
Vol.:(0123456789)

SN Computer Science (2020) 1:1
https://doi.org/10.1007/s42979-019-0007-y

SN Computer Science

ORIGINAL RESEARCH

A Lightweight Indexing Approach for Efficient Batch Similarity
Processing with MapReduce

Trong Nhan Phan1 · Tran Khanh Dang1

Received: 12 April 2019 / Accepted: 13 June 2019 / Published online: 25 June 2019
© Springer Nature Singapore Pte Ltd 2019

Abstract
Similarity search is a principle operation in different fields of study. However, the cost for that operation is expensive due to
several reasons, mainly by redundancy and big data load. There are many approaches that concentrate on how to speed up
similarity search, especially with massive datasets, so that we can employ it for plenty of recent applications. In this paper,
we study an efficient way for either single or batch similarity processing with MapReduce while minimizing redundant data
by building lightweight indexes from the data and query sources. More specifically, we propose a general query processing
scheme that not only handles a single query but also deals with sets of query in an incremental manner. In addition, we build
the indexes in an ordered fashion, the so-called sorted inverted indexes, so that we can perform our quick pruning strategy
that discards unrelated objects. Moreover, we embed metadata inside the indexes to reduce inessential duplicates. Last but
not least, we measure our proposed solution by conducting empirical experiments on real datasets. The results verify the effi-
ciency of our method when we do similarity search with query batches, especially when both query sets and datasets are large.

Keywords Similarity search · Batch processing · Lightweight indexing · Metadata · MapReduce · Hadoop

Introduction

Similarity search is the principle operation not only in data-
bases but also in interdisciplinary fields of study such as
machine learning, recommendation systems, biology, or data
analytics. The main goal of similarity search is to find the
object similar to the given pivot, know as the query. The
similarity computing, unfortunately, suffers high overheads
due to distance calculation pair by pair together with similar-
ity metrics [18]. It is more inevitable especially when data
grow bigger and have a higher dimensionality. As a result,
the challenge is how to speed up the similarity searching
process to enjoy its benefits.

There are several approaches to achieve the goal, for
example, by improving indexing [3, 15], hashing [13], fil-
tering [16], or processing in parallel [1]. Among them, the
parallel processing approach in distributed environment
calls much attention to researchers worldwide [6, 9, 10, 14].
This trend keeps motivating both academia and industry
due to the large amount of data. Other approaches may fail
to assure scalability when processing massive datasets. As
a result, we catch the trend by employing MapReduce, a
large-scale processing paradigm [4], when enhancing the
performance of similarity search.

Even though MapReduce helps us process an enormous
amount of data, it would suffer heavy overheads when pro-
cessing big unnecessary or irrelevant objects. The scenario
becomes even worse when those big objects are involved in
the similarity search. In other words, those redundant objects
are combined with every other object to evaluate their simi-
larity pair by pair. Moreover, the MapReduce-based process
is strictly bound by I/O costs, so processing irrelevant or
unnecessary data leads to extra penalty.

Meanwhile, those recent literatures only deal with a single
similarity query. Consequently, when given a query batch,
each query is processed one by one, which slows down the
whole performance of batch processing. In fact, we observe

This article is part of the topical collection “Future Data and
Security Engineering” guest edited by Tran Khanh Dang.

 * Trong Nhan Phan
 nhanpt@hcmut.edu.vn

 Tran Khanh Dang
 khanh@hcmut.edu.vn

1 HCMC University of Technology, VNU-HCM,
Ho Chi Minh City, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-019-0007-y&domain=pdf

 SN Computer Science (2020) 1:11 Page 2 of 16

SN Computer Science

that queries in the batch may share their search space. As a
consequence, it would be better to search the same shared
search space for all queries in the batch rather than looking
for the search space for one query and then redo it several
times for other queries.

In our work, we, therefore, take batch processing into
account rather than single query processing. Furthermore,
we propose our strategies to make our MapReduce-based
solution more effective. Specifically, our main contributions
are as follows:

• We present a query batch processing scheme that not only
handles sets of query but also does similarity search in
an incremental way.

• We introduce a simple but efficient method to support
quick pruning in similarity search by sorted inverted
indexes.

• We propose an indexing scheme with metadata so that we
can diminish duplicate data and then build lightweight
indexes.

• We perform our empirical experiments on real datasets.
The results verify the efficiency of our proposed solution
when it does similarity search with query batches.

It is worth noting that this paper is the extended version of
our work [8]. The new content is added as follows:

• We further discuss about our incremental computing with
our query batch processing scheme in Sect. “Query Batch
Processing Scheme”.

• We present our MapReduce-based algorithms and their
descriptions in Sect. “MapReduce-based Similarity
Search”.

• We show our MapReduce-based algorithms with light-
weight indexing and their descriptions in Sect. “Light-
weight Indexing”.

• We analyze how our proposed solution can support pair-
wise similarity query, range query, as well as k-nearest
neighbor query in Sect. “Towards Other Similarity Que-
ries”.

• We add more descriptions about similarity search and
MapReduce in Sects. “Similarity Search” and “MapRe-
duce”.

