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Abstract
Bug tracking systems manage bug reports for assuring the quality of software products. A bug report (alsoreferred as trouble, 
problem, ticket or defect) contains several features for problem management and resolution purposes. Severity and priority 
are two essential features of a bug report that define the effect level and fixing order of the bug. Determining these features 
is challenging and depends heavily on human being, e.g., software developers or system operators, especially for assessing 
a large number of error and warning events occurring on software products or network services. This study first proposes 
a comparison of machine learning techniques for assessing severity and priority for software bug reports and then chooses 
an approach of using optimal decision trees, or random forest, for further investigation. This approach aims at constructing 
multiple decision trees based on the subsets of the existing bug dataset and features, and then selecting the best decision trees 
to assess the severity and priority of new bugs. The approach can be applied for detecting and forecasting faults in large, 
complex communication networks and distributed systems today. We have presented the applicability of random forest for 
bug report analysis and performed several experiments on software bug datasets obtained from open source bug tracking 
systems. Random forest yields an average accuracy score of 0.75 that can be sufficient for assisting system operators in 
determining these features. We have provided some analysis of the experimental results.
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Introduction

Fault detection plays an important role in managing com-
puter systems. The more complex computer systems are, 
the more difficult fault detection is. Several hindrances of 
managing large and modern computer systems and services 
focus on service availability, performance unpredictabil-
ity and failure control [1] that are closely associated with 
fault detection. A normal fault detecting mechanism usu-
ally works with the involvement of system operators and the 
support of multiple monitoring tools. A running computer 
system requires monitoring tools running along with. These 
monitoring tools keep reporting the status of the system. 
System operators observe and analyze abnormal signs on the 
report and the system, then create and submit a bug report 
to a bug tracking system (BTS) for resolution. Research 
activities have dealt with automating some parts of the fault 
detecting mechanism. One of the recently advanced research 
activities aims at exploiting monitoring log data and histori-
cal bug data to early notify the critical status of a system, or 
even forecast the forthcoming fault of a system.
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Bug tracking systems store bug report data to control the 
quality of software products. They are frequently used to 
organize the workflows that produce bug reports and for-
ward to system operators for resolution. A bug report con-
tains many features for problem management and resolu-
tion purposes. Two essential features, namely severity and 
priority, define the effect level and fixing order of the bug, 
respectively. Determining these features is to a large extent 
a human-driven process. Evaluating a large number of error 
and warning events occurring on real-time software products 
or network services autonomously is challenging. This study 
proposes an approach of using random forest for evaluating 
severity and priority for software bug reports autonomously. 
The contribution of this study is thus threefold:

1. Investigating bug features extracted from the unified bug 
schema [2] for evaluating severity and priority.

2. Comparing machine learning techniques for evaluating 
the priority and severity features of software bug reports 
and choosing an approach of using random forest for 
further investigation.

3. Providing the prototyping implementation and experi-
ments for the fault analysis approach on a 100-worksta-
tion computing cluster.

The rest of the paper is structured as follows: the next sec-
tion includes some background of fault data analysis tech-
niques applied to software maintenance, system failure 
and reliability, some related work of random forest applied 
to failure detection and prediction. Section 3 epitomizes 
machine learning techniques and provides brief compari-
son of their characteristics and performance for bug data 
analysis capability. Section 4 describes the fundamentals of 
decision tree and random forest, the applicability of soft-
ware bug data processing, and several processes of building 
random forest for bug report datasets. Some mathematical 
formulas and explanations are referred from the study of 
Breiman et al. [3]. Several experiments in Sect. 5 report the 
performance and efficiency of bug data analysis before the 
paper is concluded in Sect. 6.

Related Work

Several studies have used fault case analysis for fault detec-
tion and resolution. Wang et al. [4] have proposed an auto-
matic fault diagnosis method for web applications in cloud 
computing. The online incremental clustering method iden-
tifies access behavior patterns and models the correlation 
between workload and the metric of resource utilization. 
The method detects anomalies by discovering the abrupt 
change of correlation coefficients and locates suspicious 
metrics using the feature selection method. The study of 

