
Vol.:(0123456789)

SN Computer Science (2020) 1:24
https://doi.org/10.1007/s42979-019-0022-z

SN Computer Science

ORIGINAL RESEARCH

Access Controls for IoT Networks

Alban Gabillon1 · Romane Gallier1 · Emmanuel Bruno2

Received: 16 April 2019 / Accepted: 6 September 2019 / Published online: 20 September 2019
© Springer Nature Singapore Pte Ltd 2019

Abstract
The message queuing telemetry transport (MQTT) protocol is becoming the main protocol for the internet of things (IoT).
In this paper, we define a highly expressive attribute-based access control (ABAC) security model for the MQTT protocol.
Our model allows us to regulate not only publications and subscriptions, but also distribution of messages to subscribers.
We can express various types of contextual security rules (temporal security rules, content-based security rules, rules based
on the frequency of events, etc.).

Keywords Security policy · MQTT · ABAC · IoT · First-order logic

Introduction

The Message Queuing Telemetry Transport (MQTT) proto-
col is becoming the main protocol behind pub-sub networks
for the Internet of Things, that is, in networks implementing
the publication–subscription paradigm. The MQTT protocol
is an ISO standard (ISO/IEC PRF 20922) [1] and the 3.1 ver-
sion became an OASIS specification in 2013 [2]. Basically,
the MQTT protocol works as follows: publishers post mes-
sages to logical channels called topics; subscribers receive
messages published to the topics to which they subscribed;
and the MQTT broker routes’ messages from publishers to
subscribers.

The MQTT protocol supports very few security features.
It includes a MQTT client identification mechanism and sup-
ports the basic login/password authentication scheme. Con-
sequently, there have been several papers aiming at defining

security solutions for the MQTT protocol or more generally
for the pub-sub pattern. These papers address various issues
like how to implement a security policy regulating publica-
tions and subscriptions [3–5], how to distribute the evalua-
tion and the enforcement of the security policy at the edge
of the IoT network [6, 7], how to distribute and synchronize
the security policy between different pub-sub architectures
[8], or how to protect the confidentiality of the messages
from the broker or the pub-sub architecture itself [9, 10].
Although these issues are all very important, we noticed
that none of these papers fully addressed the definition of
a security model allowing to express security policies for
regulating IoT messages. Some of the papers [4, 5] mention
that they are using the ABAC (Attribute-Based Access Con-
trol) model [11] for expressing the security policy control-
ling publications and subscriptions. However, they do not
go much into details and do not elaborate on the expressive
power of the security policy. In this paper, we define a highly
expressive ABAC model for regulating IoT messages in an
MQTT network. We believe that the definition of such a
security model (which does not contradict the solutions pro-
posed by the aforementioned papers) has been missing in the
literature related to security solutions for pub-sub architec-
tures. Our model allows us to regulate not only publications
or subscriptions, but also distribution of messages by the
broker to subscribers. Our model supports positive and nega-
tive authorizations and allows us to express various types
of context-based policies, including policies based on the
frequency of events. This paper is an extension of two papers
we previously published [12, 13]. In this paper, we give a

This article is part of the topical collection “Future Data and
Security Engineering” guest edited by Tran Khanh Dang.

 * Alban Gabillon
 alban.gabillon@upf.pf

 Romane Gallier
 romane.gallier@doctorant.upf.pf

 Emmanuel Bruno
 emmanuel.bruno@univ-tln.fr

1 Université de la Polynésie Française, Punaauia, BP 6570,
98702 Fa’a’ā, French Polynesia

2 Université de Toulon, CNRS, LIS, UMR 7020,
83957 La Garde, France

http://orcid.org/0000-0003-2220-0305
http://orcid.org/0000-0001-6003-8017
http://orcid.org/0000-0001-5171-2268
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-019-0022-z&domain=pdf

 SN Computer Science (2020) 1:2424 Page 2 of 13

SN Computer Science

more complete definition of our security model, including
the security policy administration model. We also present a
new version of our prototype of access control enforcement
system. The prototype we sketched in [12, 13] was based on
SWRL and OWL2. Although it showed the feasibility of our
approach, it proved to be inefficient in term of performance.
The prototype we present in this paper is based on RDF [14]
and SHACL [15] and the experiments we conduct show that
it is efficient and scalable. Finally, in this paper, we also
update our review of the literature on security models for
IoT networks.

The remainder of this paper is organized as follows: in
“ABAC Model”, we define our model. In “Security Admin-
istration Model”, we present our security administration
model. In “Prototype”, we present our secure MQTT broker
prototype based on our model and we study its performance.
In “Related Works”, we review related works before the con-
clusion in “Conclusion”.

ABAC Model

Some papers [4, 5] mention that they are using the attribute-
based access control (ABAC) model [11] for expressing the
security policy controlling publications and subscriptions in
a pub-sub network. However, these papers do not go much
into details and do not elaborate on the expressive power of
the security policy. Moreover, none of these papers address
the security administration issue. Our aim in this paper is
to define a security model which can be seen as a profile of
the ABAC model for pub-sub networks based on MQTT.
We first identify some requirements specific to IoT security
policies. Then, we make some assumptions on the IoT net-
work and on some security aspects that we shall not cover.
Finally, we devise our model starting from the requirements
we identified.

Requirements

• Our model should offer the possibility to regulate not
only publications and subscriptions to topics but also dis-
tribution1 of messages by the broker to subscribers. Con-
trolling distribution of messages is essential to regulate
the various flows of messages coming from the broker.
Solely controlling subscriptions is too coarse grained to
achieve that task.

• Our model should allow for various types of dynamic and
contextual authorization rules, i.e., authorization rules
whose outcome (permit ort deny) depend on some con-
textual conditions applying to the nodes, the messages
(including the content of the messages) or the environ-
ment. In particular, authorization rules based on the fre-
quency of events should be supported since controlling
the rate at which a node may send or receive messages is
important in many IoT applications.

Assumptions

• For the sake of simplicity, we assume a pub-sub archi-
tecture with only one MQTT broker. Since we focus on
the expressive power of the security policy, we do not
investigate issues like distributing and synchronizing
the security policy between different bridged brokers or
evaluating the security policy at the edge of the network
[6–8].