The rest of paper is organized as follows. Sect. “Related
Work” presents our related work. Additionally, Sect. “Pre-
liminaries” introduces our background related to the similar-
ity search and MapReduce paradigm. In Sect. “Our Proposed
Solution”, we propose our solution for similarity search in
general and that with query batches in particular. After that,
we conduct our experiments in Sect. “Empirical Experi-
ments and Evaluations” before making our remarks in Sect.
“Conclusion and Future Work”.

Related Work

Metwally and Faloutsos introduce a method for all-pair
similarity joins of multisets and vectors [6]. Their method is
composed of two main phases, each one comprised of two
MapReduce jobs. While a MapReduce job is costly, the greater
the usage of MapReduce jobs is, the higher the costs will be.
Additionally, their method does not consider duplicate data
items during the execution of MapReduce job, which usually
adds extra penalty. Besides, Tang et al. presented their way,
the so-called HA index, to speed up Hamming-based distance
computing for range queries [14]. In addition, redundancy
during the computing is also eliminated. Their whole process
consumes three phases with two MapReduce jobs. Neverthe-
less, the costs for data pre-processing and post-processing are
excluded from the MapReduce jobs.

Gao et al. bring up efficient and scalable metric similarity
joins with MapReduce [5]. They focus on the load balancing
and how to avoid unnecessary object pairs with their filtering
methods, including the range-object filtering, the double-pivot
filtering, the pivot filtering, and the plane sweeping techniques,
so that they can achieve better query performance. In the mean-
time, Phan et al. proposed an efficient hybrid similarity search
with MapReduce [10]. Their basic idea is to first cluster similar
objects and second define upper and lower boundaries to shrink
the search space before looking at similar pairs. The method is
then to deploy in a hybrid MapReduce-based architecture that
deals with challenges from big data. In addition, their empirical
studies show that their method is efficient in terms of data pro-
cessing and storage. Though their method works well with batch
processing, each query is sequentially processed in a batch with
regard to their search scheme, while we have indexing strategy
for query batches supporting quick similarity search.

Nguyen et al. built the VP tree algorithm on top of the
MapReduce framework to achieve good performance, scalabil-
ity, and fault tolerance for similarity search over the large data-
sets in the distributed environment [7]. Moreover, their method
can reduce the number of data that need to scanned during the
search phase. In contrast, our approach is towards MapReduce-
based scheme-driven algorithms that are independent of the
underlying MapReduce framework. By doing this, we are able
to gain two main advantages as follows: (1) no internal or addi-
tional changes from the framework; and (2) mutual support
from both the top algorithms and the underlying framework.

Preliminaries

Similarity Search

A corpus, denoted as � , consists of a set of docu-
ment objects Dp , which is formally represented as

SN Computer Science (2020) 1:1 Page 3 of 16 1

SN Computer Science

� = {D1,D2,D3,… ,Dn} . In addition, each document
object Dp is composed of a set of words, which is shown as
Dp = {word1,word2,word3,… ,wordw} . Similarity search
is the operation that retrieves all objects in the corpus �
so that these objects satisfy required constraints. The con-
straints may be different from query to query. There are
various similarity queries with different constraints. In this
section, we present some fundamental similarity queries
as follows:

• Pairwise similarity query. For each document object
in the corpus � , the similarity search computes how
much similarity is present between one document
object and every (n – 1) other object in the corpus.

• Query-by-example or pivot query. The similarity
search looks for similar objects in the corpus � when
given a query object called a pivot. When given a pivot
Qj , the similarity search computes how much similar
the pair (Qj , Dp) is for every document object Dp in the
corpus.

• Range query. When given a pre-defined range thresh-
old � , or sometimes it is known as a similarity thresh-
old, the similarity search retrieves all objects in the
corpus � , whose similarity scores are greater or equal
to the threshold �.

• K-nearest neighbor query. When given a pre-defined
k parameter, the similarity search retrieves all objects
in the corpus � such as they are the top-k similar
objects. In other words, they are k objects that are the
most similar to a query object.

To evaluate how similar a pair is, a similarity measure
such as Euclidean distance, Cosine similarity, Hamming
distance, or Jaccard coefficient is used to quantify their
similarity [18]. The similarity score is usually standard-
ized into the interval [0, 1] in that the pair is more simi-
lar when its similarity score is close to 1, while it is less
similar when its similarity score is near 0. Moreover, a
similarity threshold, like 80% similarity may be provided
to filter those pairs whose similarity scores are greater or
equal to 0.8.

In the meantime, we observe that modeling the content
of a document as a set of words does not reflect much
how really similar a pair is, because the two same words
in different objects do not bring the same meaning. To
better improve a part of semantic similarity, a concept of
K-shingles [11], known as any sub-string having the length
K found in the document, is used instead. As a conse-
quence, each document object Dp is composed of a set
of K-shingles, which is shown as Dp = {S1, S2, S3,… , Sz}.

