
Vol.:(0123456789)

SN Computer Science (2020) 1:4
https://doi.org/10.1007/s42979-019-0004-1

SN Computer Science

ORIGINAL RESEARCH

An Analysis of Software Bug Reports Using Machine Learning
Techniques

Ha Manh Tran1 · Son Thanh Le2 · Sinh Van Nguyen2 · Phong Thanh Ho1

Received: 15 April 2019 / Accepted: 10 June 2019 / Published online: 29 June 2019
© Springer Nature Singapore Pte Ltd 2019

Abstract
Bug tracking systems manage bug reports for assuring the quality of software products. A bug report (alsoreferred as trouble,
problem, ticket or defect) contains several features for problem management and resolution purposes. Severity and priority
are two essential features of a bug report that define the effect level and fixing order of the bug. Determining these features
is challenging and depends heavily on human being, e.g., software developers or system operators, especially for assessing
a large number of error and warning events occurring on software products or network services. This study first proposes
a comparison of machine learning techniques for assessing severity and priority for software bug reports and then chooses
an approach of using optimal decision trees, or random forest, for further investigation. This approach aims at constructing
multiple decision trees based on the subsets of the existing bug dataset and features, and then selecting the best decision trees
to assess the severity and priority of new bugs. The approach can be applied for detecting and forecasting faults in large,
complex communication networks and distributed systems today. We have presented the applicability of random forest for
bug report analysis and performed several experiments on software bug datasets obtained from open source bug tracking
systems. Random forest yields an average accuracy score of 0.75 that can be sufficient for assisting system operators in
determining these features. We have provided some analysis of the experimental results.

Keywords Network fault detection · Fault management · Machine learning · Data analytics · Software bug report

Introduction

Fault detection plays an important role in managing com-
puter systems. The more complex computer systems are,
the more difficult fault detection is. Several hindrances of
managing large and modern computer systems and services
focus on service availability, performance unpredictabil-
ity and failure control [1] that are closely associated with
fault detection. A normal fault detecting mechanism usu-
ally works with the involvement of system operators and the
support of multiple monitoring tools. A running computer
system requires monitoring tools running along with. These
monitoring tools keep reporting the status of the system.
System operators observe and analyze abnormal signs on the
report and the system, then create and submit a bug report
to a bug tracking system (BTS) for resolution. Research
activities have dealt with automating some parts of the fault
detecting mechanism. One of the recently advanced research
activities aims at exploiting monitoring log data and histori-
cal bug data to early notify the critical status of a system, or
even forecast the forthcoming fault of a system.

This article is part of the topical collection “Future Data and
Security Engineering” guest edited by Tran Khanh Dang.

 * Ha Manh Tran
 hatm@hiu.vn

 Son Thanh Le
 ltson@hcmiu.edu.vn

 Sinh Van Nguyen
 nvsinh@hcmiu.edu.vn

 Phong Thanh Ho
 phonght@hiu.vn

1 HongBang International University, 215 Dien Bien Phu,
Ward 15, Binh Thanh District, Ho Chi Minh City, Vietnam

2 International University, Vietnam National University, Block
6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City,
Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-019-0004-1&domain=pdf

 SN Computer Science (2020) 1:44 Page 2 of 11

SN Computer Science

Bug tracking systems store bug report data to control the
quality of software products. They are frequently used to
organize the workflows that produce bug reports and for-
ward to system operators for resolution. A bug report con-
tains many features for problem management and resolu-
tion purposes. Two essential features, namely severity and
priority, define the effect level and fixing order of the bug,
respectively. Determining these features is to a large extent
a human-driven process. Evaluating a large number of error
and warning events occurring on real-time software products
or network services autonomously is challenging. This study
proposes an approach of using random forest for evaluating
severity and priority for software bug reports autonomously.
The contribution of this study is thus threefold:

1. Investigating bug features extracted from the unified bug
schema [2] for evaluating severity and priority.

2. Comparing machine learning techniques for evaluating
the priority and severity features of software bug reports
and choosing an approach of using random forest for
further investigation.

3. Providing the prototyping implementation and experi-
ments for the fault analysis approach on a 100-worksta-
tion computing cluster.

The rest of the paper is structured as follows: the next sec-
tion includes some background of fault data analysis tech-
niques applied to software maintenance, system failure
and reliability, some related work of random forest applied
to failure detection and prediction. Section 3 epitomizes
machine learning techniques and provides brief compari-
son of their characteristics and performance for bug data
analysis capability. Section 4 describes the fundamentals of
decision tree and random forest, the applicability of soft-
ware bug data processing, and several processes of building
random forest for bug report datasets. Some mathematical
formulas and explanations are referred from the study of
Breiman et al. [3]. Several experiments in Sect. 5 report the
performance and efficiency of bug data analysis before the
paper is concluded in Sect. 6.

