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Abstract
Chuanmai104 (CM104), an elite wheat (Triticum aestivum L.) variety that currently produces the highest yield per unit area in 
southwestern China, plays a critical role in wheat production. The high quality and stability of grain traits are important fac-
tors that ensure the high, stable yields of CM104 in different production areas. In this study, six grain traits of CM104 sampled 
from 19 environments in five provinces of China during 2018–2022 were evaluated. The traits comprised thousand-kernel 
weight, grain length, grain width, grain length–width ratio, grain circumference, and grain surface area. Fifteen quantitative 
trait loci (QTLs) associated with the grain traits were identified based on a recombinant inbred lines  (F9–10) population derived 
from the cross between CM104 and the landrace Baimaomai (BMM), nine and six QTLs derived from CM104 and BMM, 
respectively. Three mainly pleiotropic QTLs derived from CM104, namely QTL10 (grain circumference, grain surface area), 
QTL11 (grain length, grain circumference), and QTL12 (grain length, grain circumference), were expressed significantly 
and stably in multiple environments, and explained 3.34–5.06%, 5.32–6.50%, and 6.00–12.13% of the phenotypic variation, 
respectively. The pyramiding of multiple genes is hypothesized to have contributed to the stability of the CM104 grain traits 
in different environments. The results provide a basis for future improvement of yield and its stability in wheat.
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Introduction

Wheat is an economically important crop that is a major 
energy and nutrient source for humans. Against the back-
ground of a growing global population and climate change, 
human food demands are increasing rapidly. Wheat breeders 
are currently focused on developing varieties with high and 
stable yields to meet the increase in food demand (Eltaher 
et al. 2021). However, it is difficult to increase wheat yields 
quickly, which jeopardizes future food security (Li et al. 
2016).

Previous studies have indicated that wheat yield is mainly 
determined by three traits: spike number per area, kernels 
per spike, and thousand-kernel weight (TKW) (Yang et al. 
2016). Thousand-kernel weight is mainly controlled by grain 
morphology and grain-filling degree (Okamoto et al. 2013). 
Generally, grain morphology mainly affects TKW through 
grain length (GL), grain width (GW), grain length–width 
ratio (GR), grain circumference (GC), and grain surface area 
(GSA), and ultimately impacts on wheat yield (Wang et al. 
2012; Gao et al. 2021; Cristina et al. 2016; Liu et al. 2017). 
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Therefore, research on grain morphology has important 
applications for improvement of the grain weight in wheat. 
Identification of the key genes associated with grain mor-
phology is crucial for further improvement of wheat yield. 
Many quantitative trait loci (QTLs) that contribute to grain 
morphology or grain weight traits have been identified in 
durum wheat (Varshney et al. 2000) and in hexaploid wheat 
distributed on all 21 chromosomes Huang et al. 2003 and 
2006; Li et al. 2022; Williams et al., 2014; Okamoto et al. 
2013; Patil et al. 2013; Simmonds et al. 2014; Zhang et al. 
2015; Kumar et al. 2019; Cabral et al. 2018; Liu et al. 2017). 
Some of the genes that influence grain morphology have 
been cloned. For instance, TaGW2 negatively regulates 
wheat GW and TKW (Su et al. 2011; Wang et al. 2018). 
The gene DA1-RELATED 1 (TaDA1) is a negative regu-
lator of grain size and can interact with TaGW2 to affect 
grain weight in wheat (Liu et al. 2020). TaPGS1 is a tran-
scription factor that regulates wheat grain size and grain 
weight. Overexpression of TaPGS1 significantly increases 
grain weight, GL, and GW. Further investigation showed 
that TaPGS1 binding to the FI3 promoter to knockdown FI3 
expression significantly reduces grain weight, GL, and GW 
(Guo et al. 2022). In addition, many genes, such as TaCKX, 
TaGS5, TaAGP-L, TaSDIR1, TaCYP78A3, TaGS3, TaGW7, 
and TaGW8, have been confirmed to be involved in the regu-
lation of wheat grain morphology or grain weight (Jabłoński 
et al. 2020; Wang et al. 2015, 2020; Zhang et al. 2019; Ma 
et al. 2015, 2017; Zhang et al. 2019; Yan et al. 2019).