Furthermore, to speed up the process of similarity search,
different types of indexing are employed. One of the most

well-known indexing supporting similarity search is the
inverted index, a popular data structure used in information
retrieval systems [2, 10]. In our work, we build another ver-
sion of inverted index known as the sorted inverted index so
that we can skip unnecessary computing for those elements
not in either document or query objects when searching can-
didate pairs, which is discussed later on in Sect. “MapRe-
duce-based Similarity Search”.

In general, a similarity search process consists of two
main phases as follows:

1. Candidate generation phase. This is the phase where two
objects are identified as a candidate pair.

2. Candidate verification phase. This is the phase where the
pair is evaluated for its similarity score.

MapReduce

MapReduce is a parallel paradigm for large-scale processing
[4]. The philosophy behind is to apply “divide-and-conquer”
strategy to data. A large data is split into different smaller
data chunks, which are then processed at various machines.
The intermediate results generated by each machine are
aggregated into the final result. To implement this strategy, a
MapReduce job is composed of a Map task and Reduce task
in that the former is specified by a Map function, while the
latter is determined by a Reduce function. When a MapRe-
duce job is executed on a cluster of commodity machines,
those machines assigned Map tasks called mappers, whereas
those assigned Reduce tasks are known as reducers. A Map
task emits intermediate key-value pairs, while a Reduce task
writes the final key-value pairs into the distributed file sys-
tem. Moreover, there is a shuffle phase between the Map task
and the Reduce task, which re-distributes data based on the
output keys by the mappers.

Suppose that there are M mappers and R reducers, a sin-
gle MapReduce job is described as follows:

1. Input data are loaded into the distributed file system and
then divided into partitions based on their data size.

2. Mappers read their data partitions, perform the Map
function, and emit intermediate results in the form of
key-value pair [ki, vj] . These intermediate key-value pairs
are locally stored at mappers.

3. The shuffle process aggregates the intermediate key-
value pairs [ki, [vj]] into R data partitions, which is based
on their key values.

4. Reducers retrieve the intermediate key-value pairs
[ki, [vj]] from R data partitions and perform the Reduce
function. The final output is written back to the distrib-
uted file system.

 SN Computer Science (2020) 1:11 Page 4 of 16

SN Computer Science

One of the most well-known open-source framework that
implements the idea of MapReduce is Hadoop,1 which
is designed to perform scale-up computing with massive
datasets. In our work, we employ Hadoop to deploy our
MapReduce-based algorithm for efficient batch similarity
processing.

Our Proposed Solution

Query Batch Processing Scheme

In this paper, we introduce our general similarity search
scheme as illustrated in Fig. 1. Either data or query objects
are indexed into either data or query pools, respectively.
Besides, we employ inverted index as an index data struc-
ture. In addition, the indexes are organized in an ordered way
to serve our quick pruning strategy later on. In general, our
basic idea is to separate the data preparation phase from the
similarity search phase. By doing it this way, we can perform
incremental computing when data or query objects change.
In other words, we do not need to pre-process either existing
or unchanged data and query objects, but with those which
are new or have been changed. To index data objects, we use
one MapReduce job. For instance, a set of data object {Dp}
is indexed into the data pool in the form of sorted inverted
index (SII), known as SII(Dp). Similarly, a set of query

object {Qj} is indexed into the query pool in the form of
sorted inverted index, known as SII(Qj). After the indexing
phase, both data and queries are ready for similarity search.
Later on, another MapReduce job computes the similarity
(SIM) among queries against data and produces the final
result in the form SIM(Qj , Dp). In our work, we employ
Jaccard coefficient, a well-known metric for fast set-based
similarity [6, 10, 12, 17], to derive the similarity score of a
pair as described in the Eq. 1 below.

In that, ∥ Qj ∩ Dp ∥ is the intersection cardinality between
Qj and Dp , while ∥ Qj ∪ Dp ∥ is the union cardinality between
Qj and Dp.

With the proposed scheme, we can perform similarity
search in an incremental manner. The reason is that both data
and query objects are available in the data and query pools
in the form of SII. Hence, if there are new data or query
objects, the pools will include them in the form of SII. Other
existing data and query objects remain unchanged, because
they have already been in the data and query pools, respec-
tively. Then, a MapReduce job for similarity search can be
configured to compute similarity scores from a set of SII in
the pools as required. Furthermore, the general scheme is
applied not only to single query processing but also to query
batches. Figure 2 shows three cases for incremental comput-
ing with our proposed scheme as follows.

(1)SIM(Qj,Dp) =
∥ Qj ∩ Dp ∥

∥ Qj ∪ Dp ∥

Fig. 1 Query batch processing
scheme [8]

1 https ://hadoo p.apach e.org/.

https://hadoop.apache.org/

SN Computer Science (2020) 1:1 Page 5 of 16 1

SN Computer Science

• Case 1. New data objects appear. Assume that there is
a set of new data objects {Dnew} . A MapReduce job pro-
cesses it to produce SII(Dnew) in the data pool. It is worth
noting that SII(Dnew) is now ready in the data pool and
is independent of other forms of SII from other existing
data objects (i.e., SII(Da) ... SII(Dp) ... SII(Dz)). Con-
sequently, when doing similarity search according to a
particular query set (e.g., SII(Qi) ... SII(Qj) ... SII(Qm)),
another MapReduce job takes those relevant inputs from
the data pool, which already includes new data objects.

