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Abstract
There are numerous physical, social, and psychological benefits of exercise, sport and play for youth athletes. However, 
dynamic activities come with a risk of injury that has yet to be abated, warranting novel therapeutics to promote injury-
resistance and to keep an active lifestyle throughout the lifespan. The purpose of the present manuscript was to summarize 
the extant literature and potential connecting framework regarding youth brain development and neuroplasticity associated 
with musculoskeletal injury. This review provides the foundation for our proposed framework that utilizes the OPTIMAL 
(Optimizing Performance Through Intrinsic Motivation and Attention for Learning) theory of motor learning to elicit desir-
able biomechanical adaptations to support injury prevention (injury risk reduction), rehabilitation strategies, and exercise 
performance for youth physical activity and play across all facets of sport (Prevention Rehabilitation Exercise Play; PREP). 
We conclude that both young male and females are ripe for OPTIMAL PREP strategies that promote desirable movement 
mechanics by leveraging a unique time window for which their heightened state of central nervous system plasticity is capable 
of enhanced adaptation through novel therapeutic interventions.
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The Problem: Anterior Cruciate Ligament 
Injuries in Youth

Sustaining an injury to the anterior cruciate ligament (ACL) 
can be physically, emotionally, and financially traumatic for 
a youth athlete, including potential premature closure to an 
athletic career [48] and greater long-term risk of osteoar-
thritis and reduced quality of life [126, 135]. Following the 

initial injury (i.e., primary), reports of subsequent ACL re-
rupture or contralateral ACL injury (i.e., secondary) within 
five years are as high as 23%, with youth athletes under the 
age of 25 being predominantly susceptible [3, 158]. Even 
when loss of function is restored and secondary injury is 
avoided, recent evidence indicates that successful return to 
pre-injury level of activity following ACL reconstruction 
(ACLR) is lower than formerly thought; approximately 35% 
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of individuals suffering an ACL injury fail to return to previ-
ous activity levels [107, 143, 156]. The high re-injury rate 
and inability to restore functional capability indicates that 
current standards of care including ACLR and rehabilitation 
may not adequately address the deficits that may have pre-
ceded and/or propagated the initial injury [28, 56, 71, 129]. 
Novel therapeutic methods are therefore warranted to reduce 
re-injury rates, increase return-to-play rates, and improve 
post-injury quality of activity, particularly in youth athletes 
who are most susceptible to primary and secondary injury 
[118, 132, 158].

Current rehabilitation strategies for ACL injury focus 
primarily on restoration of neuromuscular function through 
muscle strengthening and neuromuscular control exercises 
[68, 146]. Though multiple factors can contribute to pri-
mary and secondary ACL injury, neuromuscular function is 
most readily modifiable, whereas other potential deficien-
cies, such as bony anatomy or circadian hormones, cannot be 
easily altered. Likewise, the goals of neuromuscular function 
focused rehabilitation have traditionally included restoring 
bilateral symmetrical motion, introducing safer movement 
patterns, and avoiding positions thought to excessively strain 
the ACL, such as dynamic knee valgus, knee hyperexten-
sion, tibial internal rotation, or stiff legged landings exhib-
ited by minimal hip and knee flexion angles [14, 29, 71, 142, 
152]. These aims are commonly accomplished by specific 
exercises addressing range of motion, muscle strength, pro-
prioception, joint stability, endurance, and functional move-
ment [40]. However, evidence indicates that youth athletes 
are often unsuccessful in their attempts to safely make the 
transition from the clinic to the playing field [55, 61]. Spe-
cifically, rehabilitation programs can improve lower extrem-
ity movement patterns associated with injury when assessed 
in the lab [11, 111–114, 116], but these improved movement 
patterns do not readily transfer to sport [32].

