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Abstract

In pairing-based cryptography, the computation of asymmetric pairings e : G; X G, — G, requires input points of prime
order r. The process of getting those r-torsion point is known as hashing into G, or G, and is in general costly. Few recent
works have considered the Scott et al.’s method and Fuentes et al.’s method for hashing on specific families of pairing-
friendly curves. In this work, we apply those two methods on the recently discovered Scott—Guillevic Aurifeuillean curves
with embedding degree k = 6,9, 15, 18,27 and 54. The results obtained show that the Fuentes et al.’s method is at least
twice faster than the Scott et al.’s method in terms of group operations. In addition, the computational cost of hashing into
G, studied in this work is higher compared to the previous work done with BN curves, KSS curves and BLS curves at com-

parable embedding degrees.
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Introduction

A cryptographic pairing is a non-degenerate bilinear map
from certain pairs of points of elliptic curves to a multiplica-
tive subgroup of appropriate order of finite fields. Whereas
some research papers such as Boneh and Franklin’s identity-
based encryption scheme [1], Lynn and Shacham’s short
signature scheme [2] used pairings in a constructive manner
to implement novel protocols, and Joux’s one round tripartite
key exchange [3] used pairing to improve existing protocol
which was in two rounds. There are several types of pairings
such as the Weil pairing [4, 5], the Tate pairing [6], and its
variants: the ate pairing [7], the R-ate pairing [8].

The original algorithm for computing pairings is due to
Miller and is named the Miller algorithm. What the algo-
rithm does is the efficient evaluation of a rational function
associated with an r-torsion point of the elliptic curve.
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Let E(F),) denote the set of rational points of an elliptic
curve E over a finite field F,. Let r be the large prime divi-
sor of #E([Fp) and c the integer, such that #E([Fp) =c-r.For
the Tate pairing for example, the group G, is the subgroup
E([Fp)[r] of r-torsion points in E(F,), so that a point in G, can
be obtained by the scalar multiplication by c. The group G,
appears as the r-torsion subgroup of E(U:pk/d), where E is the
degree-d twist of the elliptic curve E. Hashing can be done
exactly as in the case of G, but the cofactor c in this case is
quite large making the scalar multiplication costly, and it is
thus a major concern to make it as fast as possible.

Two methods are used for efficient hashing into G,: the
Scott et al.’s method [9] and Fuentes et al.’s method [10].
Those methods have been applied to BN curves and BLS
curves [11] and other curves [9]. This work continues the
same line of research in which we consider hashing into G,
on the newly constructed pairing-friendly curves introduced
by Scott and Guillevic [12]. For the case study with both
methods, our results show that the Fuentes et al.’s method
is at least twice faster than the Scott et al.’s method in terms
of group operations. In addition, the computational cost of
Hashing into G, studied in this work is higher compared to
the previous work done with BN curves, KSS curves, and
BLS curves at comparable embedding degrees.

The rest of this paper is organised as follows: in the next
section, we bring out some preliminary on elliptic curves
and pairings useful for the understanding of this work. The
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following section describes and applies hashing into G, with
Scott et al. method to Aurifeuillean curves with embedding
degree k € {6,9,15,18,27,54}, as well as hashing into G,
with Fuentes et al.’s method to the same elliptic curves, but
not for k = 15, since a certain condition was not satisfy. We
also bring up a comparison between computational cost of
hashing with Aurifeuillean curves and other pairing-friendly
elliptic curves in this section. The last section concludes
the work.

Preliminary on Elliptic Curves and Pairings

This section recalls some preliminaries on elliptic curves
useful to understand the remainder of this work. We refer
the reader to the book [4] for more details.

Elliptic Curves

Let [, denote the finite field with p elements. Ep denotes its

algebraic closure, [Fp = Um>1[Fpm. When the characteristic of
F, is different from 2 and 3 the Weierstrass elliptic curve is

the set of points in (x,y) € Ep X ﬁp satisfying the equation:
E:y=x>+ax+0b, (1

where a,b € ﬁp together with an extra point at infinity O. If
a,be [Fp, then E is said to be defined over [F]7 and we denote
this by £/F,.If E is defined over [, then the set of I-rational
points of E, denoted E(F,) is the set of points with coordi-
nates in .

Group Law

Let E be the elliptic curve given by the Weierstrass Eq. (1).
The addition rule is given below. For any point P and P, of
the curve where P;(x;,y;) fori =1, 2.

i P,+0=0+P =P,
(i) -0=0,
(iii) Let Py(x;,y;) # O, —P; has as coordinates
—P,(x;,—y))and P, + (—=P;) = O.
(iv) P, + P,is of coordinates (x5, y;) with

==X —x, y3=Ax —x3) -y

where
NV G op s,
X1 =X
A= Sx% +a
si P =P,.

2y,
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Theorem 1 The set (E(F,), +) consisting of the elliptic curve
given by the Weierstrass Eq. (1) together with addition
defined above is an abelian group with identity element O.

The Frobenius endomorphism on the elliptic curve is
defined by 7 : E(F,) — E(F,) : (x,y) — (+",)") and
O — O.The following theorem gives a bound of the number
of points of an elliptic curve.

