
Vol.:(0123456789)

SN Computer Science (2020) 1:126
https://doi.org/10.1007/s42979-020-00141-y

SN Computer Science

ORIGINAL RESEARCH

A New Decoding Algorithm for XOR‑Based Erasure Codes

Rui Chen1 · Lihao Xu1

Received: 8 January 2020 / Accepted: 31 March 2020 / Published online: 20 April 2020
© Springer Nature Singapore Pte Ltd 2020

Abstract
Data protection is essential in large-scale storage systems. Over the years, erasure codes, which provide the system ability
to reconstruct data when damage occurs, have been proven effective and integrated within various large storage systems.
With the emergence of new data storage technologies, such as SSD and NVMe [33, 34], the performance of erasure codes
may soon become a potential bottleneck in the whole system. While encoding performance of XOR-based codes has been
studied and optimized [7, 19, 20], there is a need of decoding performance to match. This paper addresses new methods in
improving the decoding speed for XOR-based erasure codes. A new decoding algorithm is proposed, with which CPU cache
can be utilized more efficiently. Various sets of experiments are conducted on different platforms, and the results show that,
with the new decoding algorithm, general decoding speed gains considerable improvements.

Keywords  Erasure codes · Performance evaluation · Data storage systems

Introduction

For the past decade, data have been increasing exponentially,
especially in larger scale data storage systems. With the
ever-increasing amount of data, it becomes more and more
important to provide reliability when data storage systems or
devices fail. Erasure codes, which provide a more economi-
cal way than mere data replication [29], have emerged and
been widely distributed in various data storage systems, such
as Amazon S3 [1, 23], Google file system [10], Microsoft
Azure [11, 15] and Facebook Analytics Hadoop Cluster [30].

An erasure code derives redundant parity data through an
encoding computation process, and recovers original data
through a decoding computation process when data failures
occur. Typically, an erasure code system is composed of a
total of n storage units. If the n storage units consist of k data
units and m parity units, the erasure code system is called
a (k, m) erasure code system ( n = k + m ). Theoretically, a
(k, m) erasure code is called maximum distance separable
code (MDS Code), if it can tolerate up to m storage units
failures [21]. Erasure codes can be categorized into MDS

Codes [21], such as Reed-Solomon (RS) Code [28], Blaum-
Roth (BR) Code [5], EVENODD Code [3], STAR Code
[12]; and non-MDS Codes [16], such as Local Repairable
Code (LRC) [25], Low-Density Parity-Check (LDPC) Code
[18, 22, 24], LT Code [17], Raptor Code [31]. In this paper,
we focus only on MDS Codes, since they are the most effi-
cient in storage space usage for desired data reliability, and
moreover, are used as the component codes for non-MDS
codes, in practical systems [16, 19, 21].

There are mainly two categories of MDS codes: Reed-
Solomon Code [28] and XOR-based Code [20] (e.g., BR
Code [5] EVENODD Code [3], STAR Code [12], general-
ized Row-Diagonal Parity (RDP) Code [2, 8, 9]). Though
Reed-Solomon Code provides more flexibility by support-
ing recovery of an arbitrary number of erasures, XOR-based
code, which employs XOR-operations for both encoding
and decoding instead of more complex finite field opera-
tions, outperforms Reed-Solomon Code significantly in both
encoding and decoding speeds [27]. Most existing libraries
of RS Code, such as Jerasure [26] and Intel’s ISA-L [14],
are implemented intuitively and directly from the code
specification. We call this straightforward coding the con-
ventional algorithm (or traditional algorithm) [19]. On the
other hand, due to XOR-operation’s commutativity, the order
of XOR-operations is changeable. Based on this property,
new XOR-scheduling algorithms have been proposed, which

 *	 Rui Chen
	 chenrui@wayne.edu

	 Lihao Xu
	 lihao@wayne.edu

1	 Wayne State University, Detroit, MI 48202, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00141-y&domain=pdf

	 SN Computer Science (2020) 1:126126  Page 2 of 19

SN Computer Science

show considerable improvements in encoding performance
of XOR-based codes [19, 20].

In an erasure code system, decoding operation is needed
when failure occurs. Therefore, decoding speed impacts
greatly on general performance of the entire system when
fault happens. Besides, poor decoding performance brings
great vulnerability to the system, since failures can accumu-
late with low recovery speed. Normally, in most traditional
storage systems, decoding computation is fast enough not to
become the bottleneck in the whole system. However, with
the emergence of new generation of storage technologies,
such as flash-based solid-state drive (SSD), non-volatile
memory (NVM), and 3D XPoint technology, the through-
put of I/O can easily reach the level of tens of GB/sec [33,
34]. Therefore, higher matching performance of decoding
operations becomes urgent to reduce vulnerability window
when faults occur and thus, to improve the overall system.

It was shown in [19], that by scheduling XORs in proper
order, the encoding of XOR-based erasure codes can be
improved significantly, which cannot be achieved by code
optimization using compilers. While encoding operations for
an XOR-based erasure code have a fixed encoding path [19]
and thus can be pre-scheduled, decoding operations of such
codes have variable decoding paths depending on data eras-
ure (i.e., disk failure) patterns, corresponding XOR schedul-
ing schemes cannot be applied directly. In this paper, a new
decoding algorithm is proposed to use on-the-fly caching
of decoding path for a given data erasure pattern to enable
efficient XOR scheduling for decoding operations with con-
siderable performance improvement, just as XOR encoding
operations [19]. While neither efficient XOR scheduling
[19] or caching is new, combining them for decoding per-
formance improvement is new, which is the main contribu-
tion of this work.

Just as in [19], STAR code [12], an optimal erasure code
that can correct up to three data erasures, is used as an exam-
ple to show the detailed implementation and performance
of the new decoding algorithm. Detailed benchmarks show
that such a new decoding algorithm is practically feasible
in required cache size, about 2–6KB for a practical stor-
age system configuration, and can provide about 10–50%
improvement in decoding throughput. While the details may
vary slightly, the principle used in this new decoding algo-
rithm (i.e, given a data erasure, its decoding path only needs
to be computed once on-the-fly and then stored in a small-
sized cache, thus an efficient XOR scheduling algorithm
can be applied for proceeding decoding operations for bet-
ter throughput) can be readily applied to other XOR-based
erasure codes besides STAR code, such as the generalized
EVENODD code [3], the RDP code [8] and its generali-
zation [2, 9]. Thus another contribution of this work is to
provide data storage practitioners a new practical principle

of improving decoding performance of XOR-based erasure
codes in their systems.

The paper is organized as follows: Sect. 2 gives some
background introduction of erasure code basics; the plat-
forms we use for evaluations are described in Sect. 3; Sect. 4
introduces the basics in decoding operation; Sect. 5 proposes
a new decoding algorithm; extensive performance evaluation
data of the new decoding algorithm is presented in Sect. 6;
finally Sect. 7 concludes the paper and discusses the future
work.

Background

Typically, a (k, m) erasure code system is composed of an
array of n storage units of equal size, which can be further
divided into k data units and m parity units ( n = k + m ). As
shown in Fig. 1, D0 to Dk−1 represent k data units which con-
tain original data, while C0 to Cm−1 represent m parity units
which contain redundant data generated from encoding.
More detailed explanation of all parameters can be found in
[27]. When a storage unit fails, the lost data can be recovered
by performing the decoding operations with the remaining
data units and parity units.

For encoding/decoding operations, each storage unit
is partitioned into several strips (or blocks), each one of
which has the same stripsize (or blocksize) and consists of r
packets. Packets within data strip Di and parity strip Cj are
labeled as Di,0,…Di,r−1 and Cj,0,…Cj,r−1 , respectively. Dif-
ferent erasure codes typically have different constraints on
r, e.g., for RDP [8], EVENODD [3] and STAR [12] Codes,
r + 1 must be a prime number, while, for X-Code [35], r
must be a prime number.

A packet is further divided into s contiguous machine
words. A machine word is the smallest unit in this struc-
ture (e.g., one byte). In most codes, another parameter, w, is
included to indicate the wordsize of one machine word, such
that a collection of w bits is considered to be one machine

Fig. 1   A typical (k, m) erasure code system

SN Computer Science (2020) 1:126	 Page 3 of 19  126

SN Computer Science

word [26]. Usually w ∈ {8, 16, 32} . Throughout this paper,
unless specifically mentioned, we assume w = 8 , in which
case, one machine word is equal to one byte.

When encoding/decoding is performed, one strip from
each storage unit is collected, together forming a stripe (or
codeword). Every stripe is encoded/decoded independently.
The locations of the erasures are called erasure patterns,
for example, if data unit D0 is damaged, erasure pattern of
each stripe is {D0} . Obviously, we have:

Among the various XOR-based erasure codes, STAR code
[12] stands out due to its high performance and efficiency in
both encoding and decoding [6, 7]. It is a special case of the
extended EVENODD with three parities [3, 4]. STAR code
can tolerate up to three erasures [12], i.e., m = 3 , while k can
be any integer as system requires. The best performance is
achieved when k is a prime number p [12].