Chuanmai104 (CM104), an elite synthetic hexaploid 
wheat-derived variety bred by the Crop Research Institute, 
Sichuan Academy of Agricultural Sciences, exhibits numer-
ous desirable traits, including high yield, good grain quality, 
broad adaptability, and resistance to stripe rust, powdery 
mildew, and pre-harvest sprouting under the unique ecologi-
cal conditions of Sichuan Province in China (Li et al. 2014). 
From 2010 to 2020, CM104 consistently maintained the 
highest yield increase recorded in the southwestern China 
wheat production region, and set a record yield of 10,947 kg 
per hectare for southwestern China in 2020. Recently, 
CM104 has been widely used as an elite breeding material 
in the wheat breeding program in southwestern China, and a 
total of 21 varieties are derived from CM104 in this growing 
region (Liu et al. 2021). However, the genetic mechanism 
for the high and stable yield of CM104 remains uncertain.

In this study, CM104 grains were sampled in different 
years and from different regions to analyze the genetic basis 
for the high yield and its stability. The grain morphology 
and grain weight phenotypes were recorded for a popula-
tion of 251 recombination inbred lines (RILs;  F9–10) derived 
from the cross of CM104 and the wheat landrace Baimaomai 
(BMM) grown in three environments. The results provide 
a foundation for analysis of the genetic mechanism for the 
high yield and stability of CM104, and provide valuable 

information for pyramiding of multiple genes associated 
with grain traits for future improvement of wheat varieties.

Materials and methods

Plant materials and mapping population

Nineteen samples of CM104 grains were collected from 
five provinces in China during 2018–2022, and three BMM 
samples were collected from Sichuan in 2021–2022 (Fig. 1, 
Table 1). Recombination inbred lines were derived from the 
cross between CM104 and BMM (Fig. 2), comprising 251 
RILs-F9 (2021) and RILs-F10 (2022) lines. The RILs were 
grown at Guanghan in 2021 (2021GH) and 2022 (2022GH), 
and at Shifang in 2022 (2022SF). Approximately 30 seeds 
of each line were uniformly sown in a single 1-m-long row 
with 25 cm spacing between rows. Standard field manage-
ment practices were applied.

Evaluation of grain traits and statistical analysis

Thousand-kernel weight, GL, GW, grain length–width 
ratio (GR), GC, and GSA of each accession from different 
environments were recorded using an automatic seed test 
analyzer (Mini1600, Jie Lai Mei Technology Co., Ltd., 
Chengdu, China). Regression analysis of the CM104 
grain traits was performed with Excel software (Micro-
soft, Redmond, WA, USA). The correlations among the 
grain traits were analyzed using the two-tailed Pearson 
method implemented in IBM SPSS Statistics 25 (IBM 
Corporation, Armonk, NY, USA). Analysis of variance 
(ANOVA) was conducted, and then, the accessions were 
ranked with Duncan’s test and plotted using GraphPad 
Prism V8.0.2.263. R software (i386 4.1.0) and the lme4 

Fig. 1  CM104 grain samples collection location in 2018–2022
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package were used to calculate the broad-sense heritability 
(H2; Smith et al. 1998) of the wheat grain traits. High-
quality images of wheat grains were captured with a Leica 
M205 FA stereomicroscope (Leica, Germany).