• Case 2. New query objects appear. Assume that there
is a set of new query objects {Qnew} . A MapReduce job
processes it to produce SII(Qnew). It is worth noting
that SII(Qnew) is now available in the query pool and is
independent of other forms of SII from other existing
query objects (i.e., SII(Qi) ... SII(Qj) ... SII(Qm)). As a
consequence, when doing similarity search according to
a particular dataset (e.g., SII(Da) ... SII(Dp) ... SII(Dz

)), another MapReduce job takes those relevant queries
from the query pool, which already includes new query
objects.

• Case 3. Both new data and query objects appear. This
is the combination of Case 1 and Case 2 above. In other
words, both new data and query objects emerge together
at the phase of doing a similarity search. Like the other
two cases, if we do not take new data and query objects
into account, the similarity search would produce its out-
of-date result. Therefore, new data and query objects
had better be processed to be available in the data and
query pools, respectively. When conducting a similarity
search, another MapReduce job pulls those related data
and query input to compute up-to-date similarity scores.

MapReduce‑Based Similarity Search

Our MapReduce-based similarity search following the above
scheme consists of two main phases: (1) indexing; and (2)
searching. In the former phase, we will index data and query
objects into the pool in the form of SII while doing the simi-
larity search with Jaccard measure in the latter phase. Last
but not least, we model our documents as bags of 4-shingles
rather than sets of words [10, 11].

As illustrated in Fig. 3, at Phase 1: indexing, Map-1 takes
original objects as its input. It is worth noting that objects
mentioned here include data and query objects. Map-1 then
processes the input and emits intermediate key-value pairs
of the form [Element, URL] in that Element is a shingle of
an object, while URL is the uniform resource locator of that
object in the distributed environment. Here we do not use
object identification as we want to clearly know where the
object is in the distributed system so that we can retrieve
that object after the similarity search. Next, Reduce-1
aggregates those intermediate key-value pairs emitted by
Map-1 with regard to their key values. Moreover, Reduce-1
sorts the list of key-value pairs in the form of [Element,
[URL]]ord . At Phase 2: Searching, Map-2 starts consider-
ing candidate pairs for their similarity from those object
already indexed at Phase 1. If the query object and the data
object share the same element, Map-2 generates the candi-
date pair of the form [URLD − URLQ, ||D ∪ Q||] . After that,
Reduce-2 aggregates the same candidate pairs, computes
their similarity scores, and outputs the final result of the
form [URLD − URLQ, SIM(D,Q)].

To better understand our proposed method, we present
here our algorithms for each MapReduce job. Figure 4

Fig. 2 Incremental processing
scheme

 SN Computer Science (2020) 1:11 Page 6 of 16

SN Computer Science

illustrates Map-1 algorithm, which gets the input of docu-
ments Di and then produces the intermediate key-value pairs
of the form [SHk,URLi@NOSi] . First, necessary variables
are initialized as in steps 1–3. Next, we generate shingles
from the input documents Di as in step 4. For each shingle,
we insert it into a shingleListi , regarding the document Di , as
in steps 5–7. Later, we filter duplicate shingles as in step 8,
because duplicates do not contribute to the overall similar-
ity scores, which is based on the Jaccard measure. Besides,
we get the number of shingles as in step 9 and get the URLi
of the corresponding document Di as in step 10. Finally,
we let mappers emit the intermediate key-value pairs as in
steps 11–12.

Figure 5 illustrates Reduce-1 algorithm, which gets
the input from Map-1 of the form [SHk,URLi@NOSi] and
then builds a sorted inverted index, which has the form as
[SHk, [URLi@NOSi]]ord . First, reducers read input data as

in step 1, while necessary variables are initialized as in
steps 2–5. Next, steps 6–17 aggregate those documents that
share the same shingle, and we keep their tracks using a
two-dimensional matrix. Then, we sort the matrix to create
a sorted list of key values (i.e., shingle values) as in step 18.
Finally, we let reducers emit the key-value pairs as in steps
19–20.

Figure 6 illustrates Map-2 algorithm, which gets the input
including a set of sorted inverted index SII(Di) of document
objects and a set of sorted inverted index SII(Qj) of query
objects and then produces the candidate pairs of the form
[URLD − URLQ,NOSD∪Q] . First, mappers read data and
query inputs as in steps 1–2. Besides, we also get the query
number information from the query set as in step 3. For
each document and query, we examine whether there is any
intersection between Di and Qj as in steps 4–11. If yes, we
get necessary information such as URLi in step 8, URLj in

Fig. 3 MapReduce flow chart

Fig. 4 Map-1 algorithm

SN Computer Science (2020) 1:1 Page 7 of 16 1

SN Computer Science

Fig. 5 Reduce-1 algorithm

Fig. 6 Map-2 algorithm

 SN Computer Science (2020) 1:11 Page 8 of 16

SN Computer Science

step 9, the total number of shingles between Di and Qj as in
step 10, and let the mappers emit the candidate pairs as in
step 11.