• We assume the broker to be trusted, i.e., we do not inves-
tigate solutions to protect the confidentiality of the mes-
sages from the broker [9, 10].

• We do not investigate authentication techniques. We
believe that standard authentication techniques can be
used to authenticate both nodes and attributes.

• Finally, we assume that TLS/SSL is used at the transport
layer between all nodes of the IoT network. Most existing
MQTT servers support the use of TLS/SSL.

Language

We use first-order logic with equality to define our model,
i.e., we define a logical language allowing us to represent
nodes, attributes, events (such as publications, subscrip-
tions, and message distribution), and authorization rules.
Note, however, that the reader who is not familiar with
logic should be able to understand the main principles of
our model, since we translate in plain English each logical
formula.

Although we define our own logical language, we wish
to make it clear that this paper is not about a new logic-
based policy language. To specify our model, we could use
XACML [16] (but it would be unreadable by a human), or
an existing logical language like SecPAL [17]. However, we
prefer defining our own language, so that we can restrict our-
selves to Horn clauses which can easily be read by a human
and for which there exists efficient resolution methods.

Constants

Constants of our language are string expressions. They are
node identifiers such as sensor1, user1, etc. or the special
string broker referring to the MQTT broker.

1 Note that in the MQTT protocol the distribution of messages by the
broker is implemented by means of publish messages. From a secu-
rity point of view, we prefer to make a clear distinction between the
privilege to publish in a given topic (this privilege can be held by any
node) and the privilege to deliver messages to subscribers (this privi-
lege can be held only by the broker).

SN Computer Science (2020) 1:24 Page 3 of 13 24

SN Computer Science

Topics are defined by path expressions (written as strings)
such as temperatures/sensor1. Several topics can be refer-
enced using wildcards # and +. For examples, tempera-
tures/# addresses any topic having temperature as path root
and home/+/temperatures addresses topics such as home/
room1/temperature, home/room2/temperature, etc. See [2]
for more details about the use of wildcards in MQTT topics.

Note that, to lighten the notations, we omit the quotation
marks for the strings.

Variables

Variables are written in capitalized letters like in Prolog.
Our language includes the anonymous variable _ which
means anything. If variable S contains a string value, then
we assume that this value can be referred to in a path expres-
sion. For example, if S contains the string sensor1, then
temperatures/S represents the topic temperatures/sensor1.

In this paper, to distinguish variables from constants, we
constrain ourselves to consider only constants written as
strings of lowercase characters.

Predicates

Authorizations can be derived from a set of facts � and
from a set of logical rules � . Set � keeps track of registered
nodes and events (publications, subscriptions and distribu-
tions), whereas set � records the nodes hierarchy (Table 1).

Set � includes instances from the following node
predicates:

Registering a node creates an instance of one of these
node predicates.

Set � includes the following rules:

(1)node(N) ← bro ker (N)

These three rules can be used to derivate that the broker
or a sensor or a client is also a node. These rules define
a roles hierarchy that could be expanded according to the
needs of the application.

Set � also includes instances from the following event
predicates (Table 2):

Publishing a message creates an instance of the
hasPublished/3 predicate. Subscribing to a topic creates
an instance of the hasSubscribed/3 predicate. Deliver-
ing a message creates an instance of the hasDelivered/3
predicate. As we shall see in “Language”, recording these
events allows us in particular to express security rules con-
trolling the frequency of publishing/delivering messages.

As we said previously, topics are path expressions
possibly written with wildcards. Therefore, set � also
includes instances from the following topic predicate
(Table 3):

F o r e x a m p l e , f a c t addresses(temperature∕ ∗,

temperature∕sensor1) belongs to � . For the sake of sim-
plicity, we do not give the logical rules allowing us to
derive instances of the addresses/2 predicate.

Functions

Functions of our language represent attributes. They are
either,

• Functions applying to messages or
• Functions for evaluating temporal conditions or any

other contextual conditions.

Lists of functions in Tables 4 and 5 are not exhaustive
and can be extended depending on the needs.

(2)node(N) ← sensor(N)

(3)node(N) ← client(N).

Table 1 Node predicates Predicate Meaning

node(N) N is an IoT node
broker(N) N is the broker
sensor(N) N is a sensor
client(N) N is a client

Table 2 Event predicates Predicate Meaning

hasPublished(N,T ,D) At time D, node N has published a message in topic T
hasSubscribed(N,T ,D) At time D, node N has subscribed to topic T
hasDelivered(T ,N,D) At time D, the broker has delivered a message from topic T to node N

Table 3 Matching predicate

Predicate Meaning

addresses
(

T ,T ′
)

Topic T addresses topic T’

 SN Computer Science (2020) 1:2424 Page 4 of 13

SN Computer Science

Security Policy

Actions

We define the three compound terms to represent the fol-
lowing three actions:

Variables represent action parameters. Note that there is
no QoS parameter for the deliver operation. This is because
the QoS used by the broker to deliver a message to node N
is the QoS chosen by node N when it subscribed to topic
T. This means that if, in our security policy, we need to
restrict the QoS used by the broker to deliver messages, then
it should be done during the subscription step.

Contextual Authorization Rules

We consider positive authorizations and negative authoriza-
tions represented by the two following predicates:

Variable A contains any of the three compound terms of
Table 6. Note that if A is a deliver action, then we assume that
N cannot be different from broker (Table 7).

The security policy � regulates publish, subscribe, and
deliver operations. It consists of a set of authorization rules.
Any authorization rule is an instance of one of the following
rule templates:

Symbol conditions stands for a possibly empty conjunction
of contextual conditions on nodes, topics, QoS, messages, and
the environment. Here are a few examples of authorization
rules:

Rule 6 denies sensor1 to publish messages (whichever the
QoS is), in topic alarms/sensor1 during daytime:

Rule 7 allows guest nodes to subscribe to the alarm hier-
archy of topics. Here we assume guest/1 is a role predicate
expanding the hierarchy defined in “Assumptions”.

Regarding the delivering operation, we should first note that
the normal MQTT behavior is to deliver messages from topic
T to the nodes which subscribed to topic T.

