
Vol.:(0123456789)1 3

Journal of Science in Sport and Exercise (2020) 2:7–14 
https://doi.org/10.1007/s42978-019-00044-2

REVIEW ARTICLES

Kinetics of Changes in Hemoglobin After Ascent to and Return 
from High Altitude

Heimo Mairbäurl1,2 

Received: 17 April 2019 / Accepted: 17 October 2019 / Published online: 18 November 2019 
© Beijing Sport University 2019

Abstract
Decreased oxygen availability in sojourners requires adjustments in tissue oxygen supply, the most effective of which is an 
increase in the hemoglobin (Hb) concentration. It is achieved by two independent processes: a fast increase in Hb is achieved 
by decreasing plasma volume due to enhanced renal Na- and water excretion. A further but slow increase in Hb concentra-
tion is achieved by stimulation of erythropoiesis by mechanisms depending on stabilization of hypoxia-inducible factor 2α 
resulting in elevated levels of erythropoietin in blood. The magnitude of decrease in plasma volume and of stimulation of 
erythropoiesis depends on the degree and duration of exposure to hypoxia at high altitude. Upon descent from high to low 
altitude elevated O2-transport capacity is no longer needed. Thus, plasma volume can be restored and excess erythrocytes 
can be removed from circulation. This latter process is called erythrolysis. Its effectiveness seems to depend on the altitude 
to which individuals had been exposed. Whereas most of the excess erythrocytes seem to be removed from circulation within 
1–2 weeks after a stay at altitudes > 3500 m, total Hb mass seems to remain elevated for up to 4 weeks when individuals 
had been exposed to more moderate altitudes, e.g. in the range of 2500 m. These are the altitudes where athletes typically 
perform altitude training. Thus, it appears that improved performance in the weeks after return from altitude training depends 
in part on maintaining elevated total Hb mass, which is known to increase aerobic capacity.
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Introduction

Hypoxia at high altitude (HA) impairs tissue oxygen supply 
and compromises cellular functions. Lowlanders ascending 
to HA without any pre-acclimatization are most affected, and 
they usually do not tolerate altitudes > 4000 m very well in 
the sense that their maximal exercise performance is consid-
erably decreased in comparison to performance at low alti-
tude [24], which is indicated by decreased VO2max [8]. The 
loss in VO2max is even more pronounced in athletes than in 
untrained. Increased ventilation, increased oxygen affinity of 
hemoglobin (Hb), increased cardiac output and altered tissue 
perfusion, and elevated Hb concentration and hematocrit are 

some of the most important mechanisms of adjustments to 
high altitude hypoxia [6]. Despite of some acclimatization, 
maximal exercise performance remains hampered because 
normal oxygen partial pressure in arterial blood (PaO2) can-
not be restored and impaired oxygen diffusion from blood 
to tissues persists [8]. Lowlanders travelling to high altitude 
are much more affected than high altitude natives, which is 
demonstrated best by less pronounced deterioration in high 
altitude-natives than in lowlanders within the first days and 
even weeks of their sojourns [7]. In addition, maladapta-
tion and susceptibility increase the prevalence to suffer from 
high altitude-related illnesses such as acute mountain sick-
ness (AMS) [2] and high altitude pulmonary edema (HAPE) 
[56]. This indicates that complete adaptation to hypoxia may 
require life-long residence and even residence at high alti-
tude of many generations [4], resulting in genetic selection 
and complex patterns of adjustments, one of which is an 
increase in the Hb concentration and total Hb mass (totHb).

This review will focus on mechanisms and kinetics of 
increasing the Hb concentration and tot-Hb during exposure 
to high altitude hypoxia, which allows transport of a larger 
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amount of oxygen by blood in compensation for decreased 
oxygen saturation in arterial blood (SaO2). It will also dis-
cuss kinetics and possible mechanisms to normalize Hb 
upon descent from high altitude when the increased oxy-
gen carrying capacity is no longer needed. This aspect is of 
great significance for athletic performance after returning 
from altitude training because increased totHb is one of the 
determinants of improved aerobic capacity [50].