Ferreira et al. [5] has proposed an approach of using machine 
learning techniques for automated fault detection on solar-
powered wireless mesh networks. The approach applies 
knowledge discovery methodology and a pre-defined dic-
tionary of faults and solutions for classifying new faults. 
The authors of the study [6] have presented an online failure 
prediction system for predicting failures on networks and 
systems. Several technical remarks of this system are: (1) 
using Random Forest technique to train prediction models; 
(2) exploiting Apache Spark to process network management 
events; (3) testing the system on the dataset of the Span-
ish bank data center. The study [7] has applied the random 
forest and C5.0 decision tree algorithms for improving the 
prediction of network faults. It uses the customer trouble 
ticket dataset associated with the Internet usage and signal 
measurement datasets to build predictive models. The study 
of Tran et al. [2] has proposed a semantic search approach 
for bug reports. The approach includes crawling bug reports 
from bug tracking systems, extracting semi-structured bug 
data, and describing a unified data model to store bug track-
ing data. This model derived from the analysis of the most 
popular systems is used for semantic search. The model also 
facilitates fault feature extraction and analysis using machine 
learning techniques. Another study of Tran and Le [8] has 
reduced the computation problem by analysing several types 
of fault classifications and relationships. This approach 
exploits package dependency, fault dependency, fault key-
words, fault classifications to seek the relationships between 
fault causes. Evaluating these approaches has performed on 
software bug datasets obtained from different open source 
bug tracking systems. Tran and Schönwälder [9] introduced 
the DisCaRia system that applies a distributed case-based 
reasoning approach to exploring fault solving resources on 
peer-to-peer networks. The prototyping system has been 
deployed and currently measured on the EmanicsLab dis-
tributed computing testbed [10].

Several other studies have used decision tree and ran-
dom forest for fault classification and prediction. Sinnamon 
et al. [11] have applied the binary decision diagram to iden-
tify system failure and reliability. Large systems usually 
produce thousands of events that consume a large amount 
of processing time. This diagram associated with if-then-
else rules and optimized techniques reduces time consuming 
problem. The study of Reay and Andrews [12] has proposed 
an analysis strategy aiming at increasing the likelihood of 
obtaining a binary decision diagram for any given fault tree 
while ensuring the associated calculations as efficient as pos-
sible. The strategy contains two steps: simplifying the fault 
tree structure and obtaining the associated binary decision 
diagram. The study also includes quantitative analysis on 
the set of binary decision diagrams to obtain the probabil-
ity of top events, the system unconditional failure intensity 
and the criticality of the basic events. Guo et al. [13] have 
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proposed an approach of using random forests for predicting 
fault prone modules in software development process. The 
approach exploits the information of the previous projects 
including modules, defects, locations, metrics, to predict the 
current project with an assumption of stable development 
environment. The approach presents several advantages 
of running efficiently on large datasets and outperform-
ing the other classifiers in terms of robustness and noise. 
The study [14] has proposed two tree-based techniques for 
improving the classification of software failures based on 
their causes. The first technique uses tree-based diagrams 
to represent the results of hierarchical cluster analysis. The 
second technique generates a classification tree to recognize 
and refine failed executions. Zheng et al. [15] have provided 
a decision tree learning approach based on the C4.5 algo-
rithm [16] to diagnose failures in large Internet sites. The 
approach uses the runtime properties of requests and then 
applies automated data mining techniques to identify the 
causes of failures. The approach is evaluated on application 
log datasets obtained from the eBay centralized application 
logging framework. The recent study of Tran et al. [17] has 
proposed an approach for evaluating the severity level of 
events using a classification decision tree. The approach 
exploits existing fault datasets and features, such as bug 
reports and log events to construct a decision tree that can be 
used to classify the severity level of new events. This study 
includes the prototyping implementation and evaluation of 
the approach for various bug report and log event datasets. 
The system operators thus refer to the result of classifica-
tion to determine proper actions for the suspected events 
with a high severity level. While the previous approaches 
focus more on avoiding, detecting and resolving faults on 
the monitored systems, i.e., passive approaches rely on cor-
rect configurations or solutions for the detected faults, this 
active approach scrutinizes log events from currently run-
ning systems and historical bug reports from bug tracking 

systems in order to classify potential events with high sever-
ity that might cause crucial faults on running systems in the 
near future. The study in this paper is the extension of the 
previous study [18] that addresses the problem of choosing 
the best performance technique for analyzing fault datasets. 
It includes the performance comparison of several machine 
learning techniques for bug report datasets.