Figure 2 shows the structure of one stripe of a (5,3) STAR
code and an example of how parity strip III is generated.
More comprehensive description and analysis of STAR code
can be found in [12]. Simply speaking, the first packet in par-
ity strip III is generated by applying XOR-operation between
packets from each strip in a diagonal way. Note that the bot-
tom row is an imaginary row, which consists of nothing but
zeros. While there is no open source library of STAR code at
this point, its encoding and decoding algorithms are in pub-
lic domain. Through this paper, we use a (k, 3) STAR Code

(1)

⎧
⎪⎨⎪⎩

codewordsize = (k + m) × blocksize

blocksize = r × packetsize

packetsize = s × wordsize

wordsize =
w

8
bytes

as an instance to illustrate our new decoding algorithm, even
though this new decoding algorithm applies to any XOR-
based erasure codes. All examples focus on decoding one
stripe, but we will discuss how to apply this new decoding
algorithm to multiple stripes in a system with strip rotation
in Sect. 4.4.

Experiment Setup

Throughout this paper, we use two platforms, namely
Lenovo ThinkCentre M900 and Intel NW200 Roke (M900
and NW200 in brief), to conduct experiments. Basic con-
figurations of the two platforms are presented in Table 1.
Both of the two platforms are equipped with 64-bit proces-
sors and 64-bit operating systems.

System Configuration

Lenovo ThinkCentre M900 has a CPU of Intel’s i5-6500
(4 cores), which has 256 KB of L-1 cache, 1024 KB of L-2
cache and 6 MB of L-3 cache. It has a total memory of 4
GB. Ubuntu 16.04.3 LTS is installed on the machine, with
gcc version of 5.4.0.

Intel NW200 Roke is equipped with a CPU of Intel’s
Xeon E3-1275 (8 cores), which has 512 KB of L-1 cache,
2048 KB of L-2 cache and 8 MB of L-3 cache. It has a total
memory of 32 GB, with OS of Ubuntu 17.10. The gcc ver-
sion is 7.2.0.

We stick with gcc as our compiler for our implementation
of STAR code library. The gcc version is listed in Table 1.
We include −O3 option throughout our experiments. To
fully use all levels of caches and provide smoother meas-
urements, enough iterations are executed with the results
being averaged.

STAR Code is implemented in C language, in a single-
thread mode. Hence, the code does not take advantage of the
multiple cores on both platforms. All our experiments follow
similar methodology in [27] and [19]. The performance is
evaluated in terms of speed =

data size

time
 . Programming-wise,

we use gettimeofday() function to measure time interval
with accuracy of some μ s. Intel’s SSE [13] is integrated in Fig. 2   How parity column III is generated in a (5,3) STAR code with

r = 4

Table 1   Test platform
configurations

Platform CPU model L1 cache (KB) L2 cache (KB) L3 cache
(MB)

Memory (GB)

M900 Intel(R) Core(TM)
i5-6500 CPU @
3.20GHz

4 × 64 4 × 256 6 4

NW200 Intel(R) Xeon(R)
E3-1275 v5 @
3.60GHz

8 × 64 8 × 256 8 32

	 SN Computer Science (2020) 1:126126  Page 4 of 19

SN Computer Science

our library to accelerate XOR performance. No disk I/O is
involved in any measurements.

Baseline Evaluation

Since speed is a relative term, we benchmark the basic hard-
ware performance of the two platforms first. We use the
speed of simple memcpy and XOR to represent this baseline.
Within each stripe, simple memcpy or XOR is performed
between the strips, instead of performing actual encoding
or decoding. All baseline tests are conducted with 1000
stripes and k from 6 to 17. The results are shown in Fig. 3,
with blocksize set to 1 KB and 2 KB, respectively, on both
platforms. The x-axis represents k, and y-axis represents the
speed, in unit of GB/s.

Roughly speaking, the speed of memcpy on M900 can
reach around 25–35 GB/s and 15–20 GB/s on NW200. On
the other hand, speed of XOR is a little slower than memcpy
on both platforms, which is not surprising.

Basics of Decoding

For simpler illustration and evaluation, we use a toy exam-
ple shown in Fig. 4 throughout this section, which presents
one stripe of a (5,3) STAR Code, as a typical representa-
tive of XOR-based codes, as mentioned in Sect. 1. Based
on the structure of STAR Code [12], k = 5 , m = 3 , r = 4
and the prime number p = 5 ( p = r + 1 ) here. The last row
is an imaginary row (marked as yellow), within which all
packets are nothing but zeros. D0,D1,… ,D4 are the data
strips, while C0 , C1 , C2 are the parity strips generated from
encoding process. Each packet within the strips is labeled
as D0,0 , D0,1 , etc.

Path and Computational Complexity

Normally, for a XOR-based erasure code, each packet is
encoded or decoded by applying some XOR-operations
among a set of packets. This set of packets are imposed only
by the structure of the code itself, and thus, obviously varies
from code to code. We call this set of packets a Path.

Definition 1  In a XOR-based code, if the set of pack-
ets P = {p0, p1,… , pn} is used to construct one packet
px , then this set P is called a Path of packet px , so that
px = p0 ⊕ p1 ⊕⋯⊕ pn.

Definition 2  If this path is used for encoding, it is called an
encoding path. Likewise, if this path is used for decoding, it
is called a decoding path.

For example, STAR Code is designed with encoding rules
of the following three equations below [12]:

(2)C0,i =

p−1⨁
j=0

Dj,i

(3)

C1,i =S1 ⊕

(p−1⨁
j=0

Dj,<i−j>p

)
,

where S1 =

p−1⨁
j=0

Dj,<p−1−j>p

(4)

C2,i =S2 ⊕

(p−1⨁
j=0

Dj,<i+j>p

)
,

where S2 =

p−1⨁
j=0

Dj,<j−1>p

Fig. 3   Baseline performance of testing platforms

D0 D1 D2 D3 D4 C0 C1 C2

D0,0

D0,1

D0,2

D0,3

0

D1,0

D1,1

D1,2

D1,3

0

D2,0

D2,1

D2,2

D2,3

0

D3,0

D3,1

D3,2

D3,3

0

D4,0

D4,1

D4,2

D4,3

0

C0,0

C0,1

C0,2

C0,3

0

C1,0

C1,1

C1,2

C1,3

0

C2,0

C2,1

C2,2

C2,3

0

Fig. 4   A toy example of a (5,3) STAR Code

SN Computer Science (2020) 1:126	 Page 5 of 19  126

SN Computer Science

S1 and S2 here are known as EVENODD adjuster and STAR
adjuster, respectively. ⊕ is the XOR-operation. < x >p indi-
cates x mod p. More details can be found in [3] and [12]. In
our toy example, with k = 5 and p = 5 , the encoding paths
of packets C0,0 , C1,0 , C2,0 are, respectively, given in Table 2:

XOR-operation is the only operation in XOR-based codes.
Since XOR-operation provides commutativity, the order
does not matter when applying a series of XOR-operations
on a set of packets. Therefore, the computational complexity
of applying this series of XOR-operations depends merely
on the total number of XOR-operations needed, rather than
the order of the XOR-operations. Note that the total number
of XOR-operations needed is equal to the total number of
elements to be XOR-ed minus one. Based on this, we give
definition of computational complexity in XOR-based codes:

Definition 3  In a XOR-based code, the computational
complexity of one packet px , with encoding/decoding path
P = {p0, p1,… pn} , is the total number of XOR-operations
needed to construct px , which is equal to n.

Definition 4  In a XOR-based code, the computational com-
plexity of one strip is the total number XOR-operations
needed to construct all packets of the strip. Similarly, the
computational complexity of one stripe is the total num-
ber of XOR-operations needed to construct all strips of the
stripe.

Definition 5  In a XOR-based code, the computational com-
plexity of encoding/decoding process is the total number of
XOR-operations needed to encode/decode all stripes.

I n o u r t oy e x a m p l e , w h e n e n c o d i n g ,
C0,0 = D0,0 ⊕ D1,0 ⊕ D2,0 ⊕ D3,0 ⊕ D4,0 , hence the com-
putational complexity of C0,0 is 4. Similarly, the computa-
tional complexity of C1,0 and C2,0 are, respectively, 7 and 7,
as shown in Table 2.

The encoding computational complexity is usually
influenced only by the structure of the code. Generally,

for STAR Code, the encoding computational complex-
ity is imposed only by the total number of data strips, k.
With k imposed, computational complexity of parity
strip I is given by (k − 1)2 , and k2 − k − 1 for each par-
ity strip II and III, as is shown in Fig. 5. Note in both of
these two cases, S1 and S2 need to be calculated only once.
Thus, computational complexity of encoding is equal to
(k − 1)2 + (k2 − k − 1) + (k2 − k − 1) = 3k2 − 4k − 1.

Overhead of Computing Decoding Paths

When decoding, the decoding paths of damaged packets are
calculated in much more complicated fashion. The decoding
computational complexity is impacted not only by the basic
parameters of the code (such as k in STAR Code), but also
greatly by the number of erasures, the erasure pattern and
decoding algorithms accordingly. Decoding computational
complexity grows as the number of erasures increases. Eras-
ure pattern also affects the decoding computational complex-
ity. A best case scenario is when erasure only happens on the
parity strips, in which case, the decoding process becomes
to re-encode the parity strips, partially or entirely.

Obviously, higher decoding computational complexity
indicates more time it takes to compute decoding paths. We
define the overhead of computing decoding paths, as the
ratio of computing decoding paths time over total decoding
time.

Definition 6  In one stripe of a XOR-based code, the over-
head of computing decoding paths, labeled as od , is the
percentage of the time computing decoding paths in total
decoding time.

