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Abstract
Similarity search is a principle operation in different fields of study. However, the cost for that operation is expensive due to 
several reasons, mainly by redundancy and big data load. There are many approaches that concentrate on how to speed up 
similarity search, especially with massive datasets, so that we can employ it for plenty of recent applications. In this paper, 
we study an efficient way for either single or batch similarity processing with MapReduce while minimizing redundant data 
by building lightweight indexes from the data and query sources. More specifically, we propose a general query processing 
scheme that not only handles a single query but also deals with sets of query in an incremental manner. In addition, we build 
the indexes in an ordered fashion, the so-called sorted inverted indexes, so that we can perform our quick pruning strategy 
that discards unrelated objects. Moreover, we embed metadata inside the indexes to reduce inessential duplicates. Last but 
not least, we measure our proposed solution by conducting empirical experiments on real datasets. The results verify the effi-
ciency of our method when we do similarity search with query batches, especially when both query sets and datasets are large.

Keywords Similarity search · Batch processing · Lightweight indexing · Metadata · MapReduce · Hadoop

Introduction

Similarity search is the principle operation not only in data-
bases but also in interdisciplinary fields of study such as 
machine learning, recommendation systems, biology, or data 
analytics. The main goal of similarity search is to find the 
object similar to the given pivot, know as the query. The 
similarity computing, unfortunately, suffers high overheads 
due to distance calculation pair by pair together with similar-
ity metrics [18]. It is more inevitable especially when data 
grow bigger and have a higher dimensionality. As a result, 
the challenge is how to speed up the similarity searching 
process to enjoy its benefits.

There are several approaches to achieve the goal, for 
example, by improving indexing [3, 15], hashing [13], fil-
tering [16], or processing in parallel [1]. Among them, the 
parallel processing approach in distributed environment 
calls much attention to researchers worldwide [6, 9, 10, 14]. 
This trend keeps motivating both academia and industry 
due to the large amount of data. Other approaches may fail 
to assure scalability when processing massive datasets. As 
a result, we catch the trend by employing MapReduce, a 
large-scale processing paradigm [4], when enhancing the 
performance of similarity search.

Even though MapReduce helps us process an enormous 
amount of data, it would suffer heavy overheads when pro-
cessing big unnecessary or irrelevant objects. The scenario 
becomes even worse when those big objects are involved in 
the similarity search. In other words, those redundant objects 
are combined with every other object to evaluate their simi-
larity pair by pair. Moreover, the MapReduce-based process 
is strictly bound by I/O costs, so processing irrelevant or 
unnecessary data leads to extra penalty.

Meanwhile, those recent literatures only deal with a single 
similarity query. Consequently, when given a query batch, 
each query is processed one by one, which slows down the 
whole performance of batch processing. In fact, we observe 
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that queries in the batch may share their search space. As a 
consequence, it would be better to search the same shared 
search space for all queries in the batch rather than looking 
for the search space for one query and then redo it several 
times for other queries.

In our work, we, therefore, take batch processing into 
account rather than single query processing. Furthermore, 
we propose our strategies to make our MapReduce-based 
solution more effective. Specifically, our main contributions 
are as follows:

• We present a query batch processing scheme that not only 
handles sets of query but also does similarity search in 
an incremental way.

• We introduce a simple but efficient method to support 
quick pruning in similarity search by sorted inverted 
indexes.

• We propose an indexing scheme with metadata so that we 
can diminish duplicate data and then build lightweight 
indexes.

• We perform our empirical experiments on real datasets. 
The results verify the efficiency of our proposed solution 
when it does similarity search with query batches.

It is worth noting that this paper is the extended version of 
our work [8]. The new content is added as follows:

• We further discuss about our incremental computing with 
our query batch processing scheme in Sect. “Query Batch 
Processing Scheme”.

• We present our MapReduce-based algorithms and their 
descriptions in Sect. “MapReduce-based Similarity 
Search”.

• We show our MapReduce-based algorithms with light-
weight indexing and their descriptions in Sect. “Light-
weight Indexing”.

• We analyze how our proposed solution can support pair-
wise similarity query, range query, as well as k-nearest 
neighbor query in Sect. “Towards Other Similarity Que-
ries”.

• We add more descriptions about similarity search and 
MapReduce in Sects. “Similarity Search” and “MapRe-
duce”.