Increase in Hb Concentration in Lowlanders 
Ascending to High Altitude

The oxygen partial pressure (PO2) of inspired air is lowered 
at high altitude in proportion with the decrease in baromet-
ric pressure. As indicated in Fig. 1a, which summarizes 
means of adaptation to hypoxia, a decrease in arterial PO2 
is sensed by carotid bodies, which generate signals stimu-
lating alveolar ventilation. Hyperventilation at HA slightly 
raises the alveolar PO2 at the expense of decreased arterial 

partial pressure of CO2 [63] resulting in respiratory alka-
losis. Elevated pH increases SaO2 because of an increase 
in the oxygen affinity of Hb [29]. However, the degree of 
hyperventilation to a defined hypoxic stimulus varies con-
siderably among individuals, where those with the lowest 
ventilatory response to hypoxia (HVR) are the least hypoxia-
tolerant indicated by increased susceptibility to high altitude 
pulmonary edema (HAPE) [21], maybe also to AMS [3]. 
Sojourners to HA also show pronounced hypoxic pulmo-
nary vasoconstriction [58], which favors filtration of fluid 
into the alveolar space and causes subclinical [12] and even 
full-blown HAPE with massively impaired trans-alveolar 
oxygen diffusion [57]. Even after long-term sojourns, low-
landers do not acquire the improved gas exchange observed 
in native highlanders [13], and consequently lowlanders have 
to cope with decreased arterial oxygen loading indicated by 
decreased SaO2. Compensation by increasing cardiac out-
put is insufficient. Thus, besides adjustments at the tissue 
level, which are incompletely understood, the only means 
of improving the amount of oxygen delivered to peripheral 
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Fig. 1   Oxygen transport in blood. a The amount of oxygen trans-
ported from the lungs to peripheral tissues depends on arterial oxy-
gen loading, transport to the tissues, and unloading from Hb. Arterial 
oxygen content (CaO2) is thus determined by the oxygen affinity of 
Hb (Hb-O2-affinity), which affects SO2 at any given PO2, on arterial 
PO2, which is a function of alveolar ventilation, and by the concen-
tration of Hb determined by erythropoiesis and plasma volume. The 
amount of oxygen delivered to peripheral tissues depends on tissue 
blood flow and oxygen unloading. Blood flow is a function of cardiac 

output and local control of tissue perfusion (Q), while the amount of 
oxygen unloaded from Hb depends on tissue PO2 and again on Hb-
O2-affinity and, therefore, oxygen consumption can be calculated 
from blood flow and the arterio-to-venous difference in blood oxygen 
content (CaO2–CvO2) (after Bouverot [6]). b Examples indicating the 
magnitude of increase in the Hb concentration in blood to maintain 
stable arterial oxygen content despite decreased arterial SO2 in high 
altitude hypoxia
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tissues remains to be an increase in the oxygen carrying 
capacity (Fig. 1b). This might involve an increase in the con-
centration of Hb in blood by increasing the hematocrit (Hct), 
i.e. a decrease in plasma volume, as well as an increase in 
the totHb due to stimulated erythropoiesis.

One gram of Hb binds 1.34 mL of oxygen [29]. It can, 
therefore, be calculated how much the Hb-concentration in 
blood has to increase to compensate for decreased SaO2 as 
indicated in Fig. 1b. As an example, the decreased arterial 
oxygen content caused by a decrease in SaO2 from 95 to 90% 
upon ascent to an altitude of approximately 2500 m can be 
compensated by an increase in the Hb concentration by 1 g/
dL. Ascent to higher altitudes requires a more pronounced 
increase in Hb concentration (Fig. 1b). This response has 
been reported as early as 1890 by Viault [60], who showed a 
progressive increase in the number of erythrocytes in blood 
with continued stay at high altitude in the Andes.

Two mechanisms account for increasing the Hb concen-
tration at high altitude: One is a decrease in plasma volume 
which occurs within a few days of exposure to high altitude 
[52], and a second, much slower mechanism, is an increase 
in tot-Hb in the circulation by stimulation of erythropoiesis 
[40, 49].

