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Abstract
As erasure codes have been widely adopted in most large-scale data storage systems and applications, implementations of 
high-performance erasure codes have been improved significantly in recent years, especially by employing Intel’s Streaming 
SIMD Extensions (SSE) instructions. Augmenting the survey work in Plank et al. (Fast, 9:253–65, 2009) conducted almost 
a decade ago, this paper compares practical performance of three open-source or public domain erasure coding libraries, 
namely Jerasure and Intel’s ISA-L for RS code, and a STAR code implementation. The goal of this paper is to provide data 
storage practitioner a guideline when they choose a proper erasure code for storage applications and systems that need high 
performance in encoding and decoding operations in the order of GBs/s. Additionally, this paper identifies a practical tech-
nique that can further improve decoding performance of RS code greatly for both Jerasure and ISA-L for the most frequent 
disk failure pattern, i.e., one disk failure.
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Introduction

By now, it has been well known in data storage commu-
nity that erasure codes play an important role in achieving 
data reliability of large-scale data storage systems and they 
are widely used in many systems, such as Amazon’s S3 [9, 
24], Google’s File System [10] and its successor Colossus 
[5], Microsoft’s Azure [14, 15], and Facebook’s storage 
systems [29, 33]. Instead of direct mirroring or replication, 
erasure code can more economically utilize storage space 
and network bandwidth (when distributing data) to achieve 
same degree of data reliability. The cost, of course, is extra 
computation needed for both encoding (for data writes) and 
decoding (for data reads when failures occur). It has been 
perceived that erasure code encoding and decoding opera-
tions have not become a critical bottleneck in most data stor-
age systems. However, the following emerging technologies 
and trends indicate encoding and decoding speeds of erasure 

codes employed become more and more critical in affecting 
to deciding overall storage system performance and cost:

1.	 The emerging technologies such as flash-based solid-
state drive (SSD), non-volatile memory (NVM), and 
3D XPoint technology, are blurring speed boundary 
between main memory and persistent storage, making 
persistent storage IO speed easily reaching GB/s [19, 34, 
36]. It thus calls for erasure code encoding and decoding 
operations to at least match such IO speeds for high-
performance storage systems consisting of NVM arrays.

2.	 Most large-scale data centers deploy virtual machines to 
satisfy data storage needs. As an essential component of 
storage system, computation savings from erasure code 
encoding and decoding operations can be more effec-
tively used for other operations in the whole system, not 
just the storage subsystem, thus making data center more 
efficient and economical.

3.	 Furthermore, software-defined storage systems (SDS) 
also call for more efficient erasure code encoding and 
decoding operations to improve overall system’s perfor-
mance [11].

It has been almost a decade since last time performance 
of then-popular open-source erasure code libraries was 
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evaluated [28]. Ever since then, implementations of exist-
ing erasure codes, mainly the versatile Reed–Solomon code 
[32], have been improved a lot, especially by employing 
Intel’s Streaming SIMD Extensions (SSE) instruction set [8] 
for efficient finite field operations and XORs [27]. Another 
change in erasure code practice since then is the use of so-
called local reconstruction codes (LRC) [14] and sector-disk 
(SD) codes [25] to reduce the amount of data needed to be 
read when recovering one disk/node failure at the cost of 
slightly more storage space overhead, but the underlining 
erasure code used as component for these codes is still basi-
cally the Reed–Solomon or an XOR-based erasure code. So 
it is now time again to evaluate performance of current pop-
ular implementations of open-source erasure code libraries. 
In addition, we evaluate a public domain erasure code [13] 
as well, which can be readily implemented by data storage 
practitioners. We choose not to include patented erasure 
codes, such as the RDP code [6] and its extension, since 
they are not widely employed in other storage systems. The 
goal of this paper is to provide a guideline for data storage 
community to choose suitable erasure code for their systems 
and applications, especially those with high performance 
needs and requirements.

This paper is organized as follows: the next section intro-
duces the basics of erasure codes and related work, followed 
by which preliminary experimental results for performance 
evaluation are described; detailed performance evaluations 
of encoding and decoding are presented in the next two sub-
sequent sections, respectively; the final section concludes 
the paper.

Erasure Codes and Related Work

Erasure codes are mathematical transformations to provide 
reliability for various data storage systems [21, 28]. For an 
(n, k, m) erasure code, an original message or data consists 
of k equal size symbols, then m parity symbols are computed 
from the k data symbols, through an encoding operation. The 
k data symbols and m parity symbols together form a code-
word of n symbols, where n = k + m , such that loss or eras-
ure of any e symbols can be tolerated, i.e., the original k data 
symbols can still be exactly recovered from the surviving 
n − e symbols through a decoding operation. Obviously, by 
the simple pigeonhole principle, n − e ≥ k , i.e, e ≤ m . When 
e = m , such an erasure code is called the Maximum Distance 
Separable or simply MDS code [21]. An MDS erasure code 
is optimal in terms of space efficiency for a designed erasure 
recovery degree (e) and, therefore, is most desired in many 
systems and applications, including data storage systems. 
Thus, all erasure codes discussed in this paper are MDS 
codes. Note again that an LRC code or an SDC code just 
employs an MDS code as a component code.