A number of factors may contribute to lack of motor 
skill transfer, including noncompliance with rehabilitation 
limiting skill acquisition altogether and/or the relative con-
textual simplicity of clinical rehabilitation in comparison 
to the intense demands of a competitive sport environment 
(i.e., the neurocognitive challenges associated with defend-
ers, moving balls, targets, etc.) [65, 109]. Further, some 
commonly used metrics, such as bilateral symmetry, may 
not be as important as once thought, as hop testing symme-
try does not mirror quad strength symmetry and restoring 
bilateral hop symmetry is not always effective for reducing 
ACL-reinjury [67, 75, 82, 100, 157]. Conversely, quadriceps 
strength deficits are well documented post ACLR and may 
provide a related indicator of residual deficits following sur-
gery [120]. Compounding the injured limbs relative strength 
deficits, the uninjured limb typically also suffers decrements 
in strength and power post-surgery, potentially leading to 
altered biomechanics and masking of limb to limb deficits 

[49, 117, 119]. Emerging neuromechanical evidence shows 
that post-injury altered biomechanics could, in part, result 
from unresolved alterations throughout the central nervous 
system (CNS) that affect both involved and uninvolved limbs 
following ACL injury and subsequent surgical reconstruc-
tion [81, 101, 145]. For instance, patients following ACLR 
exhibit differential knee-related brain activation in regions 
important for attention, vision, and sensorimotor integration 
compared to their non-injured peers [7, 8, 63], indicating 
aspects of normal CNS function may not be fully restored 
through rehabilitation. Thus, employing rehabilitation strate-
gies that focus on addressing musculoskeletal system may 
restore symmetrical bilateral kinematics, but may overlook 
critical CNS impairments that allow for, and actually may 
underlie, subtle prolonged movement compensations.

The Solution: OPTIMAL PREP Strategies 
for Injury Resistant Movement

Recent evidence indicates that incorporating motor learning 
principles into rehabilitation protocols can improve landing 
mechanics for those recovering from ACL injury [53] and has 
been theorized to improve CNS function more broadly (non-
specific to ACL injury) [160]. Considering that classic motor 
learning principles can be easily implemented through slight 
modifications in verbal instruction and feedback, such prin-
ciples may be able to overcome the shortcomings of conven-
tional ACL rehabilitation protocols by leveraging the brain’s 
capabilities to positively adapt by targeting specific neural 
mechanisms via its potential for neuroplasticity [30]. While 
the concept of applying motor learning principles to ACL 
injury rehabilitation and prevention have been presented in 
the literature [12, 51, 52, 54, 55], clinicians, coaches, instruc-
tors, and athletes do not commonly implement motor learning 
theory principles within their clinic, on the practice field, or 
during athletic competition [39, 41, 64, 77, 134, 138, 154, 
162]. A recent review provided the potential neural corre-
lates and applications for various motor learning principles to 
ACL rehabilitation [54], and another clearly described related 
aspects of motor learning for clinicians aiming to enhance 
adaptive neuroplasticity post-ACLR [43], but neither report 
discussed recommendations within the context of the OPTI-
MAL (Optimizing Performance Through Intrinsic Motivation 
and Attention for Learning) theory of motor learning [160]. 
Specifically, OPTIMAL theory identifies three distinct and 
partially independent motivational (enhanced expectancies, 
autonomy support) and attentional (external focus) motor 
learning factors/principles (i.e., “pillars”) theorized to lever-
age the capacity for CNS plasticity to achieve enhanced motor 
behavior through adaptive neuroplasticity [160]. Further, the 
pillars of OPTIMAL motor learning can be combined for 
more robust, additive effects [1, 23, 102, 103, 106, 128, 161], 
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but a conceptual framework for application of OPTIMAL 
theory in the context of ACL injury management strategies in 
youth—inclusive of prevention, rehabilitation, and exercise 
performance more generally—has yet to be proposed. A better 
mechanistic understanding regarding the role of motor learn-
ing on the CNS may help practitioners ‘buy-in’ and implement 
such methods in practice. For instance, applying more targeted 
and motivational approaches may lead to a more confident 
recovery, thereby increasing patient motivation and adherence 
allowing for the dosage needed to restore functional ability 
after injury [46, 151].