Explicitly, we have:

Table 2   Encoding paths and computational complexity in toy exam-
ple of a (5,3) STAR Code

Packet Encoding Compu-
tational
complexity

C
0,0

D
0,0

 , D
1,0

 , D
2,0

 , D
3,0

 , D
4,0

4
C
1,0

D
0,0

 , D
2,3

 , D
3,2

 , D
4,1

D
1,3

 , D
2,2

 , D
3,1

 , D
4,0

(S
1
= D

1,3
⊕ D

2,2
⊕ D

3,1
⊕ D

4,0
)

7

C
2,0

D
0,0

 , D
1,1

 , D
2,2

 , D
3,3

D
1,0

 , D
2,1

 , D
3,2

 , D
4,3

(S
2
= D

1,0
⊕ D

2,1
⊕ D

3,2
⊕ D

4,3
)

7

Fig. 5   Computational complexity of encoding parity strips in STAR
Code

	 SN Computer Science (2020) 1:126126  Page 6 of 19

SN Computer Science

where tc , td are the time of computing decoding paths and the
time of entire decoding operation, respectively, in one stripe,
e.g., in our toy example, if it takes 5 time units to compute
decoding paths, while it takes 10 time units to decode an
entire stripe, od = 50%.

Since STAR Code can tolerate up to three erasures, we
analyze and measure the overhead of computing decoding
paths based on the number of erasures.

Case 1: One Erasure

In a (k, m) code, when there is only one erasure, there are in
total Ck+m

1
= k + m possible erasure patterns ( Cn

k
 is the com-

binatorial number here). For a (k, 3) STAR Code, the best
case scenario is when the erasure occurs on parity strip I or
one of the data strips. The decoding computational complex-
ity of best case scenario is equal to (k − 1)2.

On the other hand, a worst case is when erasure appears
on parity strip II or parity strip III, either of which makes
decoding become re-encoding, and decoding computational
complexity is k2 − k − 1 . A worst case in our toy example
is shown in Fig. 6, in which the erasure pattern is {C1} .
Table 3 presents decoding paths of packets in C1 . Note that
EVENODD Adjuster S1 only needs to be calculated once.

Figure 7 shows the general decoding computational com-
plexity of case 1. It is not difficult to realize that with only
one erasure, decoding is exactly the same as encoding. Obvi-
ously from Fig. 7, the computational complexities of the
best and worst cases are very close and are both not too high
(e.g., less than 100, for k ≤ 10 ), since in one-erasure case,
there are very few packets to reconstruct after all.

Table 4a and b show that, when blocksize is set to 1 KB
and 2 KB, respectively, the overhead of computing decoding
paths in one stripe of a (k, 3) STAR Code, with k ranging
from 5 to 17, on two platforms. Time of computing decod-
ing path and total decoding time are measured and averaged
over all possible erasure patterns, all one-erasures in this

(5)od =
tc

td
× 100%

case (i.e., case 1), and two-erasures and three-erasures for
the following experiments in case 2 and case 3. The results
show that on both platforms, the time of calculating decod-
ing paths can account for a significant portion of 13–70%
of the total decoding time. Especially for smaller ks (i.e.,
k ≤ 8 ), it consumes over 30% to even 70% of total decoding
time.

Case 2: Two Erasures

When there are two erasures in a (k, m) Code, there are
Ck+m
2

=
(k+m)(k+m−1)

2!
 possible erasure patterns in total. In

our toy example, if the damaged strips are parity strip I
and parity strip II or III, which is the best case scenario,
it makes decoding become re-encoding the two parity
strips. The decoding computational complexity is then
(k − 1)2 + (k2 − k − 1) = 2k2 − 3k.

On the other hand, worst case happens when erasures
occur on any two of the data strips. A worst case in our
toy example is shown in Fig. 8, where the erasure pattern
is {D0,D2} (marked as red). Decoding paths of packets in
D0 , D2 are given in Table 5, according to decoding algo-
rithms in [3, 12]. It can be seen from Table 5, that decod-
ing path of one packet depends on those of other packets.

D0 D1 D2 D3 D4 C0 C1 C2

D0,0

D0,1

D0,2

D0,3

0

D1,0

D1,1

D1,2

D1,3

0

D2,0

D2,1

D2,2

D2,3

0

D3,0

D3,1

D3,2

D3,3

0

D4,0

D4,1

D4,2

D4,3

0

C0,0

C0,1

C0,2

C0,3

0

C1,0

C1,1

C1,2

C1,3

0

C2,0

C2,1

C2,2

C2,3

0

Fig. 6   Worst case scenario of case 1 in toy example

Table 3   Worst case decoding path and computational complexity of
case 1

Packet Decoding path Compu-
tational
complexity

C
1,0

D
0,0

 , D
2,3

 , D
3,2

 , D
4,1

D
1,3

 , D
2,2

 , D
3,1

 , D
4,0

(S
1
 = D

1,3
⊕ D

2,2
⊕ D

3,1
⊕ D

4,0
)

7

C
1,1

D
0,1

 , D
1,0

 , D
3,3

 , D
4,2

 S
1

4
C
1,2

D
0,2

 , D
1,1

 , D
2,0

 , D
4,3

 S
1

4
C
1,3

D
0,3

 , D
1,2

 , D
2,1

 , D
3,0

 S
1

4

Fig. 7   Decoding computational complexity of case 1

SN Computer Science (2020) 1:126	 Page 7 of 19  126

SN Computer Science

The reconstruction of all packets cannot be performed
concurrently.

Figure 9 presents general decoding computational com-
plexity of two-erasure case. Note that unlike the best case,
the decoding computational complexity of the worst case
relies on the prime number p, which is the smallest prime
number that is no less than k (e.g., p = 7 for k = 6 ). Cases
with different k yet the same p share the same worst case
computational complexity (e.g., cases of k = 6 and k = 7
have the same decoding computational complexity). This is
imposed by the basic structure of STAR Code: for decoding,
a prime number p is required to construct the stripe array
[3, 12]. Also, decoding is more complicated than encoding,
for example, when k = 10 , the worst case decoding com-
putational complexity is roughly 250, comparing to that of
encoding being 170 (this encoding computational complex-
ity is based on generating two parity strips, I and II).

Based on Definition 3, 4, 5, the encoding/decoding
computational complexity indicates the size of all encod-
ing/decoding paths. Apparently, the reason why decoding

computational complexity is greater than encoding is
because decoding paths are longer, which means the decod-
ing paths involve more elements, than encoding paths.

Table 6a and b, respectively, present, when blocksize is
set to 1 KB and 2 KB, the overhead of computing decoding
paths in one stripe of a (k, 3) STAR Code, with k ranging
from 5 to 17, on two platforms. The results clearly show that
on both platforms, the time of calculating decoding paths

Table 4   Overhead of computing
decoding paths in case 1 ( t

c
 and

t
d
 are in unit of μs)

k Blocksize = 1 KB Blocksize = 2 KB

t
c

t
d

o
d
 (%) t

c
t
d

o
d
 (%)

(a) M900 (Core i5-6500)
 5 7 13 54 14 20 70
 6 29 43 67 22 92 24
 7 30 72 42 29 122 24
 8 39 112 35 76 199 39
 9 41 151 27 76 276 28
 10 47 190 25 77 353 22
 11 54 259 21 77 431 18
 12 65 314 21 107 540 20
 13 68 369 18 108 648 17
 14 93 465 20 187 836 22
 15 94 560 17 188 1025 18
 16 95 654 15 194 1269 15
 17 95 748 13 196 1456 13

(b) NM200 (Xeon E3-1275)
 5 15 23 65 25 39 64
 6 30 56 54 32 72 44
 7 32 86 37 41 103 40
 8 38 125 30 79 183 43
 9 42 178 24 81 265 31
 10 46 218 21 81 347 23
 11 48 257 19 81 429 19
 12 54 312 17 113 544 21
 13 56 369 15 114 658 17
 14 94 464 20 190 849 22
 15 117 652 18 191 1041 18
 16 124 783 16 192 1234 16
 17 130 908 14 192 1426 13

D0 D1 D2 D3 D4 C0 C1 C2

D0,0

D0,1

D0,2

D0,3

0

D1,0

D1,1

D1,2

D1,3

0

D2,0

D2,1

D2,2

D2,3

0

D3,0

D3,1

D3,2

D3,3

0

D4,0

D4,1

D4,2

D4,3

0

C0,0

C0,1

C0,2

C0,3

0

C1,0

C1,1

C1,2

C1,3

0

C2,0

C2,1

C2,2

C2,3

0

Fig. 8   Worst case scenario of case 2 in toy example

	 SN Computer Science (2020) 1:126126  Page 8 of 19

SN Computer Science

can account for a significant portion of 9–94% of the total
decoding time. Especially for smaller ks (i.e., k ≤ 8 ), it con-
sumes over 23% to even 94% of total decoding time.

Case 3: Three Erasures

Decoding process becomes much more complicated when
there are three erasures in a (k, m) Code. In total, there are
Ck+m
3

=
(k+m)(k+m−1)(k+m−2)

3!
 possible erasure patterns. The best

case scenario is when all three erasures occur on the three
parity strips. In this situation, decoding simply becomes re-
encoding all three parity strips I, II and III. The decoding
computational complexity of best case is 3k2 − 4k − 1 , which
is equal to the encoding computational complexity.