Now we define erasure code-related nomenclature in the 
context of data storage system, which will be used through-
out this paper. A data storage system is composed of an 
array of n disks in total. Each individual disk has the same 
size. These n disks are partitioned into two categories: k of 
them contain the original data, and m of them contain the 
redundant coding data that are calculated from the original 
data. We call the first category the data disks, while the 
second category the parity disks. We label the data disks 
D0 , D1,… ,Dk−1 and the parity disks C0,C1,… ,Cm−1 . An 
erasure code for such a system is represented as a (k, m)-
code. Obviously, we have n = m + k. Such a typical system 
can be described as in Fig. 1.

The encoding operation, where the content of m parity 
disks is computed from those of the k data disks, partitions 
each disk into several strips (blocks or symbols) of a certain 
size, called blocksize. When an encoding/decoding opera-
tion is performed, one strip will be used from each disk. 
All together, n (n = k + m) strips will be used. This group 
of n strips is called a stripe or codeword. Thus, the whole 
storage system is an array consisting of n disks. Each stripe 
is a sub-array consisting of n strips. Here each disk is repre-
sented as a column in the array.

When encoding and decoding operations are performed, 
each strip is partitioned into r rows. This r is usually decided 
by erasure code algorithm employed. For each strip, each 
row is simply an operation unit of a packet. Its size is called 
packetsize, thus blocksize = packetsize × r. Each stripe is 
encoded and decoded independently, so that load balancing 
can be achieved by performing rotating and switching the 
disks’ identities for each stripe. It is easy to see that in a 
distributed system, each disk can be just a single node. But 
throughout this paper, we stick to the term disk.

As already mentioned, since MDS codes are optimal in 
space usage, this paper focuses only on the MDS codes, 
where loss of any up to m disks can be tolerated. Over the 
years, quite some MDS codes have been designed and imple-
mented. Based on the basic computation employed in encod-
ing and decoding operations, they in general belong to two 

Fig. 1   A typical storage system with erasure codes
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classes: (1) finite field operations are needed; (2) only simple 
binary XORs (exclusive-OR) are needed. This first class is 
represented by the most versatile and powerful Reed–Solo-
mon code [32]. Codes in the second class are often called 
the array codes, examples of which include the EVENODD 
code [2] and its generalizations [3], the X-Code [37], the 
RDP code [6], and the STAR code [13] and generalized RDP 
code [4]. Finite field operations are often more expensive 
than simple binary XORs, but erasure codes in the first class 
can have more flexible choice of (k, m), whereas array codes 
in the second class so far only have limited choice of m. For 
example, m = 2 for the EVENODD code, X-Code and RDP 
code, and m = 3 for the STAR code and generalized RDP 
code [4].

There exist various implementations of erasure codes and 
this paper does not intend to repeat good survey results in 
[28], thus only focuses on results that will supplement those 
in [28]. Due to its versatileness and long history, not surpris-
ingly, Reed–Solomon code has been employed in most data 
storage systems for m ≥ 3 either directly or as a component 
code for LRC type erasure codes.

Reed–Solomon code

Reed–Solomon (RS) code dates back to the 1960s [32]. 
Original RS code was described in polynomial form, but 
now most of its implementations adopt matrix form for 
easy understanding and implementation to be used as 
erasure codes (RS codes are much more than just erasure 
codes, more importantly, they can correct errors in vari-
ous communication and storage systems [18]). Using our 
terms described above, RS code assumes that each code-
word packet, i.e., packet in a strip (block), is a w-bit word 
and r = 1 . Here w must satisfy n ≤ 2w + 1. Usually, w ∈ 
{8, 16, 32, 64}, and is decided by the user, as long as it 
satisfies n ≤ 2w + 1. Smaller w requires less computation, 
thus yields better performance. In most use cases, w = 8 is 
sufficient to meet most system needs of n. Each packet in 
Reed–Solomon code is treated as a number between 0 and 
2w − 1 , and these numbers are operated in a finite field or 
Galois field  (GF(2w)) . Galois field arithmetic is a closed 
and well-behaved system, in which addition, multiplication 
and division are defined.

Encoding of Reed–Solomon code is simply linear alge-
bra. A Generator matrix ( GT ) is constructed from a Van-
dermonde matrix. GT is then multiplied by the k data strips 
(blocks) to create a codeword, consisting of k data and m 
parity strips (blocks). This process is illustrated as in Fig. 2, 
where k = 4 and m = 2.

