
Vol.:(0123456789)

SN Computer Science (2020) 1:54
https://doi.org/10.1007/s42979-019-0057-1

SN Computer Science

ORIGINAL RESEARCH

Practical Performance Evaluation of Space Optimal Erasure Codes
for High‑Speed Data Storage Systems

Rui Chen1  · Lihao Xu1

Received: 12 October 2019 / Accepted: 12 December 2019 / Published online: 23 December 2019
© Springer Nature Singapore Pte Ltd 2019

Abstract
As erasure codes have been widely adopted in most large-scale data storage systems and applications, implementations of
high-performance erasure codes have been improved significantly in recent years, especially by employing Intel’s Streaming
SIMD Extensions (SSE) instructions. Augmenting the survey work in Plank et al. (Fast, 9:253–65, 2009) conducted almost
a decade ago, this paper compares practical performance of three open-source or public domain erasure coding libraries,
namely Jerasure and Intel’s ISA-L for RS code, and a STAR code implementation. The goal of this paper is to provide data
storage practitioner a guideline when they choose a proper erasure code for storage applications and systems that need high
performance in encoding and decoding operations in the order of GBs/s. Additionally, this paper identifies a practical tech-
nique that can further improve decoding performance of RS code greatly for both Jerasure and ISA-L for the most frequent
disk failure pattern, i.e., one disk failure.

Keywords  Erasure codes · Performance evaluation · Data storage systems

Introduction

By now, it has been well known in data storage commu-
nity that erasure codes play an important role in achieving
data reliability of large-scale data storage systems and they
are widely used in many systems, such as Amazon’s S3 [9,
24], Google’s File System [10] and its successor Colossus
[5], Microsoft’s Azure [14, 15], and Facebook’s storage
systems [29, 33]. Instead of direct mirroring or replication,
erasure code can more economically utilize storage space
and network bandwidth (when distributing data) to achieve
same degree of data reliability. The cost, of course, is extra
computation needed for both encoding (for data writes) and
decoding (for data reads when failures occur). It has been
perceived that erasure code encoding and decoding opera-
tions have not become a critical bottleneck in most data stor-
age systems. However, the following emerging technologies
and trends indicate encoding and decoding speeds of erasure

codes employed become more and more critical in affecting
to deciding overall storage system performance and cost:

1.	 The emerging technologies such as flash-based solid-
state drive (SSD), non-volatile memory (NVM), and
3D XPoint technology, are blurring speed boundary
between main memory and persistent storage, making
persistent storage IO speed easily reaching GB/s [19, 34,
36]. It thus calls for erasure code encoding and decoding
operations to at least match such IO speeds for high-
performance storage systems consisting of NVM arrays.

2.	 Most large-scale data centers deploy virtual machines to
satisfy data storage needs. As an essential component of
storage system, computation savings from erasure code
encoding and decoding operations can be more effec-
tively used for other operations in the whole system, not
just the storage subsystem, thus making data center more
efficient and economical.

3.	 Furthermore, software-defined storage systems (SDS)
also call for more efficient erasure code encoding and
decoding operations to improve overall system’s perfor-
mance [11].

It has been almost a decade since last time performance
of then-popular open-source erasure code libraries was

 *	 Rui Chen
	 chenrui@wayne.edu

	 Lihao Xu
	 lihao@wayne.edu

1	 Wayne State University, Detroit, MI 48202, USA

http://orcid.org/0000-0003-3540-418X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-019-0057-1&domain=pdf

	 SN Computer Science (2020) 1:5454  Page 2 of 14

SN Computer Science

evaluated [28]. Ever since then, implementations of exist-
ing erasure codes, mainly the versatile Reed–Solomon code
[32], have been improved a lot, especially by employing
Intel’s Streaming SIMD Extensions (SSE) instruction set [8]
for efficient finite field operations and XORs [27]. Another
change in erasure code practice since then is the use of so-
called local reconstruction codes (LRC) [14] and sector-disk
(SD) codes [25] to reduce the amount of data needed to be
read when recovering one disk/node failure at the cost of
slightly more storage space overhead, but the underlining
erasure code used as component for these codes is still basi-
cally the Reed–Solomon or an XOR-based erasure code. So
it is now time again to evaluate performance of current pop-
ular implementations of open-source erasure code libraries.
In addition, we evaluate a public domain erasure code [13]
as well, which can be readily implemented by data storage
practitioners. We choose not to include patented erasure
codes, such as the RDP code [6] and its extension, since
they are not widely employed in other storage systems. The
goal of this paper is to provide a guideline for data storage
community to choose suitable erasure code for their systems
and applications, especially those with high performance
needs and requirements.

This paper is organized as follows: the next section intro-
duces the basics of erasure codes and related work, followed
by which preliminary experimental results for performance
evaluation are described; detailed performance evaluations
of encoding and decoding are presented in the next two sub-
sequent sections, respectively; the final section concludes
the paper.

Erasure Codes and Related Work

Erasure codes are mathematical transformations to provide
reliability for various data storage systems [21, 28]. For an
(n, k, m) erasure code, an original message or data consists
of k equal size symbols, then m parity symbols are computed
from the k data symbols, through an encoding operation. The
k data symbols and m parity symbols together form a code-
word of n symbols, where n = k + m , such that loss or eras-
ure of any e symbols can be tolerated, i.e., the original k data
symbols can still be exactly recovered from the surviving
n − e symbols through a decoding operation. Obviously, by
the simple pigeonhole principle, n − e ≥ k , i.e, e ≤ m . When
e = m , such an erasure code is called the Maximum Distance
Separable or simply MDS code [21]. An MDS erasure code
is optimal in terms of space efficiency for a designed erasure
recovery degree (e) and, therefore, is most desired in many
systems and applications, including data storage systems.
Thus, all erasure codes discussed in this paper are MDS
codes. Note again that an LRC code or an SDC code just
employs an MDS code as a component code.