Theorem 2 (Hasse) Let E the elliptic curve on finite fieldF,,
with q = p" then

#E(F)=q+1—1 with 1| <24/q.
Theorem 3 Let E the elliptic curve on finite field F,, then
B —tr+q=0,

where t is the unique integer equal to g + 1 — #E(F,), called
the trace of the Frobenius map on the elliptic curve.

There are two categories of elliptic curves: supersingu-
lar elliptic curves and ordinary elliptic curves. If £ =0 or
#E(F,) =1 mod p, the curve is said to be supersingular oth-
erwise it is an ordinary curve.

Definition 1 Let E and E be two elliptic curves defined over
the finite field F,. then, E is called the twist of degree d of E
if there exists an isomorphism y,, from E to E over [, such
that d is minimal.

r-Torsion Points

Definition2 For P € E(R), Pis a r-torsion point if[r]P = O.
The set of r-torsion points of E(Fp) is denoted

Elrl = {PeEF, : nP=0}.

Definition 3 Let r be a large prime number dividing #E(F,),
the embedding degree of the elliptic curve E relatively to r

is the least integer k, such that r/g* — 1.

Remark 1 The embedding degree k is the minimal degree of
extension field [Fq such that E[r] C E([Fqk).

Pairings

Let G,, G, and G, be three groups of order r, a pairing is non-
degenerate bilinear map

8261XGZ—>G3.
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Consequence

e([j1P;Q) = e(P;QY = e(P3[j1Q).

On an elliptic curve E over [, the following groups are
defined:

VjeN,

— G is the group E(F,)[r] of r-torsion points in E(F)),

— G, is a group E(F,.) of r-torsion points, where E is the
degree d twist of E over a lower degree extension Fa.

— G the group of rth roots of unity in F.

The Tate pairing is the map

pk—l

(P, Q) —(f.p(Q) ~

where f,.p is the Miller function, the rational function f,.p
verifying div(f,.z) = s(R) — ([sIR) — (s — DO.

Order of Elliptic Curves and Its Twist

Consider an elliptic curve E defined over F,. The number
of points of E is defined as #E(F,) = p + 1 — ¢, where 7 is
the trace of the p-power Frobenius of E, which obeys the
Hasse bound ¢ < 2\/15. The trace ¢, of the p™-power Frobe-
nius on E for an arbitrary m can be determined using the
recursion:

foralli > 1.

Therefore, the number of points of an elliptic curve E
over [, is defined as
#E(Fp) =p*+ 11— =2p), for
#E(F:)=p’ +1—( =3tp), for m=3,
#E(F,.) =p"+1-1t, for m>=2.

m=2,

If E admits a twist £ of degree d dividing k and ¢ = p*/¢,
then ford = 2,

#EF) =q+1+1.
Ford =3

#EF,) =q+1-Gf —1/2, or
#EF,) =q+1—(=3f -1/2,

with 2 — 4g = =3f2.
Ford =4

#EF,) =q+1+f, or
#EF)=q+1-f,

with 2 — 4g = —f2.
Ford =6

#EF)=q+1—-(=3f+1/2, or
#E(F,) =q+1-(G3f +1)/2,

with 2 — 4g = =32 (see [9] for more explanation).
Addition Chain
Definition 4 (Basic definition) An addition chain for positive

integer n is a sequence of positive integers {e,, e}, e,, ...
such that

’es H

(i) eg=1,e,=2ande;,=n
@ii) for each i, 1 <i < s, there exist k,j < i such that
e, =g¢; + ¢

A generalisation of the following definition take into con-
sideration several integers.

Definition 5 (Generalisation) A generalisation of an addition
chain of length [ for a set of positive integers {n;, n,, ..., n,}
is a sequence of positive integers {eg, €, €, ..., €} which
include {n,, n,, ..., n,}, such that

(i) eg=1,e, =2ande, =n,
(ii) for each i, 1 <i <[, there exist k,j < i such that
e =¢; + e

Such a chain defines a correct sequence of additions/
substraction and doublings required for performing a sca-
lar multiplication operation, [c]P; with P an element of an
arbitrary Abelian group.

By means of Olivos theorem [13], group operations
with the addition chain of length / can be accomplished
with [ + s — 1 operations in the group including squaring
and addition of element of the group. However, it has been
shown that finding a minimal length addition sequence is an
NP-hard problem.

Hashing into G,

Real protocols such as Franklin’s identity-based encryption
scheme require hashing of identities to G, or G,. The gen-
eral approach to construct secure hash functions for hashing
an identity to the group G of order r on an elliptic curve
E(F,) consists to: first step to transform an arbitrary binary
message (the identity) to an element x of F,. Second step
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solves the quadratic curve equation on [, to find a y coor-
dinate (change x if y does not exist) and finally carry the
point P of coordinate (x, y) to some elliptic curve subgroup
G, = E(F,)lrlorG, = f:f(ﬂ:pk/d)[r] by multiplying the point P
by cofactor ¢, where #E(F,) = c.r.

When hashing to G, the cofactor ¢ and p / r have almost
the same size and the hashing is considered to be easier than
when hashing to G, . In fact, in G,, the length of ¢ increases
and it is of the same size with p*/ /r, so that the scalar mul-
tiplication becomes really costly. Therefore, it is of great
interest to make hashing into G, fast.

Hashing into G, with Scott et al. Method

Let ¢ : E — E be the twist isomorphism from E to E and
7 be the pth power Frobenius on E. Scott et al. realized that
the endomorphism y = ¢~ !ozo¢ can be used to quicken the
computation of ¢ - P (this was noted in [14]).