Related Work

Several studies have used fault case analysis for fault detec-
tion and resolution. Wang et al. [4] have proposed an auto-
matic fault diagnosis method for web applications in cloud
computing. The online incremental clustering method iden-
tifies access behavior patterns and models the correlation
between workload and the metric of resource utilization.
The method detects anomalies by discovering the abrupt
change of correlation coefficients and locates suspicious
metrics using the feature selection method. The study of

Ferreira et al. [5] has proposed an approach of using machine
learning techniques for automated fault detection on solar-
powered wireless mesh networks. The approach applies
knowledge discovery methodology and a pre-defined dic-
tionary of faults and solutions for classifying new faults.
The authors of the study [6] have presented an online failure
prediction system for predicting failures on networks and
systems. Several technical remarks of this system are: (1)
using Random Forest technique to train prediction models;
(2) exploiting Apache Spark to process network management
events; (3) testing the system on the dataset of the Span-
ish bank data center. The study [7] has applied the random
forest and C5.0 decision tree algorithms for improving the
prediction of network faults. It uses the customer trouble
ticket dataset associated with the Internet usage and signal
measurement datasets to build predictive models. The study
of Tran et al. [2] has proposed a semantic search approach
for bug reports. The approach includes crawling bug reports
from bug tracking systems, extracting semi-structured bug
data, and describing a unified data model to store bug track-
ing data. This model derived from the analysis of the most
popular systems is used for semantic search. The model also
facilitates fault feature extraction and analysis using machine
learning techniques. Another study of Tran and Le [8] has
reduced the computation problem by analysing several types
of fault classifications and relationships. This approach
exploits package dependency, fault dependency, fault key-
words, fault classifications to seek the relationships between
fault causes. Evaluating these approaches has performed on
software bug datasets obtained from different open source
bug tracking systems. Tran and Schönwälder [9] introduced
the DisCaRia system that applies a distributed case-based
reasoning approach to exploring fault solving resources on
peer-to-peer networks. The prototyping system has been
deployed and currently measured on the EmanicsLab dis-
tributed computing testbed [10].

Several other studies have used decision tree and ran-
dom forest for fault classification and prediction. Sinnamon
et al. [11] have applied the binary decision diagram to iden-
tify system failure and reliability. Large systems usually
produce thousands of events that consume a large amount
of processing time. This diagram associated with if-then-
else rules and optimized techniques reduces time consuming
problem. The study of Reay and Andrews [12] has proposed
an analysis strategy aiming at increasing the likelihood of
obtaining a binary decision diagram for any given fault tree
while ensuring the associated calculations as efficient as pos-
sible. The strategy contains two steps: simplifying the fault
tree structure and obtaining the associated binary decision
diagram. The study also includes quantitative analysis on
the set of binary decision diagrams to obtain the probabil-
ity of top events, the system unconditional failure intensity
and the criticality of the basic events. Guo et al. [13] have

SN Computer Science (2020) 1:4 Page 3 of 11 4

SN Computer Science

proposed an approach of using random forests for predicting
fault prone modules in software development process. The
approach exploits the information of the previous projects
including modules, defects, locations, metrics, to predict the
current project with an assumption of stable development
environment. The approach presents several advantages
of running efficiently on large datasets and outperform-
ing the other classifiers in terms of robustness and noise.
The study [14] has proposed two tree-based techniques for
improving the classification of software failures based on
their causes. The first technique uses tree-based diagrams
to represent the results of hierarchical cluster analysis. The
second technique generates a classification tree to recognize
and refine failed executions. Zheng et al. [15] have provided
a decision tree learning approach based on the C4.5 algo-
rithm [16] to diagnose failures in large Internet sites. The
approach uses the runtime properties of requests and then
applies automated data mining techniques to identify the
causes of failures. The approach is evaluated on application
log datasets obtained from the eBay centralized application
logging framework. The recent study of Tran et al. [17] has
proposed an approach for evaluating the severity level of
events using a classification decision tree. The approach
exploits existing fault datasets and features, such as bug
reports and log events to construct a decision tree that can be
used to classify the severity level of new events. This study
includes the prototyping implementation and evaluation of
the approach for various bug report and log event datasets.
The system operators thus refer to the result of classifica-
tion to determine proper actions for the suspected events
with a high severity level. While the previous approaches
focus more on avoiding, detecting and resolving faults on
the monitored systems, i.e., passive approaches rely on cor-
rect configurations or solutions for the detected faults, this
active approach scrutinizes log events from currently run-
ning systems and historical bug reports from bug tracking

systems in order to classify potential events with high sever-
ity that might cause crucial faults on running systems in the
near future. The study in this paper is the extension of the
previous study [18] that addresses the problem of choosing
the best performance technique for analyzing fault datasets.
It includes the performance comparison of several machine
learning techniques for bug report datasets.