Figure 7 illustrates Reduce-2 algorithm, which gets
the input from Map-2 of the form of candidate pairs
[URLD − URLQ,NOSD∪Q] and then produces similar pairs
of the form [URLD − URLQ, SIM(D,Q)] . First, reducers read

input data as in step 1, while necessary variables are initial-
ized as in steps 2–5. Next, steps 6–17 aggregate the same
candidate pairs, count the number of shingles shared by the
two pair, and compute the similarity score between each pair.

Furthermore, Fig. 8 shows an example of data index-
ing by a MapReduce job. Assume that we have three data
documents Dp = [D1,D2,D3] with their corresponding

Fig. 7 Reduce-2 algorithm

Fig. 8 Example of data index-
ing [8]

SN Computer Science (2020) 1:1 Page 9 of 16 1

SN Computer Science

shingle-based contents. The Map task is to emit intermedi-
ate key-value pairs in the form of [SHp,URLp] in that SHp is
a shingle of a document Dp and URLp is the path location
of Dp in the distributed environment. It is worth noting that
duplicate shingles from the same document are discarded,
because they do not contribute to the similarity scores with
Jaccard measure. We, thus, filter them at this Map task
to avoid additional overheads after that. The Reduce task
then produces SII(Dp) in the form of [SHu, [URLv@Sv]] . It
is worth noting that we need to keep the size S of those
documents so that we can derive their similarity scores
later on. Likewise, Fig. 9 implies an example of query
indexing by a MapReduce job. Assume that we have
three query documents Qj = [Q1,Q2,Q3] with their corre-
sponding shingle-based contents. The Map task is to emit
intermediate key-value pairs in the form of [SHj,URLj] ,
whereas the Reduce task produces SII(Qj) in the form of
[SHu, [URLv@Sv]].

The similarity search phase is done by one MapRe-
duce job. Figure 10 illustrates the Map task with SII(Dp)
and SII(Qj). It compares key by key and emits the pair
whenever they share the same shingles in the form of
[URLj − URLp, (Sj + Sp)] . To sooner discard unnecessary
pairs, we apply our quick pruning strategy in the compari-
son to speed up the searching process. Due to the fact that
we already organize SII(Dp) and SII(Qj) in an ordered way,
we can achieve the two following advantages for our quick
pruning during the comparison:

1. We can stop the comparison halfway whenever
SHp > SHj.

2. We can discard those shingles from the comparing set
SII(Dp) whenever SHp < SHj . By doing it this way, we
can reduce the size of the comparing set SII(Dp) during
the comparison.

Fig. 9 Example of query index-
ing [8]

Fig. 10 Example of Map task
[8]

 SN Computer Science (2020) 1:11 Page 10 of 16

SN Computer Science

Finally, the Reduce task aggregates the pairs emitted by the
Map task and computes their similarity scores. As shown in
Fig. 11, we will have eight pairs with their corresponding
similarity scores.

Lightweight Indexing

By observing, we see that there are duplicate values in the
indexes. Whenever a pair shares the same shingle, the value
of the form URLv@Sv emerges. In the distributed environ-
ment, a URL may be long due to its location path. Therefore,
those repeated values make the size of indexes bigger. As
a result, they add to the heavy cost of MapReduce-based
processing, since it is strictly bound by I/O cost. To mini-
mize the redundancy and speed up the MapReduce-based
searching process, we propose a metadata-based approach
as follows.

1. We build a list L of document URLs as metadata in the
form of {URLv@Sv} . The metadata is put as header of
each file produced by Reduce task.

2. For each value in the inverted index, we replace it with
the index of L with regard to the corresponding docu-
ment URL.

To implement our idea, we change the behaviors of
Reduce-1 and Map-2 in that Reduce-1 builds lightweight
indexes with metadata, while Map-2 processes the similarity
search with those metadata generated by Reduce-1. Figure 12
illustrates Reduce-1 algorithm with metadata, which gets the
input from Map-1 of the form [SHk,URLi@NOSi] and then
builds a sorted inverted index as [SHk, [URLi@NOSi]]ord
with embedded metadata. First, reducers read input data as
in step 1, while necessary variables are initialized as in steps
2–8. More specifically, the variable metaDataList, as in step
6, keeps the list of URLs, the variable m_index, as in step

7, keeps the last index of the metaDataList, while the vari-
able current_m_index, as in step 8, keeps the current index
of a document Di . Steps 9–32 almost show the same way
as in the original Reduce-1, which means those documents
that share the same shingle are aggregated, and their tracks
are kept using a two-dimensional matrix. However, the dif-
ference is that we check whether the examining document
object has already been in the metaDataList or not as in step
11. If not, we generate the next index of the metaDataList
and combine it with that object as in steps 12–15. Otherwise,
we combine that object with its current index in the metaDa-
taList as in steps 16–17. Moreover, we let reducers output
metadata in metaDataList before the sorted inverted index
list, as in steps 34–35.