The endomorphism y satisfies

w*(P) — [1lw(P) + [pIP = O. 2)
The idea of Scott is to first express c to the base p as

c=c0+c1p+czp2+--- +Clp[

and then use the identity [p]P = [t]ly(P) — w2(P), so

[c]P = [colP + [c,p]P + [c,p*1P + - + [c,p'1P,
= [co]P + [c;1lw(P) + [—¢| + e, Ty (P) + -+,
= [goIP + [g W (P) + [&:]w*(P) + -+ + [g,Jw* (P).

where every g; is a polynomial in x with degree smaller than
the degree of p.

For a parameterized family of curves, the method requires
first to pre-calculate the cardinality 7 € Q[x] of E([Fqk/d),
where d is from the set of possible twist degrees { 1;2;3;4;6},
and is usually the maximum from this set that divides k. The
application ends by the execution of the algorithm 2 in [9]
which determine the coefficients of the polynomial [c(x)]P
in y(P) where c(x) = %

In what follows the Scott et al. hashing method is applied
to Aurifeuillean curves [12] having embedding degree k
equal to 6, 9, 15, 27 and 54.

Aurifeuillean Curves-6
The Aurifeuillean pairing-friendly curves-6 has an embed-

ding degree of k = 6. We consider the zero j-invariant curves
having twist curves E with degree d = 6. This defines the
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group G, as G, = E([Fpk/d)(r) = E([Fp)(r). The curve is para-
metrized by the polynomials:

p=9"+18° +18x* + 6x+ 1

r=3x>4+3x+1

r=32+1,

The order of the group E([Fp) is c(x)r(x) , where c(x)
c(x) = 3x%* + 3x + 3.

for some rational point P € E(F,),

[c(x)]P = [3x* + 3x + 3]P.

To evaluate the cost of the operations [c(x)]P, we first
calculate [2]P+ P =[3]P then [x]([3]P)=[3x]P and
[x]([3x]P) = [3x?]P. It is made of three point additions, one
point doubling and two scalar multiplications by x.

Aurifeuillean Curves-9

The Aurifeuillean curves-9 family of elliptic curves has
an embedding degree of k =9, and an associated twist
curve E with degree d = 3. This defines the group G, as
G, = E([Fpk/d)(r) = E([Fpg)(r). The curve is parametrized by
the polynomials:

p=81x427x0427x° - 18x* +9° +3x> = 3x+1
r=27x5+9x° +1

t=—18x" —3x+1

The cofactor of #E([Fpg) relatively to r(x) yields,

c(x) = 19683 x'® + 19683 x'° + 13122 x"° — 6561 x'*
+ 131221 — 4374 x12 — 2187 x'!
+ 5103 x'9 — 34022 +972x% + 729 x7 — 891x°
+486x° —99x° +45x* —9x + 1.
Applying Scott et al. method (algorithm 2 in [9]), the~scalar
multiplication [c(x)]P, for some rational point P € E(I]:p3),
is reduced to
[c)]P = [-27x° + 81x° —27x° + 6% + 18x*|P
+ [-54x° =92 + 927 = 274" — 3 x|y (P)
+ [1=54x8 =275 — 957 = 3x|y?(P)
+ [36x* —108x° + 6x — 18x° — 2 — 67|y (P)
+[-9x% + 1y*(P).

In addition, we put into factor the common coefficients:
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[c@)]P = [108](yw> ([x°1P)) + [81]([X’]P)
+ [541(—w (Ix°P]) — y2([X°1P)) + [36](w > ([x*1P))
+[27)(— 1P = [x°1P — w([x*]P) — w*([x*]P))
+ [181([x*1P — w’ ([X'1P))
+ 91(—w(X’1P) + w([*1P) — v (I’ 1P) — y*([X*]P))
+[6](I°1P + > ([x]P))
+ BI(—w((x1P) — y*([xIP)) + [21(—y>(P))
+[11(v*(P) + y*(P))

There are 11 point additions inside the brackets. Then,
extracting all the s = 11 coefficients below and constructing
the addition chain:

{1.[2}3.[6}9.[18]27.36,54.81, 108 }

of length / = 10. The numbers in box are results of add-
ing a number that comes before by itself. By Olivos
theorem [13], the number of group operations is
I+5s—1=10+11—-1=20, which includes 3 point
doubling (number of elements in box) and 17 extra point
additions. To evaluate the rest of cost operations, we first
calculate [x]P, [x*]P = [x].([x]P), [x*]P = [x].([x*]P),
[x*1P = [x].(1°1P), [¥°1P = [x].([x*]P), [x°]P = [x].([x°]P).
For i=1 to 4 we evaluate w(P), w ([x]P), w'([x*]P),
vi([x*1P), w'([x*]P), w'([x°]P) and yw'([x°]P). Just the values
which appeared in the decomposition of [c(x)]P are needed.
In total, hashing to G, in this family of curves has a cost of
twenty eight point additions, three point doubling, six scalar
multiplications by the parameter x and twenty y maps.

Aurifeuillean Curves-18

This family of curves has embedding degree k = 18 and is
parameterised by the polynomials:

p=243x"04+1-162x% +81x7 +272° =54 +9x* +9x°> — 342
r=27x4+9x +1

=3 +1

The zero j-invariant curves have twists of order 6. In this
case, the group G, is expressed as a subgroup of E(F).