In contrast, the worst case scenario happens when all the
three erasures are on the data strips. As is shown in Fig. 10,
in our toy example, data strips D0 , D2 , D3 (marked as red) are
damaged. This is also called an asymmetric case according
to [12]. In an asymmetric case, the decoding paths become
random and unpredictable. They depend not only on k and

p, but also greatly on the erasure patterns (i.e., {D0,D2,D3}
here). Thus, the total XOR-operations needed to recover data
packets rises tremendously.

Figure 11 presents decoding computational complexity of
three-erasure case, measured from exhaustive enumeration
of all patterns of three-erasure case. Like case 2, decoding
computational complexity of worst case depends on prime
number p rather than k. In addition, Fig. 11 clearly indi-
cates that decoding in three-erasures case can be extremely
complicated. For example, when k = 10 , the worst case
computational complexity reach around 800, comparing to
encoding complexity of 259 (based on generating all three
parity strips, I, II and III). This represents long decoding
paths when there are three erasures.

Again, Table 7a and b present the overhead of calculating
decoding paths in one stripe of a (k, 3) STAR Code, with
blocksize set to 1 KB and 2 KB, respectively, on two plat-
forms. k varies from 5 to 17 too. The results again show that,
on both platforms, pure time of computing decoding paths in
three-erasure case consumes 11–97% of the total decoding
time. Particularly, for smaller ks (i.e., k ≤ 8 ), it can hold over
26% to even 97% of total time computing decoding paths.

Cached Decoding Path Method

An erasure code system usually involves hundreds or even
thousands of stripes. Therefore, with the observation from
Tables 4, 6, and 7 above, it is more than apparent that com-
puting decoding paths results in considerable overhead for
overall decoding operation, particularly when k is relatively
small (i.e., k ≤ 8).

However, erasure occurs per single data/parity unit. This
means, when erasures occur, all stripes share the same eras-
ure pattern, which further leads to the same decoding paths
for data recovery. In our toy example of a (5,3) STAR Code,
if one erasure occurs on data unit I, erasure pattern ( {D0}
here) in every stripe is the same. Thus, decoding path of
the same packet in different stripes remains the same (e.g.,
packet D0,0 in every stripe has the same decoding path of
{D1,0,D2,0,D3,0,D4,0,C0,0}).

With this observation, it is redundant and unnecessary to
calculate decoding paths for every stripe. We propose the
first improvement in our new decoding algorithm: decod-
ing paths of a stripe is calculated only if the erasure pattern
of the stripe occurs for the first time. The set of decoding
paths then is stored in CPU cache and is reused for stripes
with the same erasure pattern. We call this methodology of
implementation cached decoding path method. With cached
decoding path method, a stripe with duplicated erasure pat-
tern, automatically obtains its decoding paths from cache,
and can directly access packets needed without redundant
computation overhead.

Table 5   Worst case decoding paths of case 2

Packet Decoding path Compu-
tational
complexity

D
2,2

D
1,3

 , D
3,1

 , D
4,0

 , S
1

(S
1
 = C

0,0
⊕ C

0,1
⊕ C

0,2
⊕ C

0,3

⊕C
1,0

⊕ C
1,1

⊕ C
1,2

⊕ C
1,3

)

10

D
0,2

D
2,2

 , D
1,2

 , D
3,2

 , D
4,2

 , C
0,2

4
D

2,0
D

0,2
 , D

1,1
 , D

4,3
 , C

1,2
 , S

1
4

D
0,0

D
2,0

 , D
1,0

 , D
3,0

 , D
4,0

 , C
0,0

4
D

2,3
D

0,0
 , D

3,2
 , D

4,1
 , C

1,0
 , S

1
4

D
0,3

D
2,3

 , D
1,3

 , D
3,3

 , D
4,3

 , C
0,3

4
D

2,1
D

0,3
 , D

1,2
 , D

3,0
 , C

1,3
 , S

1
4

D
0,1

D
2,1

 , D
1,1

 , D
3,1

 , D
4,1

 , C
0,1

4

Fig. 9   Decoding computational complexity of case 2

SN Computer Science (2020) 1:126	 Page 9 of 19  126

SN Computer Science

Strip Rotation

In practical data storage systems, strip rotation is typically
applied on storage units [32]. Strip rotation in data storage
system provides balanced distribution among all storage
units by shifting data loads. Although strip rotation causes
the stripes to have different decoding paths, this rotation is
periodical. Applying a (k, m) code in a storage system with

N ( N ≥ k + m ) total units (e.g., disks), the rotation period
is N, in which case, stripe Si and stripe Si+N share the same
erasure pattern. In other words, there are at most N different
sets of decoding paths to be computed and cached. Real data

Table 6   Overhead of computing
decoding paths of case 2, on
two platforms ( t

c
 , t

d
 are in unit

of μs)

k Blocksize = 1 KB Blocksize = 2 KB

t
c

t
d

o
d
 (%) t

c
t
d

o
d
 (%)

(a) M900 (Core i5-6500)
 5 26 30 86 49 57 86
 6 43 75 57 85 144 59
 7 44 120 37 85 232 37
 8 103 225 46 199 434 46
 9 101 327 31 199 636 31
 10 102 430 24 200 839 24
 11 101 533 19 200 1042 19
 12 140 678 21 272 1315 21
 13 138 818 17 272 1589 17
 14 236 1058 22 468 2063 23
 15 230 1290 18 457 2523 18
 16 230 1521 15 459 2985 15
 17 231 1754 13 456 3444 13

(b) NM200 (Xeon E3-1275)
 5 92 102 90 178 189 94
 6 171 288 59 325 519 63
 7 169 462 37 329 861 38
 8 380 849 45 258 1123 23
 9 400 1255 32 251 1375 18
 10 133 1393 10 254 1631 16
 11 133 1527 9 253 1888 13
 12 171 1700 10 347 2241 15
 13 172 1874 9 348 2590 13
 14 289 2166 13 582 3177 18
 15 288 2456 12 552 3734 15
 16 289 2747 11 524 4263 12
 17 287 3037 9 550 4820 11

D0 D1 D2 D3 D4 C0 C1 C2

D0,0

D0,1

D0,2

D0,3

0

D1,0

D1,1

D1,2

D1,3

0

D2,0

D2,1

D2,2

D2,3

0

D3,0

D3,1

D3,2

D3,3

0

D4,0

D4,1

D4,2

D4,3

0

C0,0

C0,1

C0,2

C0,3

0

C1,0

C1,1

C1,2

C1,3

0

C2,0

C2,1

C2,2

C2,3

0

Fig. 10   Worst case scenario of case 3 in toy example

Fig. 11   Decoding computational complexity of case 3

	 SN Computer Science (2020) 1:126126  Page 10 of 19

SN Computer Science

storage systems usually consist of hundreds or even thou-
sands of stripes, while N is relatively small (e.g., N ≤ 24 ).
Therefore, with cached decoding path method, numerous
computations of decoding paths can still be avoided and
thus, resulting in more efficient decoding.

Figure 12 presents a simple strip rotation example of a
(k, m) erasure code in a storage system with N ( N ≥ k + m )
storage units in total. Each row represents one stripe, while
each column represents one storage unit. The units contain-
ing the EC strips are marked as red, and the yellow labels
all other idle units. Rotation starts from the second stripe S1 ,
in which all strips are right-shifted by one position, so that
the first data strip D0 is stored on the second storage unit,
the second data strip D1 is stored on the third storage unit,
etc. Similarly, in the third stripe, the third storage unit stores
data strip D0 , etc.

Since there are in total N strips in each stripe, there can
be at most N shifts before the strips return to the origi-
nal positions (e.g., stripe S0 and stripe SN are the same),
and consequently, share the same erasure pattern. In this

situation, up to N sets of decoding paths (i.e., decoding paths
of S0, S1,… SN ) need to be computed and cached, which all
other stripes can benefit and directly take advantage of.

Table 7   Overhead of computing
decoding paths of case 3, on
two platforms ( t

c
 , t

d
 are in unit

of μs)

k Blocksize = 1 KB Blocksize = 2 KB

t
c

t
d

o
d
 (%) t

c
t
d

o
d
 (%)

(a) M900 (Core i5-6500)
 5 78 84 92 149 157 95
 6 143 229 62 276 439 63
 7 136 367 37 258 702 37
 8 337 707 48 658 1373 48
 9 327 1040 31 647 2030 32
 10 327 1371 24 647 2688 24
 11 329 1704 19 646 3345 19
 12 471 2178 22 918 4334 21
 13 457 2639 17 900 5249 17
 14 804 3451 23 1544 6798 23
 15 787 4242 19 1582 8385 19
 16 787 5032 16 1546 9936 16
 17 802 5840 14 1571 11514 14

(b) NM200 (Xeon E3-1275)
 5 316 329 96 554 570 97
 6 522 860 61 1062 1654 64
 7 501 1368 37 962 2630 37
 8 489 1861 26 831 3474 24
 9 327 2191 15 814 4300 19
 10 331 2525 13 811 5123 16
 11 328 2855 11 813 5948 14
 12 460 3318 14 1150 7102 16
 13 446 3767 12 1101 8208 13
 14 758 4528 17 1934 10152 19
 15 738 5269 14 1783 11940 15
 16 723 5995 11 1726 13676 13
 17 723 6721 11 1663 15350 11

k Data Strips m Parity Strips

k +m EC Strips

N − (k +m) Idle Strips

N Strips

S0

S1

S2

...
...

SN−2

SN−1

SN

...
...

D0

0

0

. . .

D1

D0

D1

D0

0

. . .