This can be expressed by the following default policy rule:

Rule 8 allows the broker to deliver any messages from
topic T to the nodes which subscribed to topic T. However,
this default policy can be overridden in some specific cases
(see “Security Policy” for conflicts resolution between rules):

Rule 9 overrides rule 8 and denies the broker to deliver
failure messages from the alarm hierarchy of topics to guest
nodes. Rule 9 is an example of a content-based authoriza-
tion rule.

In rules 7 and 9, there is a path expression referring to the
set of topics alarms/#. Therefore, we need to include in set
� some rules to derive instances of predicates allow/2 and
deny/2 addressing any subset of a set of topics expressed by
means of wildcards:

(4)allow(N,A) ← conditions

(5)deny(N,A) ← conditions.

(6)
deny(sensor1, publish(_, alarms∕sensor1, _))

← time() > 8 ∧ time() < 20
.

(7)
allow(N, subscribe(alarms∕#, _))

← guest(N)
.

(8)
allow(broker, deliver(_, T ,N))

← hasSubscribed(N,T , _)
.

(9)
deny(broker, deliver(M, alarms∕#,N))

← guest(N) ∧ value(M) =� failure�
.

Table 4 Message attribute functions

a Encrypting a message means encrypting the payload of the MQTT
packet transporting the message. This should not be confused with
encrypting the whole communication between nodes at the transport
layer by means of TLS/SSL

Function Purpose

length(M) Returns the length of the message M
retained(M) Returns true if the message M is retained, false else
value(M) Returns the content of the message M
encoding(M) Returns the character encoding of the message M
ciphered(M) Returns true if the message M is encrypteda, false else

Table 5 Contextual functions

Function Purpose

time() Returns the current time
date() Returns the current date
latency() Returns the network’s latency
bandwidth() Returns the network’s bandwidth

Table 6 Actions

Term Action

publish(M,T ,Q) Publishing message M in topic T at QoS Q
subscribe(T ,Q) Subscribing to topic T at QoS Q
deliver(M,T ,N) Delivering message M from topic T to node N

Table 7 Authorizations

Predicate Meaning

allow(N,A) Node N is allowed to perform action A
deny(N,A) Node N is denied performing action A

SN Computer Science (2020) 1:24 Page 5 of 13 24

SN Computer Science

Rule 10 says that if publication is allowed/denied for a
set of topics T, then publication is also allowed/denied for
each subset T’ of T. We could write similar rules for the
subscribe/3 and deliver/3 predicates.

For example, since addresses(alarms/#,alarms/sensor1)
is true, then allow(subscribe(user1,alarms/sensor1,1)) can
be derived from allow(subscribe(user1, alarms/#,1)).

Controlling the Frequency of Events

Our experience has shown us that in some applications being
able to control the frequency of publications, subscriptions
and messages distribution is important. Consider, for exam-
ple, an online-trading broker. An online trading broker is a
pub-sub service, where clients may send trade orders and
receive various tips and hints related to the stock market.
Assume that the online broker sells standard accounts and
premium accounts. Premium account holders receive more
hints and tips per day than standard account holders. Moreo-
ver, premium account holders can send more trading orders
per day than standard account holders. In such a scenario,
we would need to express authorization rules controlling
the frequency of publications (e.g., trade orders) and the
frequency of messages (e.g., hints and tips) delivered by the
broker. Another obvious use of having authorization rules
based on the frequency of publications would be to miti-
gate the effects of compromised sensors involved in DDOS
attacks against the pub-sub architecture.

To define authorization rules allowing us to express con-
ditions on the frequency of events, we define the following
high-order predicate (Table 8):

Frequencies are always evaluated at the time that the pol-
icy is evaluated. This explains why instances of the freq/3
predicates represent instant frequencies.

Variable E refers to any formula instance of the three event
predicates hasPublished/3, hasSubscribed/3, and hasDeliv-
ered/3 defined in “Assumptions”, with the last variable refer-
ring to the timestamp of the event always equal to the anony-
mous variable _.

Here are two examples of frequencies:

(10)

allow∕deny
(

N, publish
(

M, T �,Q
))

← allow∕deny(N, publish(M, T ,Q)) ∧ addresses
(

T , T �
) .

(11)
freq(hasPublished(sensor1, alarms∕sensor1, _), 5, 24).

Formula 11 says that the instant frequency of publications
made by sensor1 in topic alarms/sensor1 is 5 in the last 24 h:

Formula 12 says that the instant frequency of publications
(made by all sensors) in topics hierarchy alarms/# is 152 in
the last 24 h.

Note that, by defining the high-order predicate freq/3, we
are no longer in strict first-order logic. However, computing
instances of the freq/3 predicate can easily be done using some
aggregate predicate which would be implemented in many
inference engines. For example, the rule below is the SWI
Prolog [18] definition of the freq/3 predicate for the hasPub-
lished/3 predicate. It uses the Prolog built-in aggregate_all/3
predicate:

Basically, Prolog rule 13 counts the number of instances of
the hasPublished/3 predicate referring to node N and topic T
with a timestamp not older than I hours.

The following rules are examples of authorization rules
regulating the frequency of publications and messages
distribution:

Rule 14 allows sensor1 to publish messages in topic
alarms/sensor1 as long as it does not post more than 5 alert
messages per 24 h:

Rule 15 denies the broker to deliver to guest nodes more
than one alert message per 24 h from topic alarms/sensor1.

Conflict Resolution Policy

Since our authorization model allows for positive and neg-
ative authorizations, conflicts between rules may arise. For
example, consider the following two rules:

Rule 16 says that subscriptions are forbidden for sen-
sors, while rule 17 says that sensors can subscribe (at any

(12)freq(hasPublished(_, alarms∕#, _), 152, 24).

(13)
freq(hasPublished(N,T , _),F, I))

← aggregate_all(count, (hasPublished(N, T ,D)

∧(time() − D) < I)),F)

.

(14)

allow(sensor1, publish(_, alarms∕sensor1, _))

← freq(hasPublished(sensor1, alarms∕sensor1, _),F, 24) ∧ F < 5
.