Now we define erasure code-related nomenclature in the
context of data storage system, which will be used through-
out this paper. A data storage system is composed of an
array of n disks in total. Each individual disk has the same
size. These n disks are partitioned into two categories: k of
them contain the original data, and m of them contain the
redundant coding data that are calculated from the original
data. We call the first category the data disks, while the
second category the parity disks. We label the data disks
D0 , D1,… ,Dk−1 and the parity disks C0,C1,… ,Cm−1 . An
erasure code for such a system is represented as a (k, m)-
code. Obviously, we have n = m + k. Such a typical system
can be described as in Fig. 1.

The encoding operation, where the content of m parity
disks is computed from those of the k data disks, partitions
each disk into several strips (blocks or symbols) of a certain
size, called blocksize. When an encoding/decoding opera-
tion is performed, one strip will be used from each disk.
All together, n (n = k + m) strips will be used. This group
of n strips is called a stripe or codeword. Thus, the whole
storage system is an array consisting of n disks. Each stripe
is a sub-array consisting of n strips. Here each disk is repre-
sented as a column in the array.

When encoding and decoding operations are performed,
each strip is partitioned into r rows. This r is usually decided
by erasure code algorithm employed. For each strip, each
row is simply an operation unit of a packet. Its size is called
packetsize, thus blocksize = packetsize × r. Each stripe is
encoded and decoded independently, so that load balancing
can be achieved by performing rotating and switching the
disks’ identities for each stripe. It is easy to see that in a
distributed system, each disk can be just a single node. But
throughout this paper, we stick to the term disk.

As already mentioned, since MDS codes are optimal in
space usage, this paper focuses only on the MDS codes,
where loss of any up to m disks can be tolerated. Over the
years, quite some MDS codes have been designed and imple-
mented. Based on the basic computation employed in encod-
ing and decoding operations, they in general belong to two

Fig. 1   A typical storage system with erasure codes

SN Computer Science (2020) 1:54	 Page 3 of 14  54

SN Computer Science

classes: (1) finite field operations are needed; (2) only simple
binary XORs (exclusive-OR) are needed. This first class is
represented by the most versatile and powerful Reed–Solo-
mon code [32]. Codes in the second class are often called
the array codes, examples of which include the EVENODD
code [2] and its generalizations [3], the X-Code [37], the
RDP code [6], and the STAR code [13] and generalized RDP
code [4]. Finite field operations are often more expensive
than simple binary XORs, but erasure codes in the first class
can have more flexible choice of (k, m), whereas array codes
in the second class so far only have limited choice of m. For
example, m = 2 for the EVENODD code, X-Code and RDP
code, and m = 3 for the STAR code and generalized RDP
code [4].

There exist various implementations of erasure codes and
this paper does not intend to repeat good survey results in
[28], thus only focuses on results that will supplement those
in [28]. Due to its versatileness and long history, not surpris-
ingly, Reed–Solomon code has been employed in most data
storage systems for m ≥ 3 either directly or as a component
code for LRC type erasure codes.

Reed–Solomon code

Reed–Solomon (RS) code dates back to the 1960s [32].
Original RS code was described in polynomial form, but
now most of its implementations adopt matrix form for
easy understanding and implementation to be used as
erasure codes (RS codes are much more than just erasure
codes, more importantly, they can correct errors in vari-
ous communication and storage systems [18]). Using our
terms described above, RS code assumes that each code-
word packet, i.e., packet in a strip (block), is a w-bit word
and r = 1 . Here w must satisfy n ≤ 2w + 1. Usually, w ∈
{8, 16, 32, 64}, and is decided by the user, as long as it
satisfies n ≤ 2w + 1. Smaller w requires less computation,
thus yields better performance. In most use cases, w = 8 is
sufficient to meet most system needs of n. Each packet in
Reed–Solomon code is treated as a number between 0 and
2w − 1 , and these numbers are operated in a finite field or
Galois field (GF(2w)) . Galois field arithmetic is a closed
and well-behaved system, in which addition, multiplication
and division are defined.

Encoding of Reed–Solomon code is simply linear alge-
bra. A Generator matrix ( GT ) is constructed from a Van-
dermonde matrix. GT is then multiplied by the k data strips
(blocks) to create a codeword, consisting of k data and m
parity strips (blocks). This process is illustrated as in Fig. 2,
where k = 4 and m = 2.

When disk erasures (failures) occur, the decoding process
is equivalent to solving a set of independent linear equa-
tions, by deleting rows of GT , inverting it, and multiplying
the inverse by the surviving blocks. Since GT is constructed

from the Vandermonde matrix, it is ensured that the matrix
inversion is always successful.

The disadvantage of Reed–Solomon code is that, in
Galois field arithmetic, while addition is equivalent to bit-
wise exclusive-or (XOR) [20], multiplication is more com-
plicated, typically implemented with multiplication tables or
discrete logarithm tables [12]. This makes Reed–Solomon
code computationally expensive.

One development since performance evaluation of
Reed–Solomon code in [28] is that Intel’s SSE [8] has
included fast multiplication operations for finite field using
parallel multiplication table lookups and thus improv-
ing multiplication speeds significantly [27]. Both Jerasure
2.0 [26] and Intel’s ISA-L [16] have adopted this speedup
technology, which will be focuses of this paper. In both
libraries, basic finite field multiplications are performed
over a 128-bit word instead of 8-bit word (even though w
remains to be 8, i.e., the finite field used is still GF(28)),
hence packetsize = 16 bytes.

STAR code

Designed in 2007 [13], the STAR code belongs to array
code class. It is both an alternative and an extension of the
EVENODD code that was designed in 1994 [2].

STAR code is an efficient erasure code using only XOR
operations. STAR code can tolerate up to three disk erasures
[13]. As introduced before, erasure code consists of k data
disks and m parity disks. For STAR code, m = 3, k ≤ p ,
where p is a prime number and r = p − 1 as shown in Fig. 1.

