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Abstract
The message queuing telemetry transport (MQTT) protocol is becoming the main protocol for the internet of things (IoT). 
In this paper, we define a highly expressive attribute-based access control (ABAC) security model for the MQTT protocol. 
Our model allows us to regulate not only publications and subscriptions, but also distribution of messages to subscribers. 
We can express various types of contextual security rules (temporal security rules, content-based security rules, rules based 
on the frequency of events, etc.).
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Introduction

The Message Queuing Telemetry Transport (MQTT) proto-
col is becoming the main protocol behind pub-sub networks 
for the Internet of Things, that is, in networks implementing 
the publication–subscription paradigm. The MQTT protocol 
is an ISO standard (ISO/IEC PRF 20922) [1] and the 3.1 ver-
sion became an OASIS specification in 2013 [2]. Basically, 
the MQTT protocol works as follows: publishers post mes-
sages to logical channels called topics; subscribers receive 
messages published to the topics to which they subscribed; 
and the MQTT broker routes’ messages from publishers to 
subscribers.

The MQTT protocol supports very few security features. 
It includes a MQTT client identification mechanism and sup-
ports the basic login/password authentication scheme. Con-
sequently, there have been several papers aiming at defining 

security solutions for the MQTT protocol or more generally 
for the pub-sub pattern. These papers address various issues 
like how to implement a security policy regulating publica-
tions and subscriptions [3–5], how to distribute the evalua-
tion and the enforcement of the security policy at the edge 
of the IoT network [6, 7], how to distribute and synchronize 
the security policy between different pub-sub architectures 
[8], or how to protect the confidentiality of the messages 
from the broker or the pub-sub architecture itself [9, 10]. 
Although these issues are all very important, we noticed 
that none of these papers fully addressed the definition of 
a security model allowing to express security policies for 
regulating IoT messages. Some of the papers [4, 5] mention 
that they are using the ABAC (Attribute-Based Access Con-
trol) model [11] for expressing the security policy control-
ling publications and subscriptions. However, they do not 
go much into details and do not elaborate on the expressive 
power of the security policy. In this paper, we define a highly 
expressive ABAC model for regulating IoT messages in an 
MQTT network. We believe that the definition of such a 
security model (which does not contradict the solutions pro-
posed by the aforementioned papers) has been missing in the 
literature related to security solutions for pub-sub architec-
tures. Our model allows us to regulate not only publications 
or subscriptions, but also distribution of messages by the 
broker to subscribers. Our model supports positive and nega-
tive authorizations and allows us to express various types 
of context-based policies, including policies based on the 
frequency of events. This paper is an extension of two papers 
we previously published [12, 13]. In this paper, we give a 
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more complete definition of our security model, including 
the security policy administration model. We also present a 
new version of our prototype of access control enforcement 
system. The prototype we sketched in [12, 13] was based on 
SWRL and OWL2. Although it showed the feasibility of our 
approach, it proved to be inefficient in term of performance. 
The prototype we present in this paper is based on RDF [14] 
and SHACL [15] and the experiments we conduct show that 
it is efficient and scalable. Finally, in this paper, we also 
update our review of the literature on security models for 
IoT networks.

The remainder of this paper is organized as follows: in 
“ABAC Model”, we define our model. In “Security Admin-
istration Model”, we present our security administration 
model. In “Prototype”, we present our secure MQTT broker 
prototype based on our model and we study its performance. 
In “Related Works”, we review related works before the con-
clusion in “Conclusion”.

ABAC Model

Some papers [4, 5] mention that they are using the attribute-
based access control (ABAC) model [11] for expressing the 
security policy controlling publications and subscriptions in 
a pub-sub network. However, these papers do not go much 
into details and do not elaborate on the expressive power of 
the security policy. Moreover, none of these papers address 
the security administration issue. Our aim in this paper is 
to define a security model which can be seen as a profile of 
the ABAC model for pub-sub networks based on MQTT. 
We first identify some requirements specific to IoT security 
policies. Then, we make some assumptions on the IoT net-
work and on some security aspects that we shall not cover. 
Finally, we devise our model starting from the requirements 
we identified.

Requirements

• Our model should offer the possibility to regulate not 
only publications and subscriptions to topics but also dis-
tribution1 of messages by the broker to subscribers. Con-
trolling distribution of messages is essential to regulate 
the various flows of messages coming from the broker. 
Solely controlling subscriptions is too coarse grained to 
achieve that task.

• Our model should allow for various types of dynamic and 
contextual authorization rules, i.e., authorization rules 
whose outcome (permit ort deny) depend on some con-
textual conditions applying to the nodes, the messages 
(including the content of the messages) or the environ-
ment. In particular, authorization rules based on the fre-
quency of events should be supported since controlling 
the rate at which a node may send or receive messages is 
important in many IoT applications.