The purpose of this manuscript was to summarize the 
extant literature regarding youth brain development, as well 
as neuroplasticity associated with ACL injury. Specifically, 
we aimed to provide a conceptual framework for how the 
application of the OPTIMAL theory pillars could be applied 
to capitalize on youth neuroplasticity and elicit desirable 
biomechanical adaptations to support injury prevention (spe-
cifically reduction of injury risk), optimize rehabilitation 
strategies, and enhance exercise performance to support 
youth play across all facets of sport (Prevention Rehabili-
tation Exercise Play; PREP). “Youth” was defined herein 
as ~ 6 to 25 years of age and inclusive of pre-adolescence/
pubertal, adolescence/post pubertal, and early adulthood. We 
selected a lower bound age range of ~ 6 years old indica-
tive of the age period in which youth generally exhibit the 
requisite motor competence to benefit from training/resist-
ance/agility programs, possess sufficient level of physical 
and emotional maturity, and/or is ready for structured sports 
participation [10, 91–96, 98, 99, 105, 115]. An older bound 
age range of ~ 25 years old was included to be cognizant 
of the college-aged participants that constitute the majority 
of studies providing empirical data for the neuroplasticity 
of ACL injury [122] and OPTIMAL motor learning [160], 
yet still within the age window that is burdened by such 
musculoskeletal trauma [76, 164]. However, we emphasize 
the described age window should not be considered fixed or 
restricted based on chronological number in light of various 
growth/maturational factors [9, 97, 104]. In fact, neurologi-
cal, developmental-related factors could potentially amplify 
the relative effectiveness of OPTIMAL PREP strategies in 
the younger cohort of our age window (pre to early-adoles-
cence vs. late adolescence/early adulthood), but will require 
implementation of these programs and further investigation 
to clarify with certainty.

ACL Injury and Neuroplasticity in Youth: 
An Overlapping Time Window

The inclusive youth age window of ~ 6 to 25 is intended to 
overlap between periods when ACL injury prevalence and 
incidence are high and when youth are undergoing a state of 

heightened CNS plasticity. Data from the United Kingdom 
and Sweden show that ACL surgical repairs are most often 
performed in patients aged 20–29 [2, 3]. However, surgi-
cal rates in patients under 20 years old are rapidly increas-
ing, with reports from 1997 to 2017 indicating more than a 
20-fold increase [2]. The age window of surgical interven-
tions for ACL injury is further modulated by sex. Prior to 
maturation, boys appear to be at greater risk of ACL injury; 
however, following puberty, ACL injury risk and incidence 
disproportionately increase in females [44, 73, 137]. Given 
these data, combined with secondary injury being most prev-
alent in youth under the age of 20 years old [158], youth 
may particularly stand to benefit from OPTIMAL PREP to 
enhance injury prevention programs for reduced risk for pri-
mary and secondary injury.

Throughout these time periods, and across the lifespan 
more generally, brain function and structure is malleable. 
However, during childhood and adolescence, many pro-
gressive and regressive functional and structural changes 
take place until more stable states are reached during young 
adulthood [148]. Specifically, longitudinal evidence from 
a large study of 387 subjects aged 3–27 years old, demon-
strated that from early childhood to early adulthood white 
matter volume increases linearly (i.e., progressive change) 
and grey matter volume develops along a U-shaped curve 
(i.e., progressive and then regressive change) that peaks 
around age 8.5 years for females and 10.5 years for males 
[86]. These developmental changes result in the strengthen-
ing of connectivity between functionally-related, spatially 
distinct brain regions [155], as well as substantial reduc-
tion in synaptic density—otherwise known as synaptic 
pruning [130]—which accounts for grey matter loss dur-
ing adolescence [74, 86]. Though males and females tend 
to follow similar trajectories of neurodevelopment, the age 
of peak regional grey matter when there is a switch from 
mostly growth to mostly synaptic pruning, is consistently 
1–2 years earlier for females than males, but the rate of 
change is higher in males across childhood and adolescence 
[86]. Due to female neurodevelopmental trajectories peaking 
earlier than males, and physical maturational onsets earlier 
in females than males, researchers have tenuously suggested 
that the onset of puberty and sex hormones likely contribute 
to the earlier (younger age of onset) window for the onset of 
synaptic pruning [31, 45, 70].