Performance evaluation of other array codes of m = 2 ,
such as the EVENODD code and the RDP code, was con-
ducted and presented in [28], but practical performance of
STAR code has not been published. Thus, this paper will
use STAR code as a representative of array codes for per-
formance study, for the reasons: (1) EVENODD code is a
just a special case of STAR code for m = 2 , in fact, decod-
ing performance of STAR code for recovering from 1 or
2 disk erasures well represents that of EVENODD code;
(2) encoding and decoding performance of m = 3 has more
meaningful guidance for modern storage systems that need
higher reliability degree.





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3




∗





d0
d1
d2
d3



 =





d0
d1
d2
d3
c0
c1





GT Data Codeword

Data

Parity

Fig. 2   Reed–Solomon code encoding process

	 SN Computer Science (2020) 1:5454  Page 4 of 14

SN Computer Science

The general structure of STAR code is very similar to
the EVENODD code. On top of EVENODD code, STAR
code adds one additional parity column. The encoding com-
plexities averaged over parity data of EVENODD and STAR
codes are the same, but the decoding complexity of STAR
code is more optimized. XOR is the only operation that is
used in STAR, for both encoding and decoding. Figure 3
shows a typical structure of STAR code with k = 5, and how
parity column III is generated. Note that the bottom row
is an imaginary row. More comprehensive description and
analysis of STAR code can be found in [13].

Open Source Libraries

There have been a number of open source erasure coding
libraries that support RS code, such as Jerasure [26] and
Intel’s ISA-L [16] in C, BackBlaze [1] in Java, Zfec [23]
in Python. While there is no open source library of STAR
code yet, its encoding and decoding algorithms are in public
domain [13], unlike EVENODD code or RDP code, both of
which were patented. We thus implemented our own version
of STAR code in C, with some performance optimization
techniques we developed [20]. Throughout this paper, this
version of STAR code implementation is used for all tests.

For high performance, the following open source imple-
mentations of the RS code are selected for tests in this paper,
as well as our implementation of STAR code:

•	 Jerasure [26] Jerasure is an open source library written
in C. It supports erasure coding in storage applications.
A variety of erasure codes are integrated in Jerasure,
including Reed–Solomon code. Reed–Solomon code
may be based on Vandermonde or Cauchy matrices.
But the Vandermonde implementation has been better
supported and achieves better performance by utilizing
Intel’s SIMD instructions. Thus, only the performance
of the Vandermonde implementation of RS code is pre-
sented in this paper. A user can choose different param-
eters such as blocksize and finite field word size w. From
our tests, for a practical storage system with less than 256
disks in total for a stripe, w = 8 gives best encoding and
decoding performance. Thus, only test results of w = 8
are presented in this paper.

	  Jerasure includes a comprehensive implementation of
finite field operations using Intel’s SSE, which gives a
competitive performance of Reed–Solomon code among
open source implementations. To use Jerasure Library,
GF-Complete Library [27] must be installed first. In
this paper, we use Jerasure 2.0 (together with GF-Com-
plete 1.02, both latest versions available) as a tool to test
encoding and decoding performance of Reed–Solomon
code.

•	 Intel ISA-L Intel’s Intelligent Storage Acceleration
Library (Intel ISA-L) is an open source library devel-
oped by Intel [16]. It supports not only erasure codes, but
also RAID, Cyclic Redundancy Check, etc. It uses Reed–
Solomon code as erasure codes. Intel ISA-L is majorly
implemented in C, but some key components are imple-
mented in assembly language to optimize performance.
In this paper, Intel ISA-L v2.14.1 is used to test encoding
and decoding performance of Reed–Solomon code.

•	 STAR code As shown later in "Impact of Intel’s SSE",
Intel’s SSE instruction of 128-bit XOR does bring sig-
nificant performance improvement for STAR code as
well, thus implementation of STAR code in this paper
does utilize SSE speedup too.

Experiment Setup and Baseline
Measurement for Performance Evaluation

First, we describe basic system setup for all experiments in
this paper. All tests are conducted on two platforms, namely
Lenovo Thinkcentre M900 and Intel NW200 Roke (M900
and NW200 in brief). As shown in Table 1, Lenovo Think-
Centre M900 has a CPU of Intel’s i5-6500 (4 cores), which
has 256 KB of L-1 cache, 1024 KB of L-2 cache and 6
MB of L-3 cache. It has a total memory of 4 GB. Ubuntu
16.04.3 LTS is installed on the machine, with gcc version
of 5.4.0. On the other hand, Intel NW200 Roke is equipped
with a CPU of Intel’s Xeon E3-1275 (8 cores), which has
512 KB of L-1 cache, 2048 KB of L-2 cache and 8 MB
of L-3 cache. It has a total memory of 32 GB, with OS of
Ubuntu 17.10. The gcc version is 7.2.0. When compiling,

Fig. 3   STAR code: generating parity column III

Table 1   Test platform configurations

Platform CPU model L1 cache L2 cache L3 cache

M900 Intel(R)
Core(TM)
i5-6500 @
3.20 GHz

256 KB 1 MB 6 MB

NW200 Intel(R)
Xeon(R)
E3-1275 @
3.60 GHz

512 KB 2 MB 8 MB

SN Computer Science (2020) 1:54	 Page 5 of 14  54

SN Computer Science

gcc uses −O3 option consistently for all testing programs. To
fully use all levels of caches and provide smoother measure-
ments, enough iterations are executed with the results being
averaged.

For all experiments, data file is split and encoded into
n = k + m pieces. Each piece is stored on a separated disk,
so that the system tolerates up to m disk erasures. In other
words, the encoder of all libraries will read a data file,
encode it, and write it to k + m data/parity files, while the
decoder will read the k + m data/parity files, and reconstruct
the original file.

For the same reason as in other tests [20, 27, 28], all test
operations in this paper are performed in memory with no
actual disk I/O involved so that encoding and decoding per-
formance can be assessed more accurately. Thus, for the rest
of this paper, a file really refers to data already in memory.
We adopt the exact same method in [28] for measuring time
and calculating encoding and decoding speeds.