D1

. . .

D1

D0

D4

. . .

. . .

D1

C0

D4

D4

. . .

. . .

C0

D4

C0

D4

C2

. . .

C0

. . .

C0

D4

0

C2

. . .

C2

. . .

C0

0

0

C2

0

C2

. . .

0

0

0

0

0

C2

0

0

0

. . .

. . .

. . .

. . .

. . .

. . .

0

0

0

D0

0

0

0

0

0

D1

D0

0

Fig. 12   Rotation example of a (k, m) Code

SN Computer Science (2020) 1:126	 Page 11 of 19  126

SN Computer Science

A New Decoding Algorithm

Once the decoding paths are calculated, the rest of decod-
ing process becomes the same as encoding process. The
remaining task is to simply reconstruct all missing pack-
ets by applying XOR-operations among the needed packets
according to the decoding paths. In this section, we optimize
this decoding procedure.

To simplify illustrations, we use one stripe of a (3, 3)
STAR Code, with each packet consisting of two machine
words (i.e., 2 bytes), as a toy example, throughout this sec-
tion. Figure 13 presents this toy example.

XOR‑Scheduling Algorithms

Though the order of XOR-operations does not affect correct-
ness when reconstructing one packet with a particular decod-
ing path, it does affect cache use and thus, decoding time,
when applied on a serial of different packets. This is because
their decoding paths overlap with each other. Often some
packets appear multiple times in related decoding paths, and
later are accessed multiple times. The order of accessing
these duplicated packets makes a great difference in general
encoding performance by utilizing caches differently [19,
20]. An algorithm to optimize this particular accessing order
is called XOR-scheduling algorithm. In this subsection, we
introduce and evaluate different XOR-scheduling algorithms
for decoding operation.

There are typically four different XOR-scheduling algo-
rithms for encoding operation [19], namely, Parity Packet
Guided (PPG), Parity Words Guided (PWG), Data Packet
Guided (DPG) and Data Words Guided (DWG) XOR-sched-
uling algorithms [19]. Among the four algorithms, PPG
XOR-scheduling algorithm is known as the conventional
algorithm, which has been mostly used. However, from the
testing results in [19] and [20], the DWG XOR-scheduling
algorithm provides better encoding performance, and this
improvement cannot be achieved by a general compiler.

Based on results in [19, 20], we propose two XOR-
scheduling algorithms for decoding operation: Erasure
Packet Guided (EPG) and Surviving Words Guided (SWG)

XOR-scheduling algorithm. We first give a set of definitions
on Erasure/Surviving Strip:

Definition 7  In one stripe of a (k, m) Code consisting of a set
of strips D = {D0,… ,Dk+m−1} , with x (0 ≤ x ≤ m) erasures
occurring on a subset of strips X = {Dy0

,Dy1
,… ,Dyx−1

} ⊊ D
(0 ≤ y0 ≤ y1 ≤ ⋯ ≤ yx−1 ≤ k + m − 1) , the set of strips with
erasures (X) is called erasure strips (or erasure columns), the
set of the rest strips ( D − X ) is called surviving strips (or
surviving columns).

Let us observe a two erasure case in our toy example pre-
sented in Fig. 14, where erasure occurs on D0 and D1 . In this
case, D0 , D1 become the erasure strips E0 and E1 (marked as
red), all other strips from D2 to C2 are known as the Surviv-
ing Strips, labeled as S0 to S3.

In addition, we define Erasure/Surviving Packet:

Definition 8  An individual packet Ei,j within an eras-
ure strip Ei is called an Erasure Packet. Obviously, for
an erasure strip consisting of r erasure packets, we have
Ei = {Ei,0,Ei,1,… ,Ei,r−1} . Similarly, a packet Si,j within a
surviving strip Si is called a Surviving Packet. For a sur-
viving strip consisting of r surviving packets, we have
Si = {Si,0, Si,1,… , Si,r−1}.

In our toy example, E0,0,E0,1,E1,0,E1,1 are erasure packets,
while S0,0, S0,1,… , S3,1 are called surviving packets. Based
on structure of STAR Code [12], we can easily have decod-
ing paths of erasure packets, as shown in Table 8. Appar-
ently, decoding paths of those packets overlap, since packets,
such as S0,1 and S1,0 , appear multiple times.

Furthermore, we give definitions of Erasure/Surviving
Word:

Definition 9  An individual machine word e[i,j],t within
an erasure packet Ei,j is called erasure word, so that
Ei,j = {e[i,j],0, e[i,j],1,… , e[i,j],num−1} (num indicates number of
machine words in a single packet, num =

packetsize

wordsize
 ). Similarly,

a machine word s[i,j],t within a surviving packet Si,j is called
surviving word, so that Si,j = {s[i,j],0, s[i,j],1,… , s[i,j],num−1}
( num =

packetsize

wordsize
).

Since each packet consists of two machine words (2 bytes)
in our toy example, erasure packet E0,0 = {e[0,0],0, e[0,0],1} , in
which e[0,0],0 and e[0,0],1 are called erasure words. On the other
hand, surviving packet S0,0 = {s[0,0],0, s[0,0],1} , in which s[0,0],0
and s[0,0],1 are called surviving words.

Finally, we introduce Erasure Packet Guided (EPG) and
Surviving Words Guided (SWG) XOR-scheduling algo-
rithms described in Algorithm 1 and 2, respectively:

D0 D1 D2 C0 C1 C2

Data Strips Parity Strips

D0,0

D0,1

0

D1,0

D1,1

0

D2,0

D2,1

0

C0,0

C0,1

0

C1,0

C1,1

0

C2,0

C2,1

0

Fig. 13   Toy example of a (3,3) STAR Code

	 SN Computer Science (2020) 1:126126  Page 12 of 19

SN Computer Science

Algorithm 1 Erasure Packet Guided (EPG) Scheduling
Input: Surviving strips S, each one is a word array
Output: Erasure strips E, each on is a word array
1: for each erasure strip Ej do
2: for each erasure packet Ej,i in strip Ej do
3: for each surviving packet Su,v in the decoding path of Ej,i do
4: for t=0; t<packetsize; t++ do
5: e[j,i],t ⊕ = s[u,v],t
6: end for
7: end for
8: end for
9: end for

Algorithm 2 Surviving Words Guided (SWG) Scheduling
Input: Surviving strips S, each one is a word array
Output: Erasure strips E, each on is a word array
1: for each surviving strip Sj do
2: for each surviving packet Sj,i in strip Sj do
3: for t=0; t<packetsize; t++ do
4: for each erasure packet Eu,v whose decoding path includes Sj,i do
5: e[u,v],t ⊕ = s[j,i],t
6: end for
7: end for
8: end for
9: end for

The EPG XOR-scheduling is intuitive to implement and
is commonly used, which we call the conventional or tra-
ditional XOR-scheduling. The basic principle is to focus
on each erasure packet and try to finish reconstructing one
erasure packet before moving to the next one. A detailed pro-
cedure of EPG in our toy example is presented in Fig. 15a,
from which it is obvious that each erasure packet from E0,0
to E1,1 are decoded sequentially. First, all packets needed,
according to E0,0 ’s decoding path, are collected and used to

produce E0,0 , and then E0,1 , E1,0 , etc., until all packets are
decoded.

On the other hand, the SWG XOR-scheduling is called
the new XOR-scheduling. It takes advantage of results from
[19], in which it is shown to be more efficient. In contrast
to EPG, SWG focuses on each surviving word, and tries to
make the most of a single surviving word by XOR-ing it to
erasure words of the erasure packets whose decoding path
contains the relevant surviving packet. Figure 15b shows
a concrete decoding process for our toy example code, in
which surviving word s[0,0],0 is first XOR-ed with erasure
words e[0,0],0 , e[1,0],0 , e[1,1],0 , since E0,0 , E1,0 , E1,1 all have S0,0
in their decoding paths. Surviving word s[0,0],1 is used next,
following with s[0,1],1,… , s[2,1],1 sequentially, until all packets
are decoded.

EPG XOR-scheduling accesses each machine word (byte)
in each packet in a logically sequential way. It thus provides
a good spatial locality by having small memory distance
between the data in a series of accesses [19]. On the other
hand, SWG XOR-scheduling performs the XOR iteration
at machine word level (e.g., per each byte of a packet), and
improves temporal locality of s[j,i],t . This provides short time
period between two consecutive accesses to the same data
[19], but decreases some spatial locality of both e[u,v],t and
s[j,i],t . In practical systems, the number of erasure strips is
usually small ( ≤ 3 ), comparing to the number of surviving
strips (e.g., ≥ 10 with k = 10 ), so the loss of spatial locality
of s[j,i],t is observed to be minor than the gain from temporal
locality of s[j,i],t . Thus, in general, the overall locality is bet-
ter using the SWG XOR-scheduling algorithm [19].

Caching Decoding Path

Using the cached decoding path method introduced in
Sect. 4.3, total amount of XOR-operations is minimized by
avoiding redundant calculation of numerous decoding paths.
Now we discuss how to cache decoding paths efficiently.
Our STAR library is currently written in C, within which,
a Decoding Table is used and stores the decoding paths of
erasure patterns. Decoding Table is implemented by a 3-D
Linklist data structure. Programming-wise, three structs are
declared to fulfill the data structure, as presented below:

D0 D1 D2 C0 C1 C2

Data Strips Parity Strips

D0,0

D0,1

0

D1,0

D1,1

0

D2,0

D2,1

0

C0,0

C0,1

0

C1,0

C1,1

0

C2,0

C2,1

0

(a) Before erasures.
����Two Erasures Occur

����

E0 E1 S0 S1 S2 S3

Erasure Strips Surviving Strips

E0,0

E0,1

0

E1,0

E1,1

0

S0,0

S0,1

0

S1,0

S1,1

0

S2,0

S2,1

0

S3,0

S3,1

0

(b)After erasures.