Machine Learning Techniques

Artificial Neural Networks

Artificial neural network (ANN)  [19] simulates human 
nervous system with the connection and communication 
of many neurons. Similar to the neural network of human 
brain, ANN learns, records and uses experiences for appro-
priate circumstances. ANN has been successfully applied 
to several problems related to prediction and classification 
in the fields of finance, health, geology and physics. Typi-
cal examples include human face recognition, weather and 
disaster forecast, automatic steering control system, crash 
prediction system.

The common architecture of ANN includes input layer, 
hidden layer and output layer as shown in Fig. 1 on the left 
side. Neurons in the hidden layer connect and receive inputs 
from neurons in the previous layer, then process and pass 
outputs to the next layer. ANN can possess several hidden 
layers.

Data processing in ANN transforms inputs from a layer to 
another layer to adjust the weights of inputs on neurons for 
precise results. There are several elements in data process-
ing: (1) inputs are data attributes; (2) outputs are results for 
a problem; (3) weights present the significance of inputs; (4) 
summation function sums up the weights of n inputs for each 
neuron by the following formula: y = �

n
i=1

xiwi , where xi , wi 

Fig. 1  An ANN with three 
layers (a) and an artificial neu-
ron (b) on the left side; an KNN 
classification with K = 1 on the 
right side
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and y are input i, weight i and result, respectively; and (5) 
transfer function referred to as an activation function decides 
whether a neuron generates an output to another neuron in 
the next layer.

K‑Nearest Neighbors

K-nearest neighbor (KNN) [20] is one of the supervised 
learning algorithms in machine learning. This algorithm is 
simple and learns less experience from the training process, 
but obtains much efficiency for some problems. It usually 
performs all essential computations when predicting the 
result of new data input. KNN can be applied to classifica-
tion or regression problems in supervised learning.

The KNN algorithm seeks the result of a new data item 
using the K-nearest data items of the training data. It ignores 
some imprecise data items from the K-nearest data items. 
For the classification problem, the result of a new data item 
is directly deduced by the K-nearest data items of the train-
ing data. The result of a testing data item is possibly decided 
by the vote of the K-nearest data items, or by the weighted 
vote of the K-nearest data items. For the regression problem, 
the result of a new data item is possibly decided by the result 
of the nearest known data item ( K = 1 ), or the average of 
the result of the K-nearest data items, or the distance func-
tion of the K-nearest data items. Figure 1 on the right side 
presents the classification of 1NN. This is a classification 
problem with three classes: x, o and i. Each testing data item 
is assigned by a class that it belongs to.

Decision Trees

Decision tree (DT) in machine learning is a predictive model 
that maps observations or phenomenon to concluding the 
target values of the observations or phenomenon. Each node 
in a tree corresponds to a variable, and a link between a node 
and its children node represents a specific value for that vari-
able. Each leaf node represents the predicted value of the 
target variable, giving the values of the variables represented 
by the path from the root node to the leaf node. Decision 
trees are also referred to as decision tree learning technique 
in machine learning.

Decision tree technique is also a common practice in data 
mining. A decision tree describes a tree structure in which 
leaves represent classification classes and branches repre-
sent the combinations of attributes that lead to the classifi-
cation class. A decision tree can be trained by splitting the 
data set into subsets based on evaluating attribute values. 
This process is recursively repeated for each derived subset. 
The recursive process is completed when no further splits 
are possible, or when a single classification can be applied 
to each member of the derived subset. Decision tree tech-
nique usually uses entropy to compute the homogeneity of 

a data item and information gain to measure the difference 
in entropy from before to after a set is split on an attribute.

Random forest technique uses a number of decision trees 
to improve the precision of regression and classification. 
This technique is more computational expensive and com-
plex than decision tree technique, but reduces overfit and 
variance.

Support Vector Machines

Support vector machine (SVM) [21] is another supervised 
learning method for classification and regression analysis. A 
standard SVM classifies input data items into two different 
classes, the SVM is thus referred to as a binary classifica-
tion method. With the training dataset of two categories, 
the SVM training algorithm builds an SVM model that then 
classifies new dataset into the two categories. The SVM 
model is a representation of data points in space and selects 
the boundary between the two categories so that the dis-
tance from the training dataset to the boundary is as far as 
possible. The SVM model also represents the new dataset 
in the same space and classifies data items in one of the 
two categories depending on which part of the boundary is 
located. A general SVM constructs a hyperplane or a set of 
hyperplanes in a multidimensional or infinite dimensional 
space for classification and regression analysis. For the best 
classification, the hyperplane locates furthest away from the 
data points of all classes to minimize the classification error 
of the SVM model.