Assumptions

• For the sake of simplicity, we assume a pub-sub archi-
tecture with only one MQTT broker. Since we focus on 
the expressive power of the security policy, we do not 
investigate issues like distributing and synchronizing 
the security policy between different bridged brokers or 
evaluating the security policy at the edge of the network 
[6–8].

• We assume the broker to be trusted, i.e., we do not inves-
tigate solutions to protect the confidentiality of the mes-
sages from the broker [9, 10].

• We do not investigate authentication techniques. We 
believe that standard authentication techniques can be 
used to authenticate both nodes and attributes.

• Finally, we assume that TLS/SSL is used at the transport 
layer between all nodes of the IoT network. Most existing 
MQTT servers support the use of TLS/SSL.

Language

We use first-order logic with equality to define our model, 
i.e., we define a logical language allowing us to represent 
nodes, attributes, events (such as publications, subscrip-
tions, and message distribution), and authorization rules. 
Note, however, that the reader who is not familiar with 
logic should be able to understand the main principles of 
our model, since we translate in plain English each logical 
formula.

Although we define our own logical language, we wish 
to make it clear that this paper is not about a new logic-
based policy language. To specify our model, we could use 
XACML [16] (but it would be unreadable by a human), or 
an existing logical language like SecPAL [17]. However, we 
prefer defining our own language, so that we can restrict our-
selves to Horn clauses which can easily be read by a human 
and for which there exists efficient resolution methods.

Constants

Constants of our language are string expressions. They are 
node identifiers such as sensor1, user1, etc. or the special 
string broker referring to the MQTT broker.

1 Note that in the MQTT protocol the distribution of messages by the 
broker is implemented by means of publish messages. From a secu-
rity point of view, we prefer to make a clear distinction between the 
privilege to publish in a given topic (this privilege can be held by any 
node) and the privilege to deliver messages to subscribers (this privi-
lege can be held only by the broker).
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Topics are defined by path expressions (written as strings) 
such as temperatures/sensor1. Several topics can be refer-
enced using wildcards # and +. For examples, tempera-
tures/# addresses any topic having temperature as path root 
and home/+/temperatures addresses topics such as home/
room1/temperature, home/room2/temperature, etc. See [2] 
for more details about the use of wildcards in MQTT topics.

Note that, to lighten the notations, we omit the quotation 
marks for the strings.

Variables

Variables are written in capitalized letters like in Prolog. 
Our language includes the anonymous variable _ which 
means anything. If variable S contains a string value, then 
we assume that this value can be referred to in a path expres-
sion. For example, if S contains the string sensor1, then 
temperatures/S represents the topic temperatures/sensor1.

In this paper, to distinguish variables from constants, we 
constrain ourselves to consider only constants written as 
strings of lowercase characters.

Predicates

Authorizations can be derived from a set of facts � and 
from a set of logical rules � . Set � keeps track of registered 
nodes and events (publications, subscriptions and distribu-
tions), whereas set � records the nodes hierarchy (Table 1).

Set � includes instances from the following node 
predicates:

Registering a node creates an instance of one of these 
node predicates.

Set � includes the following rules:

(1)node(N) ← bro ker (N)

These three rules can be used to derivate that the broker 
or a sensor or a client is also a node. These rules define 
a roles hierarchy that could be expanded according to the 
needs of the application.

Set � also includes instances from the following event 
predicates (Table 2):

Publishing a message creates an instance of the 
hasPublished/3 predicate. Subscribing to a topic creates 
an instance of the hasSubscribed/3 predicate. Deliver-
ing a message creates an instance of the hasDelivered/3 
predicate. As we shall see in “Language”, recording these 
events allows us in particular to express security rules con-
trolling the frequency of publishing/delivering messages.

As we said previously, topics are path expressions 
possibly written with wildcards. Therefore, set � also 
includes instances from the following topic predicate 
(Table 3):

F o r  e x a m p l e ,  f a c t  addresses(temperature∕ ∗,

temperature∕sensor1) belongs to � . For the sake of sim-
plicity, we do not give the logical rules allowing us to 
derive instances of the addresses/2 predicate.

Functions

Functions of our language represent attributes. They are 
either,

• Functions applying to messages or
• Functions for evaluating temporal conditions or any 

other contextual conditions.

Lists of functions in Tables 4 and 5 are not exhaustive 
and can be extended depending on the needs.

(2)node(N) ← sensor(N)

(3)node(N) ← client(N).

Table 1  Node predicates Predicate Meaning

node(N) N is an IoT node
broker(N) N is the broker
sensor(N) N is a sensor
client(N) N is a client

Table 2  Event predicates Predicate Meaning

hasPublished(N,T ,D) At time D, node N has published a message in topic T
hasSubscribed(N,T ,D) At time D, node N has subscribed to topic T
hasDelivered(T ,N,D) At time D, the broker has delivered a message from topic T to node N

Table 3  Matching predicate

Predicate Meaning

addresses
(

T ,T ′
)

Topic T addresses topic T’
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Security Policy

Actions

We define the three compound terms to represent the fol-
lowing three actions:

Variables represent action parameters. Note that there is 
no QoS parameter for the deliver operation. This is because 
the QoS used by the broker to deliver a message to node N 
is the QoS chosen by node N when it subscribed to topic 
T. This means that if, in our security policy, we need to 
restrict the QoS used by the broker to deliver messages, then 
it should be done during the subscription step.