Then, c(x) is of degree 24. Applying Scott et al. method,
[c(0)]P, for P € E(F,), is reduced to

[c)]P = |2 +81x%—243x7 +81x°
—45x* — 18X +243° + 9% + 27x6]P

+ [ =27x0 + 814 —9x* + 32 |w(P)

+ |81x% +1-27x5 - 3x2] w2(P)

+ |6x%* —54x° +18x* — 2] v3(P)

+ [9x* —6x% + 1]1;/4(P).

The construction of addition chain yields,
{1,[2]3,[6]9,[18],27,45,[54] 81,[ 162],243} of length
[ = 11. The underline number is not among coefficients of
the expression of [c(x)]P, but added to build addition chain.
By Olivos theorem, the number of group operations is
I+5s—1=114+11-1 = 21plus 12 extra operations which
from the number of additions of points of the same coeffi-
cient. The final cost is made by 5 point doublings, 28 point
additions, 9 scalar multiplications by the parameter x, and
20 applications of .

Aurifeuillean Curves-15

This family of curves has embedding degree k = 15 and is
parametrized by the polynomials:

p=T729x"2 +243x10 + 8147 +54x° +27° + 3> +3x+ 1.
r=81x+81x" +54x°+27X° +9x* +9x° + 62 +3x+ 1
t=54x"+3x+1

In this case, the group G, is expressed as a subgroup of
E(I]:ps). Then, c(x) is of degree 52. Applying Scott et al.
method, [¢(x)]P, for P € E(les), is reduced to

7
[P+ Y [41y'(P) 3)
i=1

where 4, 4, 45, A3, A4, 45, ¢ and 4, are polynomials of Z[x]
of degree less than or equal to 11. To ease the readability,
these polynomials are fully reported in Appendix A. The
scalar multiplication [c(x)]P can be calculated at the cost
of 11 scalar multiplications by x and 83 applications of y.
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Aurifeuillean Curves-27

The Aurifeuillean curves-27 has embedding degree k = 27

and twists of degree d = 3 The curve is giving by the follow-

ing polynomial parametrization:

p=177147x% + 1 + 118098 x*° + 19683 x'® + 2187 x'3
+1458x!" + 2437 + 9x* + 347

r=19683x" +243x% + 1

t=-3x+1

The group G, is expressed as a subgroup of E([Fpg). Then,

c(x) is of degree 180. Applying Scott et al method, [c(x)]P,
for P € E(I]:pg), is reduced to

16

[AIP + ) [A1w'(P) )

i=1

where 4;, for i=0,1,...,16 are polynomials of Z[x] of
degree less than or equal to 21 (see Appendix B for their
complete expressions). The multiplication [c(x)]P can be
calculated at the cost of 21 scalar multiplications by x and
240 applications of y.

Aurifeuillean Curves-54

The Aurifeuillean curves-54 has embedding degree k = 54 and
is parametrized by the polynomials:

P = 59049 x° + 59049 x* + 19683 x'® + 1 + 729 x'!

+972x'0 +243x° + 327 + 3 x.
r=19683x" +243x° + 1
t=243x"0+1,

The corresponding zero j-invariant curve has twist of degree
d = 6, and the group G, is expressed as a subgroup of E([Fpg),

then the cofactor is c(x) of degree 162. Applying Scott et al
method, [¢(x)]P, for P € E(leg), is reduced to

10

[AIP + Y (AW (P), )
i=1

where Ag, 4, Ay, A3, A4, A5, A6, A, Ag, Ag and 4, are polyno-
mials of Z[x] of degree less than or equal to 19 (see Appen-
dix C for their complete forms). The multiplication [c(x)]P
can be calculated at the cost 19 scalar multiplications by x
and 159 applications of y.

Comparison with Others Pairing-Friendly Elliptic Curves

Previous works [9, 11] on hashing into G, using the Scott
et al.’s method with BLS curves, MNT curves, KSS curves,
and Freeman curves provided some computational costs that
we confront to the results obtained in this work. We consider
the notations A for point addition, D for point doubling, X
for a scalar multiplication by the parameter x and y an appli-
cation of the endomorphism y(.). The endomorphism y can
be efficiently calculated, whereas the multiplication by x, is
most costly, since x is large and the algorithm to compute
large scalar multiplications require many point additions and
doubling. The comparison is given in Table 1.

Hashing into G, with Fuentes et al. Method

Fuentes et al. discovered that instead of multiplying the
polynomial c(x) by the point P of elliptic curve as in the
Scott et al. method, and it is sufficient to multiply P by ¢’ a
multiple of ¢, such that ¢’ do not vanish modulo r.

Indeed, let f and f be such that /> —4p = Df? and
7> — 4q = Df?, where D is the discriminant, n4+t=p + 1
and 7t +7= g+ 1 where n=#E(F,), 1 = #E(F,) and g a
power of p. The Lemma 1 shows that E(F,) is stable by v,
and the Lemma 2 illustrates the effect of y on the element
of twisted curve E([Fq). (see [10] for evidence)

Lemma 1 If p=1 mod d, then y(Q) € E(F,) for all
Qe E([Fq).