Decrease in Plasma Volume (PV) at High Altitude

A decrease in PV upon ascent to high altitude has long 
been recognized [31]. Its degree depends on the absolute 
altitude and the duration of the sojourn (summary in [49]). 
Literature indicates a decrease in PV within a few days 
after ascent [19], which reaches stable values of approxi-
mately 10% below normal at altitudes between 2900 and 
4000 m, but decreases further by more than 25% at alti-
tudes above 4000 m [41, 52]. Literature on PV-changes at 
high altitude appears controversial: Some studies indicate a 
nearly complete recovery of PV after spending > 3 months at 
high altitude [41], and there are also reports on an increase. 
Although the literature is not entirely clear, it appears that 
the reduction in PV and in total extracellular water is blunted 
by exercise [32]. Exercise like hill-walking has been shown 
to significantly increase PV [34]. Thus, studies using passive 
ascent to high altitude often report on a pronounced decrease 
in PV, whereas in physically active individuals such as in 
athletes performing altitude training, this decrease may not 
occur (e.g. [30]).

The primary mechanism causing the water loss at high 
altitude seems to be an impaired activity of the renin–angi-
otensin–aldosterone system that increases renal Na- and 
water excretion [32, 33]. A significant contribution might 
also come from decreased glomerular plasma flow [37]. 
Other contributors might be increased fractional Na-excre-
tion because of increased levels of atrial natriuretic peptide 
[36] and osmotic water loss due to stimulated bicarbonate 

excretion, which occurs in compensation of hyperventila-
tion-induced respiratory alkalosis [52]. Other, so far not well 
understood mechanisms might contribute as well [52].

The physiological consequence of a moderately increased 
Hct is a profound increase in tissue oxygen supply. This 
positive effect is explained by the increased amount of oxy-
gen that can be delivered per stroke volume or with cardiac 
output. Thus, a combination of increased Hb-concentration 
with increased cardiac output and tissue blood flow is a 
powerful tool compensating for decreased SaO2 at high alti-
tude. However, it is well recognized that massively elevated 
Hct increases blood viscosity and may cause stroke and 
thrombosis.

Erythropoiesis at High Altitude

Hypoxia stimulates erythropoiesis, which affects both the Hb 
concentration and totHb in circulating blood. Erythropoiesis 
is stimulated by an elevation of erythropoietin (EPO) lev-
els in blood in response to stabilization of hypoxia-induced 
transcription factor HIF-2α [18]. EPO then acts as an anti-
apoptotic growth factor preventing premature death of eryth-
roid precursor cells in the bone marrow [64]. EPO levels in 
blood follow a distinct pattern upon ascent to high altitude: 
a pronounced increase can be observed within a few hours 
after exposure to hypoxia, which is then followed by a sharp 
decrease to considerably lower levels, which are, however, 
higher than normoxic EPO levels. Both, initial peak and 
steady state EPO levels depend on the degree of hypoxia 
[64]. Despite this rapid increase in EPO and rapidly stimu-
lated Hb synthesis indicated by increased iron-turnover [18, 
22], it takes weeks to months to produce significant amounts 
of new erythrocytes and to increase totHb.

The magnitude of the increase in totHb depends on 
absolute altitude and duration of stay. Rasmussen et al. per-
formed a meta-analysis that included studies with subjects 
spending their time continuously in hypoxia. But they also 
included studies on intermittent hypoxia as often applied in 
sleep-high-train-low altitude training modalities [40]. Both 
groups show quite similar responses. Results indicate that 
one has to spend approximately 4–9 weeks at an altitude 
of ~ 2000 m to increase totHb by 5%. In contrast, the same 
gain can be achieved by spending ~ 3 weeks at an altitude of 
3500 m [40]. Gravican et al. [16] used a different approach 
to estimate the time and altitude required to increase totHb 
by introducing a measure of “altitude-kilometers × hours-at-
altitude”. According to this analysis a 5% increase in totHb 
could be achieved by 1500 km × h, which might e.g. be 
31 days at 2000 m or 18 days at an altitude of 3500 m.