Fig. 14   Two-erasure case in toy example

Table 8   Decoding paths of
erasure packets in toy example

Packet Decoding path

E
0,0

S
0,1

 , S
1,0

 , S
1,1

 , S
2,1

E
0,1

S
0,0

 , S
0,1

 , S
1,0

 , S
2,0

 , S
2,1

E
1,0

S
0,0

 , S
0,1

 , S
1,1

 , S
2,1

E
1,1

S
0,0

 , S
1,0

 , S
1,1

 , S
2,0

 , S
2,1

SN Computer Science (2020) 1:126	 Page 13 of 19  126

SN Computer Science

Fig. 15   EPG and SWG XOR-
scheduling algorithms in our toy
example

ID XOR
1 e[0,0],0 ⊕ = s[0,1],0
2 e[0,0],1 ⊕ = s[0,1],1
3 e[0,0],0 ⊕ = s[1,0],0
4 e[0,0],1 ⊕ = s[1,0],1
5 e[0,0],0 ⊕ = s[1,1],0
6 e[0,0],1 ⊕ = s[1,1],1
7 e[0,0],0 ⊕ = s[2,1],0
8 e[0,0],1 ⊕ = s[2,1],1
9 e[0,1],0 ⊕ = s[0,0],0
10 e[0,1],1 ⊕ = s[0,0],1
11 e[0,1],0 ⊕ = s[0,1],0
12 e[0,1],1 ⊕ = s[0,1],1
13 e[0,1],0 ⊕ = s[1,0],0
14 e[0,1],1 ⊕ = s[1,0],1
15 e[0,1],0 ⊕ = s[2,0],0
16 e[0,1],1 ⊕ = s[2,0],1
17 e[0,1],0 ⊕ = s[2,1],0
18 e[0,1],1 ⊕ = s[2,1],1
19 e[1,0],0 ⊕ = s[0,0],0
20 e[1,0],1 ⊕ = s[0,0],1
21 e[1,0],0 ⊕ = s[0,1],0
22 e[1,0],1 ⊕ = s[0,1],1
23 e[1,0],0 ⊕ = s[1,1],0
24 e[1,0],1 ⊕ = s[1,1],1
25 e[1,0],0 ⊕ = s[2,1],0
26 e[1,0],1 ⊕ = s[2,1],1
27 e[1,1],0 ⊕ = s[0,0],0
28 e[1,1],1 ⊕ = s[0,0],1
29 e[1,1],0 ⊕ = s[1,0],0
30 e[1,1],1 ⊕ = s[1,0],1
31 e[1,1],0 ⊕ = s[1,1],0
32 e[1,1],1 ⊕ = s[1,1],1
33 e[1,1],0 ⊕ = s[2,0],0
34 e[1,1],1 ⊕ = s[2,0],1
35 e[1,1],0 ⊕ = s[2,1],0
36 e[1,1],1 ⊕ = s[2,1],1

(a) EPG

ID XOR
9 e[0,1],0 ⊕ = s[0,0],0
19 e[1,0],0 ⊕ = s[0,0],0
27 e[1,1],0 ⊕ = s[0,0],0
10 e[0,1],1 ⊕ = s[0,0],1
20 e[1,0],1 ⊕ = s[0,0],1
28 e[1,1],1 ⊕ = s[0,0],1
1 e[0,0],0 ⊕ = s[0,1],0
11 e[0,1],0 ⊕ = s[0,1],0
21 e[1,0],0 ⊕ = s[0,1],0
2 e[0,0],1 ⊕ = s[0,1],1
12 e[0,1],1 ⊕ = s[0,1],1
22 e[1,0],1 ⊕ = s[0,1],1
3 e[0,0],0 ⊕ = s[1,0],0
13 e[0,1],0 ⊕ = s[1,0],0
29 e[1,1],0 ⊕ = s[1,0],0
4 e[0,0],1 ⊕ = s[1,0],1
14 e[0,1],1 ⊕ = s[1,0],1
30 e[1,1],1 ⊕ = s[1,0],1
5 e[0,0],0 ⊕ = s[1,1],0
23 e[1,0],0 ⊕ = s[1,1],0
31 e[1,1],0 ⊕ = s[1,1],0
6 e[0,0],1 ⊕ = s[1,1],1
24 e[1,0],1 ⊕ = s[1,1],1
32 e[1,1],1 ⊕ = s[1,1],1
15 e[0,1],0 ⊕ = s[2,0],0
33 e[1,1],0 ⊕ = s[2,0],0
16 e[0,1],1 ⊕ = s[2,0],1
34 e[1,1],1 ⊕ = s[2,0],1
7 e[0,0],0 ⊕ = s[2,1],0
17 e[0,1],0 ⊕ = s[2,1],0
25 e[1,0],0 ⊕ = s[2,1],0
35 e[1,1],0 ⊕ = s[2,1],0
8 e[0,0],1 ⊕ = s[2,1],1
18 e[0,1],1 ⊕ = s[2,1],1
26 e[1,0],1 ⊕ = s[2,1],1
36 e[1,1],1 ⊕ = s[2,1],1

(b) SWG

	 SN Computer Science (2020) 1:126126  Page 14 of 19

SN Computer Science

typedef struct pattern{
int *erasure_pattern;
struct pattern *next_pattern;
struct key *first_key;

}Pattern;

typedef struct key{
int k_idx;
struct key *next_key;
struct de_packet *first_p;

}Key;

typedef struct de_packet{
int p_idx;
struct de_packet *next_p;

}de_packet;

Note that, though an erasure code is structured as a 2-D
array, it is implemented by a 1-D array in programming
since most application data is stored in a 1-D buffer. Thus,
in terms of code, the index of a packet is represented by one
single integer, e.g., in our toy example shown in Fig. 14,
indexes of D0,0,D0,1 are 0, 1, respectively.

A Pattern node indicates an erasure pattern for a set of
decoding paths. int * erasure_pattern is an integer array, of
which each element (i.e., an integer) marks the index of a
strip that is in the erasure pattern. A Key node stores the
a surviving packet px , whose index is represented by int
k_idx . A de_packet node stores an erasure packet that has
px in its decoding path, whose index is marked by int p_idx .
Note that this structure is designed to optimize SWG XOR-
scheduling algorithm for decoding. Obviously, the size of
strcut pattern, struct key and struct de_packet are 8 B, 12 B
and 8 B, respectively, in C.

In practical decoding situations, parameters such as k,
m and the erasure pattern are known, when building the

Decoding Table, values of each strip in * erasure_pattern can
be easily calculated: if it is a data strip, the index is simply
its strip index; if it is a parity strip, the index is its strip index
plus k, e.g., in our toy example shown in Fig. 14, indexes
of strip D0,D1,D2,C0,C1,C2 are 0, 1, 2, 3, 4, 5, respec-
tively. Since there is only one erasure pattern in this case,
the Decoding Table consists of only one Pattern node. As the
erasure pattern is {D0,D1} , Pattern.erasure_pattern={0, 1} .
Pattern.first_key points to surviving packet S0,0 , which is
linked with erasure packets E0,1,E1,0,E1,1 . The second Key
S0,1 is linked with E0,0,E0,1,E1,0 , etc.

When decoding is performed, one stripe STi with eras-
ure pattern EPi accesses the first Pattern node (Pattern1)
in Decoding Table. If two erasure patterns match, i.e.,
EPi = Pattern1.erasure_pattern , the first Key node (Key1)
is accessed, from which a list of de_packets are traversed.
After XOR-operations are applied among those packets, the
second Key (Key2) is accessed, etc. In this way, STi is recon-
structed. This process is shown in Fig. 16. As discussed in
Sect. 4.4, in practical systems, strip rotation is often applied.
For a storage system with N units (disks), the rotation period
is at most N, in which case, N sets of decoding paths need
to be cached, resulting in N Pattern nodes in the Decoding
Table. Since N is relatively small (e.g., ≤ 24 ), a simple linear
search of all Pattern nodes for a matching erasure pattern
is efficient enough. Other multiple erasure patterns can be
handled similarly.

An erasure pattern depends on both k and number of
erasures. As discussed in Sect. 4.2, for a (k, m) Code, the
maximum number of all possible erasure patterns is given
as Ck+m

1
 , Ck+m

2
 , Ck+m

3
 , for one-erasure, two-erasure and three-

erasure case, respectively. Typically, erasure patterns are dif-
ferent, each of which produces a different set of decoding
paths.

In our toy example presented in Fig. 13, there are C6
2
= 15

possible erasure patterns with two erasures. Erasure pattern
of {D0,D1} makes it the worst case scenario. With the decod-
ing paths given in Table 8, the size of the Decoding Table
generated is 224 ( 8B + 12B × 6 + 8B × 18 ) bytes, which is
stored in CPU cache. To store decoding paths of all possible
erasure patterns (i.e., 15 Pattern nodes), it needs at most
224B × 15 = 3360B . Therefore, considering strip rotation
situations, if we cache decoding paths of all possible erasure
patterns, the total size of Decoding Table is at most 3360B
times N; on the other hand, if we cache decoding paths of
only one erasure pattern, total size of the Decoding Table is
at most 224B × N. In practice, N ≤ 24 , thus, with the former
method, the Decoding Table needs at most 79 KB of cache
size, while with the latter method, roughly 5 KB of cache
is required.