(15)

deny(broker, deliver(_, alarms∕sensor1,N)) ← guest(N)

∧freq(hasDelivered(alarms∕sensor1,N, _),F, 24) ∧ F > 1
.

(16)deny(N, subscribe(_, _)) ← sensor(N)

(17)allow(N, subscribe(N∕#, _)) ← sensor(N).

Table 8 Frequency predicate Predicate Meaning

freq(E,F, I) F is the instant frequency of repeating event E per unit of time I

 SN Computer Science (2020) 1:2424 Page 6 of 13

SN Computer Science

QoS) to topic for which the path root corresponds to their
identifier. Clearly, these two rules conflict whenever a
sensor subscribes to a topic for which the path root cor-
responds to the sensor identifier.

There are many possible solutions to solve conflicts
between authorization rules. The XACML standard [16]
enumerates several combining algorithms to solve con-
flicts between rules (deny overrides, permit overrides,
first applicable overrides, permit unless deny, deny unless
permit, etc.). We can use any of these algorithms depend-
ing on our needs. Regarding the small example above, the
permit overrides algorithm would allow a node subscrib-
ing to a topic for which the path root corresponds to the
node identifier.

Security Administration Model

Principles

Definition of a security model must include the defini-
tion of a model for administering the security policy. To
introduce our model, let us first consider the scheme, as
depicted in Fig. 1.

Sensors (S1 and S2) sends messages to Analytics
through topic A. Monitor sends commands to sensors
through topic B. Monitor owns sensors S1 and S2 and cre-
ated topics A and B. This scenario suggests us that Moni-
tor could be the administrator defining the security policy
regulating messages going through channels A and B. Of
course, this is not the only possible scenario. The IoT
network could be more centralized; topics A and B could
also be shared by other applications and sensors. Never-
theless, decentralizing the security administration should
be possible even if the network contains only one broker.

Moreover, to give flexibility, delegation of rights should
also be supported.

In our model, security administration is topic-based. We
state that there is at least one security administrator for each
topic. A security administrator for a given topic T is respon-
sible for defining the security policy regulating publications/
subscriptions to topic T and distribution of messages from
topic T. There is also one Root Administrator (RA) who can
administrate the security policy for all topics.

More precisely, the RA can perform the following tasks:

• Administrate (i.e., define the security policy for) all or
some topics.

• Grant to another user the admin privilege on a given topic
(with possibly the right to transfer this right).

• Revoke from a user the admin privilege on a topic.

Each admin for a given topic T can define the security
policy for that topic T. If s/he has also been granted the right
to transfer this right, then s/he may also grant to another
node the right to administrate topic T. We believe that this
administration scheme is flexible enough to support various
cases of application.

In the following sections, we show how we extend our
logical language to define our administration policy.

Constants

We define the following constant to represent the RA: root

Function

We define the following function which returns the topic
addressed by an authorization rule R (instance of either
template 4 or template 5) (Table 9).

Fig. 1 IoT network

Topic A

Topic B

Publish

Subscribe

S1

S2

Analytics

Monitor

Broker

SN Computer Science (2020) 1:24 Page 7 of 13 24

SN Computer Science

Recall that action A is represented by one of the com-
pound terms publish/3, subscribe/2 or deliver/3 defined
in Table 6.

Predicate

We extend set F with instances of the following event
rights delegation predicate (Table 10):

Granting an admin right creates a new instance of this
predicate. Revoking the right deletes the corresponding
instance of this predicate. The grant option is similar to
the grant option of the SQL grant statement [19].

Security Administration Policy

Let TA be an administrator node of topic T. Admin TA can
add and delete authorization rules addressing topic T in the
security policy � . If admin TA holds the grant option on
topic T, then it can also grant and revoke the admin rights
on topic T to some other nodes.

Actions

We define four compound terms to represent the four fol-
lowing actions (Table 11):

Note that the grant option cannot be granted nor
revoked separately. The same principle applies in the SQL
delegation scheme.

Security Administration Rules

The security administration policy � is mandatory and
consists of the five following administration rules:

(18)hasGranted(root, #, root, true).

Rule 18 says that the RA has granted to himself the
admin option on the whole topic hierarchy with the admin
option:

Rule 19 says that if node N was granted the admin privi-
lege on topic T, then it can add authorization rules refer-
ring to topic T (or to a subset of topics T if T represents a
set of topics):

Rule 20 says that if node N was granted the admin privi-
lege on topic T, then it can delete authorization rules refer-
ring to topic T (or to a subset of topics T if T represents a
set of topics):

Rule 21 says that if node N was granted the admin privi-
lege on topic T with the grant option, then it can grant the
admin option on topic T (or on a subset of topics T if T
represents a set of topics):

Rule 22 says that if node N has granted to node N’ the
admin privilege on topic T, then it can revoke this privi-
lege from node N’. In other words, only the node which
transferred a privilege can revoke it. Moreover, as we said
previously revoking an admin privilege deletes the corre-
sponding instance of the hasGranted/4 predicate. Since the
grantee N’ might also have transferred this right to some
other nodes, revocation would also delete all the instances
of hasGranted/4 corresponding to the delegation chain origi-
nating from N’. This mechanism is usually referred to as
cascade revocation.

Finally, let us mention the following two points:

(19)

allow(N, ruleAdd(R))

← hasGranted(_, T ,N, _) ∧ addresses
(

T , T �
)

∧ topic(R) = T � .

(20)

allow(N, ruleDel(R))

← hasGranted(_, T ,N, _) ∧ addresses
(

T , T �
)

∧ topic(R) = T � .

(21)
allow

(

N, grant
(

T �, _, _
))

← hasGranted(_, T ,N, true) ∧ addresses
(

T , T �
) .

(22)
allow

(

N, revoke
(

T ′,N′
))

← hasGranted
(

N, T ,N′, _
) .