When disk erasures (failures) occur, the decoding process 
is equivalent to solving a set of independent linear equa-
tions, by deleting rows of GT , inverting it, and multiplying 
the inverse by the surviving blocks. Since GT is constructed 

from the Vandermonde matrix, it is ensured that the matrix 
inversion is always successful.

The disadvantage of Reed–Solomon code is that, in 
Galois field arithmetic, while addition is equivalent to bit-
wise exclusive-or (XOR) [20], multiplication is more com-
plicated, typically implemented with multiplication tables or 
discrete logarithm tables [12]. This makes Reed–Solomon 
code computationally expensive.

One development since performance evaluation of 
Reed–Solomon code in [28] is that Intel’s SSE  [8] has 
included fast multiplication operations for finite field using 
parallel multiplication table lookups and thus improv-
ing multiplication speeds significantly [27]. Both Jerasure 
2.0 [26] and Intel’s ISA-L [16] have adopted this speedup 
technology, which will be focuses of this paper. In both 
libraries, basic finite field multiplications are performed 
over a 128-bit word instead of 8-bit word (even though w 
remains to be 8, i.e., the finite field used is still GF(28)), 
hence packetsize = 16 bytes.

STAR code

Designed in 2007 [13], the STAR code belongs to array 
code class. It is both an alternative and an extension of the 
EVENODD code that was designed in 1994 [2].

STAR code is an efficient erasure code using only XOR 
operations. STAR code can tolerate up to three disk erasures 
[13]. As introduced before, erasure code consists of k data 
disks and m parity disks. For STAR code, m = 3, k ≤ p , 
where p is a prime number and r = p − 1 as shown in Fig. 1.

Performance evaluation of other array codes of m = 2 , 
such as the EVENODD code and the RDP code, was con-
ducted and presented in [28], but practical performance of 
STAR code has not been published. Thus, this paper will 
use STAR code as a representative of array codes for per-
formance study, for the reasons: (1) EVENODD code is a 
just a special case of STAR code for m = 2 , in fact, decod-
ing performance of STAR code for recovering from 1 or 
2 disk erasures well represents that of EVENODD code; 
(2) encoding and decoding performance of m = 3 has more 
meaningful guidance for modern storage systems that need 
higher reliability degree.
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Fig. 2   Reed–Solomon code encoding process
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The general structure of STAR code is very similar to 
the EVENODD code. On top of EVENODD code, STAR 
code adds one additional parity column. The encoding com-
plexities averaged over parity data of EVENODD and STAR 
codes are the same, but the decoding complexity of STAR 
code is more optimized. XOR is the only operation that is 
used in STAR, for both encoding and decoding. Figure 3 
shows a typical structure of STAR code with k = 5, and how 
parity column III is generated. Note that the bottom row 
is an imaginary row. More comprehensive description and 
analysis of STAR code can be found in [13].

Open Source Libraries

There have been a number of open source erasure coding 
libraries that support RS code, such as Jerasure [26] and 
Intel’s ISA-L [16] in C, BackBlaze [1] in Java, Zfec [23] 
in Python. While there is no open source library of STAR 
code yet, its encoding and decoding algorithms are in public 
domain [13], unlike EVENODD code or RDP code, both of 
which were patented. We thus implemented our own version 
of STAR code in C, with some performance optimization 
techniques we developed [20]. Throughout this paper, this 
version of STAR code implementation is used for all tests.

For high performance, the following open source imple-
mentations of the RS code are selected for tests in this paper, 
as well as our implementation of STAR code:

•	 Jerasure [26] Jerasure is an open source library written 
in C. It supports erasure coding in storage applications. 
A variety of erasure codes are integrated in Jerasure, 
including Reed–Solomon code. Reed–Solomon code 
may be based on Vandermonde or Cauchy matrices. 
But the Vandermonde implementation has been better 
supported and achieves better performance by utilizing 
Intel’s SIMD instructions. Thus, only the performance 
of the Vandermonde implementation of RS code is pre-
sented in this paper. A user can choose different param-
eters such as blocksize and finite field word size w. From 
our tests, for a practical storage system with less than 256 
disks in total for a stripe, w = 8 gives best encoding and 
decoding performance. Thus, only test results of w = 8 
are presented in this paper.

	   Jerasure includes a comprehensive implementation of 
finite field operations using Intel’s SSE, which gives a 
competitive performance of Reed–Solomon code among 
open source implementations. To use Jerasure Library, 
GF-Complete Library [27] must be installed first. In 
this paper, we use Jerasure 2.0 (together with GF-Com-
plete 1.02, both latest versions available) as a tool to test 
encoding and decoding performance of Reed–Solomon 
code.