Contextual Authorization Rules

We consider positive authorizations and negative authoriza-
tions represented by the two following predicates:

Variable A contains any of the three compound terms of 
Table 6. Note that if A is a deliver action, then we assume that 
N cannot be different from broker (Table 7).

The security policy � regulates publish, subscribe, and 
deliver operations. It consists of a set of authorization rules. 
Any authorization rule is an instance of one of the following 
rule templates:

Symbol conditions stands for a possibly empty conjunction 
of contextual conditions on nodes, topics, QoS, messages, and 
the environment. Here are a few examples of authorization 
rules:

Rule 6 denies sensor1 to publish messages (whichever the 
QoS is), in topic alarms/sensor1 during daytime:

Rule 7 allows guest nodes to subscribe to the alarm hier-
archy of topics. Here we assume guest/1 is a role predicate 
expanding the hierarchy defined in “Assumptions”.

Regarding the delivering operation, we should first note that 
the normal MQTT behavior is to deliver messages from topic 
T to the nodes which subscribed to topic T.

This can be expressed by the following default policy rule:

Rule 8 allows the broker to deliver any messages from 
topic T to the nodes which subscribed to topic T. However, 
this default policy can be overridden in some specific cases 
(see “Security Policy” for conflicts resolution between rules):

Rule 9 overrides rule 8 and denies the broker to deliver 
failure messages from the alarm hierarchy of topics to guest 
nodes. Rule 9 is an example of a content-based authoriza-
tion rule.

In rules 7 and 9, there is a path expression referring to the 
set of topics alarms/#. Therefore, we need to include in set 
� some rules to derive instances of predicates allow/2 and 
deny/2 addressing any subset of a set of topics expressed by 
means of wildcards:

(4)allow(N,A) ← conditions

(5)deny(N,A) ← conditions.

(6)
deny(sensor1, publish(_, alarms∕sensor1, _))

← time() > 8 ∧ time() < 20
.

(7)
allow(N, subscribe(alarms∕#, _))

← guest(N)
.

(8)
allow(broker, deliver(_, T ,N))

← hasSubscribed(N,T , _)
.

(9)
deny(broker, deliver(M, alarms∕#,N))

← guest(N) ∧ value(M) =� failure�
.

Table 4  Message attribute functions

a Encrypting a message means encrypting the payload of the MQTT 
packet transporting the message. This should not be confused with 
encrypting the whole communication between nodes at the transport 
layer by means of TLS/SSL

Function Purpose

length(M) Returns the length of the message M
retained(M) Returns true if the message M is retained, false else
value(M) Returns the content of the message M
encoding(M) Returns the character encoding of the message M
ciphered(M) Returns true if the message M is  encrypteda, false else

Table 5  Contextual functions

Function Purpose

time() Returns the current time
date() Returns the current date
latency() Returns the network’s latency
bandwidth() Returns the network’s bandwidth

Table 6  Actions

Term Action

publish(M,T ,Q) Publishing message M in topic T at QoS Q
subscribe(T ,Q) Subscribing to topic T at QoS Q
deliver(M,T ,N) Delivering message M from topic T to node N

Table 7  Authorizations

Predicate Meaning

allow(N,A) Node N is allowed to perform action A
deny(N,A) Node N is denied performing action A



SN Computer Science (2020) 1:24 Page 5 of 13 24

SN Computer Science

Rule 10 says that if publication is allowed/denied for a 
set of topics T, then publication is also allowed/denied for 
each subset T’ of T. We could write similar rules for the 
subscribe/3 and deliver/3 predicates.

For example, since addresses(alarms/#,alarms/sensor1) 
is true, then allow(subscribe(user1,alarms/sensor1,1)) can 
be derived from allow(subscribe(user1, alarms/#,1)).

Controlling the Frequency of Events

Our experience has shown us that in some applications being 
able to control the frequency of publications, subscriptions 
and messages distribution is important. Consider, for exam-
ple, an online-trading broker. An online trading broker is a 
pub-sub service, where clients may send trade orders and 
receive various tips and hints related to the stock market. 
Assume that the online broker sells standard accounts and 
premium accounts. Premium account holders receive more 
hints and tips per day than standard account holders. Moreo-
ver, premium account holders can send more trading orders 
per day than standard account holders. In such a scenario, 
we would need to express authorization rules controlling 
the frequency of publications (e.g., trade orders) and the 
frequency of messages (e.g., hints and tips) delivered by the 
broker. Another obvious use of having authorization rules 
based on the frequency of publications would be to miti-
gate the effects of compromised sensors involved in DDOS 
attacks against the pub-sub architecture.