It is difficult in several problems to determine the bound-
ary linearly in the original space. The data points are thus 
mapped into a more multidimensional space for easy analy-
sis. The SVM method efficiently computes the mapping by 
the dot product of the data vectors in the new space using 
the coordinates of the old space. This dot product is defined 
by a proper kernel function.

Naive Bayes

Naive Bayes (NB) [22] is a probabilistic method in machine 
learning, based on Bayes’ theorem with the independence 
assumption of features. This method builds classifiers that 
assign class labels to problem instances, represented as vec-
tors of feature values, where the class labels are drawn from 
some finite set. Classifiers assume that the value of a particu-
lar feature is independent of the value of any other feature, 
given the class variable. The method is widely used for text 
classification with low time consumption in the training pro-
cess due to the independence assumption of features. There 
are several variants of Naive Bayes.

– Gaussian Naive Bayes (GNB) applies for continuous 
data with an assumption that data segments representing 
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classes are distributed by a Gaussian distribution. For 
example, the training data contains a continuous feature 
x. This method segments the data by the classes, and then 
computes the mean and variance of x in each class.

– Multinomial Naive Bayes applies for text classification 
that uses feature vectors to represent bags of words. For 
example, each document is represented by a vector with 
the same length of all words in dictionary. The use of 
the term frequency–inverse document frequency (tf–idf) 
statistics improves the efficiency of this method.

– Bernoulli Naive Bayes applies for data in which each 
component is a binary value (0 or 1). For example, 
instead of counting the total times of word appearance 
in a document, a vector only expresses the occurrence or 
absence of all words in dictionary by applying a yes (1) 
or no (0) answer for word appearance.

Table 1 describes the advantages and disadvantages of the 
mentioned machine learning techniques

Brief Comparison

We have performed a brief comparison of the mentioned 
machine learning techniques. This comparison aims at 
evaluating the capability of these techniques on bug data 
analysis. Three metrics used for evaluating the classifiers 
include mean squared error (MSE), median absolute error 
(MAE) and time consumption. The performance of a classi-
fier can be measured using the testing dataset. The output of 
a classifier is presented by the resulting vector that contains 
the severity values of the testing data items. This vector is 
compared with the true vector of the severity values of the 
same data items. The bug dataset possesses 100,000 bug 
reports described below.

An efficient classifier must obtain low MSE, MAE and 
time consumption. In Table 2, while ANN and SVM spend a 
lot of time for the training process, KNN, DT and GNB con-
sume very low execution time. KNN provides the best clas-
sifier that outperforms the remaining classifiers with MSE = 
0.16 and MAE = 0.21. This classifier sets parameters by the 
weighted distances, the ball-tree algorithm, and the optimal 
number of neighbors. DT is the second best classifier with 
MSE = 0.2 and MAE = 0.23. This classifier sets parameters 
by considering all the features before splitting. The ANN, 
SVM and GNB classifiers perform similarly. We choose 
the DT technique for further investigation because multiple 
decision trees can be optimized during the training phase 
to improve the capability of classification on large datasets.

Random Forest Approach for Bug Analysis

Random forest is a classifier consisting of a number of deci-
sion trees that depend on the independently sampled values 
of random vectors with the same distribution. The precision 
of a random forest relies on the strength of the individual 
trees in the forest and the correlation between trees. The idea 
of random forest is to select the best decision trees from an 

Table 1  An overview of 
machine learning techniques

Method Features Advantages Disadvantages

ANN Black-box algorithm Handle error well Require complex tuning
Can learn non-linear models Sensitive to feature scaling
Can learn in real-time High computational cost

KNN Distance-based algorithm Simple to implement Cannot be interpret
Lazy learner No training cost Need to define K

Computational expensive
DT Tree-based algorithm Easy to interpret Can be over fit

Useful in data investigation Can be impacted by noise data
Regression and classification

SVM Discriminative algorithm Effective in high dimensional spaces Hard to choose kernel
Hard to interpret
High computational cost

GNB Probabilistic algorithm Easy to implement Independent classes
No complicated optimization Impractical assumption

Table 2  Performance comparison of various classification techniques 
on the bug dataset

Technique MSE MAE Time (s)

ANN 0.21 0.31 85.5
KNN 0.16 0.21 0.4
DT 0.2 0.23 0.5
SVM 0.22 0.32 25.8
GNB 0.21 0.3 0.2
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ensemble of decision trees built by the subsets of the train-
ing dataset. A decision tree algorithm divides the training 
dataset into subsets with similar instances and uses entropy 
to calculate homogeneous values for instances. The decision 
tree and random forest growing processes are referred by the 
previous studies [3].