Machine Learning Techniques

Artificial Neural Networks

Artificial neural network (ANN) [19] simulates human
nervous system with the connection and communication
of many neurons. Similar to the neural network of human
brain, ANN learns, records and uses experiences for appro-
priate circumstances. ANN has been successfully applied
to several problems related to prediction and classification
in the fields of finance, health, geology and physics. Typi-
cal examples include human face recognition, weather and
disaster forecast, automatic steering control system, crash
prediction system.

The common architecture of ANN includes input layer,
hidden layer and output layer as shown in Fig. 1 on the left
side. Neurons in the hidden layer connect and receive inputs
from neurons in the previous layer, then process and pass
outputs to the next layer. ANN can possess several hidden
layers.

Data processing in ANN transforms inputs from a layer to
another layer to adjust the weights of inputs on neurons for
precise results. There are several elements in data process-
ing: (1) inputs are data attributes; (2) outputs are results for
a problem; (3) weights present the significance of inputs; (4)
summation function sums up the weights of n inputs for each
neuron by the following formula: y = �

n
i=1

xiwi , where xi , wi

Fig. 1 An ANN with three
layers (a) and an artificial neu-
ron (b) on the left side; an KNN
classification with K = 1 on the
right side

 SN Computer Science (2020) 1:44 Page 4 of 11

SN Computer Science

and y are input i, weight i and result, respectively; and (5)
transfer function referred to as an activation function decides
whether a neuron generates an output to another neuron in
the next layer.

K‑Nearest Neighbors

K-nearest neighbor (KNN) [20] is one of the supervised
learning algorithms in machine learning. This algorithm is
simple and learns less experience from the training process,
but obtains much efficiency for some problems. It usually
performs all essential computations when predicting the
result of new data input. KNN can be applied to classifica-
tion or regression problems in supervised learning.

The KNN algorithm seeks the result of a new data item
using the K-nearest data items of the training data. It ignores
some imprecise data items from the K-nearest data items.
For the classification problem, the result of a new data item
is directly deduced by the K-nearest data items of the train-
ing data. The result of a testing data item is possibly decided
by the vote of the K-nearest data items, or by the weighted
vote of the K-nearest data items. For the regression problem,
the result of a new data item is possibly decided by the result
of the nearest known data item (K = 1), or the average of
the result of the K-nearest data items, or the distance func-
tion of the K-nearest data items. Figure 1 on the right side
presents the classification of 1NN. This is a classification
problem with three classes: x, o and i. Each testing data item
is assigned by a class that it belongs to.

Decision Trees

Decision tree (DT) in machine learning is a predictive model
that maps observations or phenomenon to concluding the
target values of the observations or phenomenon. Each node
in a tree corresponds to a variable, and a link between a node
and its children node represents a specific value for that vari-
able. Each leaf node represents the predicted value of the
target variable, giving the values of the variables represented
by the path from the root node to the leaf node. Decision
trees are also referred to as decision tree learning technique
in machine learning.

Decision tree technique is also a common practice in data
mining. A decision tree describes a tree structure in which
leaves represent classification classes and branches repre-
sent the combinations of attributes that lead to the classifi-
cation class. A decision tree can be trained by splitting the
data set into subsets based on evaluating attribute values.
This process is recursively repeated for each derived subset.
The recursive process is completed when no further splits
are possible, or when a single classification can be applied
to each member of the derived subset. Decision tree tech-
nique usually uses entropy to compute the homogeneity of

a data item and information gain to measure the difference
in entropy from before to after a set is split on an attribute.

Random forest technique uses a number of decision trees
to improve the precision of regression and classification.
This technique is more computational expensive and com-
plex than decision tree technique, but reduces overfit and
variance.

Support Vector Machines

Support vector machine (SVM) [21] is another supervised
learning method for classification and regression analysis. A
standard SVM classifies input data items into two different
classes, the SVM is thus referred to as a binary classifica-
tion method. With the training dataset of two categories,
the SVM training algorithm builds an SVM model that then
classifies new dataset into the two categories. The SVM
model is a representation of data points in space and selects
the boundary between the two categories so that the dis-
tance from the training dataset to the boundary is as far as
possible. The SVM model also represents the new dataset
in the same space and classifies data items in one of the
two categories depending on which part of the boundary is
located. A general SVM constructs a hyperplane or a set of
hyperplanes in a multidimensional or infinite dimensional
space for classification and regression analysis. For the best
classification, the hyperplane locates furthest away from the
data points of all classes to minimize the classification error
of the SVM model.

It is difficult in several problems to determine the bound-
ary linearly in the original space. The data points are thus
mapped into a more multidimensional space for easy analy-
sis. The SVM method efficiently computes the mapping by
the dot product of the data vectors in the new space using
the coordinates of the old space. This dot product is defined
by a proper kernel function.