Due to changes from data structure after Reduce-1, we
also need to modify the Map-2 algorithm to match the
new way of data processing. Figure 13 illustrates Map-2
algorithm with metadata, which still gets the input includ-
ing a set of sorted inverted index SII(Di) of document
objects and a set of sorted inverted index SII(Qj) of query
objects and then produces the candidate pairs of the form
[URLD − URLQ,NOSD∪Q] . First, mappers read data and
query inputs as in steps 1–2. Next, we retrieve shingle list
from query and store it in queryShingleList as in step 3 as
well as metadata list from query and store it in queryMeta-
DataList. Besides, we use the variable shingle as in step 5
to store key element and value element. Moreover, we also
use the variable metaDataFlag as in step 6 to separate the
metadata processing as in steps 8–10 from the data process-
ing as in steps 11–24. If metaDataFlag is true, we get the
metadata information and store it into metaDataList. Oth-
erwise, we start processing the data and let mappers emit
candidate pairs. When comparing shingles from data and
query, if the key value of data shingle is greater than the key
value of query shingle and the length of queryShingleList
is different from 0, we pop that query shingle out of the
queryShingleList as in steps 12–13 due to the fact that key
values in both data and query indexing are sorted in advance,

Fig. 11 Example of Reduce
task [8]

SN Computer Science (2020) 1:1 Page 11 of 16 1

SN Computer Science

whereas we only need to find those that are shared by both
data and query at this phase. Otherwise, we retrieve query
list and document list as in steps 14–16. Next, for each query
in the query list and for each data in the data list, we get
their necessary information such as the metadata index of
the examining query as in step 18, URL of query as in step
19, the metadata index of the examining data as in step 21,
URL of data as in step 22, and the total number of shingles
between the document object D and the query object Q as

in step 23. Finally, we let mappers emit the candidate pairs
as in step 24.

Figure 14 shows an example of metadata of dataset,
while Fig. 15 gives an example of metadata of query set.
For instance, we build the metadata from the dataset as
{URLD1@8, URLD2@6, URLD3@7} . Consequently, the
pair [A, [URLD1@8, URLD2@6, URLD3@7]] is replaced
by [A, [0, 1, 2]]. Meanwhile, we build the metadata from
the query set as {URLQ1@4, URLQ2@5, URLQ3@5} .

Fig. 12 Reduce-1 algorithm
with metadata

 SN Computer Science (2020) 1:11 Page 12 of 16

SN Computer Science

Consequently, the pair [N, [URLQ1@4 , URLQ2@5 ,
URLQ3@5]] is replaced by [N, [0, 1, 2]]. When the data
input is large, the indexes with our metadata is much more
lightweight than those without that. Our experiments in
Sect. “Empirical Experiments and Evaluations” show how
much lightweight they are and the efficiency they devote
in speeding up the searching process.

Towards Other Similarity Queries

Our presentation so far is for query by example, which looks
for similar objects when given either a query or a set of
queries. However, our proposed approach would be adapted
to other fundamental kinds of similarity queries as follows.

• Pairwise similarity query. In this context, we would like
to compute the similarity between one object and the oth-
ers in the dataset. In other words, if we have N objects in
the dataset, we need to calculate how similar one object
is with (N-1) other objects. To do that, we interfere the
algorithm 3: MAP-2, shown in Fig. 6, or the algorithm 6:
MAP-2 with metadata, shown in Fig. 13. In this case, we
replace the set of query objects with the same set of data
objects. Moreover, we need to add the condition in step
6 of the algorithm 3 and in step 12 of the algorithm 6, so
that the examining pair must not be the same.

• Range query. When given a threshold � , we would like
to retrieve only those objects whose similarity scores are

Fig. 13 Map-2 algorithm with
metadata

SN Computer Science (2020) 1:1 Page 13 of 16 1

SN Computer Science

greater or equal to that � . To do that, we interfere the
algorithm 4: REDUCE-2, shown in Fig. 7. After either
step 11 or step 16, we check whether the similarity score
is greater or equal to the given � or not. If yes, we let
reducers output that pair. Furthermore, if there are dif-
ferent similarity thresholds for different queries, we need
to check the similarity score against the corresponding
threshold.

• K-nearest neighbor query. When given a k parameter,
we would like to retrieve only k objects that are the most
similar as a query object. To do that, we need to aggre-
gate similarity scores after either step 11 or step 16 of
the algorithm 4: REDUCE-2, shown in Fig. 7 and per-
form ranking based on those similarity scores. After that,
we choose to output k pairs that have highest similarity
scores with regard to their query objects. In case we need
to process query batches, we may have different k param-
eters for different queries. In this scenario, we rank the
similarity scores and group them by their queries. It is

worth noting that our modified method here may return
a super set of the real top-k result.

Empirical Experiments and Evaluations

Environmental Setting

We deploy Hadoop-based two-node cluster on a PC, in
which each node has 2.00 GB RAM and 50 GB HDD. The
PC has Intel® Core™ i5-4460, 3.20GHz CPU, 8.00 GB
RAM, 500 GB HDD, and 64-bit operating system. Addi-
tionally, the Hadoop version is 2.7.32 run with its default
settings. Nevertheless, we set the number of reducers to 4,
which is based on four CPU cores.