Entropy Splitting Rule

A decision tree is built top-down from a root node and 
involves partitioning data into subsets that contain instances 
with similar values (homogeneous). The decision tree algo-
rithm uses entropy to calculate the homogeneity of a sample.

where S is the current dataset for which entropy is being cal-
culated. X is a set of classes in S. P(x) is a ratio between the 
number of elements in class x and the number of elements in 
set S. When H(S) = 0, the set S is perfectly classified.

Information gain IG(A) is the measure of difference in 
entropy from before to after the set S is split on an attribute 
A. In the other words, how much uncertainty in S is reduced 
after splitting the set S on the attribute A.

where H(S) is entropy of the set S. T is the subset created 
from splitting S by A. P(t) is a ratio between the number 
of elements in t and the number of elements in S. H(t) is 
entropy of subset t. Information gain can be calculated 
(instead of entropy) for each remaining attribute. The attrib-
ute with the largest information gain is used to split S in the 
current iteration.

(1)H(S) = −�x∈XP(x) logP(x),

(2)IG(A, S) = H(S) − �t∈TP(t)H(t),

Decision Tree Growing Process

This process uses a dataset with features as input. A fea-
ture value can be ordinal categorical, nominal categorical, 
or continuous. The process uses entropy splitting rules to 
choose the best split among all the possible splits that consist 
of possible splits of each feature, resulting in two subsets of 
features. Each split depends on the value of only one feature. 
The process starts with the root node of the tree and repeat-
edly runs three steps on each node to grow the tree, as shown 
in Fig. 2 on the left side.

The first step is to find the best split of each feature. Since 
feature values can be computed and sorted to examine can-
didate splits, the best split maximizes the defined splitting 
criterion. The second step is to find the best split of the node 
among the best splits found in the first step. The best split 
also maximizes the defined splitting criterion. The third step 
is to split the node using its best split found in the second 
step, then the process repeats the first step if the stopping 
rules are not satisfied. The process generates a decision tree 
when the stopping rules are satisfied, as follows:

1. If a node becomes pure; that is, all cases in a node have 
identical values of the dependent variable, the node will 
not be split.

2. If all cases in a node have identical values for each pre-
dictor, the node will not be split.

3. If the current tree depth reaches the user-specified maxi-
mum tree depth limit value, the tree growing process 
will stop.

4. If the size of a node is less than the user-specified mini-
mum node size value, the node will not be split.

Fig. 2  Processes of growing a 
decision tree (left) and a random 
forest (right)
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5. If the split of a node results in a child node whose node 
size is less than the user specified minimum child node 
size value, the node will not be split.

Random Forest Growing Process

The decision tree growing process is one of the main steps 
of the random forest growing process that also uses a dataset 
with features as input. The dataset is randomly partitioned 
into the training and testing datasets. The training dataset is 
the input of the decision tree growing process to construct 
a decision tree. The testing dataset is used to evaluate the 
constructed tree, as shown in Fig. 2 on the right side. This 
process repeats to select an sufficient number of trees. We 
have used Scikit Learn [23], NumPy [24] and SciPy [25] 
libraries for constructing a random forest. Algorithm 1 pre-
sents several steps to build a random forest for the bug data-
set with the support of these libraries. 

The first step is to load the random forest and caret librar-
ies to build a random forest and a confusion matrix for vali-
dating the accuracy of the random forest. The second step 
is to load the bug dataset into data-frame that is a special 
tabular data structure to prepare for training and testing the 

random forest. The feature values of the bug dataset are 
factorized by numeric values in the third step because the 
algorithm cannot deal with text and enumerate values. An 
integer represents a distinct value, e.g., the priority feature 
contains 4 values: P1 (urgent), P2 (high), P3 (normal), and 
P4 (low) corresponding to 1, 2, 3, and 4 after factorization. 
The fourth step is to parse the class label of the bug dataset 
to factor variable type, which is a vector of integer values 
with a corresponding set of character values to use when the 
factor is displayed. This parsing step also decides the clas-
sification response of the random forest. We have used 25% 
of the bug dataset for evaluation and 75% of the bug dataset 
for building the random forest. The later dataset includes the 
testing and training datasets used to classify observations 
into severity or priority level. The algorithm also relies on a 
variable that specifies a certain number of random features 
to grow a single tree.

