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Abstract
Nowadays, Isomap is one of the most popular nonlinear manifold dimension reductions which have applied to the real-world 
datasets. However, it has various limitations for the high-dimensional and large-scale dataset. Two main limitations of the 
Isomap are: it may make incorrect links in the neighborhood graph G and high computational cost. In this paper, we have 
introduced a novel framework, which we called the FastIsomap. The main purpose of the FastIsomap is to increase the accu-
racy of the graph by using two state-of-the-art algorithms: a randomized division tree and NN-Descent. The basic idea of 
FastIsomap is to construct an accurate approximated KNN graph from millions and hundreds of dimensional’ data points and 
then project the graph into low-dimensional space. We have compared the FastIsomap framework with the existing Isomap 
algorithm to verify its efficiency and performance, which provided accurate results of the high and large-dimensional datasets.

Keywords  FastIsomap · Isomap · Dimensionality reduction · KD-tree · NN-Descent · Machine learning

Introduction

The high-dimensional data become computationally unman-
ageable when they have various dimensions and a large 
number of data points. In numerous research areas, such as 
machine learning, information visualization, data mining, 
computer vision [2, 24, 36], and the information visualiza-
tion community [9, 16, 26], there is an urgent need to invent 
a low-dimensional data representation of large-scale and 
high-dimensional data.

The machine learning technique provides dimensional-
ity reduction by the mean of minimal information loss. The 
critical challenge in the dimension reduction is to protect the 
structure of the data and perform the transformation with 
minimal data loss [32]. The dimensional reduction technique 
can be characterized by linear (supervised) and nonlinear 
mapping (unsupervised) methods. The linear (supervised) 
mapping methods are principal component analysis (PCA) 

[18], multidimensional scaling [36], independent compo-
nent analysis (ICA), singular value decomposition (SVD), 
CUR matrix decomposition, compact matrix decomposition 
(CMD), and non-negative matrix factorization (NMF). The 
nonlinear (unsupervised) mapping methods are Isomap [35], 
FastMap, Locally Linear Embedding [30], Laplacian Eigen-
maps [2], and Kernel PCA. Hinton and Maaten proposed the 
high-dimensional local and global structure method, which 
is known as the t-SNE [34].

The great importance of studying of manifold learn-
ing for nonlinear dimension reduction has attracted much 
more attention in recent years [40, 43]. We have adopted 
a nonlinear Isometric feature mapping method (Isomap) 
[35], which is the most common technique for manifold 
learning. The key benefits of the Isomap are globally opti-
mal, provable convergence guarantee, and appropriability 
for the nonlinear manifold. It has been used in many areas, 
such as image processing [40], robotics [29], computer 
vision graphics [33], signal processing [16], and pattern 
recognition [11, 42]. Isomap is viewed as a variant of met-
ric multidimensional scaling (MDS) to model nonlinear 
data using its geodesic distance. MDS uses approximate 
geodesic distances between all pairs of data points, rather 
than Euclidean distances. Given the distance matrix D 
and data points N, Isomap produces the shortest represen-
tation of the eigenvalues of the matrix D. The geodesic 
distances between neighboring points are approximated 
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by input-space distance. The geodesic distances are cal-
culated as the shortest paths in a neighborhood graph for 
faraway points [28]. First, build the K nearest neighbor 
(KNN) graph of the manifold learning based on the dis-
tance between the pair of data points in the input space. 
Second, calculate the geodesic distance matrix between all 
pairs of data points using the shortest path distance graph 
algorithm. Further, find a low d-dimensional embedding 
by executing Eigendecomposition on the geodesic distance 
dense matrix [32].

In the literature, Choi and Choi [5] proposed the Robust 
Kernel Isomap method for a lack of topological stability, 
noises, and outliers problems. They reduced the effects of 
outliers based on topological structure from the network flow 
[1, 21]. Choi and Choi [3, 4] also proposed the algorithm for 
topological stability issues which is called Kernel Isomap. 
The Kernel Isomap can preserve topological stability while 
tackling the outliers and noises [21]. Moreover [14], they 
proposed two variant techniques of Isomap visualization, 
which are the multi-class multi-manifold-Isomap (MCMM-
ISOMAP) and Isomap for classification (ISOMAP-C), 
respectively. The MCMM-ISOMAP and ISOMAP-C and 
various other techniques have been proposed to overcome 
the problem of the Isomap algorithm are that it is very slow.