At the individual level, the timeline for brain maturation 
varies; however, higher-order cognitive brain regions, such 
as the prefrontal cortex, generally mature after regions more 
important for sensorimotor control, such as the postcentral 
gyrus/primary somatosensory cortex [50]. Specifically, pro-
spective longitudinal neuroimaging data (ranging from ~ 4 
to ~ 21 years old) indicate that gray matter volume follows 
a “back-to-front” developmental trajectory as youth transi-
tion from childhood to early adulthood, such that occipital/
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parietal lobes develop prior to the frontal lobe [50]. These 
findings can be attributed to functional, evolutionary mile-
stones necessitating the need for basic sensorimotor control 
before higher level (i.e., top-down) cognitive functioning. 
However, in the context of sports, successful top-down pro-
cessing in addition to fundamental sensorimotor functioning 
is vital to maintain injury-resistance during play [37, 38, 
150]. Though the plastic nature of the brain is maintained 
across the lifespan, the robust changes in brain and behav-
ior during the younger years [131] likely support an ideal 
time window to apply interventions that capitalize on the 
increased potential to influence injury-resistant neuroplastic 
adaptations.

The requisite for efficient top-down processing for youth 
injury resistance can be seen on an athletic field where ath-
letes must execute appropriate motor responses while navi-
gating a physically and cognitively demanding environment. 
Complex sporting scenarios exemplify the importance of 
successful communication throughout the nervous system, 
as errors in higher-level processing can instantiate a trau-
matic injury. For instance, ACL injury events occur more 
readily when an athlete is cognitively distracted (e.g., an 
incoming ball, surrounded by defenders) [72, 83], plausibly 
due to the CNS failing to anticipate, prepare, and/or correct 
a high-risk knee position. Thus, perception–action loops, 
or the higher-order ability to integrate sensory information 
with past experiences and prepare and execute the appropri-
ate motor response, are vital for injury resistance, warrant-
ing approaches that can provide developmental synchrony 
between top-down processing and sensorimotor control. One 
means to accomplish this may be through physical activity 
due to its capability to improve both neurocognitive function 
[5, 24, 144, 149] and sensorimotor control in adolescents 
[35, 110, 115]. Further, youth physical fitness is associated 
with grey matter and white matter microstructure profiles 
more similar to young adults [69]. Thus, therapeutics for 
youth that include physical activity may foster enhanced 
injury resistance by supporting development of top-down 
processing at earlier ages, or at least shift the maturational 
timeline to occur more in tandem with sensorimotor cortical 
maturation.

Indeed, unique training frameworks have been developed 
and supported for implementation in youth athletes aimed to 
reduce the likelihood of such injury scenarios by leveraging 
the beneficial effects of physical activity on neurophysio-
logic development [42, 44, 45, 95, 96, 110, 115, 127]. While 
motor coordination does develop naturally, creating optimal 
learning environments for physical activity and individual-
ized motor learning strategies can further enhance automa-
ticity of motor control and retention of motor behavior [79]. 
To accomplish optimal learning environments, limitations 
with respect to motor learning literature should also be con-
sidered. Specifically, many classic studies tuse terms such as 

“practice” or “acquisition” interchangeable with “training”, 
as they have relied on short-term interventions of one or 
two days and “retention/learning” assessments following rest 
periods as low as 20 min [139, 140] and typically not more 
than 24 h [78, 159, 160]. While still important contributions 
to the literature, the nuanced differences between motor per-
formance and motor learning [79, 147] are not always clearly 
delineated, specifically as to whether a learned behavior may 
actually be retained for an extended time period. There is a 
critical need to create novel, individualized teaching and 
learning opportunities that promote long-term motor neu-
rodevelopment and retention of training adaptations [6, 94, 
127].