Lemma2 Ifp=1 mod d,gcd(f, ) = 1and E(F,)is a cyclic

group, then w(Q) = aQ forall Q € E([Fq), where a is
f@-2) A
+——— or -

t
27 of 2 of ©

Table 1 Cost summary of

S . Aurifeuillean Scoot et al. method this work Other curves Scoot et al. method previ-

Ztaztllmg into G, using the Scott curves ous works in [9, 11]
AU-6 3A,1D,2X MNT-6 1A,1D,1X,2y
AU-9 28A, 3D, 6X, 20w Freeman-10 20A,5D,3X, 4y
AU-15 11X, 83w BLS-12 6A,2D,3X,3y
AU-18 28A, 5D, 9X, 20 v KSS-18 51A,5D,7X,38y
AU-27 21X, 240 BLS-30 82A,16D, 11 X,67 w
AU-54 19X, 159 ¢ BLS-48 132 A,120D, 16 X, 130 w
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Theorem 4 [10] Suppose that E([Fq) is cyclic and
p=1 modd.

Then, there exists a polynomial
h(Z) = hy + hyz+ = + hyg_ 2707

in Z[z] such that [W(y)]Q is a multiple of [c]Q for all
Q € E(F,) and |h,|*® < #E(F,)/r for all i.

Fuentes noticed that polynomials i € Z[z], such that
h(a) =0 mod c correspond to points in the integer lattice
generated by the matrix:

cl O
=)
Al -1

where A is a column vector with ith entry —d' mod c,
i=12,...,0k) —1.

The method begins as the Scott et al. method for obtain-
ing i the order of twisted curve E and c(x) its cofactor rela-
tively to r(x). We also find a(x) as defined in Lemma 2 and
set the matrix M. Then used LLL algorithm [15] to reduce
the coefficients of the matrix M. The linear combination of
the rows of the reduced matrix obtained yields

h(z) = hy(xX) + by (X)z + hy(0)Z* + -

and the final step of hashing into G, with Fuentes et al.
method is

[h(Y)IP = [ho(X)IP + [h; ()] (P) + [y ()]w (P)* + -+

The pre-computation is done using the software Maple and
the LLL reduction is done using Magma V2.24-1 calculator

We applied Fuentes et al. hashing method to Aurifeuillean
curves having embedding degree k equal to 6, 9, 18, 27 and
54. But we does not applied the method for k = 15, because
the condition that the cyclotomic polynomial map to a (see
Eq. 6) modulo the order of the twisted curve does not hold.

Aurifeuillean Curves-6

For the Aurifeuillean curves with k = 6,, the parameter a
from Lemma? is the following polynomial in x.

aw=1+7 GZ} 2

=12 +6° +8x+3

)

and the LLL reduction of M yields

mod 7(x)

We set

M= < c(x)

—a(x) mod c(x)

13

X+3/4 1/4

By multiplying the last row by 4 and setting
h(z) = (4x + 3) + z, h(a(x)) = 2(x + 1)c(x) mod 7i(x), with
ged(2x + 2,r(x)) = 1. Hence, if P € E(F,,,), then [A(a)]P is
a multiple of [c]P and [h(a)]P = [h(w)]P, so

[h(yw)]P = [4x + 3]P + w(P).

[31P = [2]P + P,[4x]P = [x]([2]([2]P)), then [h(y)]P can be
computed at the cost of 3 point additions, 2 point doubling,
1 scalar multiplication by the parameter x and 1 applications
of y.

Aurifeuillean Curves-9

For the Aurifeuillean curves with k = 9, the parameter a is
given by

2424212632 5143304439 ,

T 217993987 T 217993987
2610122718 5 _ 28189433622483 5

217993987 217993987
2506275703512 15 _ 1279629413985 5

217993987 217993987
1222024507191 o4 1016530951635 3

217993987 217993987
3969053944218 2 1767566638755 Y

217993987 217993987
302386560777 L0 _ 838029510945 0

217993987 217993987
547494386031 8 185168432511 o

217993987 217993987
94951444725 6 81127529640 e

217993987 217993987
10251013101543 ,, 428418209700 »,

217993987 2986219
3837028856004 ) _ 5671787322267 14

217993987 217993987
359339840  11556879138387 7

217993987 217993987
_ 34656702615 A 27153033524343 23

217993987 217993987

alx) =

Setting

c(x) 00000
mod ¢(x) |1 0000
mod ¢(x)[0 1000
mod ¢(x)]0 0100
mod c(x)]0 0010
mod ¢(x)|[0 000 1

—a(x)
—a(x)*
—a(x)’
—a(x)*
—a(x)’

M =

and using LLL algorithm, we obtain the matrix with small
coefficients:
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[ —1/3x*-1/3x  1/3x-1/9 -2/3x2+2/9
1/3x-1/9 -2/3x>+2/9 2/3x%
-2/3x2+2/9 2/3x? 2/9 x?
2/3x% 2/9 ¥ +1/3x2-1/9
2/9 ¥B+1/3x2-1/9 —1/3x>+1/3x
_x3+1/3x2—1/9 -1/3x>+1/3x —-1/3x-1/9

1/3x>=1/3x 1/3x+1/9 X —=1/3x>+1/9 ]
1/3x+1/9  x*-1/32+1/9 1/3x>+1/3x
—1/3x*+1/9 1/3x*+1/3x  —1/3x+1/9
1/3x2+1/3x -1/3x+1/9 2/3x*-2/9
-1/3x+1/9  2/3x*-2/9 -2/3x%
2/3x*=2/9 -2/3x2 -2/9