To define authorization rules allowing us to express con-
ditions on the frequency of events, we define the following 
high-order predicate (Table 8):

Frequencies are always evaluated at the time that the pol-
icy is evaluated. This explains why instances of the freq/3 
predicates represent instant frequencies.

Variable E refers to any formula instance of the three event 
predicates hasPublished/3, hasSubscribed/3, and hasDeliv-
ered/3 defined in “Assumptions”, with the last variable refer-
ring to the timestamp of the event always equal to the anony-
mous variable _.

Here are two examples of frequencies:

(10)

allow∕deny
(

N, publish
(

M, T �,Q
))

← allow∕deny(N, publish(M, T ,Q)) ∧ addresses
(

T , T �
) .

(11)
freq(hasPublished(sensor1, alarms∕sensor1, _), 5, 24).

Formula 11 says that the instant frequency of publications 
made by sensor1 in topic alarms/sensor1 is 5 in the last 24 h:

Formula 12 says that the instant frequency of publications 
(made by all sensors) in topics hierarchy alarms/# is 152 in 
the last 24 h.

Note that, by defining the high-order predicate freq/3, we 
are no longer in strict first-order logic. However, computing 
instances of the freq/3 predicate can easily be done using some 
aggregate predicate which would be implemented in many 
inference engines. For example, the rule below is the SWI 
Prolog [18] definition of the freq/3 predicate for the hasPub-
lished/3 predicate. It uses the Prolog built-in aggregate_all/3 
predicate:

Basically, Prolog rule 13 counts the number of instances of 
the hasPublished/3 predicate referring to node N and topic T 
with a timestamp not older than I hours.

The following rules are examples of authorization rules 
regulating the frequency of publications and messages 
distribution:

Rule 14 allows sensor1 to publish messages in topic 
alarms/sensor1 as long as it does not post more than 5 alert 
messages per 24 h:

Rule 15 denies the broker to deliver to guest nodes more 
than one alert message per 24 h from topic alarms/sensor1.

Conflict Resolution Policy

Since our authorization model allows for positive and neg-
ative authorizations, conflicts between rules may arise. For 
example, consider the following two rules:

Rule 16 says that subscriptions are forbidden for sen-
sors, while rule 17 says that sensors can subscribe (at any 

(12)freq(hasPublished(_, alarms∕#, _), 152, 24).

(13)
freq(hasPublished(N,T , _),F, I))

← aggregate_all(count, (hasPublished(N, T ,D)

∧(time() − D) < I)),F)

.

(14)

allow(sensor1, publish(_, alarms∕sensor1, _))

← freq(hasPublished(sensor1, alarms∕sensor1, _),F, 24) ∧ F < 5
.

(15)

deny(broker, deliver(_, alarms∕sensor1,N)) ← guest(N)

∧freq(hasDelivered(alarms∕sensor1,N, _),F, 24) ∧ F > 1
.

(16)deny(N, subscribe(_, _)) ← sensor(N)

(17)allow(N, subscribe(N∕#, _)) ← sensor(N).

Table 8  Frequency predicate Predicate Meaning

freq(E,F, I) F is the instant frequency of repeating event E per unit of time I
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QoS) to topic for which the path root corresponds to their 
identifier. Clearly, these two rules conflict whenever a 
sensor subscribes to a topic for which the path root cor-
responds to the sensor identifier.

There are many possible solutions to solve conflicts 
between authorization rules. The XACML standard [16] 
enumerates several combining algorithms to solve con-
flicts between rules (deny overrides, permit overrides, 
first applicable overrides, permit unless deny, deny unless 
permit, etc.). We can use any of these algorithms depend-
ing on our needs. Regarding the small example above, the 
permit overrides algorithm would allow a node subscrib-
ing to a topic for which the path root corresponds to the 
node identifier.

Security Administration Model

Principles

Definition of a security model must include the defini-
tion of a model for administering the security policy. To 
introduce our model, let us first consider the scheme, as 
depicted in Fig. 1.

Sensors (S1 and S2) sends messages to Analytics 
through topic A. Monitor sends commands to sensors 
through topic B. Monitor owns sensors S1 and S2 and cre-
ated topics A and B. This scenario suggests us that Moni-
tor could be the administrator defining the security policy 
regulating messages going through channels A and B. Of 
course, this is not the only possible scenario. The IoT 
network could be more centralized; topics A and B could 
also be shared by other applications and sensors. Never-
theless, decentralizing the security administration should 
be possible even if the network contains only one broker. 

Moreover, to give flexibility, delegation of rights should 
also be supported.

In our model, security administration is topic-based. We 
state that there is at least one security administrator for each 
topic. A security administrator for a given topic T is respon-
sible for defining the security policy regulating publications/
subscriptions to topic T and distribution of messages from 
topic T. There is also one Root Administrator (RA) who can 
administrate the security policy for all topics.