Fig. 14 Metadata of dataset [8]

Fig. 15 Metadata of query set
[8]

2 https ://hadoo p.apach e.org/docs/r2.7.3/.

https://hadoop.apache.org/docs/r2.7.3/

 SN Computer Science (2020) 1:11 Page 14 of 16

SN Computer Science

Dataset

We employ datasets retrieved from Gutenberg Project,3 an
online data storage with over 56,000 free e-books, for our
experiments. The datasets are randomly chosen from the
storage and organized into different data as well as query
packages, which is illustrated in Table 1. The data type
serves as the data input for similarity search, while the query
type is the pivot input to look for similar documents from the
data type. For the data type, we organize five different data
packages as D5, D100, D300, D500, and D1K with 5, 100,
300, 500, and 1000 files, respectively. As it was randomly
chosen, the file size ranges from 1 to 102 KB. In the mean-
time, the query type is organized into four different query
packages as Q1, Q10, Q100, and Q1K with 1, 10, 100, and
1000 files, respectively. In addition, the query size range is
59 KB.

Measurement

We compare the two different methods as follows:

• Sorted inverted index (SII). This method follows our pro-
posed similarity search scheme to build sorted inverted
indexes for both data sources and query batches. In addi-
tion, the method performs query processing with our
pruning strategy.

• Sorted inverted index With metadata (SIIWMD). This
method follows our proposed similarity search scheme to
build sorted inverted indexes with metadata organization.
Additionally, the method performs query processing with
our pruning strategy.

Evaluation

In our first experiment, we measure the performance of the
two comparing methods, known as SIIWMD and SII, for
indexing query batches. Figure 16a shows the query index-
ing time when the sorted inverted indexes are built for query
batches. In general, the processing time of the two methods
is not much different with Q10 and Q100. In fact, SII tends
to have less query indexing time than SIIWMD when the
number of queries sharply increases due to the fact that it
does not suffer overheads for metadata organization. For
example, the gap is around 4.55% with Q1K. Meanwhile,
Fig. 16b indicates the query indexing size between the two
comparing methods. Generally, SIIWMD generates sorted
inverted indexes much lighter than SII. When the query
batch size increases from Q10, Q100 to Q1K, SIIWMD
saves nearly 12 times more data output than SII on the aver-
age. As a result, SIIWMD generates much more lightweight
indexes than SII.

To experience the indexing building with larger dataset,
we do the same experiment for data packages. As illustrated
in Fig. 16c, we observe that the indexing time between SII-
WMD and SII is not much different when the dataset is small
as with D100, D300, and D500. Nevertheless, when the
dataset size is large as with D1K, the gap is around 10.37%.
In the meantime, the result from Fig. 16d keeps enforcing
the fact that SIIWMD saves much more data output when
building indexes than SII. On the average, SIIWMD saves
nearly 6 times more data output than SII.

In terms of query processing, we do our next experiments
with different query and data packages. Figure 17a shows the
MapReduce performance with D5. With the small number
of queries such as Q10, the query processing time of SII-
WMD is nearly 33% faster than that of SII. Nevertheless,
when the query size rapidly increases, the performance gap
between them is much bigger. More specifically, the perfor-
mance gap sharply rises as 85.7% with Q100, whereas it is
90.28% with Q1K. Consequently, SIIWMD processes query
batches 6 times much faster than SII does on the average. In
parallel, Fig. 17b displays the MapReduce performance with
Q100 when the dataset changes. Generally, SIIWMD gives
much faster query processing time than SII does. When
the dataset size is small as with D100, SII processes Q100
nearly 2 times slower than SIIWMD does. In addition, the
query processing time of SII sharply rises when the dataset
size becomes larger. More concretely, the performance gap
sharply rises as 79% with D300, whereas it is 82.5% with
D500. Furthermore, the query processing time of SIIWMD
slightly increases while that of SII dramatically rises when
the dataset size rapidly grows. As a consequence, SIIWMD
processes query batches 4 times much faster than SII does
on the average.

Table 1 Data organization

Type Package no. No. of files Size range (KB)

Data D5 5 40–102
D100 100 15–59
D300 300 1–32
D500 500 1–32
D1K 1000 1–59

Query Q1 1 59
Q10 10 59–59
Q100 100 59–59
Q1K 1000 59–59

3 http://www.guten berg.org/.

http://www.gutenberg.org/

SN Computer Science (2020) 1:1 Page 15 of 16 1

SN Computer Science

Conclusion and Future Work

In this paper, we propose a general MapReduce-based simi-
larity search scheme that not only effectively works for a
single query processing but also efficiently deals with batch
processing in an incremental fashion. Additionally, we build
ordered inverted indexes for both datasets and query sets
so that we can benefit our quick pruning strategy, which
discards inessential accesses during the similarity search.

Moreover, we embed metadata inside the index structures, so
that we can generate much more lightweight indexes, which
consequently helps reduce I/O costs as well as extra over-
heads caused by redundant data. By getting all to work as
one, we improved the performance of our MapReduce-based
similarity search while keeping the indexing size small,
especially when the dataset becomes larger. In the end, the
results from our empirical experiments verify the efficiency
of our proposed solution. More concretely, our indexes with
metadata are much lighter than baseline inverted indexes,

Fig. 16 Query and data index-
ing [8]

Fig. 17 Query processing [8]

 SN Computer Science (2020) 1:11 Page 16 of 16

SN Computer Science

while the building time is not that much. Furthermore, our
method saves much more processing time than the baseline
method.