QTL mapping

Genotyping of the CM104 × BMM RILs was performed 
using the wheat 50 K SNP (single nucleotide polymorphism) 
genotyping array developed by CapitalBio Corporation 
(Beijing, China) and synthesized by Affymetrix (Califor-
nia, America). In a previous study, we constructed genetic 
linkage maps with 3779 polymorphic SNP markers (Liu 
et al. 2017). The QTL analysis was conducted with inclusive 
composite interval mapping using GAHP software (Zhang 
et al. 2022). The QTLs were mapped at a logarithm of odds 
threshold of 4 based on 1000 permutations and a walking 
speed of 1.0 cM, with P = 0.001 in a stepwise regression. 
The QTL effects were estimated as the proportion of pheno-
typic variance explained by the QTL. The QTLs for a trait 
with identical, overlapping, or adjacent marker intervals in 
a linkage group were treated as identical and given a com-
mon name. Only QTLs identified in two or three environ-
ments were considered. The physical distance between the 
marker interval of a QTL was analyzed using the Interna-
tional Wheat Genome Sequencing Consortium (http:// www. 
wheat genome. org/) and EnsemblPlants (http:// plants. ensem 
bl. org/ info/ websi te/ ftp/ index. html) databases based on the 
flanking sequences.

Results

Phenotypic variation and diversity analysis

Nineteen samples of CM104 grains from different environ-
ments in China were collected to evaluate phenotypic vari-
ation in grain morphology and grain weight (Table 2). Of 

Table 1  CM104 and BMM planting environment and year

Accessions Years City Province Group Environments

CM104 2018 Chongzhou Sichuan SC 2018_CZ
2021 Guanghan Sichuan SC 2021_GH
2022 Guanghan Sichuan SC 2022_GH
2022 Jiangyou Sichuan SC 2022_JY
2022 Langzhong Sichuan SC 2022_LZ
2022 Mianyang Sichuan SC 2022_MY
2022 Neijiang Sichuan SC 2022_NJ
2022 Pixian Sichuan SC 2022_PX
2022 Shifang Sichuan SC 2022_SF
2022 Shehong Sichuan SC 2022_SH
2022 Shunqing Sichuan SC 2022_SQ
2022 Xindu Sichuan SC 2022_XD
2022 Yilong Sichuan SC 2022_YL
2022 Zhongjiang Sichuan SC 2022_ZJ
2022 Guiyang Guizhou SC 2022_GY
2022 Jingmen Hubei SW 2022_JM
2022 Lijiang Yunnan SW 2022_LJ
2022 Zhengzhou Henan SW 2022_ZZ
2022 Xinxiang Henan SW 2022_XX

BMM 2021 Guanghan Sichuan 2021_GH
2022 Guanghan Sichuan 2022_GH
2022 Shifang Sichuan 2022_SF

Fig. 2  Comparison of grain 
phenotype of Baimaomai and 
Chuanmai104

http://www.wheatgenome.org/
http://www.wheatgenome.org/
http://plants.ensembl.org/info/website/ftp/index.html
http://plants.ensembl.org/info/website/ftp/index.html
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these samples, 14 samples were harvested in Sichuan Prov-
ince during 2018–2022 (SC group) and five samples were 
harvested outside Sichuan Province in 2022 (SW group) 
(Fig. 3). Differences in the means for the grain morphology 
and grain weight traits between the SC and SW groups were 
analyzed by performing an ANOVA. The TKW, GW, GC, 
and GSA traits in the SC group were significantly higher 
than those in the SW group (P < 0.05; Fig. 3a), suggest-
ing that Sichuan is the most suitable production zone for 

CM104. Furthermore, ANOVA and a regression analysis 
were used to evaluate the stability of the grain morphology 
and grain weight traits. Two CM104 samples (2018CZ and 
2021GH) were compared with 12 CM104 samples collected 
in 2022 from different environments in Sichuan Province, 
but no significant differences were observed between the 
two groups (Fig. 3b).