More precisely, the RA can perform the following tasks:

• Administrate (i.e., define the security policy for) all or 
some topics.

• Grant to another user the admin privilege on a given topic 
(with possibly the right to transfer this right).

• Revoke from a user the admin privilege on a topic.

Each admin for a given topic T can define the security 
policy for that topic T. If s/he has also been granted the right 
to transfer this right, then s/he may also grant to another 
node the right to administrate topic T. We believe that this 
administration scheme is flexible enough to support various 
cases of application.

In the following sections, we show how we extend our 
logical language to define our administration policy.

Constants

We define the following constant to represent the RA: root

Function

We define the following function which returns the topic 
addressed by an authorization rule R (instance of either 
template 4 or template 5) (Table 9).

Fig. 1  IoT network

Topic A

Topic B

Publish

Subscribe

S1

S2

Analytics

Monitor

Broker
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Recall that action A is represented by one of the com-
pound terms publish/3, subscribe/2 or deliver/3 defined 
in Table 6.

Predicate

We extend set F with instances of the following event 
rights delegation predicate (Table 10):

Granting an admin right creates a new instance of this 
predicate. Revoking the right deletes the corresponding 
instance of this predicate. The grant option is similar to 
the grant option of the SQL grant statement [19].

Security Administration Policy

Let TA be an administrator node of topic T. Admin TA can 
add and delete authorization rules addressing topic T in the 
security policy � . If admin TA holds the grant option on 
topic T, then it can also grant and revoke the admin rights 
on topic T to some other nodes.

Actions

We define four compound terms to represent the four fol-
lowing actions (Table 11):

Note that the grant option cannot be granted nor 
revoked separately. The same principle applies in the SQL 
delegation scheme.

Security Administration Rules

The security administration policy � is mandatory and 
consists of the five following administration rules:

(18)hasGranted(root, #, root, true).

Rule 18 says that the RA has granted to himself the 
admin option on the whole topic hierarchy with the admin 
option:

Rule 19 says that if node N was granted the admin privi-
lege on topic T, then it can add authorization rules refer-
ring to topic T (or to a subset of topics T if T represents a 
set of topics):

Rule 20 says that if node N was granted the admin privi-
lege on topic T, then it can delete authorization rules refer-
ring to topic T (or to a subset of topics T if T represents a 
set of topics):

Rule 21 says that if node N was granted the admin privi-
lege on topic T with the grant option, then it can grant the 
admin option on topic T (or on a subset of topics T if T 
represents a set of topics):

Rule 22 says that if node N has granted to node N’ the 
admin privilege on topic T, then it can revoke this privi-
lege from node N’. In other words, only the node which 
transferred a privilege can revoke it. Moreover, as we said 
previously revoking an admin privilege deletes the corre-
sponding instance of the hasGranted/4 predicate. Since the 
grantee N’ might also have transferred this right to some 
other nodes, revocation would also delete all the instances 
of hasGranted/4 corresponding to the delegation chain origi-
nating from N’. This mechanism is usually referred to as 
cascade revocation.

Finally, let us mention the following two points:

(19)

allow(N, ruleAdd(R))

← hasGranted(_, T ,N, _) ∧ addresses
(

T , T �
)

∧ topic(R) = T � .

(20)

allow(N, ruleDel(R))

← hasGranted(_, T ,N, _) ∧ addresses
(

T , T �
)

∧ topic(R) = T � .

(21)
allow

(

N, grant
(

T �, _, _
))

← hasGranted(_, T ,N, true) ∧ addresses
(

T , T �
) .

(22)
allow

(

N, revoke
(

T ′,N′
))

← hasGranted
(

N, T ,N′, _
) .

Table 9  Topic function

Function Purpose

topic(R) Returns the topic appearing in the action parameter A 
of rule R

Table 10  Rights’ delegation predicate

Predicate Meaning

hasGranted
(

N,T ,N′
,G

)

Node N has granted the admin privilege 
on topic T to node N’ with or without 
the grant option (depending on the 
value of the Boolean variable G)

Table 11  Security administration actions

Term Action

ruleAdd(R) Adding rule R in policy �
ruleDel(R) Deleting rule R from policy �
grant(T ,N,G) Granting the admin privilege on topic T to node N 

with or without (depending on the value of G) the 
grant option

revoke(T ,N) Revoking the admin privilege on topic T from node N
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• The combining algorithm enforced in � is obviously 
deny unless permit [16], i.e., the default policy is deny. 
This default policy is overridden by rules 18–22.

• If T represents a set of topics, then it is not possible to 
revoke the admin privilege for a subset of T. One would 
have to revoke the admin privilege for the set T and then 
grant again the admin privilege on a subset of T.