Naive Bayes

Naive Bayes (NB) [22] is a probabilistic method in machine
learning, based on Bayes’ theorem with the independence
assumption of features. This method builds classifiers that
assign class labels to problem instances, represented as vec-
tors of feature values, where the class labels are drawn from
some finite set. Classifiers assume that the value of a particu-
lar feature is independent of the value of any other feature,
given the class variable. The method is widely used for text
classification with low time consumption in the training pro-
cess due to the independence assumption of features. There
are several variants of Naive Bayes.

– Gaussian Naive Bayes (GNB) applies for continuous
data with an assumption that data segments representing

SN Computer Science (2020) 1:4 Page 5 of 11 4

SN Computer Science

classes are distributed by a Gaussian distribution. For
example, the training data contains a continuous feature
x. This method segments the data by the classes, and then
computes the mean and variance of x in each class.

– Multinomial Naive Bayes applies for text classification
that uses feature vectors to represent bags of words. For
example, each document is represented by a vector with
the same length of all words in dictionary. The use of
the term frequency–inverse document frequency (tf–idf)
statistics improves the efficiency of this method.

– Bernoulli Naive Bayes applies for data in which each
component is a binary value (0 or 1). For example,
instead of counting the total times of word appearance
in a document, a vector only expresses the occurrence or
absence of all words in dictionary by applying a yes (1)
or no (0) answer for word appearance.

Table 1 describes the advantages and disadvantages of the
mentioned machine learning techniques

Brief Comparison

We have performed a brief comparison of the mentioned
machine learning techniques. This comparison aims at
evaluating the capability of these techniques on bug data
analysis. Three metrics used for evaluating the classifiers
include mean squared error (MSE), median absolute error
(MAE) and time consumption. The performance of a classi-
fier can be measured using the testing dataset. The output of
a classifier is presented by the resulting vector that contains
the severity values of the testing data items. This vector is
compared with the true vector of the severity values of the
same data items. The bug dataset possesses 100,000 bug
reports described below.

An efficient classifier must obtain low MSE, MAE and
time consumption. In Table 2, while ANN and SVM spend a
lot of time for the training process, KNN, DT and GNB con-
sume very low execution time. KNN provides the best clas-
sifier that outperforms the remaining classifiers with MSE =
0.16 and MAE = 0.21. This classifier sets parameters by the
weighted distances, the ball-tree algorithm, and the optimal
number of neighbors. DT is the second best classifier with
MSE = 0.2 and MAE = 0.23. This classifier sets parameters
by considering all the features before splitting. The ANN,
SVM and GNB classifiers perform similarly. We choose
the DT technique for further investigation because multiple
decision trees can be optimized during the training phase
to improve the capability of classification on large datasets.

Random Forest Approach for Bug Analysis

Random forest is a classifier consisting of a number of deci-
sion trees that depend on the independently sampled values
of random vectors with the same distribution. The precision
of a random forest relies on the strength of the individual
trees in the forest and the correlation between trees. The idea
of random forest is to select the best decision trees from an

Table 1 An overview of
machine learning techniques

Method Features Advantages Disadvantages

ANN Black-box algorithm Handle error well Require complex tuning
Can learn non-linear models Sensitive to feature scaling
Can learn in real-time High computational cost

KNN Distance-based algorithm Simple to implement Cannot be interpret
Lazy learner No training cost Need to define K

Computational expensive
DT Tree-based algorithm Easy to interpret Can be over fit

Useful in data investigation Can be impacted by noise data
Regression and classification

SVM Discriminative algorithm Effective in high dimensional spaces Hard to choose kernel
Hard to interpret
High computational cost

GNB Probabilistic algorithm Easy to implement Independent classes
No complicated optimization Impractical assumption

Table 2 Performance comparison of various classification techniques
on the bug dataset

Technique MSE MAE Time (s)

ANN 0.21 0.31 85.5
KNN 0.16 0.21 0.4
DT 0.2 0.23 0.5
SVM 0.22 0.32 25.8
GNB 0.21 0.3 0.2

 SN Computer Science (2020) 1:44 Page 6 of 11

SN Computer Science

ensemble of decision trees built by the subsets of the train-
ing dataset. A decision tree algorithm divides the training
dataset into subsets with similar instances and uses entropy
to calculate homogeneous values for instances. The decision
tree and random forest growing processes are referred by the
previous studies [3].

Entropy Splitting Rule

A decision tree is built top-down from a root node and
involves partitioning data into subsets that contain instances
with similar values (homogeneous). The decision tree algo-
rithm uses entropy to calculate the homogeneity of a sample.

where S is the current dataset for which entropy is being cal-
culated. X is a set of classes in S. P(x) is a ratio between the
number of elements in class x and the number of elements in
set S. When H(S) = 0, the set S is perfectly classified.