Table 9 Topic function

Function Purpose

topic(R) Returns the topic appearing in the action parameter A
of rule R

Table 10 Rights’ delegation predicate

Predicate Meaning

hasGranted
(

N,T ,N′
,G

)

Node N has granted the admin privilege
on topic T to node N’ with or without
the grant option (depending on the
value of the Boolean variable G)

Table 11 Security administration actions

Term Action

ruleAdd(R) Adding rule R in policy �
ruleDel(R) Deleting rule R from policy �
grant(T ,N,G) Granting the admin privilege on topic T to node N

with or without (depending on the value of G) the
grant option

revoke(T ,N) Revoking the admin privilege on topic T from node N

 SN Computer Science (2020) 1:2424 Page 8 of 13

SN Computer Science

• The combining algorithm enforced in � is obviously
deny unless permit [16], i.e., the default policy is deny.
This default policy is overridden by rules 18–22.

• If T represents a set of topics, then it is not possible to
revoke the admin privilege for a subset of T. One would
have to revoke the admin privilege for the set T and then
grant again the admin privilege on a subset of T.

Prototype

In [12, 13], we describe a first proof-of-concept prototype.
This first prototype is based on (i) OWL2 ontologies for
representing nodes, topics and events, (ii) SWRL [20] rules
for representing the security policy, and (iii) an OWL2 [21]
inference engine for computing a security decision (allow/
deny). However, this approach has proved to be inefficient in
terms of performance. In this paper, we present a new proto-
type based on RDF [14] and SHACL [15] (“Architecture”)
and we evaluate its performance (“Performance Analysis”).

Architecture

The implantation of our security model relies on the W3C
Resource Description Framework (RDF 1.1) Model [22].
We use RDF as a logical model to formally represent the
security policy and its processing. We also use RDF as a
physical model, since each identifiable object (node, topic,
event, security rule, etc.) is represented as a resource. In
other words, RDF statements describe resources, contextual
information, events occurring in the system, and the security
policy. We use an inference engine to compute security deci-
sions. Each security decision and the proof graph which has
led to the decision are automatically added to our contex-
tual database for further processing. As a general principle,
any event occurring within our access control enforcement

system is monitored and saved into the contextual database.
Recording events such as publication/subscription requests,
security decisions, processing errors, etc. is not only impor-
tant for traceability purpose, but also allows us to refer to
these events in dynamic contextual access control rules.

Recently, the W3C has proposed the Shapes Constraint
Language (SHACL) recommendation [15] as a solution to
define and validate constraints on RDF graphs by means
of SHACL shapes. SHACL has also been extended with a
rule mechanism [23], where conditions can even include
SPARQL queries [24]. Therefore, we can translate any
security rule defined with our model into an SHACL shape/
rule. Instead of processing security rules with a generic rule
reasoner as we did in our first prototype [12, 13], we now
translate our security rules into SHACL shapes/rules. We
apply that these SHACL shapes/rules to RDF publication/
subscription requests to produce security decisions. Pro-
cessing SHACL shapes/rules has proved to be much more
efficient than processing SWRL rules and ontologies with a
generic rule reasoner.

Our access control enforcement system is built accord-
ing to the XACML architecture [16], that is, it has a Policy
Enforcement Point (PEP), a Policy Decision Point, a Policy
Information Point (PIP—contextual database), and a Policy
Administration Point (PAP). Figure 2 depicts the general
workflow of our prototype. RDF security rules are first trans-
lated into SHACL shapes/rules. Any MQTT request is inter-
cepted by the PEP, which has been implemented as a proxy
between end points and the MQTT broker. The PEP submits
to the PDP the RDF request. The PDP uses knowledge from
the PIP and applies the SHACL rules on the request to com-
pute a decision together with the RDF proof graph which has
led to the decision. Decision and proof graph are returned to
the PEP and saved into the PIP.

Our prototype is written in Java 9. It is based on the
Apache Jena Framework [25] to store and manipulate RDF
data. SHACL validation is done using TopBraid [26] which

Fig. 2 Access control engine
workflow

MQTT request PEP RDF request PDP

PAP RDF security rules
SHACL
rules

PIP

SN Computer Science (2020) 1:24 Page 9 of 13 24

SN Computer Science

is an open source plugin for Jena. Our prototype provides
the user with a REST API to manage the PIP, the policies,
and the request/response workflow

Performance Analysis

We analyze the transmission time of messages, i.e., the
time taken by a published message to reach a subscriber.
We compare the transmission time in a configuration, where
the security policy is enabled and the requests intercepted by
the PEP with a configuration, where the clients are directly
connected to the server with no security enforcement. We
conduct our tests on a desktop PC equipped with an i764bit
Quad Core CPU and 16Gbit of RAM. The broker is Mos-
quitto 1.6.0 which is an MQTT v3.1.1 broker. The clients
(publishers and subscribers) are implemented in python and
rely on the Paho-mqtt1.4.0 libraries. Paho-mqtt implements
versions 3.1 and 3.1.1 of the MQTT protocol.

Our experiment configuration is inspired from a similar
work presented in [27]. It is the following:

• The subject tree is generated randomly, so that each node
has between 0 and 5 children. The maximum height of
the tree is 5. From the topic tree, a list of possible topics
for subscription and publication is generated. Similarly,
a list of possible topic filters is created.

• Each subscriber issues a single subscription on a topic
generated randomly in the subject tree, with a random
quality of service between 0 and 2.

• Each publisher posts one message on a randomly gen-
erated topic. The payload of the message contains the
identifier of the publisher, the topic, a timestamp corre-
sponding to the time of emission, and a random quality
of service.

• The security policy is randomly generated. It contains
100 rules. Each rule contains:

• A priority between 0 and 5
• An action: (publish or subscribe)
• A target: (a random topic or a set of topics)
• A decision: (allow or deny)

• Clients are all generated at the same time. Upon receipt
of a message by a subscriber, the timestamp correspond-
ing to the time of emission is retrieved from the payload
and subtracted to the reception time to compute the trans-
mission time.

• We consider a set of experiments for scenarios composed
of 50, 100, 250, 500, 750, and 1000 subscribers each
including 1000 publishers (see Table 12)?