Baseline Performance

The speeds of basic memcpy and XOR are used to repre-
sent the baseline performance of the testing platforms. The
results are shown in Fig. 4. Note that for the baseline tests,
the blocksize is set to 1KB or 2KB and the testing data size
is 1000 stripes (codewords). (Throughout this paper, all
test results are measured by averaging over 1000 stripes to
mitigate fluctuations in individual test result.) The x-axis
represents the number of data disks k, starting from 6 to 17
to reflect configurations in usual practical storage systems,
while the y-axis represents the throughput in GB/s. The aver-
age speeds of memcpy and XOR are very close to each other,
while memcpy is slightly faster than XOR, which is not sur-
prising. Also note that performance is better with blocksize
of 2 KB than 1 KB for both memcpy and XOR because of
better use of caches.

Impact of Intel’s SSE

Now we examine impact of Intel’s SSE on performance of
encoding and decoding. Intel’s Streaming SIMD Extensions
(SSE) has been widely integrated in modern microproces-
sors of many brands [35]. Intel’s SSE provides eight 128-
bit general-purpose registers, each of which can be directly
addressed using the register names XMM0 to XMM7. Each
register consists of four 32-bit single-precision, floating-
point numbers, numbered from 0 through 3 [8]. As shown
in Fig. 5, when performing XORs, Intel’s SSE performs the
SIMD XOR of the four packed single-precision floating-
point values from the source operand and the destination
operand, and then stores the packed single-precision float-
ing-point results in the destination operand. The source oper-
and can be an XMM register or a 128-bit memory location.
The destination operand is an XMM register.

Intel SSE instructions are already integrated in both
Jerasure and ISA-L [16, 26] to accelerate finite field mul-
tiplication speed, and thus encoding and decoding perfor-
mance of RS code. They can also be used to speed up XORs
used in STAR code:

•	 __m128 dst = _mm_load_ps (float const* mem_addr)
loads 128 bits (composed of four packed single-precision
(32-bit) floating-point elements) from memory into dst.
mem_addr must be aligned on a 16-byte boundary.

Fig. 4   Baseline performance of testing platforms

Fig. 5   Intel SSE XOR operation between xmm0 and xmm1

	 SN Computer Science (2020) 1:5454  Page 6 of 14

SN Computer Science

•	 void _mm_store_ps (float* mem_addr, __m128 a) stores
128 bits (composed of four packed single-precision (32-
bit) floating-point elements) from a into memory. mem_
addr must be aligned on a 16-byte boundary.

•	 __m128 dst = _mm_xor_ps (__m128 a, __m128 b) com-
putes the bitwise XOR of four packed single-precision
(32-bit) floating-point elements a and b, and store the
results in dst.

To examine performance improvement brought by SSE, two
different versions of STAR code have been implemented
and compared: one without using Intel’s SSE and the other
using Intel’s SSE. In the tests, k ranges from 6 to 17, and
blocksize is set to 1 KB and 2 KB. Test results are shown
in Fig. 6, with x-axis representing k and y-axis represent-
ing the encoding/decoding speed in GBs/s. Decoding is for
recovering three erasures. Again, results are not surprising:
by applying Intel’s SSE, STAR code’s encoding/decoding
speeds are indeed improved by about 30–80%, averaging
more than 50%. Thus, for the rest of this paper, only results
of STAR code’s SSE implementation will be presented.

Encoding Performance Evaluation

Now we study practical encoding performance of RS codes
and STAR codes. As already shown in [28], many factors
greatly affect performance of both Reed–Solomon codes and
STAR codes, such as the number of data columns k, the
number of parity columns m, encoding block size blocksize,
size of total data to be encoded/decoded, cache sizes of the
testing machine and activities of other applications. Thus, all
measurement results shown in this paper can only represent
a general guidance or indication instead of accurate predic-
tions in production systems. To make maximum use of all
levels of caches (L-1 to L-3) and make all measurements
more smooth, as already noted enough iterations (1000 code-
words or stripes) are run and results are averaged. Note for
fair comparisons, m = 3 for all tests; and for best perfor-
mance, w = 8 in both Jerasure and ISA-L for Reed–Solomon

code implementations, with 128-bit GF(28 ) multiplication
using Intel’s SSE. Adopting the same experimental meth-
odology in [28], we study effects of various parameters on
encoding performance and decoding performance as well in
"Decoding Performance Evaluation".

Impact of Blocksize

For practical storage applications and systems, k and m are
usually decided by needs or requirements, leaving little room
to change to tune encoding or decoding performance for an
erasure code. Hence, the most important parameter affecting
encoding/decoding performance is blocksize.

As described in "Erasure Codes and Related Work", block
is the basic operation unit for encoding and decoding com-
putation on each disk, and files are split into blocks before
being passed to erasure coding library. From Fig. 1,
blocksize = packetsize × r . For RS code in Jerasure and ISA-
L, packetsize = 16 (bytes), and r is thus decided by blocksize
specified by user/application: r =

⌈

blocksize

16

⌉

 . For STAR code,
XORs are performed using Intel’s SSE over 128-bit word
(16 bytes), but r = p − 1 , where p has to be a prime no less
than k. For best performance, p needs to be as small as pos-
sible. Hence, given k and blocksize, p is first chosen to the
smallest prime number no less than k and then packetsize is
decided by packetsize = 16 ×

⌈

blocksize

16×r

⌉

 . For both codes, the
real coding block size is then computed as
blocksize = packetsize × r , i.e., not necessarily exactly same
as the blocksize specified by user/application, but fairly
close.

In most practical storage systems or applications, though,
the blocksize is preferable to be in the form of 2b (where b
is a positive integer) bytes, such as 1 KB, 2 KB, 4 KB or
even 8 KB. This is easily achievable for the RS code, as
packetsize = 16 = 24 (bytes).