Information gain IG(A) is the measure of difference in
entropy from before to after the set S is split on an attribute
A. In the other words, how much uncertainty in S is reduced
after splitting the set S on the attribute A.

where H(S) is entropy of the set S. T is the subset created
from splitting S by A. P(t) is a ratio between the number
of elements in t and the number of elements in S. H(t) is
entropy of subset t. Information gain can be calculated
(instead of entropy) for each remaining attribute. The attrib-
ute with the largest information gain is used to split S in the
current iteration.

(1)H(S) = −�x∈XP(x) logP(x),

(2)IG(A, S) = H(S) − �t∈TP(t)H(t),

Decision Tree Growing Process

This process uses a dataset with features as input. A fea-
ture value can be ordinal categorical, nominal categorical,
or continuous. The process uses entropy splitting rules to
choose the best split among all the possible splits that consist
of possible splits of each feature, resulting in two subsets of
features. Each split depends on the value of only one feature.
The process starts with the root node of the tree and repeat-
edly runs three steps on each node to grow the tree, as shown
in Fig. 2 on the left side.

The first step is to find the best split of each feature. Since
feature values can be computed and sorted to examine can-
didate splits, the best split maximizes the defined splitting
criterion. The second step is to find the best split of the node
among the best splits found in the first step. The best split
also maximizes the defined splitting criterion. The third step
is to split the node using its best split found in the second
step, then the process repeats the first step if the stopping
rules are not satisfied. The process generates a decision tree
when the stopping rules are satisfied, as follows:

1. If a node becomes pure; that is, all cases in a node have
identical values of the dependent variable, the node will
not be split.

2. If all cases in a node have identical values for each pre-
dictor, the node will not be split.

3. If the current tree depth reaches the user-specified maxi-
mum tree depth limit value, the tree growing process
will stop.

4. If the size of a node is less than the user-specified mini-
mum node size value, the node will not be split.

Fig. 2 Processes of growing a
decision tree (left) and a random
forest (right)

SN Computer Science (2020) 1:4 Page 7 of 11 4

SN Computer Science

5. If the split of a node results in a child node whose node
size is less than the user specified minimum child node
size value, the node will not be split.

Random Forest Growing Process

The decision tree growing process is one of the main steps
of the random forest growing process that also uses a dataset
with features as input. The dataset is randomly partitioned
into the training and testing datasets. The training dataset is
the input of the decision tree growing process to construct
a decision tree. The testing dataset is used to evaluate the
constructed tree, as shown in Fig. 2 on the right side. This
process repeats to select an sufficient number of trees. We
have used Scikit Learn [23], NumPy [24] and SciPy [25]
libraries for constructing a random forest. Algorithm 1 pre-
sents several steps to build a random forest for the bug data-
set with the support of these libraries.

The first step is to load the random forest and caret librar-
ies to build a random forest and a confusion matrix for vali-
dating the accuracy of the random forest. The second step
is to load the bug dataset into data-frame that is a special
tabular data structure to prepare for training and testing the

random forest. The feature values of the bug dataset are
factorized by numeric values in the third step because the
algorithm cannot deal with text and enumerate values. An
integer represents a distinct value, e.g., the priority feature
contains 4 values: P1 (urgent), P2 (high), P3 (normal), and
P4 (low) corresponding to 1, 2, 3, and 4 after factorization.
The fourth step is to parse the class label of the bug dataset
to factor variable type, which is a vector of integer values
with a corresponding set of character values to use when the
factor is displayed. This parsing step also decides the clas-
sification response of the random forest. We have used 25%
of the bug dataset for evaluation and 75% of the bug dataset
for building the random forest. The later dataset includes the
testing and training datasets used to classify observations
into severity or priority level. The algorithm also relies on a
variable that specifies a certain number of random features
to grow a single tree.

Bug Data Processing

Bug dataset contains software bug reports obtained from
several open source BTSs such as Bugzilla [26], Launch-
pad [27], Mantis [28], Debian [29]. Bug reports from dif-
ferent BTSs share several common features. Administration
features, such as severity, status, platform, content, com-
ponent, and keyword, are represented as field-value pairs.
Description features, such as problem description, and fol-
low-up discussion, are represented as textual attachments.
The unified bug schema shown in Fig. 3 aims to support
for semantic bug search [2]. This schema contains several
features extracted by BTSs and new features to minimize
the loss of bug report information, for example, the new
relation feature establishes the relationships between bugs,
or the new category feature provides for more sophisticated

Fig. 3 Unified bug schema rep-
resented as a UML diagram

 SN Computer Science (2020) 1:44 Page 8 of 11

SN Computer Science

bug classification. We have used a web crawler to get access
to BTSs, retrieve and parse the HTML pages of bug reports
to extract their content following the unified bug schema
that allows various types of bug reports to be stored in one
database. Most of bug features can be extracted from bug
content. However, BTSs provide very different classifica-
tions for some features including severity, priority, status.
The model classifies the severity feature into critical, nor-
mal, minor, feature, and the priority feature into urgent, high,
normal, low.