Obviously, the latter method is better than the former,
because it avoids a waste of cache and redundant computa-
tion as well as search time for matching erasure pattern, by

Fig. 16   Decoding table data structure

SN Computer Science (2020) 1:126	 Page 15 of 19  126

SN Computer Science

storing decoding paths of only one erasure pattern. Nowa-
days, most CPUs provide over 512 KB of L-1 cache, which
is enough for storing Decoding Table with a single erasure
pattern.

With all the techniques discussed above, Algorithm 3
describes the caching decoding path algorithm we use to
fulfill the cached decoding path method. Basically, if the
erasure pattern of a stripe is found in a Pattern node in the
cached Decoding Table, the algorithm goes through the list
and gets the decoding paths by accessing indexes in each
Key and every de_packet linked with it.

Algorithm 5 A Traditional Decoding Algorithm
Input: A stripe ST with erasure pattern EP
Output: A stripe ST with erasure strips recovered
1: for each stripe STi do
2: decode STi with EPG XOR-scheduling
3: end for

Algorithm 3 Caching Decoding Path Algorithm
Input: Decoding Table DT and a stripe STt with erasure pattern EPt

Output: A stripe STi with erasure strips recovered
1: for each Pattern node Patterni in DT do
2: if EPt = Patterni.erasure pattern then
3: set boolean Found = true
4: for each Key node Keyj linked to Patterni do
5: for each de packet node de packetk linked to Keyj do
6: XOR between two packets labeled by the indexes from Keyj and de packetk
7: end for
8: end for
9: end if
10: end for
11: if Found != true then
12: calculate decoding paths Pt

13: decode STt with Pt

14: cache Pt by extending DT
15: end if

A New Decoding Algorithm

We finally introduce our New Decoding Algorithm, with
which, both cached decoding path method and SWG XOR-
scheduling algorithm are used, as described in Algorithm 4:

Algorithm 4 A New Decoding Algorithm
Input: A stripe ST with erasure pattern EP
Output: A stripe ST with erasure strips recovered
1: for each stripe STi do
2: if erasure pattern EPi is found then
3: decode STi with SWG XOR-scheduling
4: else
5: calculate decoding paths Pi

6: decode STi with SWG XOR-scheduling
7: cache Pi

8: end if
9: end for

In comparison, if the decoding implementation includes
no cached decoding path method, and uses EPG XOR-sched-
uling algorithm, we call it a Traditional Decoding Algo-
rithm (or conventional decoding algorithm), as described
in Algorithm 5:

Performance Evaluation

In this section, we present experimental measurements to
show the performance improvement in decoding brought by
the new decoding algorithm for XOR-based codes. As men-
tioned in Sects. 1 and 2, we use STAR Code as a representa-
tive of XOR-based code for performance evaluation. Two
versions of STAR Code libraries are implemented: with one
using the new decoding algorithm, yet the other one using
traditional decoding algorithm introduced in Sect. 5. The
platform configurations are described in Sect. 3.

Typically, decoding performance of STAR Code is influ-
enced by many factors, such as blocksize, k and total number
of stripes [6, 7]. In this section, we first discuss the size of
cache used by implementing the new decoding algorithm,
then present two sets of experiment measurement results
based on different blocksize and k, respectively.

Practical Cache Size

In this subsection, we discuss the practical feasibility of the
new decoding algorithm by analysing the usage of cache.
The data structure and implementation are introduced with

	 SN Computer Science (2020) 1:126126  Page 16 of 19

SN Computer Science

more details in Sect. 5.2. Figure 17a and b showcase the
average size of cache used to store the decoding path in the
two sets of tests, which are derived from practical imple-
mentation experiments. Note that in the first set of tests over
blocksize, we consistently set k = 10 , and in the second set
over k, blocksize is set to 1 KB.

As shown in Fig. 17, the usage of cache is not influenced
by blocksize and grows as k increases. Even with relatively
large number of storage units (e.g., k = 17 ), the used cache
size is at most 4 KB for two-erasure case, and 11 KB for
three-erasure case. In a more general case (e.g., k = 10 ),
around 3 KB and 6 KB is consumed in cache for two-erasure
case and three-erasure case, respectively. Since most modern
CPUs provide L-1 cache of more than 512 KB, this can be
easily supported.

Blocksize

In the first set of experiments, we choose blocksize from 16
B to 4 KB, while keeping k equal to 10. As introduced in
Sect. 2, the prime number p required for STAR Code is set to
17 consistently throughout this subsection. All experiments
are conducted with 1000 and 2000 stripes, respectively. Sce-
narios of decoding two-erasure case and three-erasure case
are tested separately. Decoding one-erasure case is omitted,
since it is purely re-encoding as discussed in Sect. 4.2.1.
The results are displayed in Fig. 18. The x-axis represents
blocksize, and y-axis marks the decoding speed (in unit of
GB/s). The two lines on each graph, respectively, represent
decoding speed of STAR library with new decoding algo-
rithm and STAR library with traditional decoding algorithm.

Results on both platforms consistently indicate that
decoding speed is increased by around 10–50% with the
new decoding algorithm, compared with traditional decod-
ing algorithm. This boost is more obvious with the three-
erasure case than the two-erasure case, since in three-erasure

case, the decoding paths size is larger with higher decod-
ing computational complexity. Thus, having cached decod-
ing path method avoids a high load of redundant decoding
path computations. On the other hand, with more stripes
(2000 over 1000), more obvious improvement is achieved,
since more stripes lead to more redundant operations being
avoided apparently.

k

Next, we test impact of new decoding algorithm for various
k. In this set of experiments, we keep blocksize s 1 KB and
2 KB, respectively, and change k from 6 to 17 ( p = 17 con-
stantly). All experiments are executed with 1000 stripes. The
results are shown below in Fig. 19. The x-axis represents k,
and y-axis marks the decoding speed (in unit of GB/s). The
two lines on each graph, respectively, represent decoding
speed of STAR library with new decoding algorithm and
STAR library with traditional decoding algorithm.

It can be observed consistently from results on both plat-
forms that integrating new decoding algorithm improves the
general decoding performance by roughly 10–50%. Similar
to the observation in Sect. 6.2, three-erasure case, which
needs more computation in deciding decoding paths, brings
greater improvement to the decoding performance, compar-
ing to two-erasure case. Moreover, greater improvement is
achieved with more stripes (2000 over 1000) as well. This
is because with more stripes, more redundant computation
of decoding paths is avoided.

Conclusions and Future Work

This paper proposes a new decoding algorithm, to improve
decoding performance of XOR-based erasure codes. Decod-
ing speed of a XOR-based erasure code is typically impacted

Fig. 17   Average cache size

SN Computer Science (2020) 1:126	 Page 17 of 19  126

SN Computer Science

by two factors: decoding computational complexity and
cache behavior. Based on these two factors, this paper:

1.	 studies the cached decoding path method with which
decoding performance can be improved by avoiding
redundant computation of decoding paths in various
stripes. This cached decoding path method has been

utilized by STAR code and can be further adapted by
other XOR-based codes;

2.	 Observes different erasure patterns as well as how the
size of decoding paths stored impacts CPU cache with
general strip rotation, and then designs a data struc-
ture to store decoding paths in CPU. This observation
enhances practical utilization of the cached decoding

Fig. 18   Improvement from new decoding algorithm in STAR Code for different blocksize 

Fig. 19   Improvement from new decoding algorithm in STAR Code for different k 

	 SN Computer Science (2020) 1:126126  Page 18 of 19

SN Computer Science

path method so that it reduces both the occupied cache
size and unnecessary computation;

3.	 Extends research in [19] and [20], in which encoding
performance is optimized using a more cache-efficient
XOR-scheduling algorithm. This paper proposes a simi-
lar XOR-scheduling technique to improve decoding per-
formance using cache efficiently as well;

4.	 Combines both the cached decoding path method and
the SWG XOR-scheduling algorithm to derive a new
decoding algorithm for XOR-based erasure codes. The
new decoding algorithm is implemented into STAR
code, and different sets of experiments on two platforms
are conducted in Sect. 6. Results on both platforms con-
sistently indicate that, with the new decoding algorithm,
decoding speed of STAR Code is improved considerably
by 10–50%.

The purpose of this paper is to combine the efficient XOR
scheduling and caching technique and propose a new decod-
ing algorithm for XOR-based erasure codes, which can be
readily implemented by data storage practitioners to improve
the decoding performance for their systems or applications.
Due to the limitation of time and equipment in our lab, the
evaluation of the proposal is currently based on STAR code.
However, the new decoding algorithm can be readily applied
to other XOR-based codes since the principle is clear and
adaptable, though some minor modifications are needed.
Thus, from the consistent results shown in this paper, we
can reasonably expect similar results for other XOR-based
codes. Data storage practitioners and researchers are also
welcomed to share their evaluation results with us.