In our motivation, we have focused on studying the 
Isomap algorithm problem. The core issue in the Isomap 
algorithm is lack of topological stability in the neighbor-
hood graph G [1, 28, 37]. The main problem of the Isomap 
algorithm may make incorrect links in the neighborhood 
graph G. Isomap method and algorithm are still far from the 
accurate results and only used for global datasets. We fol-
low the LargeVis method at a limited level in our work [34].

In this paper, we propose a new framework known as 
FastIsomap to handle the above problems. The framework 
relies on two components, randomized truncating (KD-tree) 
trees algorithm (tree building algorithm) and NN-Descent 
algorithm based on the KNN graph. Our framework uses 
an effective Randomized Truncated Trees (KD-tree) [7] 
algorithm to construct an approximated K nearest neighbor 
graph (KNN) at high accuracy, combine the subgraph data, 
and refine the graph data with the method known as NN-
Descent method. The complete explanation of the techniques 
and algorithms is given in “Proposed Framework” section. 
Moreover, the FastIsomap method is much faster than the 
Isomap. No such type of method has been used in recent 
years from the Isomap perspective. We have proposed a new 
algorithm that uses both the local and global datasets.

The rest of the paper is organized as follows. Second 
section provides an overview and background work, which 
is followed by a brief discussion on manifold learning and 
Isomap. Details of our proposed framework are discussed 
in third section, and description of the Randomized KD-
tree and NN-Descent. Experiments, details, and results 

are presented in fourth section. Finally, the last section, 
the paper is concluded.

Related Work

Manifold Learning

Manifold learning is a technique for nonlinear mapping 
dimensionality reduction. The manifold learning provides 
the algorithms for the nonlinear mapping, which is based 
on the theory that the dimensionality of various informa-
tion sets is only artificially high. The performance of the 
nonlinear methods is most reasonable for the global and 
local frameworks of high-dimensional datasets [35].

The main emphasis in dimensionality reduction is on 
reducing repetitions and basic pattern findings. It can 
also be used for data visualization, machine learning, 
and feature extraction. This technique reduces informa-
tion dimensionality with minor data loss before proceed-
ing with and executing the analysis. The key challenge in 
dimension reduction is to protect the structure of the data 
and to perform the transformation performed with minimal 
data loss. Moreover, a dimensional reduction technique 
can be characterized by a linear (supervised) or nonlinear 
mapping (unsupervised) method. Linear mapping (super-
vised) methods mean that the information lies in a lin-
ear combination subspace, and the actual data variables 
are exchanged by a smaller set of original data variables. 
Linear mapping methods can perform the transformation 
of high-dimensional data into low-dimensional data as a 
linear arrangement of actual variables. Nonlinear map-
ping methods can only be applied to originally nonlin-
ear datasets, with high-dimensional and low-dimensional 
representations of the data points, obtained by calculating 
the distance between the actual data points [32]. The per-
formance of linear mapping methods is mostly imperfect, 
as high-dimensional information mainly lies on or near a 
low-dimensional nonlinear manifold. Although nonlinear 
techniques, such as local tangent space alignment (LTSA) 
and Laplacian Eigenmaps (LE), have been proven to be 
empirically effective on small lab data, they have not been 
shown to achieve the goal of a global and local framework 
for high-dimensional data [24, 34].

However, the dimensionality reduction performance can 
be considerably reduced when using more complex and 
noisy input data. Because the computation of geodesic 
distance is sensitive to noisy data [19], which might dam-
age the neighboring local shape or create disjointed edges. 
Therefore, it cannot be used for linear (classification) tasks 
or full class information of datasets with labeled data.