Several bug features are concerned with severity and pri-
ority. Table 3 presents a list of essential features extracted
from the bug schema. These features cause profound impact
on determining the severity and priority of a bug report.
The keyword feature contains the result of processing the
description and discussion features. Figure 4 depicts the
decision tree of a small fault dataset (see below). The deci-
sion tree contains multiple levels, we only present the first
4 levels.

We have applied the term frequency–inverse document
frequency (tf × idf) method to process the description and
discussion features that only include the textual data of a bug
report. This method measures the significance of keywords
to bug reports in a bug dataset by the occurrence frequency
of keywords in a bug report over the total number of key-
words of the bug report (term frequency) and the occurrence
frequency of keywords in other bug reports over the total
number of bug reports (inverse document frequency). This
process results in a set of keywords that best describe the
bug report, i.e., a set of distinct keywords with high signifi-
cance. Algorithm 2 describes several steps to process the
textual data of the bug dataset. The first step is to load the
bug dataset as raw keyword set. The next three steps are to
remove redundant words, meaningless words, and special
characters using stop-word set and regular expression. The
last step is to apply the tf × idf method for the remaining
keywords.

Evaluation

We have used a bug dataset of 300,000 bug reports occur-
ring on Windows platform (Win platform) and 300,000 bug
reports occurring on other platforms (All platform), and a
computer with Intel Core I7, 3.8 GHZ each core, 8 GB RAM
and Ubuntu 16.04 LTS 64-bit to build decision trees and
random forests. We have verified the priority and severity
of bug reports obtained from both the bug tracking systems
and the fault detection system operating on a cluster of 100
workstations at International University–Vietnam National
University’s computing center. This cluster provides com-
puting and storage services based on the OpenStack plat-
form [30]. These bug reports have already included priority
and severity values assessed by system operators for com-
parison. We have run experiments for several times and then
computed the average evaluation scores with errors.

Several bug reports contain incomplete values for the
extracted features due to the lack of responses during data
collection. There are several methods, such as case dele-
tion, mean imputation, median imputation, and K-nearest
neighbor, to fill incomplete values for improving accuracy.
We have applied the median imputation method for filling
incomplete values by the mean of all known values of the
features in the class to which the bug report with incom-
plete values belongs. The method approximately increases
the average cross-validation scores of the Win platform and
All platform datasets to 0.65, as shown in Fig. 5. The dataset
of the All platform suffers less impact by incomplete values
than that of the Win platform.

The first experiment compares severity accuracy between
decision tree and random forest for Win and All platforms.
For the Win platform, Fig. 6 on the left side reports the aver-
age accuracy scores of 0.65 and 0.75 for decision tree and
random forest, respectively. While decision tree line slightly
decreases as the size of datasets increases, random forest line
starts with high scores, reduces and then linearly increases
again as the size of datasets increases. For the All platform,
Fig. 6 on the right side reports the average accuracy scores of
0.7 and 0.8 for decision tree and random forest, respectively.
The dataset of the All platform is more complete than that of
the Win platform. The lines of the accuracy scores in both
figures are similar. Random forest outperforms decision tree

Table 3 List of extracted features

Feature Description Data types

Severity The effect level of the bug Enumerate
Priority The fixing order of the bug Enumerate
Status The open, fixed or closed status of the bug Enumerate
Component The component contains the bug Enumerate
Software The software contains the bug Enumerate
Platform The platform where the bug occurs Enumerate
Keyword The list of keywords that describe the bug Text
Relation The list of bugs related to the bug Numeric
Category The category of the bug Enumerate

SN Computer Science (2020) 1:4 Page 9 of 11 4

SN Computer Science

on both the Win and All platforms. Random forest and deci-
sion tree performs well with a small number of bug reports.
Random forest also performs well with a large number of
bug reports while decision tree does not.

The second experiment compares priority accuracy
between decision tree and random forest for Win and All
platforms. For the Win platform, Fig. 7 on the left side
reports the average accuracy scores of 0.66 and 0.73 for
decision tree and random forest, respectively. While decision
tree line linearly decreases as the size of datasets increases,
random forest line remains stable as the size of datasets
increases. For the Win platform, Fig. 7 on the right side
reports the average accuracy scores of 0.69 and 0.81 for
decision tree and random forest, respectively. Priority lines
are more stable than severity lines, thus severity to some
extent is more difficult to determine than priority. The data-
set of All platform is more consistent than that of Win plat-
form because of the big gap between the lines of accuracy

scores on All platform. The shape of accuracy scores is also
similar.