The rest of paper is organized as follows. Sect. “Related 
Work” presents our related work. Additionally, Sect. “Pre-
liminaries” introduces our background related to the similar-
ity search and MapReduce paradigm. In Sect. “Our Proposed 
Solution”, we propose our solution for similarity search in 
general and that with query batches in particular. After that, 
we conduct our experiments in Sect. “Empirical Experi-
ments and Evaluations” before making our remarks in Sect. 
“Conclusion and Future Work”.

Related Work

Metwally and Faloutsos introduce a method for all-pair 
similarity joins of multisets and vectors [6]. Their method is 
composed of two main phases, each one comprised of two 
MapReduce jobs. While a MapReduce job is costly, the greater 
the usage of MapReduce jobs is, the higher the costs will be. 
Additionally, their method does not consider duplicate data 
items during the execution of MapReduce job, which usually 
adds extra penalty. Besides, Tang et al. presented their way, 
the so-called HA index, to speed up Hamming-based distance 
computing for range queries [14]. In addition, redundancy 
during the computing is also eliminated. Their whole process 
consumes three phases with two MapReduce jobs. Neverthe-
less, the costs for data pre-processing and post-processing are 
excluded from the MapReduce jobs.

Gao et al. bring up efficient and scalable metric similarity 
joins with MapReduce [5]. They focus on the load balancing 
and how to avoid unnecessary object pairs with their filtering 
methods, including the range-object filtering, the double-pivot 
filtering, the pivot filtering, and the plane sweeping techniques, 
so that they can achieve better query performance. In the mean-
time, Phan et al. proposed an efficient hybrid similarity search 
with MapReduce [10]. Their basic idea is to first cluster similar 
objects and second define upper and lower boundaries to shrink 
the search space before looking at similar pairs. The method is 
then to deploy in a hybrid MapReduce-based architecture that 
deals with challenges from big data. In addition, their empirical 
studies show that their method is efficient in terms of data pro-
cessing and storage. Though their method works well with batch 
processing, each query is sequentially processed in a batch with 
regard to their search scheme, while we have indexing strategy 
for query batches supporting quick similarity search.

Nguyen et al. built the VP tree algorithm on top of the 
MapReduce framework to achieve good performance, scalabil-
ity, and fault tolerance for similarity search over the large data-
sets in the distributed environment [7]. Moreover, their method 
can reduce the number of data that need to scanned during the 
search phase. In contrast, our approach is towards MapReduce-
based scheme-driven algorithms that are independent of the 
underlying MapReduce framework. By doing this, we are able 
to gain two main advantages as follows: (1) no internal or addi-
tional changes from the framework; and (2) mutual support 
from both the top algorithms and the underlying framework.

Preliminaries

Similarity Search

A corpus, denoted as � , consists of a set of docu-
ment objects Dp , which is formally represented as 



SN Computer Science (2020) 1:1 Page 3 of 16 1

SN Computer Science

� = {D1,D2,D3,… ,Dn} . In addition, each document 
object Dp is composed of a set of words, which is shown as 
Dp = {word1,word2,word3,… ,wordw} . Similarity search 
is the operation that retrieves all objects in the corpus � 
so that these objects satisfy required constraints. The con-
straints may be different from query to query. There are 
various similarity queries with different constraints. In this 
section, we present some fundamental similarity queries 
as follows:

• Pairwise similarity query. For each document object 
in the corpus � , the similarity search computes how 
much similarity is present between one document 
object and every (n – 1) other object in the corpus.

• Query-by-example or pivot query. The similarity 
search looks for similar objects in the corpus � when 
given a query object called a pivot. When given a pivot 
Qj , the similarity search computes how much similar 
the pair ( Qj , Dp ) is for every document object Dp in the 
corpus.

• Range query. When given a pre-defined range thresh-
old � , or sometimes it is known as a similarity thresh-
old, the similarity search retrieves all objects in the 
corpus � , whose similarity scores are greater or equal 
to the threshold �.

• K-nearest neighbor query. When given a pre-defined 
k parameter, the similarity search retrieves all objects 
in the corpus � such as they are the top-k similar 
objects. In other words, they are k objects that are the 
most similar to a query object.

To evaluate how similar a pair is, a similarity measure 
such as Euclidean distance, Cosine similarity, Hamming 
distance, or Jaccard coefficient is used to quantify their 
similarity [18]. The similarity score is usually standard-
ized into the interval [0, 1] in that the pair is more simi-
lar when its similarity score is close to 1, while it is less 
similar when its similarity score is near 0. Moreover, a 
similarity threshold, like 80% similarity may be provided 
to filter those pairs whose similarity scores are greater or 
equal to 0.8.

