of the heart to diagnose the abnormal cardiac patterns [88]
Electroencephalogram (EEG) sensor EEG evaluates the brain activity, tumors, seizures, dizziness and sleeping problems [89, 90] 

developed an EEG system for identifying the driver drowsiness/stress management
Electromyogram (EMG) sensor EMG measures the electrical activities of muscles at rest and during contraction for predicting 

neuromuscular diseases, assessing back pain and kinesiology
Glucometer Glucometer is a type of glucose sensor that assesses the concentration of blood glucose
Galvanic skin response (GSR) sensor GSR measures the electrical conductance and resistance of skin, which is a good indicator of 

psychological arousal. It is widely used in prediction of human stress levels [96]
Pulse oximetry sensors/SpO2 sensor Pulse oximetry or  SpO2 measures the oxygen level in the blood and it is one of an indicator of 

respiratory function and hypoxia [91, 92]
Pulse sensors Pulse sensor monitors the heart/pulse rate and detects the cardiac arrest, pulmonary embolisms 

and vasovagal syncope [93]
Respiratory rate sensors/airflow sensor The number of breaths or respiratory rate per minute is a vital sign for the identification of 

asthma attacks, panic attacks, lung cancer, airway blocks and tuberculosis [94, 95]
Accelerometer, magnetometer and gyroscope Accelerometer, magnetometer and gyroscope are MEMS-based inertial sensors regularly meas-

ures the physical activities of the patients who have undergone surgery, stroke patients and the 
patients with chronic pulmonary diseases [103–105]
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security levels. Finally, technological solutions node rep-
resents the security level to ensure efficient functioning of 
 H2IoT system.

2. H2IoT Security Challenges H2IoT security needs to satisfy 
only the traditional security factors and so the novel coun-
termeasures are considered as regulatory phenomenon to 
address the new challenges presented by  H2IoT. Some of the 
 H2IoT security challenges are explained below:

Mobility or Dynamic Connectivity In general,  H2IoT is not a 
new paradigm but the way of using the existing architectures 
creates a new security challenges.  H2IoT devices are con-
nected to internet which is not static in nature. Consider an 
example of wearable body motion monitoring system which 
includes various sensors like accelerometer, gyroscope and 
magnetometer and is connected to the internet to transmit 
the physical activity information to the doctor. The network 
used by the wearable device may change as per the mobil-
ity of the patient, i.e., it may use home network when the 
patient at home and office network when the patient is at 
office. Such scenarios require many security configurations 

and developing a security algorithm for dynamic connectiv-
ity devices is a major challenge.

Device Variability and Interoperability H2IoT devices are 
diversified in terms of computational power, memory, power 
consumption, hardware configuration and software. There-
fore, building a secured  H2IoT system with the compliance 
of functionality, protocols, terminologies and standards is a 
challenging factor.

Scalability and Vulnerability With respective improvements 
in medical sector using IoT, the  H2IoT devices are increas-
ing rapidly and those are connected to the network. Hence, 
developing a non-compromising security mechanism for 
scalable  H2IoT infrastructure is a challenging task.

Communication Media H2IoT devices are connected to the 
local and a global network via any wireless communica-
tion medium which includes Wi-Fi, Bluetooth, LoRa, Zig-
Bee, WiMAX and UWB. The existing traditional security 

Fig. 11  H2IoT security and privacy issues

Table 5  H2IoT security needs

H2IoT security essentials Purpose

Authentication It allows an  H2IoT device to ensure the identity of the other end device on establishing the communication and grants 
permission to perform pre-defined operations [112]

Authorization It permits only the authorized nodes to access the resources and services [112]
Availability It allows the authorized users to access the  H2IoT services anytime and anywhere even under vulnerable attacks [108]
Confidentiality It permits only the authorized users to access the patient’s information [109]
Data reliability The term reliability specifies the freshness of the medical data, it ensures the data received by data sink are recent and 

none of them are old
Fault tolerance It ensures the system must adopt to the changing environments and to provide a trustworthy service even under the 

presence of faults [113]
Integrity It ensures that the data received from the sensor nodes are reliable and are not altered by any opponent in transmission 

[110]
Non-repudiation Non-repudiation ensures that the sender or receiver cannot deny the messages once it has been sent or received [111]

Fig. 12  Deltahedron security rigidity model
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protocols does not satisfy  H2IoT scenario and it is difficult 
to find a security protocol for  H2IoT scenario.

Multiple Authentications The process of multiple authenti-
cations adhere the user to provide more information like 
fingerprint or retinal scan other than usual username and 
password procedure. While adopting this on  H2IoT networks 
and devices, it would be a time consuming and tedious task. 
Since IoT network contains enormous cluster of sensor 
nodes, maintaining multiple authentication will be tedious.