Prototype

In [12, 13], we describe a first proof-of-concept prototype. 
This first prototype is based on (i) OWL2 ontologies for 
representing nodes, topics and events, (ii) SWRL [20] rules 
for representing the security policy, and (iii) an OWL2 [21] 
inference engine for computing a security decision (allow/
deny). However, this approach has proved to be inefficient in 
terms of performance. In this paper, we present a new proto-
type based on RDF [14] and SHACL [15] (“Architecture”) 
and we evaluate its performance (“Performance Analysis”).

Architecture

The implantation of our security model relies on the W3C 
Resource Description Framework (RDF 1.1) Model [22]. 
We use RDF as a logical model to formally represent the 
security policy and its processing. We also use RDF as a 
physical model, since each identifiable object (node, topic, 
event, security rule, etc.) is represented as a resource. In 
other words, RDF statements describe resources, contextual 
information, events occurring in the system, and the security 
policy. We use an inference engine to compute security deci-
sions. Each security decision and the proof graph which has 
led to the decision are automatically added to our contex-
tual database for further processing. As a general principle, 
any event occurring within our access control enforcement 

system is monitored and saved into the contextual database. 
Recording events such as publication/subscription requests, 
security decisions, processing errors, etc. is not only impor-
tant for traceability purpose, but also allows us to refer to 
these events in dynamic contextual access control rules.

Recently, the W3C has proposed the Shapes Constraint 
Language (SHACL) recommendation [15] as a solution to 
define and validate constraints on RDF graphs by means 
of SHACL shapes. SHACL has also been extended with a 
rule mechanism [23], where conditions can even include 
SPARQL queries [24]. Therefore, we can translate any 
security rule defined with our model into an SHACL shape/
rule. Instead of processing security rules with a generic rule 
reasoner as we did in our first prototype [12, 13], we now 
translate our security rules into SHACL shapes/rules. We 
apply that these SHACL shapes/rules to RDF publication/
subscription requests to produce security decisions. Pro-
cessing SHACL shapes/rules has proved to be much more 
efficient than processing SWRL rules and ontologies with a 
generic rule reasoner.

Our access control enforcement system is built accord-
ing to the XACML architecture [16], that is, it has a Policy 
Enforcement Point (PEP), a Policy Decision Point, a Policy 
Information Point (PIP—contextual database), and a Policy 
Administration Point (PAP). Figure 2 depicts the general 
workflow of our prototype. RDF security rules are first trans-
lated into SHACL shapes/rules. Any MQTT request is inter-
cepted by the PEP, which has been implemented as a proxy 
between end points and the MQTT broker. The PEP submits 
to the PDP the RDF request. The PDP uses knowledge from 
the PIP and applies the SHACL rules on the request to com-
pute a decision together with the RDF proof graph which has 
led to the decision. Decision and proof graph are returned to 
the PEP and saved into the PIP.

Our prototype is written in Java 9. It is based on the 
Apache Jena Framework [25] to store and manipulate RDF 
data. SHACL validation is done using TopBraid [26] which 

Fig. 2  Access control engine 
workflow

MQTT request PEP RDF request PDP 

PAP RDF security rules 
SHACL 
rules 

PIP 
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is an open source plugin for Jena. Our prototype provides 
the user with a REST API to manage the PIP, the policies, 
and the request/response workflow

Performance Analysis

We analyze the transmission time of messages, i.e., the 
time taken by a published message to reach a subscriber. 
We compare the transmission time in a configuration, where 
the security policy is enabled and the requests intercepted by 
the PEP with a configuration, where the clients are directly 
connected to the server with no security enforcement. We 
conduct our tests on a desktop PC equipped with an i764bit 
Quad Core CPU and 16Gbit of RAM. The broker is Mos-
quitto 1.6.0 which is an MQTT v3.1.1 broker. The clients 
(publishers and subscribers) are implemented in python and 
rely on the Paho-mqtt1.4.0 libraries. Paho-mqtt implements 
versions 3.1 and 3.1.1 of the MQTT protocol.

Our experiment configuration is inspired from a similar 
work presented in [27]. It is the following:

• The subject tree is generated randomly, so that each node 
has between 0 and 5 children. The maximum height of 
the tree is 5. From the topic tree, a list of possible topics 
for subscription and publication is generated. Similarly, 
a list of possible topic filters is created.

• Each subscriber issues a single subscription on a topic 
generated randomly in the subject tree, with a random 
quality of service between 0 and 2.

• Each publisher posts one message on a randomly gen-
erated topic. The payload of the message contains the 
identifier of the publisher, the topic, a timestamp corre-
sponding to the time of emission, and a random quality 
of service.

• The security policy is randomly generated. It contains 
100 rules. Each rule contains:

• A priority between 0 and 5
• An action: (publish or subscribe)
• A target: (a random topic or a set of topics)
• A decision: (allow or deny)

• Clients are all generated at the same time. Upon receipt 
of a message by a subscriber, the timestamp correspond-
ing to the time of emission is retrieved from the payload 
and subtracted to the reception time to compute the trans-
mission time.

• We consider a set of experiments for scenarios composed 
of 50, 100, 250, 500, 750, and 1000 subscribers each 
including 1000 publishers (see Table 12)?