In the meantime, we observe that modeling the content 
of a document as a set of words does not reflect much 
how really similar a pair is, because the two same words 
in different objects do not bring the same meaning. To 
better improve a part of semantic similarity, a concept of 
K-shingles [11], known as any sub-string having the length 
K found in the document, is used instead. As a conse-
quence, each document object Dp is composed of a set 
of K-shingles, which is shown as Dp = {S1, S2, S3,… , Sz}.

Furthermore, to speed up the process of similarity search, 
different types of indexing are employed. One of the most 

well-known indexing supporting similarity search is the 
inverted index, a popular data structure used in information 
retrieval systems [2, 10]. In our work, we build another ver-
sion of inverted index known as the sorted inverted index so 
that we can skip unnecessary computing for those elements 
not in either document or query objects when searching can-
didate pairs, which is discussed later on in Sect. “MapRe-
duce-based Similarity Search”.

In general, a similarity search process consists of two 
main phases as follows:

1. Candidate generation phase. This is the phase where two 
objects are identified as a candidate pair.

2. Candidate verification phase. This is the phase where the 
pair is evaluated for its similarity score.

MapReduce

MapReduce is a parallel paradigm for large-scale processing 
[4]. The philosophy behind is to apply “divide-and-conquer” 
strategy to data. A large data is split into different smaller 
data chunks, which are then processed at various machines. 
The intermediate results generated by each machine are 
aggregated into the final result. To implement this strategy, a 
MapReduce job is composed of a Map task and Reduce task 
in that the former is specified by a Map function, while the 
latter is determined by a Reduce function. When a MapRe-
duce job is executed on a cluster of commodity machines, 
those machines assigned Map tasks called mappers, whereas 
those assigned Reduce tasks are known as reducers. A Map 
task emits intermediate key-value pairs, while a Reduce task 
writes the final key-value pairs into the distributed file sys-
tem. Moreover, there is a shuffle phase between the Map task 
and the Reduce task, which re-distributes data based on the 
output keys by the mappers.

Suppose that there are M mappers and R reducers, a sin-
gle MapReduce job is described as follows:

1. Input data are loaded into the distributed file system and 
then divided into partitions based on their data size.

2. Mappers read their data partitions, perform the Map 
function, and emit intermediate results in the form of 
key-value pair [ki, vj] . These intermediate key-value pairs 
are locally stored at mappers.

3. The shuffle process aggregates the intermediate key-
value pairs [ki, [vj]] into R data partitions, which is based 
on their key values.

4. Reducers retrieve the intermediate key-value pairs 
[ki, [vj]] from R data partitions and perform the Reduce 
function. The final output is written back to the distrib-
uted file system.
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One of the most well-known open-source framework that 
implements the idea of MapReduce is Hadoop,1 which 
is designed to perform scale-up computing with massive 
datasets. In our work, we employ Hadoop to deploy our 
MapReduce-based algorithm for efficient batch similarity 
processing.

Our Proposed Solution

Query Batch Processing Scheme

In this paper, we introduce our general similarity search 
scheme as illustrated in Fig. 1. Either data or query objects 
are indexed into either data or query pools, respectively. 
Besides, we employ inverted index as an index data struc-
ture. In addition, the indexes are organized in an ordered way 
to serve our quick pruning strategy later on. In general, our 
basic idea is to separate the data preparation phase from the 
similarity search phase. By doing it this way, we can perform 
incremental computing when data or query objects change. 
In other words, we do not need to pre-process either existing 
or unchanged data and query objects, but with those which 
are new or have been changed. To index data objects, we use 
one MapReduce job. For instance, a set of data object {Dp} 
is indexed into the data pool in the form of sorted inverted 
index (SII), known as SII(Dp ). Similarly, a set of query 

object {Qj} is indexed into the query pool in the form of 
sorted inverted index, known as SII(Qj ). After the indexing 
phase, both data and queries are ready for similarity search. 
Later on, another MapReduce job computes the similarity 
(SIM) among queries against data and produces the final 
result in the form SIM(Qj , Dp ). In our work, we employ 
Jaccard coefficient, a well-known metric for fast set-based 
similarity [6, 10, 12, 17], to derive the similarity score of a 
pair as described in the Eq. 1 below.

In that, ∥ Qj ∩ Dp ∥ is the intersection cardinality between 
Qj and Dp , while ∥ Qj ∪ Dp ∥ is the union cardinality between 
Qj and Dp.