Bug Data Processing

Bug dataset contains software bug reports obtained from 
several open source BTSs such as Bugzilla [26], Launch-
pad [27], Mantis [28], Debian [29]. Bug reports from dif-
ferent BTSs share several common features. Administration 
features, such as severity, status, platform, content, com-
ponent, and keyword, are represented as field-value pairs. 
Description features, such as problem description, and fol-
low-up discussion, are represented as textual attachments. 
The unified bug schema shown in Fig. 3 aims to support 
for semantic bug search [2]. This schema contains several 
features extracted by BTSs and new features to minimize 
the loss of bug report information, for example, the new 
relation feature establishes the relationships between bugs, 
or the new category feature provides for more sophisticated 

Fig. 3  Unified bug schema rep-
resented as a UML diagram
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bug classification. We have used a web crawler to get access 
to BTSs, retrieve and parse the HTML pages of bug reports 
to extract their content following the unified bug schema 
that allows various types of bug reports to be stored in one 
database. Most of bug features can be extracted from bug 
content. However, BTSs provide very different classifica-
tions for some features including severity, priority, status. 
The model classifies the severity feature into critical, nor-
mal, minor, feature, and the priority feature into urgent, high, 
normal, low.

Several bug features are concerned with severity and pri-
ority. Table 3 presents a list of essential features extracted 
from the bug schema. These features cause profound impact 
on determining the severity and priority of a bug report. 
The keyword feature contains the result of processing the 
description and discussion features. Figure 4 depicts the 
decision tree of a small fault dataset (see below). The deci-
sion tree contains multiple levels, we only present the first 
4 levels.

We have applied the term frequency–inverse document 
frequency (tf × idf) method to process the description and 
discussion features that only include the textual data of a bug 
report. This method measures the significance of keywords 
to bug reports in a bug dataset by the occurrence frequency 
of keywords in a bug report over the total number of key-
words of the bug report (term frequency) and the occurrence 
frequency of keywords in other bug reports over the total 
number of bug reports (inverse document frequency). This 
process results in a set of keywords that best describe the 
bug report, i.e., a set of distinct keywords with high signifi-
cance. Algorithm 2 describes several steps to process the 
textual data of the bug dataset. The first step is to load the 
bug dataset as raw keyword set. The next three steps are to 
remove redundant words, meaningless words, and special 
characters using stop-word set and regular expression. The 
last step is to apply the tf × idf method for the remaining 
keywords.

Evaluation

We have used a bug dataset of 300,000 bug reports occur-
ring on Windows platform (Win platform) and 300,000 bug 
reports occurring on other platforms (All platform), and a 
computer with Intel Core I7, 3.8 GHZ each core, 8 GB RAM 
and Ubuntu 16.04 LTS 64-bit to build decision trees and 
random forests. We have verified the priority and severity 
of bug reports obtained from both the bug tracking systems 
and the fault detection system operating on a cluster of 100 
workstations at International University–Vietnam National 
University’s computing center. This cluster provides com-
puting and storage services based on the OpenStack plat-
form [30]. These bug reports have already included priority 
and severity values assessed by system operators for com-
parison. We have run experiments for several times and then 
computed the average evaluation scores with errors.

Several bug reports contain incomplete values for the 
extracted features due to the lack of responses during data 
collection. There are several methods, such as case dele-
tion, mean imputation, median imputation, and K-nearest 
neighbor, to fill incomplete values for improving accuracy. 
We have applied the median imputation method for filling 
incomplete values by the mean of all known values of the 
features in the class to which the bug report with incom-
plete values belongs. The method approximately increases 
the average cross-validation scores of the Win platform and 
All platform datasets to 0.65, as shown in Fig. 5. The dataset 
of the All platform suffers less impact by incomplete values 
than that of the Win platform.