Results of our measurements are shown in Fig. 3. Fig-
ure 3 shows that the difference between the average trans-
mission time of one request with the PEP and the average
transmission time of one request without the PEP is constant
and approximately equal to 100 ms, regardless of the sce-
nario. This shows that our prototype is scalable and that our
approach is very promising. In a similar work presented in
[27], the authors developed a prototype, where the average

Table 12 Configuration
scenarios

C1 C2 C3 C4 C5 C6

Number of subscribers 50 100 250 500 750 1000
Number of publishers 1000 1000 1000 1000 1000 1000

Fig. 3 Average transmission
time per scenario

 SN Computer Science (2020) 1:2424 Page 10 of 13

SN Computer Science

transmission time increased linearly with the number of
subscribers.

The difference of 100 ms mainly consists of,

• the time required to process the event by the PEP,
• the time required to process the request by the PDP,
• the transmission times between the PDP and the PEP.

We separately measured the average time to process the
request by the PDP and we found out that it is constant and
approximately equal to 55 ms.

Our prototype can still be optimized. For instance, we
are planning to use web sockets instead of the REST API.
This should improve transmission times between the PEP
and the PDP.

Related Works

As we already said, to our knowledge, there is no paper
directly addressing the definition of a security policy model
for IoT messages. Nevertheless, in this section, we review
security works related to pub-sub architectures and MQTT
protocol.

This paper which resembles the most to our approach is
[27]. Like us, the authors consider that the protection object
is the message. Therefore, they also regulate the distribu-
tion of messages by the broker. They use the ABAC model,
although they do not define, as we do, an ABAC profile for
IoT applications. They consider two types of security poli-
cies: the security policy expressed by administrators regu-
lating the right to publish/receive messages and the security
policy expressed by users in terms of preferences. They do
not mention rights delegation. Their Policy Enforcement
Point (PEP) is implemented as a proxy between the MQTT
broker and the nodes. Having in mind the performances,
they manage the security policy within a key value data-
store (Redis2). However, they do not say much on the Policy
Decision Point (PDP) and on analyzing the security policy
using a reasoning engine. Moreover, Redis does not allow
for complex queries and does not seem to be the right choice
for storing highly expressive contextual policies. Finally, our
prototype has shown better performance than their prototype
(see “Performance Analysis”).

In [3], the authors define the secKit tool integrated in the
IOT network simulator developed as part of the FP7 iCore
project [28]. This tool is used to define security policies
protecting the data exchanged between the different com-
ponents (virtual objects, composite virtual objects) which
abstract the IoT network. secKit is based on a collection of
models for modeling objects, data, time, roles, activities,

interactions, risk, contexts, trust management, and so on. It
was implemented as a Mosquitto plugin [29]. Authorizations
rules can be positive or negative and include obligations.
Authorization rules are Event Condition Action (ECA) rules
[30]. This formalism makes it possible to express contextual
and dynamic authorizations, but requires the implementation
of an event manager capable of intercepting all events. Many
aspects related to this tool are not clearly defined. Authors
claim that the tool supports many features, but they do not
elaborate on the features (expressive power, risks, trust man-
agement, obligations, conflicts resolution, etc.). Therefore,
it is very difficult to have a clear view of the model sup-
ported by secKit. Note also that the tool secKit seems to
be abandoned. The source code of an alpha version can be
downloaded from gitHub (https ://githu b.com/iot-icore /iCore
-secur ity-toolk it), but has not been modified for 4 years.

In [4], the authors describe a NetwOrked Smart
object(NOS) middleware, located between the objects and
the MQTT client. NOS intercepts the messages intended
to be published, normalizes them (i.e., extracts metadata),
and according to a security policy, implementing the ABAC
model decides whether to grant the publication of the mes-
sage. If the message is authorized, it is encrypted by means
of a temporary key corresponding to the subject (topic),
where the message is to be published. Once encrypted, the
message is published by the MQTT client. Customers wish-
ing to subscribe to a topic, contact the NOS which accord-
ing to the security policy will issue them or not the key to
decipher the messages of the subject. This approach frees
the MQTT broker from the evaluation and enforcement of
the authorization policy. It requires, however, to set up a key
management mechanism and offers a rather coarse level of
granularity, since the object of protection is not the message
but the subject (thus including all the messages published
in the subject). NOS has been implemented using the node.
js platform and the objects transmit their messages via the
http protocol. Currently, NOS is not available for download.
In [8], the same authors improve their architecture by pro-
posing a solution to distribute and synchronize the security
policies hosted by the NOS of several IoT networks. Their
synchronization protocol uses the MQTT protocol.

In [5], the authors propose a solution to implement the
ABAC model in a federation of IoT platforms. Their solution
decouples the authorization process of the authentication
process. An application first connects to an authorization
manager to obtain a set of tokens. Each token represents an
attribute of the application. Once in possession of its tokens,
the application that needs to access a resource turns to an
authorization manager who will accept or reject access to
the requested resource based on the tokens presented. If the
application wants to access a resource belonging to a foreign
IoT platform, then it must present its tokens to the authen-
tication manager of the foreign platform to obtain foreign 2 https ://redis .io/.

https://github.com/iot-icore/iCore-security-toolkit
https://github.com/iot-icore/iCore-security-toolkit
https://redis.io/

SN Computer Science (2020) 1:24 Page 11 of 13 24

SN Computer Science

tokens. These foreign tokens are computed by means of a
token conversion function (little information is given on this
function in the article). Once in possession of the foreign
tokens, the application can then turn to the foreign authori-
zation manager who will accept or reject access. The authors
suggest to implement the tokens either in the form of Google
macaroons [31] or in the form of JWT [32] tokens (Json
Web Tokens).

In [33], the authors implement the RBAC model in a pub-
sub network. They consider the privilege of logging in, the
privileges of adding a topic and deleting it, and the privi-
leges of publishing and subscribing. They define a solution
to disseminate security policy [34] in a network of partially
trusted brokers so that access control decisions are taken and
enforced at the earliest. Their solution is implemented in the
Hermès broker [35] using the http protocol.

In [36], the authors propose to adapt the OAuth protocol
[37] to the case of an IoT network, where resources are dis-
covered and exposed according to the IETF standard [38].
The data (resources) produced by the sensors of the low
power IoT network are transmitted to the gateway between
the low power network and the IP network. This schema
ignores the MQTT protocol, resources being logged and
exposed at the gateway level. Within this gateway, an author-
ization server is installed. According to the OAuth proto-
col, a third-party application that wants to access a resource
exposed by the gateway, (1) requests access delegation from
the owner of the resource by asking him to authenticate,
(2) obtains an access token to the resource provided by the
authorization server and (3) presents the access token to the
authorization server to access the resource. The authors do
not mention any case study that could benefit from such a
security architecture.