SN Computer Science (2020) 1:160	 Page 3 of 10  160

SN Computer Science

Isomap

Isomap is the nonlinear dimension reduction technique 
that maintains the geodesic distance and creates features 
during reshaping from high and large-dimensional to low-
dimensional metric space. The Isomap is the variant of the 
metric multidimensional scaling (MDS) to model nonlin-
ear data using its geodesic distance. It is MDS, which uses 
the geodesic distance between the two data points instead 
of straight-line Euclidean Distance E for data placed on a 
nonlinear manifold. The primary purpose of the Isomap is 
to find out an optimal subspace and maintain the geodesic 
distance between the data points [22]. The Isomap algorithm 
describes as follows:

∙ Make the local K nearest neighborhood (KNN) graph 
for all data points

An Isomap method searches the K nearest neighbors of 
the data points on the manifold. The neighborhood graph 
data are represented as � and K in this section [25]. K is 
the number of nearest neighbors, and � is the max Euclid-
ean search distances E. Construct the neighborhood graph 
G between the data point’s xi and xj , if xi is the K nearest 
neighbor of xj or if they are closer than particular distance �.

∙ Estimate the geodesic distance between all data 
points

After that searching the K nearest neighbors data points 
in the manifold learning. Isomap calculates the geodesic 
distance matrix between all pairs of data points xi and xj 
using the shortest path distance graph G and then computes 
the shortest path distance by using Dijkstra’s and Floyd’s 
algorithms [15] can be used.

∙ Transform the lower-dimensional embedding
In the third step, MDS is applied to the resulting geodesic 

distance matrix to identify a low d-dimensional embedding 
by executing Eigendecomposition [6]. Some fundamental 
features of high-dimensional datasets like handwritten dig-
its, hand gesture images, and face images are detected by 
Isomap [32].

Moreover, it has a few limitations. However, the geodesic 
distance is only appropriate for nonlinear datasets, and it can 
efficiently reproduce the topological structure of datasets. 
The performance of dimensionality reduction will be greatly 
reduced when the input data points are noisier and complex 
because the geodesic distance is sensitive to noise and can be 
destroyed by the local neighborhood structures [25].

Proposed Framework

In general, given large and high-dimensional datasets 
X = {x ∈ Rd} , we aim to denote every dataset xiwith a low-
dimensional vector yi ∈ Rd , where the value of d is generally 
2 or 3. Isomap algorithm possibly fails to transform from 

large and high-dimensional data into lower-dimensional 
space. However, our proposed method FastIsomap can 
efficiently solve this problem. We have used the Euclidean 
distance in the high-dimensional space instead of geodesic 
distances because KNN graphs require a metric of distances. 
Euclidean distance E is used to calculate the similarities 
of the data points through a square matrix, which provides 
much more efficient results than geodesic distances.

Our FastIsomap method relies on the two components: 
randomized truncating (KD-tree) trees algorithm (tree build-
ing algorithm) and NN-Descent algorithm based on the 
KNN graph. We have to use the KD-tree and NN-Descent 
algorithms for incorrect link problems. These algorithms 
consist of two steps. First, we have divided all the data points 
into small datasets and find the K nearest neighbor via a 
KD-tree algorithm. Also, we have to divide the graph into 
a subgraph. Second, we have combined the subgraphs data 
and purified graph data with techniques of the NN-Descent. 
Further, we have used the KD-tree searcher method for cal-
culating the overall accuracy of our proposed algorithm. We 
have shown the general framework of our proposed method 
in Fig. 1.

FastIsomap Building Algorithm‑I: Tree Building 
Randomized Truncating (KD‑Tree)

One component of the FastIsomap is based on Randomized 
Truncating (KD-tree) Trees. The basic idea is to provide 
better initialization for KD-tree to improve the performance 
of Isomap significantly. The KD-tree algorithm divides a 
multidimensional dataset recursively and then constructs the 
shape of the tree that can be used for fast searching. A KD-
tree divides datasets by vector space and makes a binary tree, 
allowing a logarithmic time complexity for KNN search. In 
the binary tree, data are split into two subgroups by the size 
at each level, in which the datasets have the highest variance. 
Jo et al. [17] proposed the idea of multiple randomized KD-
trees for KNN search in higher-dimensional space. The basic 
idea of randomized KD-trees is that the data are divided 
by dimension recursively and then randomly picked from a 
small set of data sizes with the highest variance. Also, KD-
tree uses the KD-tree searcher method to find out K nearest 
neighbor values. Moreover, Muja and Lowe [27] recognized 
two new algorithms known as randomized KD-trees and 
hierarchical K-means trees for KNN querying [17].