Taking the 6th row of the above matrix when multiplied
by 9 we defined the polynomial:
h(z) =9x +3x* = 1+ (-3x" +3x)z
+(=3x—- D2+ (642 -2)7 — 627 -2
h(a(x)) = (9x° + De(x) mod 7i(x), w it h
ged(r(x), 9% + 1) = 1. Hence if P € E(F,,y), then [h(a)]P
is a multiple of [c]P and [h(a)]P = [h(y)]P.
[h)IP = [9x° +3x* — 11P + [-3 X% + 3x|w(P)
+[-3x— 1w (P)* + [62* — 2|w(P)’
— (6w (P)* = [21w(P)’.
That can be computed at the cost of 12 point additions,2

point doublings, 3 scalar multiplications by the parameter x
and 11 applications of y.

Aurifeuillean Curves-18

For Aurifeuillean curves with k = 18, we follow the same
process as above and obtain the polynomial:
hz)=-32+x—1+(9x =322 +x)z+ (327 - 1)2

+ (=38 +x+1)2 —2x2*
with h(a(x)) = =3(9x% + 2)c(x) mod 7i(x)

ged(r(x), =3(9x3 +2)) = 1.
For every P € E(F, ),

and

[hR)IP = [-3x7 +x = 1P+ [9x* = 327 + 2]w(P)
+ 322 = 1w (®P)
+ [-3° + x4+ 1w (P)® + [~2x] w(P)*.
That can be computed at the cost of 14 point additions, 2

point doublings, 4 scalar multiplications by the parameter x
and 13 applications of y.

Aurifeuillean Curves-27

For Aurifeuillean curves with k =27, the polynomial
yields

SN Computer Science
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h(z) = 81x° +27x7 + 1 + (=27x7 — 9x°)z
+ OO + 32 + (=32 =07
+ (=243x10 = 812 — 0)z* + (81x% 4+ 27x%)7°
+ (=27x% = 9x"Z8 + (9x* + 3x%)7
+ (=32 = D + (=81x° = 27x" + 1)’
+ (27x 4+ 9x°)7'% 4+ (=9x° — 3x%)!!
+ 3% +x)z2'% + (=2x)7"
with h(a(x)) = §1x9c(x) mod 7i(x) and ged(r(x), 81x°) = 1.
For every P € E(I]:p(x>9),
[h(w)IP = [81x° 4+ 27x" + 1P + [-27x" — 9% Jy/(P)
+[9x° + 33w (P)? + [-3x° — xly(P)®
+ [-243x'0 — 81x% — x]w(P)*
+ [81x® + 27x°] w(P)°
+ [-27x° = w(P)® + [9x* + 3% w(P)’
+[-32 = y(P)*
+ [-81x = 27x" + 1] y(P)’
+ 2747 + 9w (P)'? + [-9x° — 33w (P)!
+ B2 + x]w(P)? + [-2x] w(P)".
That can be computed at the cost of 33 point additions, 5

point doublings, 10 scalar multiplications by the parameter
x and 94 applications of y.

Aurifeuillean Curves-54

For Aurifeuillean curves with k = 54, we obtain the following
polynomial:
h(z) = 2x + 1 4+ (81x° — )z + (27x7)z?

+ (2747 = 27292 + (27x° + 18x°)z*

+ (=18x° = 9xHZ® + (9x* + 3x°)2°

+ (=37 + (02 + (—02°

+ (81x7 + 81x% + 1710 + (—81x® — 54x7)7!!

+ (54x7 4+ 27x%)2'% + (=27x° — 9x°)13

+ 9" + (3x7)ZP

+ (=3x° = 332710 + 3% + 2x)7"7
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with ha(x)) = 3x(81x° + De(x) mod 7i(x) and
ged(r(x), 3x(81x° + 1)) = 1. Forevery P € E(Fp(x)g),

[h()IP = [2x + 1]P + [81x° — 1]y (P) + [27x"|w(P)?
+ [<27x" = 27x°1w(P)* + [27x° + 18X’ w(P)*
+ [—18%° — I w(P)’ + [9x* + 317 w(P)°
+ [=3Tw(P) + [=x]w(P)® + [-x]y(P)’
+[81x° + 81x® + 11y (P)'° + [-81x* — 54x7 |y (P)!
+ [54x7 + 27xTw (P)'2 + [<27x° — 9X° 1w (P)1?
+ (91w (P + 3T w(P)" + [-3%° - 3%y (P)"°
+ [3x% 4+ 2x]w(P)".

That can be computed at the cost of 33A point additions, 4
point doublings, 9 scalar multiplications by the parameter x
and 126 applications of .

Comparison with Others Pairing Friendly Elliptic Curves

In Table 2, we recapitulate the computational costs of
hashing into G, using Fuentes et al. method with Auri-
feuillean curves, KSS curves, Freeman curve and BN
curves. As with Scott et al.’s method for k = 18 hashing
with KSS curve is more efficient than with Aurifeuillean
curve as far as group operations is concerned.