•	 Intel ISA-L Intel’s Intelligent Storage Acceleration 
Library (Intel ISA-L) is an open source library devel-
oped by Intel [16]. It supports not only erasure codes, but 
also RAID, Cyclic Redundancy Check, etc. It uses Reed–
Solomon code as erasure codes. Intel ISA-L is majorly 
implemented in C, but some key components are imple-
mented in assembly language to optimize performance. 
In this paper, Intel ISA-L v2.14.1 is used to test encoding 
and decoding performance of Reed–Solomon code.

•	 STAR code As shown later in "Impact of Intel’s SSE", 
Intel’s SSE instruction of 128-bit XOR does bring sig-
nificant performance improvement for STAR code as 
well, thus implementation of STAR code in this paper 
does utilize SSE speedup too.

Experiment Setup and Baseline 
Measurement for Performance Evaluation

First, we describe basic system setup for all experiments in 
this paper. All tests are conducted on two platforms, namely 
Lenovo Thinkcentre M900 and Intel NW200 Roke (M900 
and NW200 in brief). As shown in Table 1, Lenovo Think-
Centre M900 has a CPU of Intel’s i5-6500 (4 cores), which 
has 256 KB of L-1 cache, 1024 KB of L-2 cache and 6 
MB of L-3 cache. It has a total memory of 4 GB. Ubuntu 
16.04.3 LTS is installed on the machine, with gcc version 
of 5.4.0. On the other hand, Intel NW200 Roke is equipped 
with a CPU of Intel’s Xeon E3-1275 (8 cores), which has 
512 KB of L-1 cache, 2048 KB of L-2 cache and 8 MB 
of L-3 cache. It has a total memory of 32 GB, with OS of 
Ubuntu 17.10. The gcc version is 7.2.0. When compiling, 

Fig. 3   STAR code: generating parity column III

Table 1   Test platform configurations

Platform CPU model L1 cache L2 cache L3 cache

M900 Intel(R) 
Core(TM) 
i5-6500 @ 
3.20 GHz

256 KB 1 MB 6 MB

NW200 Intel(R) 
Xeon(R) 
E3-1275 @ 
3.60 GHz

512 KB 2 MB 8 MB
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gcc uses −O3 option consistently for all testing programs. To 
fully use all levels of caches and provide smoother measure-
ments, enough iterations are executed with the results being 
averaged.

For all experiments, data file is split and encoded into 
n = k + m pieces. Each piece is stored on a separated disk, 
so that the system tolerates up to m disk erasures. In other 
words, the encoder of all libraries will read a data file, 
encode it, and write it to k + m data/parity files, while the 
decoder will read the k + m data/parity files, and reconstruct 
the original file.

For the same reason as in other tests [20, 27, 28], all test 
operations in this paper are performed in memory with no 
actual disk I/O involved so that encoding and decoding per-
formance can be assessed more accurately. Thus, for the rest 
of this paper, a file really refers to data already in memory. 
We adopt the exact same method in [28] for measuring time 
and calculating encoding and decoding speeds.

Baseline Performance

The speeds of basic memcpy and XOR are used to repre-
sent the baseline performance of the testing platforms. The 
results are shown in Fig. 4. Note that for the baseline tests, 
the blocksize is set to 1KB or 2KB and the testing data size 
is 1000 stripes (codewords). (Throughout this paper, all 
test results are measured by averaging over 1000 stripes to 
mitigate fluctuations in individual test result.) The x-axis 
represents the number of data disks k, starting from 6 to 17 
to reflect configurations in usual practical storage systems, 
while the y-axis represents the throughput in GB/s. The aver-
age speeds of memcpy and XOR are very close to each other, 
while memcpy is slightly faster than XOR, which is not sur-
prising. Also note that performance is better with blocksize 
of 2 KB than 1 KB for both memcpy and XOR because of 
better use of caches.

Impact of Intel’s SSE

Now we examine impact of Intel’s SSE on performance of 
encoding and decoding. Intel’s Streaming SIMD Extensions 
(SSE) has been widely integrated in modern microproces-
sors of many brands [35]. Intel’s SSE provides eight 128-
bit general-purpose registers, each of which can be directly 
addressed using the register names XMM0 to XMM7. Each 
register consists of four 32-bit single-precision, floating-
point numbers, numbered from 0 through 3 [8]. As shown 
in Fig. 5, when performing XORs, Intel’s SSE performs the 
SIMD XOR of the four packed single-precision floating-
point values from the source operand and the destination 
operand, and then stores the packed single-precision float-
ing-point results in the destination operand. The source oper-
and can be an XMM register or a 128-bit memory location. 
The destination operand is an XMM register.