With the proposed scheme, we can perform similarity 
search in an incremental manner. The reason is that both data 
and query objects are available in the data and query pools 
in the form of SII. Hence, if there are new data or query 
objects, the pools will include them in the form of SII. Other 
existing data and query objects remain unchanged, because 
they have already been in the data and query pools, respec-
tively. Then, a MapReduce job for similarity search can be 
configured to compute similarity scores from a set of SII in 
the pools as required. Furthermore, the general scheme is 
applied not only to single query processing but also to query 
batches. Figure 2 shows three cases for incremental comput-
ing with our proposed scheme as follows.

(1)SIM(Qj,Dp) =
∥ Qj ∩ Dp ∥

∥ Qj ∪ Dp ∥

Fig. 1  Query batch processing 
scheme [8]

1 https ://hadoo p.apach e.org/.

https://hadoop.apache.org/
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• Case 1. New data objects appear. Assume that there is 
a set of new data objects {Dnew} . A MapReduce job pro-
cesses it to produce SII(Dnew ) in the data pool. It is worth 
noting that SII(Dnew ) is now ready in the data pool and 
is independent of other forms of SII from other existing 
data objects (i.e., SII(Da ) ... SII(Dp ) ... SII(Dz)). Con-
sequently, when doing similarity search according to a 
particular query set (e.g., SII(Qi ) ... SII(Qj ) ... SII(Qm)), 
another MapReduce job takes those relevant inputs from 
the data pool, which already includes new data objects.

• Case 2. New query objects appear. Assume that there 
is a set of new query objects {Qnew} . A MapReduce job 
processes it to produce SII(Qnew ). It is worth noting 
that SII(Qnew ) is now available in the query pool and is 
independent of other forms of SII from other existing 
query objects (i.e., SII(Qi ) ... SII(Qj ) ... SII(Qm)). As a 
consequence, when doing similarity search according to 
a particular dataset (e.g., SII(Da ) ... SII(Dp ) ... SII(Dz

)), another MapReduce job takes those relevant queries 
from the query pool, which already includes new query 
objects.

• Case 3. Both new data and query objects appear. This 
is the combination of Case 1 and Case 2 above. In other 
words, both new data and query objects emerge together 
at the phase of doing a similarity search. Like the other 
two cases, if we do not take new data and query objects 
into account, the similarity search would produce its out-
of-date result. Therefore, new data and query objects 
had better be processed to be available in the data and 
query pools, respectively. When conducting a similarity 
search, another MapReduce job pulls those related data 
and query input to compute up-to-date similarity scores.

MapReduce‑Based Similarity Search

Our MapReduce-based similarity search following the above 
scheme consists of two main phases: (1) indexing; and (2) 
searching. In the former phase, we will index data and query 
objects into the pool in the form of SII while doing the simi-
larity search with Jaccard measure in the latter phase. Last 
but not least, we model our documents as bags of 4-shingles 
rather than sets of words [10, 11].

As illustrated in Fig. 3, at Phase 1: indexing, Map-1 takes 
original objects as its input. It is worth noting that objects 
mentioned here include data and query objects. Map-1 then 
processes the input and emits intermediate key-value pairs 
of the form [Element, URL] in that Element is a shingle of 
an object, while URL is the uniform resource locator of that 
object in the distributed environment. Here we do not use 
object identification as we want to clearly know where the 
object is in the distributed system so that we can retrieve 
that object after the similarity search. Next, Reduce-1 
aggregates those intermediate key-value pairs emitted by 
Map-1 with regard to their key values. Moreover, Reduce-1 
sorts the list of key-value pairs in the form of [Element, 
[URL]]ord . At Phase 2: Searching, Map-2 starts consider-
ing candidate pairs for their similarity from those object 
already indexed at Phase 1. If the query object and the data 
object share the same element, Map-2 generates the candi-
date pair of the form [URLD − URLQ, ||D ∪ Q||] . After that, 
Reduce-2 aggregates the same candidate pairs, computes 
their similarity scores, and outputs the final result of the 
form [URLD − URLQ, SIM(D,Q)].