In this section, we have shown the details of Algorithm 
I on Building Randomized Truncating (KD-tree) Trees. We 
have used the KD-tree method for building tree in Algorithm 
I. In lines 1–2, KD-tree constructs the tree with node and 
point-set and picks the data d dimensions’ randomly. We 
have calculated the median over the datasets on data dimen-
sion d. Moreover, we have equally divided the tree into two 
halves, i.e., left-half and right-half, according to the median. 
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After that, we have called the construct-tree function accord-
ing to (node-left-child, left half) and (node-right-child, right-
half) in lines 3–4. Further, in Algorithm I construct-tree 
function calls recursively and adds node according to the 

root-node and datasets D (line 5). At the end of Algorithm 
I, we have calculated the time and accuracy of the KD-tree 
algorithm by using a KD-tree searcher method (lines 6–8).

Fig. 1   General steps of the FastIsomap method

Table 1   Algorithm-I 
FastIsomap tree building 
KD-tree algorithm
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KD-tree searcher The KD-tree algorithm uses the KD-
tree search model objects method. This method stores the 
nearest neighborhood search results. In the “Results and Dis-
cussion” section, we have included the distance metric, the 
training datasets, its parameters, and the maximal number of 
bucket sizes in each leaf node. The KD-tree algorithm splits 
N by K data points recursively and divides the N data points 
in K-dimensional space into a binary tree form. When we 
generated a KD-tree searcher model object, we also found 
out the stored tree.

Meanwhile, we searched all the nearest neighboring 
data points to the query data. The KD-tree searcher model 
objects method uses the Knnsearch and Rangesearch method 
to find out K nearest neighbor values. We use the Knnsearch 
method in our work [12] (Table 1).

FastIsomap Efficient Approximate KNN Graph 
Construction Algorithm‑II: NN‑Descent

We have used NN-Descent (neighbor exploring) techniques 
proposed by Dong et al. [8] to refine the resulting graph, 
which we obtained from the KD-tree method. The NN-
Descent techniques are built on the idea that my neighbors’ 
”neighbor is likely to be my neighbor.” We have used the 
randomized division (KD-tree) tree algorithm to construct 
an approximate KNN graph. The accuracy of the graph may 
not be so high. That is why we have used the NN-Descent 
algorithm for the higher accuracy of the graph. First, the 
execution of the NN-Descent algorithm is started from KNN 

(K nearest neighbor) graph. Then, NN-Descent continually 
improved the graph by exploring the neighbors of my neigh-
bors’ corresponding to the specified current graph. We may 
replicate this iteration several times until the correctness of 
the graph is improved successfully. Therefore, we have found 
that the little iteration is enough to get the 100% accurate 
KNN graph.

In this section, we have shown the details of Algorithm 
II on an approximate KNN graph and construction of the 
refinement of KNN graph by the NN-Descent method. 
Algorithm II calls Algorithm I for refinement of Algorithm 
I through the NN-Descent Algorithm in line 1. We have 
initialization of the graph G by randomly creating the test 
list of KNN for a reverse neighbor of data-point U (line 3). 
After that, we have checked the different reverse pairs of 
neighbor U’s (v, w) and RNN (reverse nearest neighbor) list 
and then calculate the distances (v, w). Further, update the 
KNN distance list according to w and v (line 4). Moreover, 
we have calculated the time and accuracy of the refinement 
graph are the same as that Algorithm I (line 7) (Table 2).

Table 2   Algorithm-II 
approximate KNN graph and 
construction of refinement 
algorithm NN-Descent)

Table 3   Characteristic of datasets

Datasets Data Dimensions Categories

Facebook 4039 40 10
Twitter 81,306 40 973
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Results and Discussion

We first evaluated our proposed framework to results on the 
publically available datasets using randomized division tree 
and NN-Descent algorithms. We analyze the effectiveness 
and efficiency of the FastIsomap by the general experiments 
on high-dimensional and large-scale datasets.

Datasets

This section describes the datasets that were used for ran-
domized division tree and NN-Descent algorithms. The 
experiments were performed on two large-scale and high-
dimensional datasets of social networks, Facebook and 
Twitter, which are available in Leskovec and Krevl [20]. 
Detailed information on the datasets is listed in Table 3.

Facebook Dataset

This dataset consists of friends circle lists. The Facebook 
dataset includes profiles node features and circles. This data-
set was together from survey members using Facebook APP

Twitter Dataset

This dataset consists of friends circle lists. Twitter dataset 
includes profiles node features, and circles. Twitter dataset 
was collected from public sources.