Intel SSE instructions are already integrated in both 
Jerasure and ISA-L [16, 26] to accelerate finite field mul-
tiplication speed, and thus encoding and decoding perfor-
mance of RS code. They can also be used to speed up XORs 
used in STAR code:

•	 __m128 dst = _mm_load_ps (float const* mem_addr) 
loads 128 bits (composed of four packed single-precision 
(32-bit) floating-point elements) from memory into dst. 
mem_addr must be aligned on a 16-byte boundary.

Fig. 4   Baseline performance of testing platforms

Fig. 5   Intel SSE XOR operation between xmm0 and xmm1
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•	 void _mm_store_ps (float* mem_addr, __m128 a) stores 
128 bits (composed of four packed single-precision (32-
bit) floating-point elements) from a into memory. mem_
addr must be aligned on a 16-byte boundary.

•	 __m128 dst = _mm_xor_ps (__m128 a, __m128 b) com-
putes the bitwise XOR of four packed single-precision 
(32-bit) floating-point elements a and b, and store the 
results in dst.

To examine performance improvement brought by SSE, two 
different versions of STAR code have been implemented 
and compared: one without using Intel’s SSE and the other 
using Intel’s SSE. In the tests, k ranges from 6 to 17, and 
blocksize is set to 1 KB and 2 KB. Test results are shown 
in Fig. 6, with x-axis representing k and y-axis represent-
ing the encoding/decoding speed in GBs/s. Decoding is for 
recovering three erasures. Again, results are not surprising: 
by applying Intel’s SSE, STAR code’s encoding/decoding 
speeds are indeed improved by about 30–80%, averaging 
more than 50%. Thus, for the rest of this paper, only results 
of STAR code’s SSE implementation will be presented.

Encoding Performance Evaluation

Now we study practical encoding performance of RS codes 
and STAR codes. As already shown in [28], many factors 
greatly affect performance of both Reed–Solomon codes and 
STAR codes, such as the number of data columns k, the 
number of parity columns m, encoding block size blocksize, 
size of total data to be encoded/decoded, cache sizes of the 
testing machine and activities of other applications. Thus, all 
measurement results shown in this paper can only represent 
a general guidance or indication instead of accurate predic-
tions in production systems. To make maximum use of all 
levels of caches (L-1 to L-3) and make all measurements 
more smooth, as already noted enough iterations (1000 code-
words or stripes) are run and results are averaged. Note for 
fair comparisons, m = 3 for all tests; and for best perfor-
mance, w = 8 in both Jerasure and ISA-L for Reed–Solomon 

code implementations, with 128-bit GF(28 ) multiplication 
using Intel’s SSE. Adopting the same experimental meth-
odology in [28], we study effects of various parameters on 
encoding performance and decoding performance as well in 
"Decoding Performance Evaluation".

Impact of Blocksize

For practical storage applications and systems, k and m are 
usually decided by needs or requirements, leaving little room 
to change to tune encoding or decoding performance for an 
erasure code. Hence, the most important parameter affecting 
encoding/decoding performance is blocksize.

As described in "Erasure Codes and Related Work", block 
is the basic operation unit for encoding and decoding com-
putation on each disk, and files are split into blocks before 
being passed to erasure coding library. From Fig.  1, 
blocksize = packetsize × r . For RS code in Jerasure and ISA-
L, packetsize = 16 (bytes), and r is thus decided by blocksize 
specified by user/application: r =

⌈

blocksize

16

⌉

 . For STAR code, 
XORs are performed using Intel’s SSE over 128-bit word 
(16 bytes), but r = p − 1 , where p has to be a prime no less 
than k. For best performance, p needs to be as small as pos-
sible. Hence, given k and blocksize, p is first chosen to the 
smallest prime number no less than k and then packetsize is 
decided by packetsize = 16 ×

⌈

blocksize

16×r

⌉

 . For both codes, the 
real  coding block size is  then computed as 
blocksize = packetsize × r , i.e., not necessarily exactly same 
as the blocksize specified by user/application, but fairly 
close.

In most practical storage systems or applications, though, 
the blocksize is preferable to be in the form of 2b (where b 
is a positive integer) bytes, such as 1 KB, 2 KB, 4 KB or 
even 8 KB. This is easily achievable for the RS code, as 
packetsize = 16 = 24 (bytes).

On the other hand, for STAR code, if r is not in the form 
of 2c , blocksize cannot be in the form of 2b bytes, even 
though packetsize can always and should be chosen to be in 
the form of 2d bytes. Recall r = p − 1 for STAR code, where 

Fig. 6   SSE’s impact on STAR code performance: encoding and decoding for three erasures
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p is a prime number no less than k. Fortunately, p = 17 is 
a prime with corresponding r = 16 = 24 . This choice of p 
can support a STAR code with k (number of data disks) up 
to 17, which can meet needs of most systems and applica-
tions. For larger systems and applications where k needs 
to be larger than 17, p can then be chosen to be 257 with 
r = 256 = 28 . When r is too large compared to k, encoding/
decoding performance will degrade a bit, as will be shown 
later. Thus, in most of following tests in this paper, when 
k ≤ 17 , p is chosen to be 17 and r = 16 for STAR code, with 
packetsize = blocksize∕16.