To better understand our proposed method, we present 
here our algorithms for each MapReduce job. Figure 4 

Fig. 2  Incremental processing 
scheme
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illustrates Map-1 algorithm, which gets the input of docu-
ments Di and then produces the intermediate key-value pairs 
of the form [SHk,URLi@NOSi] . First, necessary variables 
are initialized as in steps 1–3. Next, we generate shingles 
from the input documents Di as in step 4. For each shingle, 
we insert it into a shingleListi , regarding the document Di , as 
in steps 5–7. Later, we filter duplicate shingles as in step 8, 
because duplicates do not contribute to the overall similar-
ity scores, which is based on the Jaccard measure. Besides, 
we get the number of shingles as in step 9 and get the URLi 
of the corresponding document Di as in step 10. Finally, 
we let mappers emit the intermediate key-value pairs as in 
steps 11–12.

Figure  5 illustrates Reduce-1 algorithm, which gets 
the input from Map-1 of the form [SHk,URLi@NOSi] and 
then builds a sorted inverted index, which has the form as 
[SHk, [URLi@NOSi]]ord . First, reducers read input data as 

in step 1, while necessary variables are initialized as in 
steps 2–5. Next, steps 6–17 aggregate those documents that 
share the same shingle, and we keep their tracks using a 
two-dimensional matrix. Then, we sort the matrix to create 
a sorted list of key values (i.e., shingle values) as in step 18. 
Finally, we let reducers emit the key-value pairs as in steps 
19–20.

Figure 6 illustrates Map-2 algorithm, which gets the input 
including a set of sorted inverted index SII(Di ) of document 
objects and a set of sorted inverted index SII(Qj ) of query 
objects and then produces the candidate pairs of the form 
[URLD − URLQ,NOSD∪Q] . First, mappers read data and 
query inputs as in steps 1–2. Besides, we also get the query 
number information from the query set as in step 3. For 
each document and query, we examine whether there is any 
intersection between Di and Qj as in steps 4–11. If yes, we 
get necessary information such as URLi in step 8, URLj in 

Fig. 3  MapReduce flow chart

Fig. 4  Map-1 algorithm
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Fig. 5  Reduce-1 algorithm

Fig. 6  Map-2 algorithm
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step 9, the total number of shingles between Di and Qj as in 
step 10, and let the mappers emit the candidate pairs as in 
step 11.

Figure  7 illustrates Reduce-2 algorithm, which gets 
the input from Map-2 of the form of candidate pairs 
[URLD − URLQ,NOSD∪Q] and then produces similar pairs 
of the form [URLD − URLQ, SIM(D,Q)] . First, reducers read 

input data as in step 1, while necessary variables are initial-
ized as in steps 2–5. Next, steps 6–17 aggregate the same 
candidate pairs, count the number of shingles shared by the 
two pair, and compute the similarity score between each pair.

Furthermore, Fig. 8 shows an example of data index-
ing by a MapReduce job. Assume that we have three data 
documents Dp = [D1,D2,D3] with their corresponding 

Fig. 7  Reduce-2 algorithm

Fig. 8  Example of data index-
ing [8]
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shingle-based contents. The Map task is to emit intermedi-
ate key-value pairs in the form of [SHp,URLp] in that SHp is 
a shingle of a document Dp and URLp is the path location 
of Dp in the distributed environment. It is worth noting that 
duplicate shingles from the same document are discarded, 
because they do not contribute to the similarity scores with 
Jaccard measure. We, thus, filter them at this Map task 
to avoid additional overheads after that. The Reduce task 
then produces SII(Dp ) in the form of [SHu, [URLv@Sv]] . It 
is worth noting that we need to keep the size S of those 
documents so that we can derive their similarity scores 
later on. Likewise, Fig. 9 implies an example of query 
indexing by a MapReduce job. Assume that we have 
three query documents Qj = [Q1,Q2,Q3] with their corre-
sponding shingle-based contents. The Map task is to emit 
intermediate key-value pairs in the form of [SHj,URLj] , 
whereas the Reduce task produces SII(Qj ) in the form of 
[SHu, [URLv@Sv]].

The similarity search phase is done by one MapRe-
duce job. Figure 10 illustrates the Map task with SII(Dp ) 
and SII(Qj ). It compares key by key and emits the pair 
whenever they share the same shingles in the form of 
[URLj − URLp, (Sj + Sp)] . To sooner discard unnecessary 
pairs, we apply our quick pruning strategy in the compari-
son to speed up the searching process. Due to the fact that 
we already organize SII(Dp ) and SII(Qj ) in an ordered way, 
we can achieve the two following advantages for our quick 
pruning during the comparison:

1. We can stop the comparison halfway whenever 
SHp > SHj.

2. We can discard those shingles from the comparing set 
SII(Dp ) whenever SHp < SHj . By doing it this way, we 
can reduce the size of the comparing set SII(Dp ) during 
the comparison.