One example of such an environment is integrative 
neuromuscular training that incorporates general and spe-
cific strength and conditioning exercises, while also chal-
lenging neurocognitive and sensorimotor processes [110], 
that can reduce the risk of ACL injury [118]. Though the 
mechanistic influence of such programs on neurodevelop-
ment has been primarily theoretical, the extant literature 
indicates that youth neuroplasticity is malleable and ripe 
for intervention-increased protective adaptations. The mul-
timodal approaches combined in OPTIMAL theory may 
provide a pathway to enhance motor development in young 
athletes that increases injury-resistance across the lifespan. 
The recent proliferation of research into the neuroplasticity 
associated with ACL injury has revealed distinct altera-
tions within the CNS (using methods including functional 
magnetic resonance imaging [fMRI], transcranial magnetic 
stimulation, etc.) (for a review see Neto et al. [122]), provid-
ing an opportunity to apply innovative techniques capable 
of treating both movement and CNS dysfunction simulta-
neously in youth, such as OPTIMAL PREP strategies. To 
support the subsequent neurophysiologic sections related to 
ACL injury, Fig. 1 is provided as general reference regarding 
the anatomy of the CNS related to neuromuscular control.

Neuroplasticity and ACL Injury

One factor driving the novel investigation of neuroplasticity 
and ACL injury stems from data indicates that these inci-
dents typically occur in dynamic environments that simulta-
neously challenge multiple neural processing demands (e.g., 
integration of vision and proprioception inputs with cogni-
tive decision-making when an athlete attempts to navigate 
through two defenders) [83, 84]. Indirect evidence of CNS 
dysfunction such as neurocognitive measures of reaction 
time and memory [150] indicates a potential predisposition 
for ACL injury that is unique from the classic neuromuscular 
[57] or biomechanical measures associated with ACL injury 
risk [71]. Further, emergent data of direct CNS dysfunc-
tion related to ACL injury (specifically within the brain and 
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spinal cord) has proliferated and generally fall into one of 
three categories in order of most empirical evidence: (1) 
CNS alterations following ACLR (2) CNS alterations that 
are associated with high ACL injury-risk biomechanics (e.g., 
aberrant frontal plane biomechanics) and (3) CNS dysfunc-
tion identified prior to future ACL injury. While a scop-
ing review of these three topics are outside the aims of this 
report (see Neto et al. [122] for such a review), we briefly 

describe each below to provide the foundation that supports 
the application of OPTIMAL PREP training strategies [34, 
36].

Central Nervous System Alterations Following ACLR

Though a ligamentous injury such as an ACL rupture does 
not directly insult the CNS, disrupted afferent signaling from 

Fig. 1   General overview of key central nervous system components 
involved in neuromuscular/sensorimotor control. Though nearly all 
brain regions play some role in human movement depending on vari-
ous constraints, we color-coded six brain regions particularly impor-
tant for lower extremity, closed kinetic chain sensorimotor control 
(Grooms et al. [59]). In light of unique, individual anatomical struc-

ture, we determined the location of each brain region by using stand-
ard probabilistic atlases of the human brain with various thresholds to 
support presentation. The blue line represents the corticospinal tract 
and efferent information where it innervates with the musculature, 
whereas the teal line represents afferent information traveling from 
the musculature through the dorsal column and into the brain
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the damaged/reconstructed ligament can propagate altera-
tions in spinal and supraspinal function.[121]. One technique 
capable of quantifying supraspinal dysfunction is transcra-
nial magnetic stimulation (TMS), which has been used in 
patients following ACLR [66, 87–89, 101, 123, 133, 163]. In 
brief, TMS applies magnetic fields to stimulate brain nerve 
cells (typically over the primary motor cortex to produce a 
musculature response at rest, i.e., resting motor threshold) 
or during an activity, i.e., active motor threshold) quanti-
fied with electromyography. In turn, these techniques can 
estimate the excitability of intracortical and corticospinal 
neurons that innervate specific musculature [141]. Regarding 
ACLR, the primary muscle group investigated is the quadri-
ceps via numerous TMS techniques including single- and 
paired-pulse TMS and demonstrating altered intracortical 
and corticospinal excitability after injury compared to unin-
jured controls [87, 123, 163]. Further, elevated intracortical 
inhibition and depressed corticospinal excitability in patients 
following ACLR has been associated with reduced quadri-
ceps voluntary activation [88, 101, 133], yet are limited by 
their failure to examine more widespread brain dysfunction 
beyond the primary motor cortex.