There is great variability in the erythropoietic response 
to HA, and there are even “non-responders” [9]. This aspect 
is of particular importance in athletes, who chose train-
ing at HA to improve aerobic performance [9], where the 
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availability of iron might restrict stimulation of erythropoie-
sis. Wachsmuth et al. [61] showed that total Hb increased in 
most of the highly competitive swimmers during a 3-weeks 
training in the Sierra Nevada (2320 m), and that changes 
were similar in males and females. It is of note that these 
changes by altitude training occur on top of an already 
increased totHb in well-trained athletes [23], a result that 
has been confirmed many times thereafter (for review see 
[49]). Interestingly, no change in totHb was observed in 
athletes who could not participate in the training program 
at altitude because of injury or other illness but who still 
spent the time in the high-altitude training camp. There is 
the possibility, of course, that a persisting state of inflamma-
tion might have negatively affected erythropoiesis by IL-6 
and hepcidin dependent reduction in iron availability [20]. 
These results indicate that the effectiveness of the altitude 
training on totHb might not only depend on exposure to high 
altitude hypoxia alone but also requires the additional stress 
of exercise in this environment. Mechanisms and interac-
tions are not fully understood.

Decrease in Hb Upon Return from High 
Altitude

Neither increased Hb concentration nor increased totHb 
is needed any longer after descending from high altitude, 
because inspired PO2 and SaO2 are now high enough to 
result in high arterial oxygen loading and oxygen unloading 
to tissue by steep oxygen gradients. Any excess Hb could, 
therefore, be removed from circulation. This mechanism 
might be beneficial because it reduces strain on the cardio-
vascular system. Another advantage is a decreased require-
ment for iron. By contrast, maintaining elevated totHb might 
be of advantage because it improves aerobic capacity and 
thus aerobic exercise performance at low altitude [50].

Destruction of Erythrocytes in Normoxia

The average life-span of mature erythrocytes is 
100–130  days. In normoxia, destruction of senescent 
erythrocytes amounts to approximately 0.5% of the entire 
erythrocyte mass per day, which is balanced by a stable rate 
of production of erythrocytes of approximately 160 × 106 
erythrocytes per minute. Senescent erythrocytes are typi-
cally removed by the reticulo-endothelial system (RES), 
mainly in the spleen, where cells are tested for deformability 
and resistance to metabolic depletion and are sequestered 
“if they don’t pass the test” [43]. Also, loss of the surface 
expression of CD47, CD55, and CD59, which protect mature 
erythrocytes from being attacked by the complement system, 
contributes to their removal both by the RES and by circulat-
ing macrophages.

Random hemolysis of pre-senescent erythrocytes is nor-
mally negligible in humans but amounts to 0.5–1% per day 
in mice and rat [25]. It can be increased by mechanical strain 
such as muscle contraction and various other maneuvers 
increasing the shear stress (for review see [28]).

Destruction of Erythrocytes in Hypoxia

It is of note that erythrocytes formed in hypoxia appear 
to have a shortened life span likely because of increased 
random hemolysis and/or accelerated senescence [15]. By 
contrast, a normal erythrocyte life-span has been shown in 
a small group of highlanders [5]. In rodents, erythrocytes 
formed by stress erythropoiesis seem to have impaired sur-
vival because a doubling of the erythrocyte production rate 
was related to a 3.5% reduction in survival of erythrocytes 
[25].

Time Course of Decrease in Hb Concentration 
and totHb After Return from High Altitude

Results from the literature indicate that Hb actually decreases 
faster upon descent from high altitude than expected from 
just decreasing the rate of erythrocyte production, but results 
on the time course are conflicting. Decreased erythrocyte 
production rates are indicated by a decrease in the number 
of reticulocytes both after descent from moderate [16] and 
high altitude [31, 38]. Upon descent, EPO in plasma was 
decreased dramatically and sometimes even fell well below 
pre-altitude levels [16, 42]. Besides, the incorporation of 
injected 59Fe was significantly reduced in highlanders after 
descent to sea level, which indicates a decreased rate of 
heme-synthesis and erythropoiesis [22].