In the future, we intend to implement into other XOR-
based codes, such as RDP Code and SD Code, to benchmark
the performance improvement, and we plan to separately
evaluate the impact from the caching technique and the SWG
scheduling on those codes. We also plan to explore the fea-
sibility of the new decoding algorithm on Reed-Solomon
Code, by integrating the proposal into practical libraries
such as Jerasure and Intel’s ISA-L. Since both of those
libraries use an inverted Vandermonde matrix to decode, the
new decoding algorithm can be applied with some modifica-
tions. In the meantime, we look forward to results from other
researchers and storage system practitioners by adopting this
new decoding algorithm in their systems and applications.

Compliance with Ethical Standards 

Conflict of Interest  Author R. Chen and author L. Xu declare that they
have no conflict of interest.

References

	 1.	 Amazon EC. Amazon web services. 2015. http://aws.amazo​n.com/
es/ec2/. Accessed Nov 2012.

	 2.	 Blaum M. A family of MDS array codes with minimal number of
encoding operations. In: 2006 IEEE International Symposium on
Information Theory, IEEE 2006, p. 2784–2788.

	 3.	 Blaum M, Brady J, Bruck J, Menon J. Evenodd: an efficient
scheme for tolerating double disk failures in raid architectures.
IEEE Trans Comput. 1995;44(2):192–202.

	 4.	 Blaum M, Bruck J, Vardy A. MDS array codes with independent
parity symbols. IEEE Trans Inf Theory. 1996;42(2):529–42.

	 5.	 Blaum M, Roth RM. New array codes for multiple phased burst
correction. IEEE Trans Inf Theory. 1993;39(1):66–77.

	 6.	 Chen R, Xu L. Adapting star code for non-volatile memory sys-
tems. Flash Memory Summit; 2018. The proceedings list can be
found at https​://www.flash​memor​ysumm​it.com/Engli​sh/Colla​teral​
s/Proce​eding​s/2018/Proce​eding​s_Chron​o_2018.html. The pres-
entation content can be found at https​://www.flash​memor​ysumm​
it.com/Engli​sh/Colla​teral​s/Proce​eding​s/2018/20180​809_CTLR-
301-1_Chen.pdf.

	 7.	 Chen R, Lihao X. Practical performance evaluation of space
optimal erasure codes for high-speed data storage systems. SN
Comput Sci. 2020;1(1):1–14.

	 8.	 Corbett P, English B, Goel A, Grcanac T, Kleiman S, Leong J,
Sankar S. Row-diagonal parity for double disk failure correction.
In: Proceedings of the 3rd USENIX Conference on file and storage
technologies; 2004. p. 1–14.

	 9.	 Fujita H. Modified low-density MDS array codes. In: 2006 IEEE
International Symposium on Information Theory, IEEE; 2006. p.
2789–2793.

	10.	 Ghemawat S, Gobioff H, Leung S-T. The Google file system, vol.
37. New York: ACM; 2003.

	11.	 Huang C, Simitci H, Xu Y, Ogus A, Calder B, Gopalan P, Li J,
Yekhanin S. Erasure coding in windows azure storage. In: Pro-
ceedings of 2012 USENIX Annual Technial Conference, ATC’12.
USENIX; 2012.

	12.	 Huang C, Lihao X. Star: an efficient coding scheme for cor-
recting triple storage node failures. IEEE Trans Comput.
2008;57(7):889–901.

	13.	 Dylan B (Intel). Intel®c++ compiler 17.0 developer guide and
reference, https​://softw​are.intel​.com/en-us/intel​-cplus​plus-compi​
ler-17.0-user-and-refer​ence-guide​, 2016. Accessed Dec 2019.

	14.	 Thai L (Intel). Optimizing storage solutions using the
intel®intelligent storage acceleration library. 2014. https​://softw​
are.intel​.com/en-us/artic​les/optim​izing​-stora​ge-solut​ions-using​
-the-intel​-intel​ligen​t-stora​ge-accel​erati​on-libra​ry. Accessed Sept
2014.

	15.	 Khan O, Burns RC, Plank JS, Pierce W, Huang C. Rethinking
erasure codes for cloud file systems: minimizing i/o for recovery
and degraded reads. In: FAST; 2012, p. 20.

	16.	 Kiani A, Akhlaghi S. A non-MDS erasure code scheme for stor-
age applications. arXiv preprint arXiv​:1109.6646, 2011. Accessed
Sept 2011.

	17.	 Luby M. Lt codes. In: The 43rd Annual IEEE symposium on
foundations of computer science, 2002. Proceedings IEEE; 2002.
p. 271–280.

	18.	 Luby MG, Mitzenmacher M, Shokrollahi MA, Spielman DA,
Stemann V. Practical loss-resilient codes. In: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing,
ACM; 1997. p. 150–159.

	19.	 Luo J, Shrestha M, Lihao X, Plank JS. Efficient encoding
schedules for xor-based erasure codes. IEEE Trans Comput.
2014;63(9):2259–72.

http://aws.amazon.com/es/ec2/
http://aws.amazon.com/es/ec2/
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2018/Proceedings_Chrono_2018.html
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2018/Proceedings_Chrono_2018.html
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2018/20180809_CTLR-301-1_Chen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2018/20180809_CTLR-301-1_Chen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2018/20180809_CTLR-301-1_Chen.pdf
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide
https://software.intel.com/en-us/articles/optimizing-storage-solutions-using-the-intel-intelligent-storage-acceleration-library
https://software.intel.com/en-us/articles/optimizing-storage-solutions-using-the-intel-intelligent-storage-acceleration-library
https://software.intel.com/en-us/articles/optimizing-storage-solutions-using-the-intel-intelligent-storage-acceleration-library
http://arxiv.org/abs/1109.6646

SN Computer Science (2020) 1:126	 Page 19 of 19  126

SN Computer Science

	20.	 Luo J, Xu L, Plank JS. An efficient xor-scheduling algorithm for
erasure codes encoding. In: Dependable systems and networks,
2009. DSN’09. IEEE/IFIP International Conference on IEEE;
2009. p. 504–513.

	21.	 MacWilliams FJ, Sloane NJA. The theory of error-correcting
codes. Amsterdam: Elsevier; 1977.

	22.	 Méasson C, Montanari A, Urbanke R. Maxwell construction: The
hidden bridge between iterative and maximum a posteriori decod-
ing. IEEE Trans Inf Theory. 2008;54(12):5277–307.

	23.	 Palankar MR, Iamnitchi A, Ripeanu M, Garfinkel S. Amazon s3
for science grids: a viable solution? In: Proceedings of the 2008
international workshop on Data-aware distributed computing,
ACM; 2008. p. 55–64.

	24.	 Paolini E, Liva G, Matuz B, Chiani M. Maximum likelihood eras-
ure decoding of ldpc codes: Pivoting algorithms and code design.
IEEE Trans Commun. 2012;60(11):3209–20.

	25.	 Papailiopoulos DS, Dimakis AG. Locally repairable codes. IEEE
Trans Inf Theory. 2014;60(10):5843–55.

	26.	 Plank JS, Greenan KM. Jerasure: a library in c facilitating eras-
ure coding for storage applications–version 2.0. Technical report,
Technical Report UT-EECS-14-721, University of Tennessee;
2014.

	27.	 Plank JS, Luo J, Schuman CD, Xu L, Wilcox-O’Hearn Z, et al. A
performance evaluation and examination of open-source erasure
coding libraries for storage. Fast. 2009;9:253–65.

	28.	 Reed IS, Solomon G. Polynomial codes over certain finite fields.
J Soc Ind Appl Math. 1960;8(2):300–4.

	29.	 Rizzo L. Effective erasure codes for reliable computer commu-
nication protocols. ACM SIGCOMM Comput Commun Rev.
1997;27(2):24–36.

	30.	 Sathiamoorthy M, Asteris M, Papailiopoulos D, Dimakis AG,
Vadali R, Chen S, Borthakur D. Xoring elephants: novel erasure
codes for big data. Proc VLDB Endow. 2013;6:325–36.

	31.	 Shokrollahi A. Raptor codes. IEEE Trans Inf Theory.
2006;52(6):2551–67.

	32.	 SANS Institute Stephen Lennon. Backup rotations—a final
defense. 2001. https​://www.sans.org/readi​ng-room/white​paper​s/
sysad​min/paper​/305. Accessed Aug 2001.

	33.	 Suzuki K, Swanson S. A survey of trends in non-volatile memory
technologies: 2000-2014. In: Memory Workshop (IMW), 2015
IEEE International, IEEE; 2015. p. 1–4.

	34.	 Waddington D, Harris J. Software challenges for the changing
storage landscape. Commun ACM. 2018;61(11):136–45.

	35.	 Xu L, Bruck J. X-code: MDS array codes with optimal encoding.
IEEE Trans Inf Theory. 1999;45:272–6.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.sans.org/reading-room/whitepapers/sysadmin/paper/305
https://www.sans.org/reading-room/whitepapers/sysadmin/paper/305

	A New Decoding Algorithm for XOR-Based Erasure Codes
	Abstract
	Introduction
	Background
	Experiment Setup
	System Configuration
	Baseline Evaluation

	Basics of Decoding
	Path and Computational Complexity
	Overhead of Computing Decoding Paths
	Case 1: One Erasure
	Case 2: Two Erasures
	Case 3: Three Erasures

	Cached Decoding Path Method
	Strip Rotation

	A New Decoding Algorithm
	XOR-Scheduling Algorithms
	Caching Decoding Path
	A New Decoding Algorithm

	Performance Evaluation
	Practical Cache Size
	Blocksize
	k

	Conclusions and Future Work
	References