Fig. 9  Example of query index-
ing [8]

Fig. 10  Example of Map task 
[8]
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Finally, the Reduce task aggregates the pairs emitted by the 
Map task and computes their similarity scores. As shown in 
Fig. 11, we will have eight pairs with their corresponding 
similarity scores.

Lightweight Indexing

By observing, we see that there are duplicate values in the 
indexes. Whenever a pair shares the same shingle, the value 
of the form URLv@Sv emerges. In the distributed environ-
ment, a URL may be long due to its location path. Therefore, 
those repeated values make the size of indexes bigger. As 
a result, they add to the heavy cost of MapReduce-based 
processing, since it is strictly bound by I/O cost. To mini-
mize the redundancy and speed up the MapReduce-based 
searching process, we propose a metadata-based approach 
as follows.

1. We build a list L of document URLs as metadata in the 
form of {URLv@Sv} . The metadata is put as header of 
each file produced by Reduce task.

2. For each value in the inverted index, we replace it with 
the index of L with regard to the corresponding docu-
ment URL.

To implement our idea, we change the behaviors of 
Reduce-1 and Map-2 in that Reduce-1 builds lightweight 
indexes with metadata, while Map-2 processes the similarity 
search with those metadata generated by Reduce-1. Figure 12 
illustrates Reduce-1 algorithm with metadata, which gets the 
input from Map-1 of the form [SHk,URLi@NOSi] and then 
builds a sorted inverted index as [SHk, [URLi@NOSi]]ord 
with embedded metadata. First, reducers read input data as 
in step 1, while necessary variables are initialized as in steps 
2–8. More specifically, the variable metaDataList, as in step 
6, keeps the list of URLs, the variable m_index, as in step 

7, keeps the last index of the metaDataList, while the vari-
able current_m_index, as in step 8, keeps the current index 
of a document Di . Steps 9–32 almost show the same way 
as in the original Reduce-1, which means those documents 
that share the same shingle are aggregated, and their tracks 
are kept using a two-dimensional matrix. However, the dif-
ference is that we check whether the examining document 
object has already been in the metaDataList or not as in step 
11. If not, we generate the next index of the metaDataList 
and combine it with that object as in steps 12–15. Otherwise, 
we combine that object with its current index in the metaDa-
taList as in steps 16–17. Moreover, we let reducers output 
metadata in metaDataList before the sorted inverted index 
list, as in steps 34–35.

Due to changes from data structure after Reduce-1, we 
also need to modify the Map-2 algorithm to match the 
new way of data processing. Figure 13 illustrates Map-2 
algorithm with metadata, which still gets the input includ-
ing a set of sorted inverted index SII(Di ) of document 
objects and a set of sorted inverted index SII(Qj ) of query 
objects and then produces the candidate pairs of the form 
[URLD − URLQ,NOSD∪Q] . First, mappers read data and 
query inputs as in steps 1–2. Next, we retrieve shingle list 
from query and store it in queryShingleList as in step 3 as 
well as metadata list from query and store it in queryMeta-
DataList. Besides, we use the variable shingle as in step 5 
to store key element and value element. Moreover, we also 
use the variable metaDataFlag as in step 6 to separate the 
metadata processing as in steps 8–10 from the data process-
ing as in steps 11–24. If metaDataFlag is true, we get the 
metadata information and store it into metaDataList. Oth-
erwise, we start processing the data and let mappers emit 
candidate pairs. When comparing shingles from data and 
query, if the key value of data shingle is greater than the key 
value of query shingle and the length of queryShingleList 
is different from 0, we pop that query shingle out of the 
queryShingleList as in steps 12–13 due to the fact that key 
values in both data and query indexing are sorted in advance, 

Fig. 11  Example of Reduce 
task [8]
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whereas we only need to find those that are shared by both 
data and query at this phase. Otherwise, we retrieve query 
list and document list as in steps 14–16. Next, for each query 
in the query list and for each data in the data list, we get 
their necessary information such as the metadata index of 
the examining query as in step 18, URL of query as in step 
19, the metadata index of the examining data as in step 21, 
URL of data as in step 22, and the total number of shingles 
between the document object D and the query object Q as 

in step 23. Finally, we let mappers emit the candidate pairs 
as in step 24.