Results of our measurements are shown in Fig. 3. Fig-
ure 3 shows that the difference between the average trans-
mission time of one request with the PEP and the average 
transmission time of one request without the PEP is constant 
and approximately equal to 100 ms, regardless of the sce-
nario. This shows that our prototype is scalable and that our 
approach is very promising. In a similar work presented in 
[27], the authors developed a prototype, where the average 

Table 12  Configuration 
scenarios

C1 C2 C3 C4 C5 C6

Number of subscribers 50 100 250 500 750 1000
Number of publishers 1000 1000 1000 1000 1000 1000

Fig. 3  Average transmission 
time per scenario
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transmission time increased linearly with the number of 
subscribers.

The difference of 100 ms mainly consists of,

• the time required to process the event by the PEP,
• the time required to process the request by the PDP,
• the transmission times between the PDP and the PEP.

We separately measured the average time to process the 
request by the PDP and we found out that it is constant and 
approximately equal to 55 ms.

Our prototype can still be optimized. For instance, we 
are planning to use web sockets instead of the REST API. 
This should improve transmission times between the PEP 
and the PDP.

Related Works

As we already said, to our knowledge, there is no paper 
directly addressing the definition of a security policy model 
for IoT messages. Nevertheless, in this section, we review 
security works related to pub-sub architectures and MQTT 
protocol.

This paper which resembles the most to our approach is 
[27]. Like us, the authors consider that the protection object 
is the message. Therefore, they also regulate the distribu-
tion of messages by the broker. They use the ABAC model, 
although they do not define, as we do, an ABAC profile for 
IoT applications. They consider two types of security poli-
cies: the security policy expressed by administrators regu-
lating the right to publish/receive messages and the security 
policy expressed by users in terms of preferences. They do 
not mention rights delegation. Their Policy Enforcement 
Point (PEP) is implemented as a proxy between the MQTT 
broker and the nodes. Having in mind the performances, 
they manage the security policy within a key value data-
store (Redis2). However, they do not say much on the Policy 
Decision Point (PDP) and on analyzing the security policy 
using a reasoning engine. Moreover, Redis does not allow 
for complex queries and does not seem to be the right choice 
for storing highly expressive contextual policies. Finally, our 
prototype has shown better performance than their prototype 
(see “Performance Analysis”).

In [3], the authors define the secKit tool integrated in the 
IOT network simulator developed as part of the FP7 iCore 
project [28]. This tool is used to define security policies 
protecting the data exchanged between the different com-
ponents (virtual objects, composite virtual objects) which 
abstract the IoT network. secKit is based on a collection of 
models for modeling objects, data, time, roles, activities, 

interactions, risk, contexts, trust management, and so on. It 
was implemented as a Mosquitto plugin [29]. Authorizations 
rules can be positive or negative and include obligations. 
Authorization rules are Event Condition Action (ECA) rules 
[30]. This formalism makes it possible to express contextual 
and dynamic authorizations, but requires the implementation 
of an event manager capable of intercepting all events. Many 
aspects related to this tool are not clearly defined. Authors 
claim that the tool supports many features, but they do not 
elaborate on the features (expressive power, risks, trust man-
agement, obligations, conflicts resolution, etc.). Therefore, 
it is very difficult to have a clear view of the model sup-
ported by secKit. Note also that the tool secKit seems to 
be abandoned. The source code of an alpha version can be 
downloaded from gitHub (https ://githu b.com/iot-icore /iCore 
-secur ity-toolk it), but has not been modified for 4 years.

In [4], the authors describe a NetwOrked Smart 
object(NOS) middleware, located between the objects and 
the MQTT client. NOS intercepts the messages intended 
to be published, normalizes them (i.e., extracts metadata), 
and according to a security policy, implementing the ABAC 
model decides whether to grant the publication of the mes-
sage. If the message is authorized, it is encrypted by means 
of a temporary key corresponding to the subject (topic), 
where the message is to be published. Once encrypted, the 
message is published by the MQTT client. Customers wish-
ing to subscribe to a topic, contact the NOS which accord-
ing to the security policy will issue them or not the key to 
decipher the messages of the subject. This approach frees 
the MQTT broker from the evaluation and enforcement of 
the authorization policy. It requires, however, to set up a key 
management mechanism and offers a rather coarse level of 
granularity, since the object of protection is not the message 
but the subject (thus including all the messages published 
in the subject). NOS has been implemented using the node.
js platform and the objects transmit their messages via the 
http protocol. Currently, NOS is not available for download. 
In [8], the same authors improve their architecture by pro-
posing a solution to distribute and synchronize the security 
policies hosted by the NOS of several IoT networks. Their 
synchronization protocol uses the MQTT protocol.