Results and Experiments on KNN Graph 
Construction

We have presented the distinctive algorithms for K-Nearest-
Neighbor (KNN) graphs whose constructions are given below:

•	 Randomized division tree (KD-tree)
•	 The neighbor exploring technique (NN-Descent) based 

on KNN graph

FastIsomap: Our new proposed framework has based on the 
above two algorithms.

KNN Classifier Method

We have used a classification technique for FastIsomap and 
Isomap. Well-known classification techniques such as KNN 
classifier [13, 23], SVM [38, 39], BP neural network [31] 
and decision tree [41]. The KNN classifier method uses the 
K-fold cross-validation method for calculating accuracy 
[10]. We used the well-established KNN classifier method 
for calculating the accuracy of our proposed “FastIsomap” 
method.

K-fold Cross-Validation-Method—the k-fold cross-vali-
dation method is used for the empirical selection method of 
the parameters. However, for every parameter, several values 
are verified through a K-fold cross-validation method, and 
the foremost one is selected [10]. We use the well-known 
K-fold cross-validation method for calculating the accuracy 
of both methods, i.e., approximated KNN graph construction 
algorithm (KD-tree) and refinement of KNN graph construc-
tion (NN-Descent). The K-fold cross-validation method ran-
domly divides the accessible data into N partitions of equal-
sized datasets. This process is executed N time, which gives 
N accuracy. For example, given a dataset with N points, and 
an approximate KNN graph approach should return the N 
groups of K data points. Each group of data points repre-
sents the nearest neighbor and searches the dataset within 
the respective data points. The accuracy P of the data points 
N and the number of correct classifications C are defined as:

Then, the accuracy of the output graph is defined as given 
refine dataset with N points, and an approximate KNN graph 
approach should output the refinement of N groups of K 
data points. Each group of data points represents the nearest 
neighbor and refines the dataset within the respective data 
point. We used Eq. 1 for the accuracy of the refined graph 
with the NN-Descent technique.

Tables 4 and 5 show the calculated accuracy of Facebook 
and Twitter datasets from Eq. (1).

Experiments and Results on KD‑Tree 
and NN‑Descent

Although Tables 4 and 5 results are based on the K-fold 
cross-validation method, Tables 4 and 5 demonstrate the 
accuracy and time to build the KNN graph for two datasets, 
such as Facebook and Twitter. To make the graph-based KD-
tree and NN-Descent methods very useful, now we require 
examining how to make the KD-tree graph and refinement 
of KNN graph construction efficient. Therefore, we have 
computed the accuracy of the KD-tree and NN-Descent 

(1)P = C∕N

Table 4   Accuracy and time values of the KD-tree of Facebook and 
Twitter datasets

KD-tree

K Facebook datasets Twitter datasets

Accuracy Time Accuracy Time

1 1.0000 271.7559 1.0000 366.1136
2 1.0000 549.1015 1.0000 746.6736
3 0.9973 825.0849 0.9969 1125.3219
4 0.9967 1103.0345 0.9967 1496.5145
5 0.9933 1381.1271 0.9919 1875.1814
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graph with Eq. (1) and compare the performance of the two 
datasets (Facebook and Twitter) with the refinement of KNN 
graph construction methods.

Results on KD‑Tree of KNN Graph Construction

Figures 2 and 3 show the performance of the KNN graph 
w.r.t accuracy and time cost. We used the value of K = 1 to 
5 for calculating the accuracy versus time in the Facebook 
dataset, which consists of 4039 data points. The computa-
tion time for calculating 99% accurate results of Facebook 
datasets was only 15 minutes. On the Twitter dataset, the 
value of K is also 1 to 5, which contained the 81,306 data 

Fig. 2   Facebook and Twitter datasets (accuracy of KNN graph vs. K 
w.r.t KD-tree) in FastIsomap

Fig. 3   Facebook and Twitter datasets (time of KNN graph vs. K w.r.t 
KD-tree) in FastIsomap

Table 5   Accuracy and time values of the NN-Descent of Facebook 
and Twitter datasets