All studies agree in showing a decrease in Hb concen-
tration and Hct within a few days after return from high 
altitude (> 3500 m) to low altitude, regardless of the alti-
tude to which they had acclimatized (e.g. [16, 31, 51]). This 
rapid decrease in Hb concentration is mainly explained by 
an increase in plasma volume since ANP decreases and 
impaired function of the renin–angiotensin–aldosterone sys-
tem and tubular Na-reabsorption is restored [51]. Results 
on renal Na- and water handling upon return from moderate 
altitude are less clear.

The time course of the decrease in Hb upon descent 
seems to depend on the altitude. A slow decrease in totHb 
in the course of several weeks has been observed upon return 
from a stay at moderate altitude (< 2700 m) [39, 61, 62]. The 
elevation in totHb persisted for at least 2 weeks after descent, 
and pre-altitude totHb levels were reached approximately 
4–5 weeks after descent [16]. In contrast, rapid decrease in 
totHb within at most 10 days has been observed when poly-
cythemic subjects descended from altitudes > 4000 m [42].
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Markers of erythrocyte destruction were elevated in sub-
jects after descending from high altitude. Increased exhaled 
carbon monoxide (CO) [11] and elevated CO-Hb [51] has 
been interpreted to indicate increased activity of heme-oxy-
genase and thus breakdown of erythrocytes and heme. It is 
possible, however, that increased CO is the result of inflam-
mation, which might occur by increased levels of free oxy-
gen radicals upon reoxygenation. However, increased values 
of biliverdin and, bilirubin, and of a decrease in haptoglobin 
in blood have also been observed after descent [31]. Those 
are end-products of the heme-oxygenase reaction. Therefore, 
their elevation might also indicate accelerated breakdown 
of Hb and thus the destruction of erythrocytes [31, 42, 44, 
45].

Erythrolysis or Neocytolysis?

Erythrolysis is the non-selective loss off erythrocytes of all 
degrees of senescence. In contrast, neocytolysis refers to the 
selective destruction of erythrocytes formed newly during 
hypoxia upon return to normoxia. It is unclear, however, 
which fraction of erythrocytes is destroyed upon descent 
from high altitude. Many authors applied the term “neocy-
tolysis” to the descent-related destruction of erythrocytes 
although it has never been demonstrated that selectively 
neocytes had been destroyed [31, 38, 51, 1, 45]. Risso et al. 
reported that the population of youngest cells had been miss-
ing upon descent from high altitude indicated by altered 
distribution of erythrocytes after density gradient centrifu-
gation [44]. This result is in support of the neocytolysis-
hypothesis. It might also be explained by decreased release 
of reticulocytes from the bone marrow because of reduced 
erythropoietic activity, and by altered cell density due to 
shifts in cell water. Thus, direct experimental proof is lack-
ing, and the more appropriate term to describe this process 
is erythrolysis as it had been applied by several authors [31, 
38, 51].

Mechanisms of Accelerated Erythrocyte Destruction

Results obtained on human erythrocytes on the mechanisms 
causing erythrocyte destruction upon return to low altitude 
are sparse. It had been found that erythrocyte fractions of 
different age had acquired a “senescent phenotype” indi-
cated by decreased levels of expression of CD47, CD55, and 
CD59. Loss of these proteins indicates increased suscep-
tibility to phagocytosis by macrophages [44]. The expres-
sion of these proteins seems to depend on the presence of 
EPO because EPO-treatment of patients with renal anemia 
increased the expression of CD47, CD55, and CD59 [35].

There is also evidence that survival of reticulocytes and 
young erythrocytes might depend on the presence of ele-
vated levels of EPO [59]. It has been shown on a small group 

of subjects that loss of reticulocytes seems not to occur when 
subjects were treated with EPO upon descent to prevent the 
EPO decrease [59].