Intrusion Identification and Blocking Mostly attacks target 
the vulnerability of IoT devices and deliver the attacks via 
internet. It is more crucial to detect and block attacks trying 
to gain the access to network. Applying countermeasures to 
distributed sensor networks will require more efforts.

3. H2IoT Security Threats H2IoT devices are designed for 
sending and receiving the medical data over global network 
are exposed to wide range of threats. Figure 13 is an  H2IoT 
threat classification model which depicts the  H2IoT threats 

with respect to impact on security requirements. The vital 
threats of  H2IoT devices are: data leakage or disclosure, 
exploitation of access privilege, Spoofing, Repudiation, 
Denial of Service (DoS) and Tampering.

4. H2IoT Security Attacks Attacks are the irregular action 
which disturbs the normal functioning of an  H2IoT system by 
exploiting the vulnerabilities using certain methods [114]. 
There are two common attacks: active attacks and passive 
attacks. The active attacks affect the physical performance of 
the system and the passive attacks is a trespasser node snips 
the information without affecting physical performance of 
the system [114, 115]. Table 6 presents the various types of 
attacks and their behavior

H2IoT Applications

The fast emerging technologies cannot completely elim-
inate the chronic diseases but it can provide accessible 
healthcare services in a pocket. The regular healthcare ser-
vices are expensive and so the technologies transformed 

Fig. 13  H2IoT threat classifica-
tion model

Table 6  Types of  H2IoT attacks

Attacks Behavior/nature

Access attacks It allows unauthorized persons to access the  H2IoT devices or networks. It can be of two forms: 1. Gaining access via an 
intruder 2. Gaining access remotely via IP connected devices

Attacks on privacy Privacy preservation becomes a major task in  H2IoT because huge volumes of data can accessed globally. For example, 
eavesdropping silently monitors the medical data on transmission [116]

Cyber-crimes It uses network and smart devices as a weakness to exploit the user’s data [117–119]
DoS attack DoS attacks are intended to degrade the system performance by increasing the network traffic by sending the replicated 

messages again and again. Thus consumes the more memory capacity and computation resources in majority of  H2IoT 
devices

Physical attacks This kind of attack cause damages to the physical equipment’s of  H2IoT because those are supposed to operate in various 
environments [121, 122]

Investigation attacks This attack includes packet sniffers and scanning of network ports enables unauthorized discovery of devices [120]
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the routine health checks from hospital-centric to patient-
centric (home-centric) thus, reducing the need of hospi-
talization. With extensive applicability of IoT in healthcare 
paradigm enables the doctors to function more compe-
tently and provide better treatment for patients. In this 
section, applications are broadly discussed in two catego-
ries such as dispersed applications and congregate applica-
tions as shown in Fig. 14. In addition to applications, this 
section also presents a comparative analysis on wearable 
applications.

1. Blood Pressure Monitoring J. Puustjarvi and L. Puustjarvi 
presented a communication structure between health post 
and center through which blood pressure is remotely mon-
itored and controlled [123]. A device developed in [124] 
collects the blood pressure data and transmits over an IoT 
network to remote data center. An intelligent blood pressure 
monitoring system has been proposed with location tracking 
facility [125].

2. Body Temperature Monitoring Body temperature provides 
vital signs to indicate any abnormalities in the health [126]. 
An IoT-based temperature monitoring system is developed 
which uses the home gateway to transmit the sensed tem-
perature data [127]. An m-IoT-based embedded TelosB 
mote device is presented which uses body temperature sen-
sor for showing the variation in body temperature [128]. 
This method uses IPv6 connectivity mechanism between the 
patients and healthcare providers. An IoT-based tempera-
ture monitoring system has been developed for acquiring the 
temperature data and an integrated RFID module has been 
used for transmitting the recorded to the data center [129].

3. Blood Glucose Monitoring Prolonged high blood glucose 
level leads to diabetes, which is one of metabolic disease in 
humans. It is considered as an important factor to be moni-
tored for planning the diets, activities and medications. In 
[128], along with temperature sensing module it uses a non-
invasive blood glucose sensing module for enabling real-
time monitoring of blood glucose level. A generic IoT-based 
medical system is proposed for monitoring the glucose level 
[130]. The utility model based on IoT discloses the blood 
glucose level and this model incorporates the components 
such blood glucose collector, a processor and mobile phone 
or computer [131].

4. ECG Monitoring The ECG can measure the heart rate and 
rhythm of the heartbeat and it is an indirect sign of blood 
flow to the heart muscle. In addition, it helps in diagnos-
ing prolonged QT intervals (electrical depolarization and 
repolarization of the ventricles), myocardial ischemia and 
arrhythmias [132]. Many studies [30, 32, 42, 133–135] 
clearly states and discusses about IoT-based ECG monitor-
ing. In [136], a portable IoT-based ECG monitoring system 
has a transmitter and receiver. This system makes use of 
the real-time abnormal ECG data for detecting the cardiac 
problems.