The first experiment compares severity accuracy between 
decision tree and random forest for Win and All platforms. 
For the Win platform, Fig. 6 on the left side reports the aver-
age accuracy scores of 0.65 and 0.75 for decision tree and 
random forest, respectively. While decision tree line slightly 
decreases as the size of datasets increases, random forest line 
starts with high scores, reduces and then linearly increases 
again as the size of datasets increases. For the All platform, 
Fig. 6 on the right side reports the average accuracy scores of 
0.7 and 0.8 for decision tree and random forest, respectively. 
The dataset of the All platform is more complete than that of 
the Win platform. The lines of the accuracy scores in both 
figures are similar. Random forest outperforms decision tree 

Table 3  List of extracted features

Feature Description Data types

Severity The effect level of the bug Enumerate
Priority The fixing order of the bug Enumerate
Status The open, fixed or closed status of the bug Enumerate
Component The component contains the bug Enumerate
Software The software contains the bug Enumerate
Platform The platform where the bug occurs Enumerate
Keyword The list of keywords that describe the bug Text
Relation The list of bugs related to the bug Numeric
Category The category of the bug Enumerate
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on both the Win and All platforms. Random forest and deci-
sion tree performs well with a small number of bug reports. 
Random forest also performs well with a large number of 
bug reports while decision tree does not.

The second experiment compares priority accuracy 
between decision tree and random forest for Win and All 
platforms. For the Win platform, Fig. 7 on the left side 
reports the average accuracy scores of 0.66 and 0.73 for 
decision tree and random forest, respectively. While decision 
tree line linearly decreases as the size of datasets increases, 
random forest line remains stable as the size of datasets 
increases. For the Win platform, Fig. 7 on the right side 
reports the average accuracy scores of 0.69 and 0.81 for 
decision tree and random forest, respectively. Priority lines 
are more stable than severity lines, thus severity to some 
extent is more difficult to determine than priority. The data-
set of All platform is more consistent than that of Win plat-
form because of the big gap between the lines of accuracy 

scores on All platform. The shape of accuracy scores is also 
similar.

The third experiment presents time consumption for 
constructing decision tree and random forest for the whole 
dataset of 600,000 bug reports, as shown in Fig. 8 on the 
left side. Decision tree line linearly increases and random 
forest line exponentially increases as the size of datasets 
increases. It takes approximately 8 s and 33 s to build a 
decision tree and a random forest for 600,000 bug reports, 
respectively. Time consumption depends on the number of 
bug reports and features. Time consumption for random for-
est also depends on constructing multiple decision trees and 
selecting the best decision trees. Processing large bug data-
sets consumes much time. Figure 8 on the right side reports 
the accuracy score of random forest for severity and priority 
classification using the whole dataset. Severity and prior-
ity lines slightly decrease as the size of datasets increases. 
The accuracy scores of severity and priority are similar on 

Fig. 4  A decision tree for a fault dataset

Fig. 5  Cross-validation com-
parison between using and 
not using imputation on Win 
platform (left) and All platform 
(right)
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Fig. 6  Severity accuracy 
comparison between decision 
tree and random forest on Win 
platform (left) and All platform 
(right)
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average because they are similar features in terms of data 
type and determination process. The average accuracy score 
of 0.75 can be sufficient for assisting system operators in 
determining these features.

Conclusion

We have compared the performance of machine learning 
techniques for software bug report analysis, then chosen 
the random forest approach for further investigation on bug 
datasets. This approach targets to determining the severity 
and priority of a bug report automatically. Evaluating these 
features heavily depends on human being. This approach 
can be applied to evaluating a large number of log events 
for fault detection and forecast in large, complex commu-
nication networks and distributed systems. The log event 
dataset is so huge that system operators and even supporting 
tools cannot process quickly, thus resulting in neglecting 
potentially critical errors or warning events leading to criti-
cal errors. Instead of constructing a decision tree for learning 
from the training dataset and assessing the testing dataset, 
a random forest constructs a number of decision trees from 
the subsets of the training dataset and selects the best deci-
sion trees for assessing the testing dataset. We have used 
bug datasets obtained from open source BTSs for experi-
ments. Bug reports to some extent contain the same features 
as log events including severity and priority. Evaluating 
the approach focuses on the performance and accuracy of 

random forest. We have measured the time consumption and 
accuracy of random forest for bug datasets. The experimen-
tal results reveal that random forest outperforms decision 
tree, i.e., approximately 10% for various datasets. Random 
forest, however, consumes more processing time than deci-
sion tree. Various bug datasets, such as bug reports on the 
Windows platform or on the other platforms, provide certain 
impact on accuracy score due to the consistency and com-
pleteness of bug reports. Future work focuses on exploring 
further bug report features and log event datasets to improve 
the accuracy of random forest and applying the fault detec-
tion and forecast tool for the realistic systems.
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