In a mouse model of neocytolysis, Song et al. [53] found 
that reticulocytes produced during exposure to hypoxia had a 
decreased activity of catalase, which was caused by elevated 
miR-21. This enzyme protects from damage by H2O2. Upon 
return to normoxia, reticulocytes produce more H2O2 and 
are damaged, because of the lack of defense mechanisms 
causing cell lysis. This report might indicate that the process 
of erythrocyte destruction after exposure to hypoxic might 
in fact be selective for neocytes produced during hypoxia, 
and thus the term neocytolysis appears justified. A different 
mechanism of impaired resilience to oxidants has also been 
proposed: Rogers et al. showed that deoxygenation of Hb 
altered erythrocyte metabolism and decreased the reduction 
potential [47]. However, in contrast to the mouse model this 
mechanism is independent of erythrocyte age and should 
thus put all erythrocytes in danger of oxidative damage and 
lysis. In this case, the process of cell destruction would be 
nonselective and should thus be called erythrolysis.

Significance For Athletic Performance

The totHb in circulating blood is a major determinant of 
aerobic exercise performance indicated by a highly signifi-
cant correlation between VO2max and totHb [50], because 
an increased totHb increases the total amount of oxygen on 
blood allowing for improved oxygen supply to exercising 
skeletal muscle. Although an increased Hb concentration 
and hematocrit also increase blood oxygen carrying capac-
ity in arterial blood [29], Hb concentration does not cor-
relate significantly with VO2max [50]. This is likely due to 
increased blood viscosity and impaired micro-circulation.

Many elite athletes live and perform their training in 
hypoxia, staying there permanently or intermittently fol-
lowing a “sleep-high-train-low” strategy (e.g. [14, 26, 27, 
48, 54]). The major goal is to improve performance at low 
altitude [55]. The altitude relevant for training is a compro-
mise between restricted performance due to hypoxia at high 
altitude and a hypoxic dose high enough to allow for adjust-
ments of erythropoiesis and other cellular functions that 
might be of advantage for training and competition. Most 
often, altitude ranges between 2000 and 2700 m are used.

Often the mechanisms causing an improvement in perfor-
mance are not fully understood. One important parameter is 
an increase in totHb. Garvican et al. [17] and Rassmussen 
et al. [40] summarized the time that needs to be spent at alti-
tude to achieve a significant increase in totHb. It is of impor-
tance to note that not everybody increases totHb, which clas-
sifies a population into non-responders and responders [9].
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There seems to be great inter-individual variability in the 
optimal time of return from altitude on performance in train-
ing and competition, and it is not entirely clear how long a 
potential beneficial effect might last [10, 39, 46].

Taken together, training at high altitude induces adap-
tive mechanisms, which can be utilized either for improved 
performance in a competition that is performed within a few 
weeks upon return from an altitude training camp, but cer-
tainly also allows for improved effectiveness of training in 
normoxia.

Summary and Conclusion

Hypoxia at high altitude increases the Hb concentration in 
blood by decreasing the plasma volume within the first few 
days of exposure. This increase is absolutely required to 
compensate for the acute decrease in SaO2 particularly at 
altitudes > 4000 m where SaO2 can decrease to below 80% 
in some individuals. During a longer sojourn at high altitude, 
totHb also increases while plasma volume might still remain 
reduced. Whereas the higher Hb concentration increases the 
amount of oxygen transported per stroke volume, the higher 
totHb allows for improved oxygen flux to peripheral tissues 
without the need of restriction of supply to less active tissue 
and organs.

Upon return from high to low altitude elevated Hb 
concentration and totHb are no longer needed. Thus, it is 
useful to decrease elevated values, in particular when the 
increase was well pronounced after prolonged stay at alti-
tudes > 3500 m. The decrease appears to be slower after 
acclimatization to moderate altitudes. The slower destruc-
tion rate of erythrocytes after acclimatization to moderate 
altitude might be of advantage for athletes because they 
benefit from increased totHb by increasing aerobic capac-
ity, which allows for improved performance in training and 
competition.
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