As cortical activity reflects a balance between inhibitory 
and excitatory circuits [22], electroencephalography (EEG) 
provides a means to supplement TMS-driven responses by 
measuring synaptic electrical activity throughout the cortex. 
Like TMS, there are numerous methods (e.g., at rest, during 
isometric muscular contractions, peripheral nerve stimula-
tion) and techniques including somatosensory-evoked poten-
tials and spectral analyses that have successfully demon-
strated altered CNS function following ACL injury [7, 8, 
25, 85, 108, 124, 125, 153]. For instance, by using EEG 
and asking patients following ACLR to complete joint posi-
tion and force reproduction tasks, researchers have identified 
alterations in frontal theta and parietal alpha-2 frequency 
bands compared to the unaffected contralateral limb and/or 
controls [7, 8], potentially indicating a less efficient alloca-
tion of CNS resources towards somatosensory and atten-
tional processing. Though these findings supplement those 
from TMS by showing CNS dysfunction that extends beyond 
the primary motor cortex, EEG is limited by recordings of 
superficial brain activity that precludes insight into potential 
subcortical functioning that is critical for motor control, such 
as the basal ganglia shown in Fig. 1.

fMRI and MRI allow for the measure of cortical and 
subcortical brain structure and function with higher spa-
tial resolution relative to other described methods. Like the 
aforementioned instrumentation, numerous methods and 
techniques are possible by means of fMRI and MRI. These 
include and are not limited to studying brain function at rest 
and during movement via the blood oxygen level depend-
ent signal, and brain structure at rest as determined by rela-
tive cortical thickness and white matter connectivity, all of 

which can be analyzed over the whole brain or isolated to 
regions of interest. With respect to ACLR, task-based fMRI 
paradigms of unilateral knee flexion and extension move-
ments have identified regional differences in blood oxygen 
level dependent signal activation/connectivity between those 
with ACLR and/or ACL deficient and controls [26, 62, 63, 
80, 89]. Results from these studies have led researchers to 
hypothesize a framework whereby, following an ACL injury, 
patients switch from a sensory-motor to a visual-motor brain 
activation strategy for knee motor control [58, 63]. Sup-
ported by findings of increased activity in regions important 
for vision relative to sensorimotor control, these findings 
indicate that patients following ACLR rely more heavily on 
visual-proprioceptive processing following injury [21, 63], 
potentially due to internally-focused, visually guided and 
largely feedforward rehabilitation strategies with focus of 
attention on the joint or surrounding musculature. Recently, 
MRI-derived methods such as diffusion weighted imaging 
have even been combined with TMS to reveal neurostruc-
tural alterations for patients following ACLR, with less pri-
mary motor cortex excitability and alterations to the aniso-
tropic/diffusion properties of the corticospinal tract observed 
[90].