Regression analysis showed that the grain morphology 
and grain weight traits of CM104 grown in Sichuan Province 

Table 2  Phenotypic 
performance of CM104 in 
diverse environments for 
thousand-kernel weight (TKW), 
grain length (GL), grain width 
(GW), grain length–width ratio 
(GR), grain circumference 
(GC), and grain surface area 
(GSA). The environment is 
designated by the trait, year, and 
location

Accessions TKW GL GW GR GC GSA

CM104-2018CZ 46.02 7.00 ± 0.80 3.64 ± 0.48 1.96 ± 0.32 17.92 ± 1.71 18.80 ± 3.65
CM104-2021GH 46.47 7.02 ± 0.43 3.66 ± 0.37 1.93 ± 0.20 17.89 ± 1.18 18.89 ± 2.77
CM104-2022GH 42.88 7.07 ± 0.58 3.64 ± 0.40 1.96 ± 0.18 17.86 ± 1.48 18.63 ± 3.21
CM104-2022JY 59.62 7.55 ± 0.30 4.02 ± 0.22 1.88 ± 0.12 19.30 ± 0.71 22.40 ± 1.73
CM104-2022LZ 47.33 7.19 ± 0.57 3.73 ± 0.37 1.94 ± 0.17 18.24 ± 1.52 19.64 ± 3.21
CM104-2022MY 55.23 7.32 ± 0.40 3.96 ± 0.26 1.86 ± 0.14 18.85 ± 0.90 21.54 ± 2.12
CM104-2022NJ 55.52 7.71 ± 0.63 3.69 ± 0.45 2.11 ± 0.20 19.29 ± 1.69 20.89 ± 3.72
CM104-2022PX 45.16 7.05 ± 0.51 3.59 ± 0.45 1.98 ± 0.21 17.79 ± 1.51 18.55 ± 3.45
CM104-2022SF 52.57 7.27 ± 0.54 3.83 ± 0.42 1.91 ± 0.18 18.57 ± 1.53 20.64 ± 3.57
CM104-2022SH 40.12 7.04 ± 0.54 3.48 ± 0.46 2.05 ± 0.24 17.65 ± 1.63 18.02 ± 3.46
CM104-2022SQQ 40.26 7.12 ± 0.40 3.43 ± 0.35 2.09 ± 0.20 17.74 ± 1.06 17.88 ± 2.50
CM104-2022XD 48.34 7.19 ± 0.50 3.75 ± 0.38 1.93 ± 0.16 18.22 ± 1.40 19.81 ± 3.26
CM104-2022YL 44.79 7.19 ± 0.66 3.66 ± 0.48 1.99 ± 0.25 18.23 ± 1.72 19.29 ± 3.81
CM104-2022ZJ 50.60 7.46 ± 0.34 3.93 ± 0.21 1.90 ± 0.10 19.02 ± 0.87 21.71 ± 1.85
CM104-2022GZ 30.93 6.97 ± 0.54 3.12 ± 0.42 2.26 ± 0.25 17.01 ± 1.38 15.56 ± 2.75
CM104-2022JM 44.56 7.01 ± 0.47 3.60 ± 0.36 1.96 ± 0.17 17.71 ± 1.22 18.56 ± 2.85
CM104-2022LJ 31.16 6.78 ± 0.23 3.33 ± 0.33 2.05 ± 0.20 16.92 ± 0.69 16.34 ± 1.92
CM104-2022ZZ 37.86 7.28 ± 0.44 3.27 ± 0.41 2.25 ± 0.22 17.88 ± 1.36 17.37 ± 2.49
CM104-2022XX 51.14 7.22 ± 0.53 3.81 ± 0.41 1.91 ± 0.12 18.47 ± 1.64 20.49 ± 3.42

Fig. 3  Variance analysis of grain morphology and grain weight traits 
in CM104 in multiple environments. a the grain phenotypes were 
compared between groups Sichuan (SC) and outside Sichuan (SW); b 

the grain phenotypes were compared between groups 2022 and other 
years (2018 and 2021). *means P < 0.05
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were highly stable. A highly significant correlation was 
observed between grain morphology and grain weight traits 
for all 14 environments (R2 = 0.88–0.95; Fig. 4).

QTL mapping of grain traits

Among the three environments for the RILs, significant dif-
ferences in TKW, GL, GC, and GSA between CM104 and 
BMM were observed (P < 0.05; Fig. 5a). The frequency dis-
tributions of the investigated traits revealed continuous vari-
ation in the RILs population, suggesting that the phenotypic 

data for the four grain traits were normally distributed and 
these traits were controlled by multiple QTLs (Fig. 5b).