The third experiment presents time consumption for
constructing decision tree and random forest for the whole
dataset of 600,000 bug reports, as shown in Fig. 8 on the
left side. Decision tree line linearly increases and random
forest line exponentially increases as the size of datasets
increases. It takes approximately 8 s and 33 s to build a
decision tree and a random forest for 600,000 bug reports,
respectively. Time consumption depends on the number of
bug reports and features. Time consumption for random for-
est also depends on constructing multiple decision trees and
selecting the best decision trees. Processing large bug data-
sets consumes much time. Figure 8 on the right side reports
the accuracy score of random forest for severity and priority
classification using the whole dataset. Severity and prior-
ity lines slightly decrease as the size of datasets increases.
The accuracy scores of severity and priority are similar on

Fig. 4 A decision tree for a fault dataset

Fig. 5 Cross-validation com-
parison between using and
not using imputation on Win
platform (left) and All platform
(right)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

C
ro

ss
-V

al
id

at
io

n
S

co
re

Number of bug reports (x10000)

With Imputation
Without Imputation

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

C
ro

ss
-V

al
id

at
io

n
S

co
re

Number of bug reports (x10000)

With Imputation
Without Imputation

Fig. 6 Severity accuracy
comparison between decision
tree and random forest on Win
platform (left) and All platform
(right)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

A
cc

ur
ac

y
S

co
re

Number of bug reports (x10000)

Decision Tree
Random Forest

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

A
cc

ur
ac

y
S

co
re

Number of bug reports (x10000)

Decision Tree
Random Forest

 SN Computer Science (2020) 1:44 Page 10 of 11

SN Computer Science

average because they are similar features in terms of data
type and determination process. The average accuracy score
of 0.75 can be sufficient for assisting system operators in
determining these features.

Conclusion

We have compared the performance of machine learning
techniques for software bug report analysis, then chosen
the random forest approach for further investigation on bug
datasets. This approach targets to determining the severity
and priority of a bug report automatically. Evaluating these
features heavily depends on human being. This approach
can be applied to evaluating a large number of log events
for fault detection and forecast in large, complex commu-
nication networks and distributed systems. The log event
dataset is so huge that system operators and even supporting
tools cannot process quickly, thus resulting in neglecting
potentially critical errors or warning events leading to criti-
cal errors. Instead of constructing a decision tree for learning
from the training dataset and assessing the testing dataset,
a random forest constructs a number of decision trees from
the subsets of the training dataset and selects the best deci-
sion trees for assessing the testing dataset. We have used
bug datasets obtained from open source BTSs for experi-
ments. Bug reports to some extent contain the same features
as log events including severity and priority. Evaluating
the approach focuses on the performance and accuracy of

random forest. We have measured the time consumption and
accuracy of random forest for bug datasets. The experimen-
tal results reveal that random forest outperforms decision
tree, i.e., approximately 10% for various datasets. Random
forest, however, consumes more processing time than deci-
sion tree. Various bug datasets, such as bug reports on the
Windows platform or on the other platforms, provide certain
impact on accuracy score due to the consistency and com-
pleteness of bug reports. Future work focuses on exploring
further bug report features and log event datasets to improve
the accuracy of random forest and applying the fault detec-
tion and forecast tool for the realistic systems.

Acknowledgements This research activity is funded by the Vietnam
National University in Ho Chi Minh City (VNU-HCM) under the Grant
number C2019-28-06.

References

 1. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski
A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M. A view of
cloud computing. ACM Commun. 2010;53(4):50–8.

 2. Tran HM, Lange C, Chulkov G, Schönwälder J, Kohlhase M.
Applying semantic techniques to search and analyze bug tracking
data. J Netw Syst Manag. 2009;17(3):285–308.

 3. Breiman L. Random Forests. Mach Learn. 2001;45(1):5–32.
 4. Wang T, Zhang W, Wei J, Zhong H. Fault detection for cloud

computing systems with correlation analysis. In: Proceedings of
IFIP/IEEE international symposium on integrated network man-
agement IM’15; 2015. p. 652–8.

Fig. 7 Priority accuracy
comparison between decision
tree and random forest on Win
platform (left) and All platform
(right)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

A
cc

ur
ac

y
S

co
re

Number of bug reports (x10000)

Decision Tree
Random Forest

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

A
cc

ur
ac

y
S

co
re

Number of bug reports (x10000)

Decision Tree
Random Forest

Fig. 8 Time consumption
comparison between decision
tree and random forest (left) and
random forest accuracy com-
parison between severity and
priority classification (right) on
the whole dataset

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60

C
on

su
m

pt
io

n
T

im
e

(s
)

Number of bug reports (x10000)

Decision Tree
Random Forest

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60

A
cc

ur
ac

y
S

co
re

Number of bug reports (x10000)

Severity
Priority

SN Computer Science (2020) 1:4 Page 11 of 11 4

SN Computer Science

 5. Ferreira VC, Carrano RC, Silva JO, Albuquerque CVN, Much-
aluat-Saade DC, Passos DG. Fault detection and diagnosis for
solar-powered wireless mesh networks using machine learning.
In: Proceedings of IFIP/IEEE symposium on integrated network
and service management (IM’17); 2017. p. 456–62.