5. GSR Monitoring The sympathetic and parasympathetic 
nervous systems control and regulate the body to internal 
or external stimuli [137]. The parasympathetic system is 
responsible for conserving and restoring the body energy 
and the sympathetic system drives the blood pressure, heart 
rate and sweat secretion. In order to assess the stress and 
emotions of a human, GSR can be used for reflecting the 
activity of the nervous system [138, 139]. A low powered 
and wearable system for GSR monitoring is developed and 
it can be worn for a longer period of time to disclose psy-
chophysiological conditions [140, 141].

6. Oxygen Saturation Monitoring Oxygen saturation  (SpO2) 
indicates the amount of oxygenated hemoglobin in the blood 
and abnormal oxygen level in blood acts as a vital sign for 

Rehabilitation System

Smart Wheelchair System

Medication Control System

Activity Monitoring 

H2IoT Applications 
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Body Temperature Monitor

Blood Glucose Monitoring

ECG Monitoring
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Blood Pressure Monitoring 

Oxygen Saturation 
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Fig. 14  H2IoT applications
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health issues like cardiovascular diseases, pulmonary dis-
eases and anemia. In [142], IoT-based pulse oximeter is pro-
posed for remote patient monitoring which consumes less 
energy and also cost effective. Larson et al. [143] developed 
a WSN-based wearable device for monitoring the oxygen 
saturation in blood.

7. Activity Monitoring The regular monitoring of physical 
activities and movements is widely done in rehabilitation, 
prediction of musculoskeletal diseases and fall assessment. 
A research study identified that the walking patterns of an 
individual person strongly reveals their health conditions 
[144]. Therefore, walking style of a person needs good bal-
ancing and synchronization of various body parts and any 
abnormality in walking patterns indicates the central nerv-
ous system, musculoskeletal or nervous system diseases. In 
[146] designed a gait detection system composed of inertial 
motion and magnetic sensors, which measures the angular 
velocity and flexion–extension angle for each leg. In addi-
tion, an adaptive algorithm is proposed for detecting the 
gait-event.

8. Rehabilitation System The main intention of rehabilita-
tion is to improve or restore the quality of life of the persons 
with physical disability. The potentiality of IoT enhanced 
the rehabilitation systems which modified the life of aged 
persons. An IoT-based smart rehabilitation system with an 
active platform provides an effective remote rehabilitation 
and intervention [147]. Many studies [148–151] have justi-
fied that IoT plays a prominent role in rehabilitation systems 
applied on smart city medical systems, hemiplegic patients 
and childhood autism patients.

9. Smart Wheelchair System With a focus toward wheelchair 
users, identified that there is the necessity of monitoring 
their health condition and safety. Many studies explored the 
fully automated smart wheelchairs for physically disabled 
people. IoT accelerated this work and proposed a wheel-
chair-based healthcare system in [152]. This system uses 
Wireless Body Area Network (WBAN) composed of many 
sensors as per physiological requirements. Intel developed 
IoT-based connected wheelchair that can monitor various 

vital signs of the person sitting in the chair and also it aggre-
gates the user’s environment to provide location accessibility 
[153].

10. Medication Control System The denying of medication is 
a serious hazard to human health and it upholds huge finan-
cial supports. IoT overcomes this issue by providing many 
cost-effective solutions. In [154], an IoT-based medication 
management system is proposed with intelligent and interac-
tive packing (I2Pack) method and intelligent medicine box 
(iMedBox). This system collects various medical data by 
wearable sensors for the diagnosing of diseases. Thus, it 
enhances the life quality of elderly, physically disabled and 
sick patients. An IoT-enabled medication control system 
uses RFID tags that allow physicians to remotely prescribe 
medicines and drug delivery [155]. Finally, Table 7 presents 
the strengths and weaknesses of applications.

Conclusion

Organizations and researchers have initiated globally to 
explore IoT solutions to improve healthcare facility. This has 
renovated the existing medical services using potential of the 
IoT. This paper focuses on diversified aspects, recent trends 
and system development using IoT from healthcare perspec-
tive. A number of IoT-enabled health monitoring systems 
have been analyzed and compared the various H2IoT net-
work design taxonomy in terms of H2IoT network topology, 
architecture and platform. In addition, this paper explored 
the different wireless communication technologies used 
in H2IoT systems, which facilitates the transmission and 
receiving of health data. This paper consolidated the various 
security issues, requirements, challenges, threats and attacks 
in H2IoT area. Then, the applications of IoT in healthcare 
domain has been discussed in two different variations and 
revealed how the technologies enhancing the intelligence of 
H2IoT. The results found in this survey paper are assessed 
to be useful and highly effective for healthcare providers, 
researchers, scientists and medical organizations to endorse 
the ubiquitous deployment of IoT in healthcare industry.
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