Figure 14 shows an example of metadata of dataset, 
while Fig. 15 gives an example of metadata of query set. 
For instance, we build the metadata from the dataset as 
{URLD1@8, URLD2@6, URLD3@7} . Consequently, the 
pair [A, [URLD1@8, URLD2@6, URLD3@7]] is replaced 
by [A, [0, 1, 2]]. Meanwhile, we build the metadata from 
the query set as {URLQ1@4, URLQ2@5, URLQ3@5} . 

Fig. 12  Reduce-1 algorithm 
with metadata
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Consequently, the pair [N, [ URLQ1@4 , URLQ2@5 , 
URLQ3@5 ]] is replaced by [N, [0, 1, 2]]. When the data 
input is large, the indexes with our metadata is much more 
lightweight than those without that. Our experiments in 
Sect. “Empirical Experiments and Evaluations” show how 
much lightweight they are and the efficiency they devote 
in speeding up the searching process.

Towards Other Similarity Queries

Our presentation so far is for query by example, which looks 
for similar objects when given either a query or a set of 
queries. However, our proposed approach would be adapted 
to other fundamental kinds of similarity queries as follows.

• Pairwise similarity query. In this context, we would like 
to compute the similarity between one object and the oth-
ers in the dataset. In other words, if we have N objects in 
the dataset, we need to calculate how similar one object 
is with (N-1) other objects. To do that, we interfere the 
algorithm 3: MAP-2, shown in Fig. 6, or the algorithm 6: 
MAP-2 with metadata, shown in Fig. 13. In this case, we 
replace the set of query objects with the same set of data 
objects. Moreover, we need to add the condition in step 
6 of the algorithm 3 and in step 12 of the algorithm 6, so 
that the examining pair must not be the same.

• Range query. When given a threshold � , we would like 
to retrieve only those objects whose similarity scores are 

Fig. 13  Map-2 algorithm with 
metadata
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greater or equal to that � . To do that, we interfere the 
algorithm 4: REDUCE-2, shown in Fig. 7. After either 
step 11 or step 16, we check whether the similarity score 
is greater or equal to the given � or not. If yes, we let 
reducers output that pair. Furthermore, if there are dif-
ferent similarity thresholds for different queries, we need 
to check the similarity score against the corresponding 
threshold.

• K-nearest neighbor query. When given a k parameter, 
we would like to retrieve only k objects that are the most 
similar as a query object. To do that, we need to aggre-
gate similarity scores after either step 11 or step 16 of 
the algorithm 4: REDUCE-2, shown in Fig. 7 and per-
form ranking based on those similarity scores. After that, 
we choose to output k pairs that have highest similarity 
scores with regard to their query objects. In case we need 
to process query batches, we may have different k param-
eters for different queries. In this scenario, we rank the 
similarity scores and group them by their queries. It is 

worth noting that our modified method here may return 
a super set of the real top-k result.

Empirical Experiments and Evaluations

Environmental Setting

We deploy Hadoop-based two-node cluster on a PC, in 
which each node has 2.00 GB RAM and 50 GB HDD. The 
PC has  Intel®  Core™ i5-4460, 3.20GHz CPU, 8.00 GB 
RAM, 500 GB HDD, and 64-bit operating system. Addi-
tionally, the Hadoop version is 2.7.32 run with its default 
settings. Nevertheless, we set the number of reducers to 4, 
which is based on four CPU cores.

Fig. 14  Metadata of dataset [8]

Fig. 15  Metadata of query set 
[8]

2 https ://hadoo p.apach e.org/docs/r2.7.3/.

https://hadoop.apache.org/docs/r2.7.3/
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Dataset

We employ datasets retrieved from Gutenberg Project,3 an 
online data storage with over 56,000 free e-books, for our 
experiments. The datasets are randomly chosen from the 
storage and organized into different data as well as query 
packages, which is illustrated in Table 1. The data type 
serves as the data input for similarity search, while the query 
type is the pivot input to look for similar documents from the 
data type. For the data type, we organize five different data 
packages as D5, D100, D300, D500, and D1K with 5, 100, 
300, 500, and 1000 files, respectively. As it was randomly 
chosen, the file size ranges from 1 to 102 KB. In the mean-
time, the query type is organized into four different query 
packages as Q1, Q10, Q100, and Q1K with 1, 10, 100, and 
1000 files, respectively. In addition, the query size range is 
59 KB.

Measurement

We compare the two different methods as follows:

• Sorted inverted index (SII). This method follows our pro-
posed similarity search scheme to build sorted inverted 
indexes for both data sources and query batches. In addi-
tion, the method performs query processing with our 
pruning strategy.