In our future work, we are going to apply our proposed
method to the variants of similarity queries. Moreover, we
plan to experience a larger dataset size as well as the cluster
size for large-scale similarity processing. Last but not least,
we consider the load-balancing problem whose solution fur-
ther improves the overall performance of MapReduce-based
similarity search.

Acknowledgements This research is funded by Department of Science
and Technology, HCMC, with the project titled “Xay dung framework
chuyen doi du lieu cho he thong tich hop du lieu-Develop a data conver-
sion framework for data integration systems”.

References

 1. Alabduljalil MA, Tang X, Yang T. Optimizing parallel algorithms
for all pairs similarity search. In: Proceedings of the 6th ACM
International Conference on web search and data mining, 2013.
pp. 203–212.

 2. Baraglia R, De Francisci Morales G. Lucchese C. Document
similarity self-join with Mapreduce. In: 2010 IEEE International
Conference on data mining, 2010. pp. 731–736.

 3. Dang TK, Küng J, Wagner R. The SH-tree: a super hybrid index
structure for multidimensional data. In: Proceedings of the 12th
International Conference on database and expert systems applica-
tions, 2001. pp. 340–349.

 4. Dean J, Ghemawat S. MapReduce: simplified data processing on
large clusters. J Commun ACM. 2008;51(1):107–13.

 5. Gao Y, Yang K, Chen L, Zheng B, Chen G, Chen C. Metric
similarity joins using MapReduce. IEEE Trans Knowl Data Eng.
2017;29(3):656–69.

 6. Metwally A, Faloutsos C. V-SMART-join: a scalable MapReduce
framework for all-pair similarity joins of multisets and vectors.
Proc VLDB Endow. 2012;5(8):704–15.

 7. Nguyen DT-T, Yong CH, Pham XQ, Loan TTK, Huh EN. An
index scheme for similarity search on cloud computing using
mapreduce over docker container. In: Proceedings of the 10th

International Conference on ubiquitous information management
and communication, 2016;60:1–6.

 8. Phan TN, Dang TK. An efficient batch similarity processing with
MapReduce. In: Proceedings of the 5th International Conference
on future data and security engineering, 2018. pp. 158–171.

 9. Phan TN, Küng J, Dang TK. An adaptive similarity search in
massive datasets. In: Transactions on large-scale data- and knowl-
edge-centered systems XXIII, Lecture Notes in computer science.
2016;9480:45–74.

 10. Phan TN, Küng J, Dang TK. eHSim: an efficient hybrid similar-
ity search with MapReduce. In: Proceedings of the 30th IEEE
International Conference on advanced information networking and
applications. 2016. p. 422–429, IEEE computer society.

 11. Rajaraman A, Ullman JD. Chapter 3: Finding similar items. In:
Mining of massive datasets. pp. 71–127 Cambridge University
Press; 2011.

 12. Rong C, Lu W, Wang X, Du X, Chen Y, Tung AKH. Efficient and
Scalable processing of string similarity join. IEEE Trans Knowl
Data Eng. 2013;25(10):2217–30.

 13. Satuluri V, Parthasarathy S. Bayesian locality sensitive hashing
for fast similarity search. Proc VLDB Endow. 2012;5(5):430–41.

 14. Tang M, Yu Y, Aref WG, Malluhi QM, Ouzzani M. Efficient pro-
cessing of Hamming-distance-based similarity-search queries over
MapReduce. In: Proceedings of 18th International Conference on
extending database technology, 2015. pp. 361–372.

 15. Wang J, Li G, Deng D, Zhang Y, Feng J. Two birds with one stone:
An efficient hierarchical framework for top-k and threshold-based
string similarity search. In: 31st IEEE International Conference
on data engineering, 2015. pp. 519–530

 16. Xiao C, Wang W, Lin X, Yu JX, Wang G. Efficient similarity
joins for near-duplicate detection. ACM Trans Database Syst.
2011;6(3):15:1–41.

 17. Zadeh RB, Goel A. Dimension independent similarity computa-
tion. J Mach Learn Res. 2013;14(1):1605–26.

 18. Zezula P, Amato G, Dohnal V, Batko M. Similarity search—the
metric space approach. In: Series: advances in database systems,
vol. 32, XVIII, 2006. 220 p., ISBN: 0-387-29146-6.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A Lightweight Indexing Approach for Efficient Batch Similarity Processing with MapReduce
	Abstract
	Introduction
	Related Work
	Preliminaries
	Similarity Search
	MapReduce

	Our Proposed Solution
	Query Batch Processing Scheme
	MapReduce-Based Similarity Search
	Lightweight Indexing
	Towards Other Similarity Queries

	Empirical Experiments and Evaluations
	Environmental Setting
	Dataset
	Measurement
	Evaluation

	Conclusion and Future Work
	Acknowledgements
	References