On the other hand, for STAR code, if r is not in the form
of 2c , blocksize cannot be in the form of 2b bytes, even
though packetsize can always and should be chosen to be in
the form of 2d bytes. Recall r = p − 1 for STAR code, where

Fig. 6   SSE’s impact on STAR code performance: encoding and decoding for three erasures

SN Computer Science (2020) 1:54	 Page 7 of 14  54

SN Computer Science

p is a prime number no less than k. Fortunately, p = 17 is
a prime with corresponding r = 16 = 24 . This choice of p
can support a STAR code with k (number of data disks) up
to 17, which can meet needs of most systems and applica-
tions. For larger systems and applications where k needs
to be larger than 17, p can then be chosen to be 257 with
r = 256 = 28 . When r is too large compared to k, encoding/
decoding performance will degrade a bit, as will be shown
later. Thus, in most of following tests in this paper, when
k ≤ 17 , p is chosen to be 17 and r = 16 for STAR code, with
packetsize = blocksize∕16.

To illustrate the impact of blocksize on encoding per-
formance, test results for k = 10 are shown in Fig. 7 with
blocksize ranging from 1 to 32 KB. Such a k is just to reflect
usual application or system setting. These results on both
platforms consistently show that both Jerasure and STAR
see higher encoding throughput as blocksize increases, this
is due to better L-2 and L-3 cache uses for either finite field
multiplication or XOR. On the other hand, ISA-L’s encoding
performance remains relative stable as blocksize increases;
it is perhaps because ISA-L’s finite field multiplication is
implemented in assembly language and already optimized
using different levels of caches, especially L-1 cache.

As of performance comparison, ISA-L is obviously a bet-
ter implementation than Jerasure, which is not surprising,
as ISA-L is improved upon Jerasure with better usage of
L-1 cache using assembly language to achieve finite field
multiplication. On the other hand, with SSE help for both
finite field multiplication and XOR, XOR is still significantly
faster than finite field multiplication, and thus STAR code
enjoys higher encoding throughout than ISA-L, especially
when blocksize increases.

Impact of k

As already discussed, k is usually decided by application
or storage system, we still like to examine how encoding
performance fluctuates for different ks so that when there

is room to choose a different k for an application or stor-
age system, a proper k can be chosen for better encoding
performance.

Figure 8 illustrates encoding performance as k varies
from 6 to 17 (to meet most needs of most storage applica-
tions and systems) for typical encoding block sizes of 1 KB,
2 KB and 4 KB, respectively.

For all the three block sizes, Jerasure’s encoding perfor-
mance seems to be most stable against k, albeit at much
lower throughput than that of either ISA-L or STAR. Both
ISA-L and STAR, on the other hand, do exhibit fluctuations
in encoding performance as k changes. Also consistent with
Fig. 7, on both platforms, ISA-L outperforms Jerasure, while
STAR performs best among the three implementations for
all k and blocksize, though it seems STAR has slightly higher
gains over ISA-L on i5 core than Xeon, while relative per-
formance differences between ISA-L and Jerasure appear to
be close on the two platforms.

Thus, from encoding performance point of view, if use
of RS code is a requirement, then ISA-L is a much better
choice than Jerasure; otherwise, STAR is preferable to ISA-
L. The weakness of STAR and other known array codes, is
limitation of m, which can only be 3 to support reliability
of tolerating up to disk failures at the same time. If more
failures need to be supported, RS code has to be used.

Decoding Performance Evaluation

In this section, we compare the decoding performance
of the three erasure code implementations. As discussed
in "STAR code", STAR code can only tolerate up to three
disk erasures. Apparently, as the number of disk erasures
(m) differs, the decoding performance changes as well.
It is natural to assume that it takes more time to decode
more erasures. In this section, we intend to take this fac-
tor into consideration and better understand how coding
parameters, such as blocksize and k, affect general decod-
ing performance. Decoding performances for disk erasure

Fig. 7   Impact of blocksize
on encoding performance for
k = 10

	 SN Computer Science (2020) 1:5454  Page 8 of 14

SN Computer Science

(m = 1), two erasures (m = 2), and three erasures (m = 3)
are to be examined, respectively. For each set of experi-
ments, erasure disks are randomly chosen since different
erasure locations lead to different decoding speeds obvi-
ously. Enough iterations are conducted and the results
are averaged to indicate a general decoding performance.

Impact of Blocksize

Just as in "Impact of Blocksize", k = 10 and decoding
throughputs are measured and averaged over 1000 code-
words (stripes). blocksize is chosen to be 1KB, 2KB and
4KB too. The decoding performance results are shown in
Figs. 9a–c, 10a–c for m = 1, 2, 3, respectively. The x-axis
represents packetsize while y-axis represents decoding speed
in terms of GBs/s.

Fig. 8   Impact of k on encoding performance

Fig. 9   Impact of blocksize on decoding performance for k = 10 on M900 (Core i5-6500)

SN Computer Science (2020) 1:54	 Page 9 of 14  54

SN Computer Science

From these results, we observe on both testing platforms
(i5 and Xeon):

1.	 Just like encoding, ISA-L’s decoding performances
remain relatively stable as blocksize changes for all k’s
and erasure numbers, for the similar reason.

2.	 Again like encoding, decoding performances of both
Jerasure and STAR increase as k increases, for all k’s and
erasure numbers, and for the similar reason explained
in encoding. After all, decoding employs similar opera-
tions (finite field multiplication and XOR) in encoding,
besides decoding paths (indices of packets to multiply
or XOR).