CNS Alterations that are Associated with High ACL 
Injury‑Risk Biomechanics

Emergent evidence has shown that athletes with poor neuro-
muscular control that have not experienced an injury or may 
have yet to experience an injury as signified by high external 
peak knee abduction moments during a drop vertical jump, 
eliciting resting-state electrocortical activity that may sig-
nify the CNS cannot effectively transition from rest to move 
states [19]. Technological improvements have advanced this 
line of research from resting to active states by developing 
MRI-compatible motion capture systems that can now be 
used to capture lower extremity biomechanics concurrent 
with CNS function derived from fMRI [4, 15]. Preliminary 
findings from our laboratory have revealaed increased out-
of-plane (frontal) knee angle associated with altered brain 
activity in regions important for attention, sensorimotor 
control, and sensorimotor integration while no similar in-
plane (sagittal) neural correlates were identified [33]. Fur-
ther confirming the CNS linkages to aberrant movement, 
preliminary findings demonstrated that overlapping, aberrant 
movement-associated increases in brain activity within the 
lingual gyrus were observed between two separate cohorts 
of youth soccer athletes completing a simulated bilateral 
leg press during fMRI [27]. Aberrant biomechanics were 
identified for one cohort by increased bilateral frontal plane 
knee loads during a drop vertical jump, and increased fron-
tal plane motion during the actual fMRI task was identi-
fied using MRI-compatible motion analyses for the second 
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cohort [27, 60]. Cumulatively, the emergent literature with 
simultaneous measurement of CNS function with lower 
extremity biomechanics indicate distinct neural linkages 
associated with high ACL injury risk biomechanics.

Central Nervous System Dysfunction Prior to ACL 
Injury

Variations of the aforementioned methods and techniques 
have also emerged as relevant approaches to investigate 
CNS alterations prospective to the ACL injury event. To 
our knowledge, only two preliminary studies have prospec-
tively used such direct measures—specifically resting-state 
fMRI—to evaluate CNS dysfunction prior to an ACL injury 
[37, 38]. Both studies, one with high school boys’ football 
and one with high school girls’ soccer, revealed reduced 
functional connectivity between regions important for senso-
rimotor control—some of which that are shown in Fig. 1—in 
athletes who went on to injury, compared to their uninjured 
peers. It was surmised that reduced functional connectivity, 
defined as the temporal correlation of the residual BOLD 
signal between spatially distinct brain regions [13], repre-
sented a potential predisposition for ACL injury, possibly 
reflecting poor sensorimotor CNS function that impeded 
neuromuscular control. The prospective findings relating 
CNS function with aberrant biomechanics indicate that CNS 
function should be considered along with biomechanical and 
muscular function for injury prevention strategies [35, 61, 
136].

Collectively, data from TMS, EEG, and fMRI/MRI 
related to ACL injury have revealed distinct alterations 
within the CNS that could be targeted through neural mech-
anistic approaches, particularly in youth who are ripe for 
intervention-increased protective brain adaptations. Specifi-
cally, the robust behavioral literature supporting the OPTI-
MAL theory “pillars” of motor learning, as well as the theo-
rized neural mechanisms of each principle, could potentially 
be used to uniquely target the neuroplasticity surrounding 
ACL injury [36]. Further literature provides more tangible 
examples of how OPTIMAL PREP strategies, such as “aug-
mented” neuromuscular training [16–18] could be used to 
promote injury resistance [34].

Broad Application of OPTIMAL PREP 
Strategies in Youth

To enhance the clinical applicability, we have focused the 
current commentary on the neuroscience of ACL injury. 
Despite the noted sex- and age-related factors of neu-
rodevelopment and ACL injury more broadly, OPTIMAL 

PREP strategies are designed to be agnostic to sex. How-
ever, OPTIMAL PREP strategies may demonstrate ampli-
fied effectiveness if implemented at the earliest ages, but 
future research and supporting data is warranted to deline-
ate and optimize the best timing to apply these interven-
tional strategies. Further, we emphasize that the provided 
framework is also applicable for enhancing motor con-
trol for injury prevention, performance enhancement, and 
management of other youth musculoskeletal conditions 
such as patellofemoral pain or juvenile fibromyalgia. The 
opportunity to apply OPTIMAL PREP training strategies 
across the spectrum of youth populations is grounded in 
their heightened CNS plasticity more broadly [50, 131, 
148, 155], making them uniquely suited for motor learn-
ing adaptations that can reduce injury risk and enhance 
injury recovery. For instance, children with developmental 
coordination disorder—a condition characterized by mala-
daptive motor development [47]—who completed a trail-
tracing test elicited an altered brain activation profile [165] 
that shared similarities to patients following ACLR com-
pleting knee flexion and extension movements [63]. Spe-
cifically, both patient populations demonstrated increased 
activity in various occipital-parietal regions compared to 
controls when completing their respective sensorimotor-
based tasks [63, 165]. OPTIMAL PREP strategies provide 
limitless potential for practitioners to apply techniques 
that target the aforementioned neural alterations [34]. For 
example, a clinician could aim to reweight their patients’ 
brain activity in favor of sensorimotor activation using an 
external focus of attention [36].