NN-Descent

K Facebook datasets Twitter datasets

Accuracy Time Accuracy Time

1 1.0000 72.7129 1.0000 905.5796
2 1.0000 156.1278 1.0000 1988.8256
3 1.0000 245.0261 1.0000 2976.6586
4 1.0000 334.6799 1.0000 3815.5181
5 1.0000 422.3721 1.0000 4647.3718

Fig. 4   Facebook and Twitter datasets (accuracy of KNN graph vs. K 
w.r.t NN-Descent) in FastIsomap

Fig. 5   Facebook and Twitter datasets (time of KNN graph vs. K w.r.t 
NN-Descent) in FastIsomap
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points; it is very difficult to build the KNN graph at 99% 
the accurate result through the KD-trees technique because 
Twitter datasets are very large and high. However, the over-
all performance of the KD-tee algorithm constantly attains 
the highest accurate results of the dataset at the shortest 
computation time.

Results on Refinement (NN‑Descent) of KNN Graph 
Construction

Figures 4 and 5 show the performance of the KNN graph w.r.t 
accuracy and time cost KNN graph. We calculated the highly 
accurate results of the social network’s datasets from the NN-
Descent algorithm. The NN-Descent algorithm first initializes 
the graph randomly and then refines the graph iteratively with 
the use of two techniques: sampling and local join [8]. The 
local join method uses the brute-force searching algorithm for 
the nearest neighbors. The sampling method is used to verify 
the small number of points that are involved with the local join. 
Therefore, the performance of the algorithm is effective. For the 
Twitter dataset, it is very difficult to build the KNN graph for 
100% accurate result through NN-Descent algorithm, because 
Twitter datasets are so large and higher than Facebook data-
sets. However, the overall performance of the refinement of 
the KNN graph construction versus time cost constantly attains 
the shortest time cost at the highest (100%) accurate results of 
the datasets. Our proposed FastIsomapVis method for KNN 
graph structure has produced very effective results for scaling 
to millions and hundreds of dimensions data points. The FastI-
somapVis has conducted only one iteration for the NN-Descent 
algorithm.

Comparison of Accuracy in the Graph Between 
the FastIsomap and Isomap

Table 6 demonstrates the overall comparison accuracy 
of FastIsomap method and Isomap with Facebook and 
Twitter datasets.

Figure 6 compares the overall accuracy performance of the 
FastIsomap and Isomap with Facebook and Twitter datasets. 

We calculated the highly accurate results of the social net-
work’s datasets from the FastIsomap method. The FastIsomap 
method has provided 100% accuracy as compared to Isomap. 
The Isomap algorithm is very slow and time-consuming for 
high-dimensional and large-scale datasets. On the Twitter 
dataset, it is very difficult to build the KNN graph 72–42% 
accurate result through the Isomap algorithm. Our proposed 
FastIsomap method for KNN graph construction has produced 
very effective results at the scales to millions of datasets with 
hundreds of dimensions’ data points.

Conclusions

In this paper, we introduced a novel framework, which is 
called FastIsomap. FastIsomap straightforwardly measures 
millions of datasets with hundreds of dimensions. We pro-
posed a very efficient and effective algorithm for the con-
struction of an accurately approximated KNN graph and 
then projected the graph into the low-dimensional space 2D 
or 3D. Experimental results on two real-world datasets show 
that the FastIsomap outperforms Isomap for KNN graph 
construction for both datasets, in terms of both effectiveness 

Table 6   Accuracy comparison 
of the FastIsomap and Isomap 
algorithms of the Facebook and 
Twitter datasets

Accuracy

K Facebook datasets Twitter datasets Facebook datasets Twitter datasets

KD-tree Isomap KD-tree Isomap NN-Descent Isomap NN-Descent Isomap

1 1.0000 0.7619 1.0000 0.7218 1.0000 0.7619 1.0000 0.7218
2 1.0000 0.6457 1.0000 0.6236 1.0000 0.6457 1.0000 0.6236
3 0.9973 0.5564 0.9969 0.5464 1.0000 0.5564 1.0000 0.5464
4 0.9967 0.4889 0.9967 0.4689 1.0000 0.4889 1.0000 0.4689
5 0.9933 0.4339 0.9919 0.4239 1.0000 0.4339 1.0000 0.4239

Fig. 6   Overall accuracy performance of the FastIsomap and Isomap 
algorithm
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and efficiency. In our future work, we design advanced tech-
niques of a hierarchical method for the FastIsomap.
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