To illustrate the impact of blocksize on encoding per-
formance, test results for k = 10 are shown in Fig. 7 with 
blocksize ranging from 1 to 32 KB. Such a k is just to reflect 
usual application or system setting. These results on both 
platforms consistently show that both Jerasure and STAR 
see higher encoding throughput as blocksize increases, this 
is due to better L-2 and L-3 cache uses for either finite field 
multiplication or XOR. On the other hand, ISA-L’s encoding 
performance remains relative stable as blocksize increases; 
it is perhaps because ISA-L’s finite field multiplication is 
implemented in assembly language and already optimized 
using different levels of caches, especially L-1 cache.

As of performance comparison, ISA-L is obviously a bet-
ter implementation than Jerasure, which is not surprising, 
as ISA-L is improved upon Jerasure with better usage of 
L-1 cache using assembly language to achieve finite field 
multiplication. On the other hand, with SSE help for both 
finite field multiplication and XOR, XOR is still significantly 
faster than finite field multiplication, and thus STAR code 
enjoys higher encoding throughout than ISA-L, especially 
when blocksize increases.

Impact of k

As already discussed, k is usually decided by application 
or storage system, we still like to examine how encoding 
performance fluctuates for different ks so that when there 

is room to choose a different k for an application or stor-
age system, a proper k can be chosen for better encoding 
performance.

Figure 8 illustrates encoding performance as k varies 
from 6 to 17 (to meet most needs of most storage applica-
tions and systems) for typical encoding block sizes of 1 KB, 
2 KB and 4 KB, respectively.

For all the three block sizes, Jerasure’s encoding perfor-
mance seems to be most stable against k, albeit at much 
lower throughput than that of either ISA-L or STAR. Both 
ISA-L and STAR, on the other hand, do exhibit fluctuations 
in encoding performance as k changes. Also consistent with 
Fig. 7, on both platforms, ISA-L outperforms Jerasure, while 
STAR performs best among the three implementations for 
all k and blocksize, though it seems STAR has slightly higher 
gains over ISA-L on i5 core than Xeon, while relative per-
formance differences between ISA-L and Jerasure appear to 
be close on the two platforms.

Thus, from encoding performance point of view, if use 
of RS code is a requirement, then ISA-L is a much better 
choice than Jerasure; otherwise, STAR is preferable to ISA-
L. The weakness of STAR and other known array codes, is 
limitation of m, which can only be 3 to support reliability 
of tolerating up to disk failures at the same time. If more 
failures need to be supported, RS code has to be used.

Decoding Performance Evaluation

In this section, we compare the decoding performance 
of the three erasure code implementations. As discussed 
in "STAR code", STAR code can only tolerate up to three 
disk erasures. Apparently, as the number of disk erasures 
(m) differs, the decoding performance changes as well. 
It is natural to assume that it takes more time to decode 
more erasures. In this section, we intend to take this fac-
tor into consideration and better understand how coding 
parameters, such as blocksize and k, affect general decod-
ing performance. Decoding performances for disk erasure 

Fig. 7   Impact of blocksize 
on encoding performance for 
k = 10
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(m = 1), two erasures (m = 2), and three erasures (m = 3) 
are to be examined, respectively. For each set of experi-
ments, erasure disks are randomly chosen since different 
erasure locations lead to different decoding speeds obvi-
ously. Enough iterations are conducted and the results 
are averaged to indicate a general decoding performance.

Impact of Blocksize

Just as in "Impact of Blocksize", k = 10 and decoding 
throughputs are measured and averaged over 1000 code-
words (stripes). blocksize is chosen to be 1KB, 2KB and 
4KB too. The decoding performance results are shown in 
Figs. 9a–c, 10a–c for m = 1, 2, 3, respectively. The x-axis 
represents packetsize while y-axis represents decoding speed 
in terms of GBs/s.

Fig. 8   Impact of k on encoding performance

Fig. 9   Impact of blocksize on decoding performance for k = 10 on M900 (Core i5-6500)
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From these results, we observe on both testing platforms 
(i5 and Xeon):

1.	 Just like encoding, ISA-L’s decoding performances 
remain relatively stable as blocksize changes for all k’s 
and erasure numbers, for the similar reason.

2.	 Again like encoding, decoding performances of both 
Jerasure and STAR increase as k increases, for all k’s and 
erasure numbers, and for the similar reason explained 
in encoding. After all, decoding employs similar opera-
tions (finite field multiplication and XOR) in encoding, 
besides decoding paths (indices of packets to multiply 
or XOR).