Further, these strategies are relevant to motor control 
more generally and are designed to be agnostic to ACL 
injury. Specifically, the targeted population for OPTIMAL 
PREP strategies does not need to share an “overlapping” 
neural dysfunction to that reviewed for ACL injury, or 
even have measurable CNS dysfunction to begin with. 
For instance, a “visual-motor” brain activation strategy 
for knee motor control is present following ACLR [58, 
63], but is not required for OPTIMAL PREP strategies 
to potentially be effective. Normal age-related structural 
development from childhood to adolescence of white mat-
ter fiber direction and gray matter volume important for 
sensorimotor control are intricately linked, potentially due 
to synergism between white matter expansion and gray 
matter contraction by means of myelination and synaptic/
dendritic maturational processes [20]. The motivational 
pillars of OPTIMAL theory that include autonomy sup-
port and enhanced expectancies may be uniquely suited 
to exploit these neurodevelopmental processes as part 
of PREP strategies by releasing dopamine to modulate 
pre- to-post-synaptic transmission between neurons for 
enhanced sensorimotor control [36, 160]. Please see 
Fig. 2 that summarizes our theoretical framework to apply 
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OPTIMAL PREP strategies for injury resistance by capi-
talizing on their heightened CNS plasticity.

Summary and Future Directions

We have summarized the extant literature regarding brain 
development, neuroplasticity, and ACL injury within the 
context of a youth athlete. CNS linkages between aber-
rant movement and ACL injury, combined with youth neu-
rodevelopment more broadly, indicate a unique window 
to apply OPTIMAL PREP strategies to achieve injury-
resistance during play. Specifically, the positive brain 

Fig. 2   Potential for OPTIMAL PREP strategies to accelerate injury 
resistance in youth: capitalizing on a unique time window of height-
ened central nervous system plasticity (~ 6 to 25 years of age). The 
line chart illustrates potential responsiveness to ACL injury risk 
reduction and neuromuscular training interventions across age/
maturational status. *Responsiveness is operationally defined as sub-
sequent risk for an ACL injury following completion of such a pro-
gram; y-axis is approximate, but conceptually derived from relevant 
data in females that did not incorporate OPTIMAL PREP strategies 
[132]. Purple lines represent potential responsiveness if interven-
tion is implemented in adulthood (light purple), and the potential for 
relatively enhanced responsiveness if OPTIMAL PREP strategies are 
additively incorporated (dark purple). Green lines represent respon-

siveness if intervention is implemented in adolescence (light green), 
and the potential for amplified responsiveness if OPTIMAL PREP 
strategies are additively incorporated (dark green). Brain images with 
yellow lines depict heightened synaptic pruning [130], and progres-
sively increased blue brain shading represents the trajectory of gray 
matter maturation from parietal-occipital to frontal lobes [50]. †Cen-
tral nervous system plasticity is generally considered most robust and 
responsive during “youth” versus middle and late adulthood. How-
ever, the immense variability of neuroplastic changes (e.g., cellular, 
structural, functional; often context- or individual-specific) require 
future investigation within the context of OPTIMAL PREP applica-
tion before more defined age windows can be clarified
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adaptations we anticipate in response to OPTIMAL PREP 
strategies are designed to be applicable to a variety of 
populations throughout the formative developmental years 
for those with and without movement disorders.
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