3.	 When decoding 1 erasure, ISA-L outperforms Jerasure
as blocksize increases, with 4 KB as a cross-point in
these results. But more importantly, STAR’s throughputs
are much higher than those of Jerasure and ISA-L, by a
factor of roughly 1.6x–5.5x against Jerasure and about
2.2x–2.6x against ISA-L. The reason is even though
decoding 1 erasure is just like encoding for all the three
codes, employing XORs only, STAR’s XOR packet size
is much bigger (blocksize / 16 bytes, varying from 64 to
256 bytes) than that of ISA-L and Jerasure (which is 16
bytes), making much better use of L-2 and L-3 caches.
Since one erasure occurs more frequently than two or
three erasures in general, performance for decoding 1
erasure is a more important consideration in most stor-
age applications and systems (in fact, this is the very
reason LRC or SDC codes are designed), as is, STAR
code is more preferable to Jerasure or ISA-L in decoding
1 erasure. If RS code, thus Jerasure or ISA-L, has to be
used, their implementations of decoding 1 erasure need
to be modified to use larger packet size to achieve much
better performance as STAR.

4.	 When decoding multiple erasures, ISA-L’s throughput
is constantly higher than that of Jerasure, while their

performance gap becomes closer as blocksize increases;
STAR’s decoding performance, on the other hand,
remains to be highest (except very close to ISA-L’s for
blocksize of 1KB when decoding three erasures), espe-
cially as blocksize increases. STAR outperforms Jerasure
by a factor of about 2x–3x, and ISA-L by a factor of
about 1.25x– 2.1x except for blocksize of 1 KB.

Impact of k

As in "Impact of k", we also measure how decoding through-
put changes as k varies so that storage practitioners can have
planning when disk failures occur. Again, blocksize is set to
1 KB, 2 KB and 4 KB, respectively, and k varies from 6 to
17, and p = 17 for STAR code.

Figures 11a–c and 12a–c, respectively, show performance
of decoding one erasure, two and three erasures, where again
the x-axis represents k while y-axis represents decoding
speed in terms of GBs/s.

The above results show

1.	 As shown in "Impact of k", for all the three block sizes,
Jerasure’s decoding performance seems to be most sta-
ble against k, albeit at much lower throughput than that
of either ISA-L or STAR.

2.	 Again ISA-L and STAR, on the other hand, do exhibit
fluctuations in decoding performance as k changes,
though not dramatically.

3.	 Also consistent with Fig. 9, STAR performs much better
than both ISA-L and Jerasure when decoding 1 erasure,
for all blocksize, for the reason already discussed.

4.	 When blocksize = 1 KB, for all ks, decoding perfor-
mances of STAR and ISA-L are quite close for multiple
erasures (m = 2 or 3), but much higher than that of Jeras-
ure.

Fig. 10   Impact of blocksize on decoding performance for k = 10 on NW200 (Xeon E3-1275)

	 SN Computer Science (2020) 1:5454  Page 10 of 14

SN Computer Science

5.	 When blocksize > 1 KB, STAR’s decoding perfor-
mance is the highest among the three for all k’s, while
Jerasure’s performance is the lowest. The performance
gap between STAR and ISA-L increases as blocksize
increases.

6.	 As in encoding performance, STAR has slightly better
gains in decoding performance for 2 and 3 erasures, over
ISA-L and Jerasure on i5 than Xeon, while relative dif-
ferences between ISA-L and Jerasure remain close on
the two platforms.

p = 17 vs. p = 257 for STAR​

Finally, recall that r = p − 1 for STAR code, where p is
a prime number that is no less than designed k. To make
blocksize to be in the form of 2b , p = 17 or 257 is a rea-
sonable choice to achieve the goal. For a given blocksize,
packetsize = blocksize∕r . So when r = 256, its correspond-
ing packetsize is just 1/16 of that when r = 17, e.g., when
blocksize = 2KB, packetsize = 8 bytes for p = 257 , but pack-
etsize = 256 bytes for p = 17 . A larger packetsize at this

Fig. 11   Impact of k on performance for different erasures on M900 (Core i5-6500)

SN Computer Science (2020) 1:54	 Page 11 of 14  54

SN Computer Science

order can usually make better use of L-1 and L-2 caches for
XORs, and thus decoding and encoding performance. The
following experimental results on platform M900 do verify
this behavior (test results on NW200 are quite similar, thus
omitted here).

Figures 13, 14 and 15 display encoding and decoding
performances of STAR code with p = 17 vs. p = 257 for
blocksize of 1 KB, 2 KB and 4 KB, respectively. These
results demonstrate that p = 17 constantly yields about
10– 15% better encoding and decoding throughput than p
= 257 for all k’s and blocksize, and for any erasure num-
bers. This indicates p should be set to 17 whenever pos-
sible, i.e., for all k ≤ 17.

Limitations and Future Work

The purpose of this paper is to present raw performance
measurement data to data storage practitioners and research-
ers. Thus, modifying other existing libraries, such as Jerasure
or ISA-L, is beyond the scope of this paper. The evaluations
are currently limited to Jerasure, Intel’s ISA-L, which are
typical representatives of Reed–Solomon code, and STAR
code library. Due to the limitation of equipment we have in
our lab, we only evaluate performance improvement brought
by Intel’s SSE. Data storage practitioners and researchers are
welcomed to share their evaluation results with us.

Fig. 12   Impact of k on performance for different erasures on NW200 (Xeon E3-1275)

	 SN Computer Science (2020) 1:5454  Page 12 of 14

SN Computer Science

In the future, we intend to explore and benchmark more
codes such as regenerating codes [30], LRC [14] and SD
code [25]. We also intend to design and propose new decod-
ing scheduling algorithm for STAR code to improve the
performance.