In [39], the authors present above all a method of authori-
zation using Elliptical Curve Cryptography (ECC). How-
ever, they also implement an authorization scheme using
capabilities. Capabilities are tokens distributed to users hold-
ing the access rights of the users to the data produced by the
network. Very little is said about the expressive power of
the security policy and interaction of their scheme with the
MQTT protocol is unclear.

There is a general trend in the world of IoT which con-
sists, for scaling purposes, of moving the processing and
controls at the edge of the IoT network towards the objects
themselves [40]. Thus, there are several approaches [6, 7]
for moving security-related services and processes to end-
of-network gateways or servers. In [6], the authors even use
the concept of sticky policy [41] which implies that data
owners encapsulate the policy protecting the data with the
data itself.

There are several articles that deal with security issues
in pub-sub networks, without specifically considering the
MQTT protocol. In [9], the authors attempt to identify the

security problems specific to this type of network. They are
particularly interested in protecting the confidentiality of
messages and subscriptions in case the pub-sub infrastruc-
ture is not trusted. They suggest some lines of research such
as the use of numerical calculation on encrypted data [42,
43]. To protect the content of the messages and subscription
schemes of the brokers, the authors in [10] propose a tech-
nique based on the encryption preserving the asymmetric
scalar product [44].

In [45], the authors propose a model that implements the
reliable distribution service, that is, the messages received
by a client do not depend on the connection location, the
network latency, or the possible points of network failure.
These messages depend only on the customer’s subscription
filter and her access rights, which are uniformly enforced
throughout the pub-sub network.

Conclusion

In this paper, we have defined a model to express security
policies for a pub-sub architecture consisting of a single
MQTT broker. The most important contributions of our
paper are the followings:

• Our model allows us to regulate not only publications
and subscriptions but also distribution of messages. To
our knowledge, this feature has not been addressed in any
other paper related to IoT security except [27].

• Our model is an interpretation of the ABAC model for
the pub-sub architecture with some unique features like
the possibility to control the frequency of events.

• We have developed a scalable prototype based on RDF
and SHACL.

Regarding future works, we are planning to investigate
the following issues:

• We will extend our model to the case of a pub-sub archi-
tecture consisting of several bridged brokers. In such a
scenario, we might need to apply the solution presented
in [8] to synchronize the security policy at every node of
the pub-sub architecture.

• We will also consider an IoT network consisting of a
TCP/IP network hosting the pub-sub architecture coupled
with a Low Power Wide Area Network (LPWAN) host-
ing the sensors. In such a scenario, we might also need to
implement solutions proposed by others [6, 7] to move,
for scaling purposes, the security controls at the various
gateways between the TCP/IP network and the LPWAN
network.

 SN Computer Science (2020) 1:2424 Page 12 of 13

SN Computer Science

• We are also planning to include the possibility to declare
obligations in the security policy.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. ISO/IEC 20922:2016—information technology—message queu-
ing telemetry transport (MQTT) v3.1.1. 2016. https ://www.iso.
org/stand ard/69466 .html. Accessed 11 Jan 2018.

 2. Banks A, Gupta R. MQTT version 3.1. 1. OASIS Stand 2014;29.
 3. Neisse R, Steri G, Fovino IN, Baldini G. SecKit: a model-

based security toolkit for the internet of things. Comput Secur.
2015;54:60–76.

 4. Rizzardi A, Sicari S, Miorandi D, Coen-Porisini A. AUPS: an
open source AUthenticated publish/subscribe system for the inter-
net of things. Inf Syst. 2016;62:29–41.

 5. Sciancalepore S, et al. Attribute-based access control scheme in
federated IoT platforms. In: International Workshop on Interoper-
ability and Open-Source Solutions. 2016, pp. 123–138.

 6. Sicari S, Rizzardi A, Miorandi D, Coen-Porisini A. Security
towards the edge: sticky policy enforcement for networked smart
objects. Inf Syst. 2017;71:78–89.

 7. Phung PH, Truong HL, Yasoju DT. P4SINC-an execution policy
framework for IoT services in the edge. In: Internet of Things
(ICIOT), 2017 International Congress on IEEE. 2017, pp.
137–142

 8. Sicari S, Rizzardi A, Miorandi D, Coen-Porisini A. Dynamic poli-
cies in internet of things: enforcement and synchronization. IEEE
Internet Things J. 2017;4(6):2228–38.

 9. Wang C, Carzaniga A, Evans D, Wolf AL. Security issues and
requirements for internet-scale publish-subscribe systems. In:
Proceedings of the 35th Annual Hawaii International Conference
on System Sciences. Big Island, HI, USA: IEEE; 2002.

 10. Choi S, Ghinita G, Bertino E. A privacy-enhancing content-
based publish/subscribe system using scalar product preserving
transformations. In: DEXA’10 Proceedings of the 21st interna-
tional conference on Database and expert systems applications:
Part I. Berlin, Heidelberg: Springer; 2010. pp. 368–384.

 11. Yuan E, Tong J. Attributed based access control (ABAC) for
web services. In: IEEE International Conference on Web Ser-
vices (ICWS’05). Orlando, FL, USA: IEEE; 2005.

 12. Gabillon A, Bruno E. Regulating IoT messages. In: Presented at
the 14th international conference on information security prac-
tice and experience (ISPEC 2018)—short paper, Tokyo. 2018.

 13. Gabillon A, Bruno E. A security model for IoT networks. In:
International conference on future data and security engineer-
ing. Ho Chi Minh Ville, Vietnam; 2018, pp. 39–56.

 14. McBride B. The resource description framework (RDF) and
its vocabulary description language RDFS. In: Handbook on
ontologies. New York: Springer; 2004, pp. 51–65.