In Table 3, we carry out the computational costs
of hashing into G, using the Scott et al.’s and Fuentes
et al.”’s methods with Aurifeuillean curves with embed-
ding degrees k = 6,9, 18,27 and k = 54. We observe that
for the two first cases, the Fuentes et al.”s method is twice
as fast than the one of Scott et al. method. For k = 18,27
and 54, the Fuentes et al.’s method determines a 9/4,
21/10 and 19/8-fold improvement respectively. Previous
works show that is it more efficient to hashing into G,
using the Fuentes et al.’s method with BLS, BN, and KSS
curves. Our results on Aurifeuillean curve also confirm
this assertion.

Table 3 Comparison between the computational cost of each hash

map
Curve Scott et al. method Fuentes et al. method
AU-6 3A,1D,2X 3A,2D,1X, 1y
AU-9 28 A,3D,6X,20y 12A,2D,3X, 11y
AU-18 28 A,5D,9X,20y 14A,2D,4X, 13y
AU-27 21 X, 240 v 33A,5D,10X, 94 ¢
AU-54 19X, 159w 33A,4D,9X, 126w
Conclusion

This work investigated on an efficient hashing into G, to on
the recent Scott—Guillevic Aurifeuillean curves. We applied
the two existing hashing methods namely the Scott et al. and
Fuentes et al. methods. Our results show that hashing on
Auriffeuillean curves with embedding degree k = 6,9, 18,27
and 54 is more costly than hashing on the well known BLS
curves, KSS curves, or BN curves for comparable embed-
ding degrees. Our results also confirm that hashing into G,
using the Fuentes et al.’s method is more efficient that using
the Scott et al. method as reported in the previous work on
the literature.
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AU-6 3A2D,1X 1y KSS-8 7A,3D,2X,3y
AU-9 12A,2D,3X, 11y Freeman-10 14A,4D,3X, 4y
AU-15 - BN-12 4A,1D,1X,3y
AU-18 14A,2D,4X, 13y KSS-18 16A,2D,3X,5y
AU-27 33A,5D,10X, 94w BLS-24 9A,1D,4X, 10y
AU-54 33A,4D,9X, 126 ¢ BLS-48 17A,1D,8X,36y
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Appendix A: Aurifeuillean Curves-15

For any rational P € E(I]:ps), the hash map obtained in (3)
yields [c(x)]P = [A¢]P + 2;1 [Ai]wi(P) where:
Ao = 786 x + 286 — 369 x* + 12285 x°
—6318x° +3240x" + 7857x° — 1116x°
— 19359 x% + 89667 x'° + 6561 x'! + 126 x>
Ay = —436 — 1233 x — 414 x*
—19305x° 4+ 2673 — 2187 x7
— 6210x° + 1557 x% 4+ 25353 x®
— 69741 x'° — 12393 x!! + 288 x?
Ay =375 + 423 x + 783 x* + 6966 x° + 3402 x°
—1053x" +378x° — 378 x> — 6480 x8
+243x10 + 1458 x!! — 564 x*
Ay =168x +72x* =87 + 162x° — 162x7 +27%°
—153%° +243x% + 1458 x!! 4 36 x?
Ay =—60+162x° +27x° +72x% + 24358
+ 1458 ! —162x" —63x* + 126x* — 147 x
As =179 4+ 726x — 1368 x* + 15417 x° — 24786 x°
+ 14742 x7 +3510x° — 306 x> — 6156 x°
+ 36450 x' + 110808 x'! + 702 x%
Ag = —176 — 921 x + 1377 x* — 15768 x° + 25758 x°
—19926x" — 3213 x° + 990 x> + 11340 %8
— 25758 x'0 — 81648 x!! — 101742
Ay =117+ 429 x + 45x* + 3240 x° — 1944 x° + 5832 x"
+972x° —729x> — 5184 x% + 1944 x10 4+ 222 X%

Appendix B: Aurifeuillean Curves-27

For any rational P € E([Fpg), the hash map obtained in (4)
yields [c()IP = [Ag]P + X1° [A: 1w (P) where:
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A =

Ay =

—2480058 x*! + 6561 x'® + 6 — 405 x°
—30618x' —78732x'® — 10935 x!% + 810x°
— 2480058 x'° — 275562 x'7 + 59049 x*°

+ 144342 %" — 84 x + 1053 x7 — 4374 x!!

— 243x° — 162 x*72 x> — 52488 x'% + 39366 x'*

= -9+ 9920232 x*! — 65610 x'°

+1674x° — 27 x> + 68526 x'0 + 19683 x'®

+ 63423 x" — 6804 x® — 1458 x5

+ 6613488 x' + 59049 x*° — 406782 x5

+ 234x —1782x7 4+ 14580 x!! — 3645x°

+ 648 x* — 117x° 4+ 174960 x'2 — 21870 x4,

9 — 11337408 x*! — 1269x° + 135 x*

— 37908 x'° 4+ 19683 x'8 — 137781 x'*

+ 15552 — 648 x° — 5196312 x"

+ 1102248 x'7 + 59049 x*° + 367416 x5

— 309x — 10206 x'"" + 6075 x° — 972 x*
+540x — 172044 x'%2 — 17496 x',

3 + 3720087 x*' — 189 x* — 14094 x'°

+ 19683 x'8 + 129033 x! — 9963 x® + 3240 x°

+ 118098 x" — 1161297 x!7 + 59049 x** + 225 x
— 1458 x'' — 5103 x° + 486 x* — 360> + 47385 x!2