 6. Duenas JC, Navarro JM, Parada HA, Andion J, Cuadrado F.
Applying event stream processing to network online failure pre-
diction. Commun Mag. 2018;56(1):166–70.

 7. Tan JS, Ho CK, Lim AH, Ramly MR. Predicting network
faults using Random Forest and C5.0. Int J Eng Technol.
2018;7(2.14):93–6.

 8. Tran HM, Le ST. Software bug ontology supporting seman-
tic bug search on peer-to-peer networks. New Gen Comput.
2014;32(2):145–62.

 9. Tran HM, Schönwälder J. Discaria—distributed case-based rea-
soning system for fault management. IEEE Trans Netw Serv
Manag. 2015;12(4):540–53.

 10. Hausheer D, Morariu C. Distributed Test-Lab: EMANICSLab.
In: The 2nd international summer school on network and service
management (ISSNSM ’08). Switzerland: University of Zurich;
2008.

 11. Sinnamon RM, Andrews JD. Fault tree analysis and binary deci-
sion diagrams. In: Proceedings in reliability and maintainability
annual symposium; 1996. p. 215–22.

 12. Reay KA, Andrews JD. A fault tree analysis strategy using binary
decision diagrams. Reliab Eng Syst Saf. 2002;78(1):45–56.

 13. Guo L, Ma Y, Cukic B, Singh H. Robust prediction of fault-
proneness by Random Forests. In: Proceedings of 15th interna-
tional symposium on software reliability engineering (ISSRE’04).
Washington, DC: IEEE; 2004. p. 417–28.

 14. Francis P, Leon D, Minch M, Podgurski A. Tree-based methods
for classifying software failures. In: Proceedings of 15th interna-
tional symposium on software reliability engineering (ISSRE’04).
Washington, DC: IEEE; 2004. p. 451–62.

 15. Zheng AX, Lloyd J, Brewer E. Failure diagnosis using decision
trees. In: Proceedings of 1st international conference on auto-
nomic computing (ICAC’04). Washington, DC: IEEE Computer
Society; 2004. p. 36–43.

 16. Quinlan JR. C4.5: programs for machine learning. San Francisco:
Morgan Kaufmann Publishers; 1993.

 17. Tran HM, Nguyen SV, Le ST, Vu QT. Applying data analytic
techniques for fault detection. Trans Large Scale Data Knowl Cent
Syst (TLDKS). 2017;31:30–46.

 18. Tran HM, Nguyen SV, Ha SVU, Le TQ. An analysis of soft-
ware bug reports using Random Forest. In: Proceedings of 5th
international conference on future data and security engineering
(FDSE’18). Springer; 2018. p. 1–13.

 19. Bishop CM. Neural networks for pattern recognition. New York:
Oxford University Press Inc; 1995.

 20. Aha DW, Kibler D, Albert MK. Instance-based learning algo-
rithms. Mach Learn. 1991;6(1):37–66.

 21. Cortes C, Vapnik V. Support-vector networks. Mach Learn.
1995;20(3):273–97.

 22. Rish I. An empirical study of the Naive Bayes classifier. In: IJCAI
2001 workshop on empirical methods in artificial intelligence, vol
3(22). 2001. p. 41–6.

 23. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E. Scikit-learn: machine learning in python. J Mach Learn Res.
2011;12:2825–30.

 24. Oliphant T. A guide to NumPy, vol. 1. New York: Trelgol Publish-
ing; 2006.

 25. Silva FB. Learning SciPy for numerical and scientific computing.
Birmingham: Packt Publishing; 2013.

 26. Mozilla bug tracking system. https ://bugzi lla.mozil la.org/.
Accessed Aug 2017.

 27. Launchpad bugs. https ://bugs.launc hpad.net/. Accessed Aug 2017.
 28. Mantis bug tracker. https ://www.manti sbt.org/. Accessed Aug

2017.
 29. Debian bug tracking system. https ://www.debia n.org/Bugs/.

Accessed Aug 2017.
 30. OpenStack Cloud Software. http://www.opens tack.org/ (2010).

Accessed Aug 2017.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://bugzilla.mozilla.org/
https://bugs.launchpad.net/
https://www.mantisbt.org/
https://www.debian.org/Bugs/
http://www.openstack.org/

	An Analysis of Software Bug Reports Using Machine Learning Techniques
	Abstract
	Introduction
	Related Work
	Machine Learning Techniques
	Artificial Neural Networks
	K-Nearest Neighbors
	Decision Trees
	Support Vector Machines
	Naive Bayes
	Brief Comparison

	Random Forest Approach for Bug Analysis
	Entropy Splitting Rule
	Decision Tree Growing Process
	Random Forest Growing Process
	Bug Data Processing

	Evaluation
	Conclusion
	Acknowledgements
	References