3.	 When decoding 1 erasure, ISA-L outperforms Jerasure 
as blocksize increases, with 4 KB as a cross-point in 
these results. But more importantly, STAR’s throughputs 
are much higher than those of Jerasure and ISA-L, by a 
factor of roughly 1.6x–5.5x against Jerasure and about 
2.2x–2.6x against ISA-L. The reason is even though 
decoding 1 erasure is just like encoding for all the three 
codes, employing XORs only, STAR’s XOR packet size 
is much bigger (blocksize / 16 bytes, varying from 64 to 
256 bytes) than that of ISA-L and Jerasure (which is 16 
bytes), making much better use of L-2 and L-3 caches. 
Since one erasure occurs more frequently than two or 
three erasures in general, performance for decoding 1 
erasure is a more important consideration in most stor-
age applications and systems (in fact, this is the very 
reason LRC or SDC codes are designed), as is, STAR 
code is more preferable to Jerasure or ISA-L in decoding 
1 erasure. If RS code, thus Jerasure or ISA-L, has to be 
used, their implementations of decoding 1 erasure need 
to be modified to use larger packet size to achieve much 
better performance as STAR.

4.	 When decoding multiple erasures, ISA-L’s throughput 
is constantly higher than that of Jerasure, while their 

performance gap becomes closer as blocksize increases; 
STAR’s decoding performance, on the other hand, 
remains to be highest (except very close to ISA-L’s for 
blocksize of 1KB when decoding three erasures), espe-
cially as blocksize increases. STAR outperforms Jerasure 
by a factor of about 2x–3x, and ISA-L by a factor of 
about 1.25x– 2.1x except for blocksize of 1 KB.

Impact of k

As in "Impact of k", we also measure how decoding through-
put changes as k varies so that storage practitioners can have 
planning when disk failures occur. Again, blocksize is set to 
1 KB, 2 KB and 4 KB, respectively, and k varies from 6 to 
17, and p = 17 for STAR code.

Figures 11a–c and 12a–c, respectively, show performance 
of decoding one erasure, two and three erasures, where again 
the x-axis represents k while y-axis represents decoding 
speed in terms of GBs/s.

The above results show

1.	 As shown in "Impact of k", for all the three block sizes, 
Jerasure’s decoding performance seems to be most sta-
ble against k, albeit at much lower throughput than that 
of either ISA-L or STAR.

2.	 Again ISA-L and STAR, on the other hand, do exhibit 
fluctuations in decoding performance as k changes, 
though not dramatically.

3.	 Also consistent with Fig. 9, STAR performs much better 
than both ISA-L and Jerasure when decoding 1 erasure, 
for all blocksize, for the reason already discussed.

4.	 When blocksize = 1 KB, for all ks, decoding perfor-
mances of STAR and ISA-L are quite close for multiple 
erasures (m = 2 or 3), but much higher than that of Jeras-
ure.

Fig. 10   Impact of blocksize on decoding performance for k = 10 on NW200 (Xeon E3-1275)
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5.	 When blocksize > 1 KB, STAR’s decoding perfor-
mance is the highest among the three for all k’s, while 
Jerasure’s performance is the lowest. The performance 
gap between STAR and ISA-L increases as blocksize 
increases.

6.	 As in encoding performance, STAR has slightly better 
gains in decoding performance for 2 and 3 erasures, over 
ISA-L and Jerasure on i5 than Xeon, while relative dif-
ferences between ISA-L and Jerasure remain close on 
the two platforms.

p = 17 vs. p = 257 for STAR​

Finally, recall that r = p − 1 for STAR code, where p is 
a prime number that is no less than designed k. To make 
blocksize to be in the form of 2b , p = 17 or 257 is a rea-
sonable choice to achieve the goal. For a given blocksize, 
packetsize = blocksize∕r . So when r = 256, its correspond-
ing packetsize is just 1/16 of that when r = 17, e.g., when 
blocksize = 2KB, packetsize = 8 bytes for p = 257 , but pack-
etsize = 256 bytes for p = 17 . A larger packetsize at this 

Fig. 11   Impact of k on performance for different erasures on M900 (Core i5-6500)
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order can usually make better use of L-1 and L-2 caches for 
XORs, and thus decoding and encoding performance. The 
following experimental results on platform M900 do verify 
this behavior (test results on NW200 are quite similar, thus 
omitted here).

Figures 13, 14 and 15 display encoding and decoding 
performances of STAR code with p = 17 vs. p = 257 for 
blocksize of 1 KB, 2 KB and 4 KB, respectively. These 
results demonstrate that p = 17 constantly yields about 
10– 15% better encoding and decoding throughput than p 
= 257 for all k’s and blocksize, and for any erasure num-
bers. This indicates p should be set to 17 whenever pos-
sible, i.e., for all k ≤ 17.