 15. Knublauch H, Kontokostas D. Shapes constraint language
(SHACL). W3C Candidate Recomm. 2017;11(8).

 16. Moses T, et al. Extensible access control markup language
(xacml) version 2.0. Oasis Stand. 2005;02.

 17. Becker MY, Fournet C, Gordon AD. SecPAL: design and
semantics of a decentralized authorization language. J Comput
Secur. 2010;18(4):619–65.

 18. Wielemaker J, Ss S, Ii I. SWI-Prolog 2.7-reference manual.
1996.

 19. Date CJ, Darwen H. A guide to the SQL standard, vol. 3. New
York: Addison-Wesley; 1987.

 20. Horrocks I, et al. SWRL: a semantic web rule language combining
OWL and RuleML. W3C Memb Submiss. 2004;21:79.

 21. Group WOW, et al. OWL 2 web ontology language document
overview. 2009.

 22. Status for resource description framework (RDF) model and syn-
tax specification. https ://www.w3.org/1999/.statu s/PR-rdf-synta
x-19990 105/statu s. Accessed 25 May 2019.

 23. SHACL advanced features. https ://w3c.githu b.io/data-shape s/
shacl -af/#rules . Accessed 23 Jun 2019.

 24. Pérez J, Arenas M, Gutierrez C. Semantics and complexity of
SPARQL. ACM Trans Database Syst TODS. 2009;34(3):16.

 25. Carroll JJ, Dickinson I, Dollin C, Reynolds D, Seaborne A,
Wilkinson K. Jena: implementing the semantic web recommen-
dations. In: Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters. New York,
NY, USA: ACM; 2004, pp. 74–83.

 26. SHACL API in Java based on Apache Jena. Contribute to Top-
Quadrant/shacl development by creating an account on GitHub.
TopQuadrant, Inc, 2019.

 27. Colombo P, Ferrari E. Access Control Enforcement within
MQTT-based Internet of Things Ecosystems. In: Proceedings of
the 23nd ACM on symposium on access control models and tech-
nologies. New York, NY, USA: ACm; 2018. pp. 223–234.

 28. Giaffreda R. iCore: a cognitive management framework for the
internet of things. In: The future internet assembly. 2013, pp.
350–352.

 29. Light R. Mosquitto-an open source mqtt v3. 1 broker. URL Http-
mosquitto Org. 2013.

 30. Han W, Lei C. A survey on policy languages in network and secu-
rity management. Comput Netw. 2012;56(1):477–89.

 31. Birgisson A, Politz JG, Erlingsson U, Taly A, Vrable M, Lentczner
M. Macaroons: cookies with contextual caveats for decentralized
authorization in the cloud. In: NDSS. 2014.

 32. Jones M, Bradley J, Sakimura N. Json web token (jwt). 2015.
 33. Belokosztolszki A, Eyers DM, Pietzuch PR, Bacon J, Moody K.

Role-based access control for publish/subscribe middleware archi-
tectures. In: Proceedings of the 2nd international workshop on
Distributed event-based systems. 2003, pp. 1–8.

 34. Singh J, Vargas L, Bacon J, Moody K. Policy-based information
sharing in publish/subscribe middleware. In: 2008 IEEE work-
shop on policies for distributed systems and networks. 2008, pp.
137–144.

 35. Hermes. http://herme s-pubsu b.readt hedoc s.io/en/lates t/. Accessed
04 Nov 2017.

 36. Sciancalepore S, Piro G, Caldarola D, Boggia G, Bianchi G.
OAuth-IoT: An access control framework for the Internet of
Things based on open standards. In: Computers and commu-
nications (ISCC), 2017 IEEE symposium on IEEE. 2017, pp.
676–681.

 37. Hardt D. The OAuth 2.0 authorization framework. 2012.
 38. Shelby Z. Constrained RESTful environments (CoRE) link format.

Internet Eng. Task Force IETF. 2012;RFC6690.
 39. Lohachab A, et al. ECC based inter-device authentication and

authorization scheme using MQTT for IoT networks. J Inf Secur
Appl. 2019;46:1–12.

 40. Hu YC, Patel M, Sabella D, Sprecher N, Young V. Mobile edge
computing—A key technology towards 5G. ETSI White Pap.
2015;11(11):1–16.

https://www.iso.org/standard/69466.html
https://www.iso.org/standard/69466.html
https://www.w3.org/1999/.status/PR-rdf-syntax-19990105/status
https://www.w3.org/1999/.status/PR-rdf-syntax-19990105/status
https://w3c.github.io/data-shapes/shacl-af/#rules
https://w3c.github.io/data-shapes/shacl-af/#rules
http://hermes-pubsub.readthedocs.io/en/latest/

SN Computer Science (2020) 1:24 Page 13 of 13 24

SN Computer Science

 41. Pearson S, Casassa-Mont M. Sticky policies: an approach for man-
aging privacy across multiple parties. Computer. 2011;44(9):60–8.

 42. Abadi M, Feigenbaum J, Kilian J. On hiding information from an
oracle. In: Proceedings of the nineteenth annual ACM symposium
on Theory of computing. 1987, pp. 195–203.

 43. Feigenbaum J. Encrypting problem instances. In: Williams HC,
editor. Advances in cryptology—CRYPTO’85 proceedings. Ber-
lin: Springer; 1986. p. 477–88.

 44. Wong WK, Cheung DW, Kao B, Mamoulis N. Secure kNN com-
putation on encrypted databases. In: Proceedings of the 2009

ACM SIGMOD International Conference on Management of
Data, New York, NY, USA, 2009, pp. 139–152.

 45. Zhao Y, Sturman DC. Dynamic access control in a content-based
publish/subscribe system with delivery guarantees. In: 26th
IEEE international conference on distributed computing systems
(ICDCS’06). 2006, pp. 60–60.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Access Controls for IoT Networks
	Abstract
	Introduction
	ABAC Model
	Requirements
	Assumptions
	Language
	Constants
	Variables
	Predicates
	Functions

	Security Policy
	Actions
	Contextual Authorization Rules
	Controlling the Frequency of Events

	Conflict Resolution Policy

	Security Administration Model
	Principles
	Constants
	Function
	Predicate
	Security Administration Policy
	Actions
	Security Administration Rules

	Prototype
	Architecture
	Performance Analysis

	Related Works
	Conclusion
	References