Conclusions

While we intend to let the data speak for themselves so that
data storage practitioners and researchers can make their
own conclusions according to their needs and requirements,
we can still make following general observations:

1.	 Intel’s SSE SSE instructions do greatly help improv-
ing both encoding and decoding performances of all
the three coding libraries. All the three coding imple-
mentations reach GBs/s on the testing machine with
quite common configurations. But further performance
improvement beyond general hardware instruction set
assistance needs to come from better use of all levels of
caches and algorithmic designs and implementations of
coding libraries;

2.	 Jerasure vs. ISA-L while both libraries are good open
source implementations of RS code, extensive perfor-
mance measurement data shows ISA-L performs much
better in encoding operations for all (k, blocksize) com-
binations and also meaningfully better in decoding

Fig. 13   Encoding and decoding performance of STAR for p = 17 vs. p = 257 with blocksize = 1 KB

Fig. 14   Encoding and decoding performance of STAR for p = 17 vs. p = 257 with blocksize = 2 KB

Fig. 15   Encoding and decoding performance of STAR for p = 17 vs. p = 257 with blocksize = 4 KB

SN Computer Science (2020) 1:54	 Page 13 of 14  54

SN Computer Science

operations for most (k, blocksize) combinations, except
when decoding one erasure for large block sizes (larger
than 4 KB in our tests). Thus for most use cases, ISA-L
is a preferable implementation for RS code;

3.	 STAR vs. RS code thanks to the fact that XORs are still
more efficient than finite field multiplications even with
SSE assistance, STAR code always exhibits higher
encoding throughputs for all parameters, especially for
large block sizes; STAR code also performs better for
decoding in most (k, blocksize) combinations, especially
when decoding one erasure. Thus whenever possible,
STAR code (or other similar array code using only
XORs) is preferable to RS code when m = 3 is enough
for system reliability;

4.	 Coding block size For most applications and systems,
coding block size is perhaps the only parameter a user
can tune to change encoding and decoding perfor-
mances. While ISA-L’s encoding and decoding perfor-
mances are relatively stable against the coding block
size, both Jerasure and STAR can have higher encoding
and decoding throughputs as block size increases thanks
to better use of multiple levels of caches. Hence when
possible, a larger coding block size should be chosen to
achieve better encoding and decoding performance;

5.	 Further Improvement of ISA-L and Jerasure current
implementations of the two libraries are using small
XOR packet size (16 bytes) for all encoding and decod-
ing operations. But when decoding one erasure, they
actually only use XORs instead of finite field multiplica-
tions. To better use L-1 and L-2 caches, a larger XOR
packet size should be used for much higher decoding
throughput, as demonstrated in STAR code. Current
implementations of ISA-L and Jerasure can thus be
modified in the decoding one erasure component for
much better performance. As one failure occurs much
more often than multiple erasures for most data storage
systems and applications, this modification will greatly
benefit most use cases.

6.	 Different CPUs For understandable reasons, our test-
beds are only limited to the equipments we have in our
lab. We understand that many data centers are running
much newer CPUs, such as Intel’s Cascade Lake [22]
that supports AVX-512 [7], ARM with NEON technol-
ogy [31], and AMD’s EPYC [17]. But the main differ-
ence of coding libraries evaluated in this study and the
ones in previous work [28], is the usage of Intel’s SSEs,
which the testbed CPUs in this study already have. As
already shown in this work, the relative performances of
the coding libraries are consistent on two difference test-
beds. We can reasonably expect they will exhibit similar
relative performances on other testbeds with different
CPUs. Thus, we believe, while the testbed CPUs used
in this study are relatively old, the relative performance

study results will still be valuable to and provide guide-
lines for data storage systems with newer and future
CPUs.

Compliance with Ethical Standards 

Conflict of Interest  Author R. Chen and author L. Xu declare that they
have no conflict of interest.

References

	 1.	 Beach B. Backblaze open sources Reed–Solomon erasure cod-
ing source code. 2015. https​://www.backb​laze.com/blog/reed-
solom​on/.

	 2.	 Blaum M, Brady J, Bruck J, Menon J. Evenodd: an efficient
scheme for tolerating double disk failures in raid architectures.
IEEE Trans Comput. 1995;44(2):192–202.

	 3.	 Blaum M, Bruck J, Vardy A. Mds array codes with independent
parity symbols. IEEE Trans Inf Theory. 1996;42(2):529–42.

	 4.	 Blaum M. A family of MDS array codes with minimal number
of encoding operations. 2006. pp 2784–2788.

	 5.	 Cooper BF. Spanner: Google’s globally-distributed database.
In: Proceedings of the 6th international systems and storage
conference. ACM; 2013.

	 6.	 Corbett P, English B, Goel A, Grcanac T, Kleiman S, Leong J,
Sankar S. Row-diagonal parity for double disk failure correc-
tion. In: Proceedings of the 3th USENIX conference on file and
storage technologies. USENIX; 2004.

	 7.	 Cornea M. Intel avx-512 instructions and their use in the imple-
mentation of math functions. Intel Corp. 2015.

	 8.	 Dylan B (Intel). Intel® c++ compiler 17.0 developer guide and
reference. 2016. https​://softw​are.intel​.com/en-us/intel​-cplus​
plus-compi​ler-17.0-user-and-refer​ence-guide​.

	 9.	 EC Amazon. Amazon web services. 2015. http://aws.amazo​
n.com/es/ec2/. Accessed Nov 2012.

	10.	 Ghemawat S, Gobioff H, Leung S-T. The Google file system.
vol. 37. ACM; 2003.

	11.	 Goldenberg D. Erasure code offload for distributed software
defined storage. In: Flash memory summit. 2017.

	12.	 Greenan KM, Miller EL, Schwarz SJ, Thomas JE. Optimizing
galois field arithmetic for diverse processor architectures and
applications. In: Modeling, analysis and simulation of comput-
ers and telecommunication systems, 2008. MASCOTS 2008.
IEEE International Symposium on. IEEE; 2008. pp. 1–10.

	13.	 Huang C, Lihao X. Star: an efficient coding scheme for cor-
recting triple storage node failures. IEEE Trans Comput.
2008;57(7):889–901.

	14.	 Huang C, Simitci H, Xu Y, Ogus A, Calder B, Gopalan P, Li J,
Yekhanin S. Erasure coding in windows azure storage. In: Pro-
ceedings of 2012 USENIX annual technial conference, ATC’12.
USENIX; 2012.

	15.	 Khan O, Burns RC, Plank JS, Pierce W, Huang C. Rethinking
erasure codes for cloud file systems: minimizing i/o for recovery
and degraded reads. In: FAST; 2012, p. 20.