In [5], the authors propose a solution to implement the 
ABAC model in a federation of IoT platforms. Their solution 
decouples the authorization process of the authentication 
process. An application first connects to an authorization 
manager to obtain a set of tokens. Each token represents an 
attribute of the application. Once in possession of its tokens, 
the application that needs to access a resource turns to an 
authorization manager who will accept or reject access to 
the requested resource based on the tokens presented. If the 
application wants to access a resource belonging to a foreign 
IoT platform, then it must present its tokens to the authen-
tication manager of the foreign platform to obtain foreign 2 https ://redis .io/.

https://github.com/iot-icore/iCore-security-toolkit
https://github.com/iot-icore/iCore-security-toolkit
https://redis.io/
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tokens. These foreign tokens are computed by means of a 
token conversion function (little information is given on this 
function in the article). Once in possession of the foreign 
tokens, the application can then turn to the foreign authori-
zation manager who will accept or reject access. The authors 
suggest to implement the tokens either in the form of Google 
macaroons [31] or in the form of JWT [32] tokens (Json 
Web Tokens).

In [33], the authors implement the RBAC model in a pub-
sub network. They consider the privilege of logging in, the 
privileges of adding a topic and deleting it, and the privi-
leges of publishing and subscribing. They define a solution 
to disseminate security policy [34] in a network of partially 
trusted brokers so that access control decisions are taken and 
enforced at the earliest. Their solution is implemented in the 
Hermès broker [35] using the http protocol.

In [36], the authors propose to adapt the OAuth protocol 
[37] to the case of an IoT network, where resources are dis-
covered and exposed according to the IETF standard [38]. 
The data (resources) produced by the sensors of the low 
power IoT network are transmitted to the gateway between 
the low power network and the IP network. This schema 
ignores the MQTT protocol, resources being logged and 
exposed at the gateway level. Within this gateway, an author-
ization server is installed. According to the OAuth proto-
col, a third-party application that wants to access a resource 
exposed by the gateway, (1) requests access delegation from 
the owner of the resource by asking him to authenticate, 
(2) obtains an access token to the resource provided by the 
authorization server and (3) presents the access token to the 
authorization server to access the resource. The authors do 
not mention any case study that could benefit from such a 
security architecture.

In [39], the authors present above all a method of authori-
zation using Elliptical Curve Cryptography (ECC). How-
ever, they also implement an authorization scheme using 
capabilities. Capabilities are tokens distributed to users hold-
ing the access rights of the users to the data produced by the 
network. Very little is said about the expressive power of 
the security policy and interaction of their scheme with the 
MQTT protocol is unclear.

There is a general trend in the world of IoT which con-
sists, for scaling purposes, of moving the processing and 
controls at the edge of the IoT network towards the objects 
themselves [40]. Thus, there are several approaches [6, 7] 
for moving security-related services and processes to end-
of-network gateways or servers. In [6], the authors even use 
the concept of sticky policy [41] which implies that data 
owners encapsulate the policy protecting the data with the 
data itself.

There are several articles that deal with security issues 
in pub-sub networks, without specifically considering the 
MQTT protocol. In [9], the authors attempt to identify the 

security problems specific to this type of network. They are 
particularly interested in protecting the confidentiality of 
messages and subscriptions in case the pub-sub infrastruc-
ture is not trusted. They suggest some lines of research such 
as the use of numerical calculation on encrypted data [42, 
43]. To protect the content of the messages and subscription 
schemes of the brokers, the authors in [10] propose a tech-
nique based on the encryption preserving the asymmetric 
scalar product [44].

In [45], the authors propose a model that implements the 
reliable distribution service, that is, the messages received 
by a client do not depend on the connection location, the 
network latency, or the possible points of network failure. 
These messages depend only on the customer’s subscription 
filter and her access rights, which are uniformly enforced 
throughout the pub-sub network.

Conclusion

In this paper, we have defined a model to express security 
policies for a pub-sub architecture consisting of a single 
MQTT broker. The most important contributions of our 
paper are the followings:

• Our model allows us to regulate not only publications 
and subscriptions but also distribution of messages. To 
our knowledge, this feature has not been addressed in any 
other paper related to IoT security except [27].

• Our model is an interpretation of the ABAC model for 
the pub-sub architecture with some unique features like 
the possibility to control the frequency of events.

• We have developed a scalable prototype based on RDF 
and SHACL.

Regarding future works, we are planning to investigate 
the following issues:

• We will extend our model to the case of a pub-sub archi-
tecture consisting of several bridged brokers. In such a 
scenario, we might need to apply the solution presented 
in [8] to synchronize the security policy at every node of 
the pub-sub architecture.

• We will also consider an IoT network consisting of a 
TCP/IP network hosting the pub-sub architecture coupled 
with a Low Power Wide Area Network (LPWAN) host-
ing the sensors. In such a scenario, we might also need to 
implement solutions proposed by others [6, 7] to move, 
for scaling purposes, the security controls at the various 
gateways between the TCP/IP network and the LPWAN 
network.
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• We are also planning to include the possibility to declare 
obligations in the security policy.
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