= =9+ 1352 + 11907 x'° + 19683 x'3

— 50301 x'3 — 162 x® — 2349 x° + 767637 x*°
+ 275562 x'7 + 59049 x*° — 150903 x> — 75 x
+ 10206 x" + 3159 + 162x*

9 —27x* 4+ 19683 x'8 + 1377 2% + 2164°

+ 59049 x'7 + 59049 x*° + 39366 x"3

— 4374x" =729 X7 — 243 x*

= -3+ 19683 x'8 + 6561 x> + 189 x° + 59049 x*°

+ 6561 x1 + 2187 x!" 4+ 243 x° + 90 x*
—3x% + 19683 x'® + 59049 x%0 — 9 x*
1+ 3x% + 19683 x'® + 59049 x2°

= —8 — 124659 x'% + 57 %% — 10206 x'°

+ 157464 x'® 4 34028 — 162 x°

— 189 x* + 4374 x'? + 45927 x'

18954 x'0 — 13608 x® + 2106 x5 + 41553 x'2 + 513 x*
— 168399 x'* — 231 x* + 183708 x'° + 28
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Ay = 6561 x10 + 17496 x® — 5832x° — 243 x*
— 96957 x'? + 399 x* + 122472 x™* — 56
Ay = —5589 1% + 64801 — 621 x*
— 28917 x'% — 357 x% + 51030 x'2 + 70
A3 = —3969 x® — 2835 x°
+ 945 x* + 147 x* + 13608 x'° — 56
Mg =27x° — 486 x* +3x% + 2268 x* + 28
Aps =216x° +72x* —24x* -8
e =9x" +6x7 +1

Appendix C: Aurifeuillean Curves-54

The application [c(x)] map P € E([Fpg), to (5) which is
[201P + 312, [A]w!(P) an element of G,, where:
Ao = 17349 x + 5944 + 166695327 x'® + 330083910 x"°
— 8345592 x' + 9086985 x'* + 19997928 x!°
— 1023516 x"° — 42554646 x'7 — 5150385 x'2
+ 773469 x'! + 1486917 x° + 43011 x” — 61074 x8
— 2997 x° — 17496 x° + 12366 x*
— 10899 x* + 5710014 x'° + 4596 x2,
Ay = —55227 x — 600055938 x'® — 1028692629 x'°
+ 33732288 x'* — 32831244 x'3 — 59291757 x'6
— 5570289 x'° 4+ 144118926 x'7 + 17275842 x'2
— 1127763 x'' — 5220126 x° + 5508 x”
+ 19764 x® + 5346 x° — 6048 x° — 8550 x*
+ 7290 x* — 20055033 x'0 — 1353 x* — 27143,
Ay = 32262 + 67812 x + 673276698 x'® + 1226979171 x"°
— 29570427 x'* 4 29445768 x'*
+ 50152284 x'% + 5701509 x'> — 121011084 x7
— 16585479 x'% + 1471122 x'"! + 6693678 x°
— 48843 x7 — 21303 x® — 28809x° + 51138 x°
+ 13590 x* — 3753 x° + 21528828 x'0 — 5889 x2,
Ay = —3574 — 25539 x — 134198694 x'® — 350573913 x"°
+ 3475143 x1 — 9056367 x'* — 32063607 x'°
+ 10340136x" + 48735108 x'7 + 9000234 x'?
— 4672161 x'"' — 1349379 x° + 41877 x7
+ 18954 x% + 26271 x> — 48195 x5
— 5967 x* — 2853 x> — 4537296 x'° + 7638 12,

Ay = 166 + 10176 x + 29170206 x'® + 107528229 x'°
— 69984 x'* + 981963 x'3 + 4737042 x'6
— 2191374 x" — 4979799 x'7 — 1458000 x'2
+ 1346463 x'' + 438615 x° — 28998 x7 — 2754 x%
— 15822x° + 28917 x® 4 2088 x* + 4104 x>
+ 1054620 x'° — 5037 42,

As =715 — 924 x — 295245 x'® — 1771470 x"
— 166212 x™ + 56862 x'3 — 583929 x!6 4+ 373977 x1°
+ 492075 x'7 + 14580 x'2 — 183708 x!! — 20412 x°
+ 1458 x7 + 4617 + 3078 x° — 3780 x°
— 1359x* +72x° + 177633 x'0 + 444 x2,

Ag = —155 + 501 x + 2263545 x'® + 3542940 x"*
— 190269 x'* + 107163 x' 4 262440 x'® + 65610 x"°
— 393660 x'7 — 22599 x'2 — 26244 x'! + 26730 x°
+324x7 — 1701 x% — 1215x° + 1053 x5
+ 594 x* — 180x° 4+ 69012 x'° — 144 »2,

Ay = =30x — 590490 x"° — 4374 x'* — 56862 x'?
— 91854 x'® + 131220 x" + 36450 x' — 7290 x'' + 486 %
—810x® — 324 x° +432% — 18x* + 901> — 7290 x1°,

Ag = 59049 x'* — 65610 x'® — 14580 x!2 — 108 x* — 90
+216x% —810x" + 459 x° — 2187 x> — 6561 x',

Ao = —10935x™ + 10935 x'* — 32805 x"°
+7290x'2 — 135x° — 270 + 135x* + 45 %,

Ap = —4374x1 — 4374 %13 — 1458 x12
—27x° —45x* — 95>
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