• Sorted inverted index With metadata (SIIWMD). This 
method follows our proposed similarity search scheme to 
build sorted inverted indexes with metadata organization. 
Additionally, the method performs query processing with 
our pruning strategy.

Evaluation

In our first experiment, we measure the performance of the 
two comparing methods, known as SIIWMD and SII, for 
indexing query batches. Figure 16a shows the query index-
ing time when the sorted inverted indexes are built for query 
batches. In general, the processing time of the two methods 
is not much different with Q10 and Q100. In fact, SII tends 
to have less query indexing time than SIIWMD when the 
number of queries sharply increases due to the fact that it 
does not suffer overheads for metadata organization. For 
example, the gap is around 4.55% with Q1K. Meanwhile, 
Fig. 16b indicates the query indexing size between the two 
comparing methods. Generally, SIIWMD generates sorted 
inverted indexes much lighter than SII. When the query 
batch size increases from Q10, Q100 to Q1K, SIIWMD 
saves nearly 12 times more data output than SII on the aver-
age. As a result, SIIWMD generates much more lightweight 
indexes than SII.

To experience the indexing building with larger dataset, 
we do the same experiment for data packages. As illustrated 
in Fig. 16c, we observe that the indexing time between SII-
WMD and SII is not much different when the dataset is small 
as with D100, D300, and D500. Nevertheless, when the 
dataset size is large as with D1K, the gap is around 10.37%. 
In the meantime, the result from Fig. 16d keeps enforcing 
the fact that SIIWMD saves much more data output when 
building indexes than SII. On the average, SIIWMD saves 
nearly 6 times more data output than SII.

In terms of query processing, we do our next experiments 
with different query and data packages. Figure 17a shows the 
MapReduce performance with D5. With the small number 
of queries such as Q10, the query processing time of SII-
WMD is nearly 33% faster than that of SII. Nevertheless, 
when the query size rapidly increases, the performance gap 
between them is much bigger. More specifically, the perfor-
mance gap sharply rises as 85.7% with Q100, whereas it is 
90.28% with Q1K. Consequently, SIIWMD processes query 
batches 6 times much faster than SII does on the average. In 
parallel, Fig. 17b displays the MapReduce performance with 
Q100 when the dataset changes. Generally, SIIWMD gives 
much faster query processing time than SII does. When 
the dataset size is small as with D100, SII processes Q100 
nearly 2 times slower than SIIWMD does. In addition, the 
query processing time of SII sharply rises when the dataset 
size becomes larger. More concretely, the performance gap 
sharply rises as 79% with D300, whereas it is 82.5% with 
D500. Furthermore, the query processing time of SIIWMD 
slightly increases while that of SII dramatically rises when 
the dataset size rapidly grows. As a consequence, SIIWMD 
processes query batches 4 times much faster than SII does 
on the average.

Table 1  Data organization

Type Package no. No. of files Size range (KB)

Data D5 5 40–102
D100 100 15–59
D300 300 1–32
D500 500 1–32
D1K 1000 1–59

Query Q1 1 59
Q10 10 59–59
Q100 100 59–59
Q1K 1000 59–59

3 http://www.guten berg.org/.

http://www.gutenberg.org/
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Conclusion and Future Work

In this paper, we propose a general MapReduce-based simi-
larity search scheme that not only effectively works for a 
single query processing but also efficiently deals with batch 
processing in an incremental fashion. Additionally, we build 
ordered inverted indexes for both datasets and query sets 
so that we can benefit our quick pruning strategy, which 
discards inessential accesses during the similarity search. 

Moreover, we embed metadata inside the index structures, so 
that we can generate much more lightweight indexes, which 
consequently helps reduce I/O costs as well as extra over-
heads caused by redundant data. By getting all to work as 
one, we improved the performance of our MapReduce-based 
similarity search while keeping the indexing size small, 
especially when the dataset becomes larger. In the end, the 
results from our empirical experiments verify the efficiency 
of our proposed solution. More concretely, our indexes with 
metadata are much lighter than baseline inverted indexes, 

Fig. 16  Query and data index-
ing [8]

Fig. 17  Query processing [8]
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while the building time is not that much. Furthermore, our 
method saves much more processing time than the baseline 
method.

In our future work, we are going to apply our proposed 
method to the variants of similarity queries. Moreover, we 
plan to experience a larger dataset size as well as the cluster 
size for large-scale similarity processing. Last but not least, 
we consider the load-balancing problem whose solution fur-
ther improves the overall performance of MapReduce-based 
similarity search.
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