	16.	 Le T (Intel). Optimizing storage solutions using the intel® intel-
ligent storage acceleration library. 2014. https​://softw​are.intel​
.com/en-us/artic​les/optim​izing​-stora​ge-solut​ions-using​-the-intel​
-intel​ligen​t-stora​ge-accel​erati​on-libra​ry.

https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide
http://aws.amazon.com/es/ec2/
http://aws.amazon.com/es/ec2/
https://software.intel.com/en-us/articles/optimizing-storage-solutions-using-the-intel-intelligent-storage-acceleration-library
https://software.intel.com/en-us/articles/optimizing-storage-solutions-using-the-intel-intelligent-storage-acceleration-library
https://software.intel.com/en-us/articles/optimizing-storage-solutions-using-the-intel-intelligent-storage-acceleration-library

	 SN Computer Science (2020) 1:5454  Page 14 of 14

SN Computer Science

	17.	 Lepak K, Talbot G, White S, Beck N, Naffziger S, et al. The next
generation amd enterprise server product architecture. In: IEEE
hot chips. vol. 29. 2017.

	18.	 Lin S, Costello DJ. Error control coding. 2nd ed. London: Pearson;
2004.

	19.	 Liu W, Wu K, Liu J, Chen F, Li D. Performance evaluation and
modeling of hpc i/o on non-volatile memory. In: Proceedings of
IEEE international conference on networking, architecture, and
storage (NAS). IEEE; 2017. pp. 1–10.

	20.	 Luo J, Xu L, Plank JS. An efficient XOR-scheduling algorithm for
erasure codes encoding. In: Dependable systems and networks,
2009. DSN‘09. IEEE/IFIP International Conference on. IEEE;
2009. pp. 504–513.

	21.	 MacWilliams FJ, Sloane NJA. The theory of error-correcting
codes. Amsterdam: Elsevier; 1977.

	22.	 Mohamed A, Bahaa F, Sailesh K, Akhilesh K, Lily P L, Sreeni-
vas M, Andy R, Ian M S, Bob V, Geetha V, et al. Cascade lake:
next generation intel xeon scalable processor. IEEE Micro.
2019;39(2):29–36.

	23.	 O’Whielacronx Z. Zfec 1.4.24. open source code distribution.
2012. https​://pypi.pytho​n.org/pypi/zfec/.

	24.	 Palankar MR, Iamnitchi A, Ripeanu M, Garfinkel S. Amazon s3
for science grids: a viable solution? In: Proceedings of the 2008
international workshop on Data-aware distributed computing.
ACM; 2008. pp. 55–64.

	25.	 Plank JS, Blaum M, Hafner JL. Sd codes: erasure codes designed
for how storage systems really fail. In: Proceedings of 11th USE-
NIX conference on file and storage technologies, FAST’13. USE-
NIX; 2013.

	26.	 Plank JS, Greenan KM. Jerasure: a library in c facilitating erasure
coding for storage applications—version 2.0. Technical report,
Technical Report UT-EECS-14-721, University of Tennessee;
2014.

	27.	 Plank JS, Greenan KM, Miller EL. Screaming fast galois field
arithmetic using intel SIMD instructions. In: Proceedings of 11th
USENIX conference on file and storage technologies, FAST’13.
USENIX; 2013.

	28.	 Plank JS, Luo J, Schuman CD, Xu L, Wilcox-O’Hearn Z, et al. A
performance evaluation and examination of open-source erasure
coding libraries for storage. Fast. 2009;9:253–65.

	29.	 Rashmi KV, Shah NB, Gu D, Kuang H, Borthakur D, Ramchan-
dran K. A “hitchhiker’s” guide to fast and efficient data recon-
struction in erasure-coded data centers. In: Proceedings of the
2014 ACM conference on SIGCOMM. ACM; 2014.

	30.	 Rashmi KV, Shah NB, Ramchandran K, Kumar PV. Regenerat-
ing codes for errors and erasures in distributed storage. In: 2012
IEEE international symposium on information theory proceed-
ings. IEEE; 2012. pp. 1202–1206.

	31.	 Reddy VG. Neon technology introduction. ARM Corp. 2008;4(1)
	32.	 Reed IS, Solomon G. Polynomial codes over certain finite fields.

J Soc Ind Appl Math. 1960;8(2):300–4.
	33.	 Sathiamoorthy M, Asteris M, Papailiopoulos D, Dimakis AG,

Vadali R, Chen S, Borthakur D. Xoring elephants: novel erasure
codes for big data. In: Proceedings of the VLDB endowment. vol.
6; 2013.

	34.	 Suzuki K, Swanson S. A survey of trends in non-volatile memory
technologies: 2000–2014. In: Memory workshop (IMW), 2015
IEEE international. IEEE; 2015. pp. 1–4.

	35.	 Thakkur S, Thomas H. Internet streaming simd extensions. Com-
puter. 1999;32(12):26–34.

	36.	 Waddington D, Harris J. Software challenges for the changing
storage landscape. Commun ACM. 2018;61(11):136–45.

	37.	 Xu L, Bruck J. X-code: MDS array codes with optimal encoding.
In: IEEE transactions on information theory. vol. 45. IEEE; 1999.
pp. 272–276.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://pypi.python.org/pypi/zfec/

	Practical Performance Evaluation of Space Optimal Erasure Codes for High-Speed Data Storage Systems
	Abstract
	Introduction
	Erasure Codes and Related Work
	Reed–Solomon code
	STAR code
	Open Source Libraries

	Experiment Setup and Baseline Measurement for Performance Evaluation
	Baseline Performance
	Impact of Intel’s SSE

	Encoding Performance Evaluation
	Impact of Blocksize
	Impact of k

	Decoding Performance Evaluation
	Impact of Blocksize
	Impact of k
	p = 17 vs. p = 257 for STAR​

	Limitations and Future Work
	Conclusions
	References