Limitations and Future Work

The purpose of this paper is to present raw performance 
measurement data to data storage practitioners and research-
ers. Thus, modifying other existing libraries, such as Jerasure 
or ISA-L, is beyond the scope of this paper. The evaluations 
are currently limited to Jerasure, Intel’s ISA-L, which are 
typical representatives of Reed–Solomon code, and STAR 
code library. Due to the limitation of equipment we have in 
our lab, we only evaluate performance improvement brought 
by Intel’s SSE. Data storage practitioners and researchers are 
welcomed to share their evaluation results with us.

Fig. 12   Impact of k on performance for different erasures on NW200 (Xeon E3-1275)
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In the future, we intend to explore and benchmark more 
codes such as regenerating codes [30], LRC [14] and SD 
code [25]. We also intend to design and propose new decod-
ing scheduling algorithm for STAR code to improve the 
performance.

Conclusions

While we intend to let the data speak for themselves so that 
data storage practitioners and researchers can make their 
own conclusions according to their needs and requirements, 
we can still make following general observations:

1.	 Intel’s SSE SSE instructions do greatly help improv-
ing both encoding and decoding performances of all 
the three coding libraries. All the three coding imple-
mentations reach GBs/s on the testing machine with 
quite common configurations. But further performance 
improvement beyond general hardware instruction set 
assistance needs to come from better use of all levels of 
caches and algorithmic designs and implementations of 
coding libraries;

2.	 Jerasure vs. ISA-L while both libraries are good open 
source implementations of RS code, extensive perfor-
mance measurement data shows ISA-L performs much 
better in encoding operations for all (k, blocksize) com-
binations and also meaningfully better in decoding 

Fig. 13   Encoding and decoding performance of STAR for p = 17 vs. p = 257 with blocksize = 1 KB

Fig. 14   Encoding and decoding performance of STAR for p = 17 vs. p = 257 with blocksize = 2 KB

Fig. 15   Encoding and decoding performance of STAR for p = 17 vs. p = 257 with blocksize = 4 KB
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operations for most (k, blocksize) combinations, except 
when decoding one erasure for large block sizes (larger 
than 4 KB in our tests). Thus for most use cases, ISA-L 
is a preferable implementation for RS code;

3.	 STAR vs. RS code thanks to the fact that XORs are still 
more efficient than finite field multiplications even with 
SSE assistance, STAR code always exhibits higher 
encoding throughputs for all parameters, especially for 
large block sizes; STAR code also performs better for 
decoding in most (k, blocksize) combinations, especially 
when decoding one erasure. Thus whenever possible, 
STAR code (or other similar array code using only 
XORs) is preferable to RS code when m = 3 is enough 
for system reliability;

4.	 Coding block size For most applications and systems, 
coding block size is perhaps the only parameter a user 
can tune to change encoding and decoding perfor-
mances. While ISA-L’s encoding and decoding perfor-
mances are relatively stable against the coding block 
size, both Jerasure and STAR can have higher encoding 
and decoding throughputs as block size increases thanks 
to better use of multiple levels of caches. Hence when 
possible, a larger coding block size should be chosen to 
achieve better encoding and decoding performance;

5.	 Further Improvement of ISA-L and Jerasure current 
implementations of the two libraries are using small 
XOR packet size (16 bytes) for all encoding and decod-
ing operations. But when decoding one erasure, they 
actually only use XORs instead of finite field multiplica-
tions. To better use L-1 and L-2 caches, a larger XOR 
packet size should be used for much higher decoding 
throughput, as demonstrated in STAR code. Current 
implementations of ISA-L and Jerasure can thus be 
modified in the decoding one erasure component for 
much better performance. As one failure occurs much 
more often than multiple erasures for most data storage 
systems and applications, this modification will greatly 
benefit most use cases.

6.	 Different CPUs For understandable reasons, our test-
beds are only limited to the equipments we have in our 
lab. We understand that many data centers are running 
much newer CPUs, such as Intel’s Cascade Lake [22] 
that supports AVX-512 [7], ARM with NEON technol-
ogy [31], and AMD’s EPYC [17]. But the main differ-
ence of coding libraries evaluated in this study and the 
ones in previous work [28], is the usage of Intel’s SSEs, 
which the testbed CPUs in this study already have. As 
already shown in this work, the relative performances of 
the coding libraries are consistent on two difference test-
beds. We can reasonably expect they will exhibit similar 
relative performances on other testbeds with different 
CPUs. Thus, we believe, while the testbed CPUs used 
in this study are relatively old, the relative performance 

study results will still be valuable to and provide guide-
lines for data storage systems with newer and future 
CPUs.
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