The estimated H2 values for TKW, GL, GC, and GSA 
were greater than 0.5 (range 0.52–0.84) (Table 3). Thus, 
it was assumed that the traits were influenced by genetic 
factors. Pearson correlation coefficients for the four grain 
morphologies and grain weight traits in the three environ-
ments ranged from 0.58 to 0.96 (Fig. 6).

In the three environments, 15 QTLs were identified for GC, 
GL, GSA, and TKW. Three detected QTLs for TKW explained 
6.08–6.84% of the phenotypic variation, 11 QTLs for grain 
morphology explained 3.35–12.13%, and one QTL for GSA 

Fig. 4  Regression analysis of grain morphology and grain weight traits in CM104 in Sichuan during 2018–2022

Fig. 5  Grain phenotypes were analyzed in RILs populations and 
parents. A) variance analysis of grain morphology and grain weight 
traits in CM104 and BMM; B) phenotypic distribution for TKW, GL, 

GC, and GSA in CM104XBMM RILs populations. *means P < 0.05, 
***means P < 0.001, ****means P < 0.0001
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and TKW explained 4.33–5.35%. Three stable putative QTLs 
(QTL10, QTL11, and QTL12) for grain morphology asso-
ciated with GC, GL, and GSA were detected in this study. 
These QTLs were located on chromosomes 5B and 5D, and 
explained 3.35–12.13% of the phenotypic variation (Table 4, 
Fig. 7). The additive effect of the individual QTLs indicated 
that CM104-positive alleles contributed to the three traits.

Discussion

Grain traits of CM104 showed high stability 
in different environments

Thousand-kernel weight is positively correlated with grain 
morphology and is an important trait owing to its phenotypic 
stability and high heritability (Kuchel et al. 2007). Selection 
for a higher TKW has been conducted during domestication, 
and therefore, it has been argued that the grain morphology 
of cereals is a component of the domestication syndrome 
(Brown et al. 2009). Larger grains generally favor TKW, 
seedling vigor, and flour yield characteristics (Chastain 
et al. 1995). Stable wheat production is crucial to global 
food security (Macholdt and Honermeier 2017). Many fac-
tors, such as the phenotypic stability of wheat varieties and 
genotype × environment interactions, affect wheat yield to 
different extents (Nielsen and Vigil 2018). Regression analy-
sis and ANOVA are widely used to evaluate the relationship 
between wheat yield and environment (Chen et al. 2018; 
Pepó and Győri 2005; Ayalneh et al. 2014; van Frank et al. 
2020; Ji et al. 2023). In the present study, CM104 samples 
were collected from different environments; grain traits in 
the SC group were significantly higher than those in the SW 
group. The highest TKW was recorded in the 2022_JY sam-
ple (59.62 g/1000 grains), which indicated that JY was the 
most suitable production location for CM104. As the high-
est yielding wheat variety grown in Sichuan, CM104 exhib-
its broad adaptability and stable high yield. However, its 
adaptability is generally poor outside of Sichuan Province, 
with the exception of the 2022_XX sample (51.14 g/1000 
grains) in Henan Province, which suggested that CM104 
can maintain favorable grain traits in specific environments. 
Correlation analysis showed that the TKW of CM104 was 
positively correlated with GL, GW, GC, and GSA, but was 
negatively correlated with GR (Fig. 6). This result indicated 
that modern breeders prefer rounded seeds, consistent with 
previous findings (Cheng et al. 2020; Zhang et al. 2022).

Stable QTLs associated with grain morphology 
and grain weight traits

Grain morphology and grain weight are complex quanti-
tative traits, and are influenced by many main and micro-
effect QTLs (Slafer et al. 2014). In previous studies, more Ta
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than 100 QTLs for TKW, GL, GW, GC, and GSA in wheat 
have been identified and are distributed on all 21 chromo-
somes. In addition, wheat TKW is significantly positively 
correlated with grain morphology, and many QTLs associ-
ated with grain morphology have been co-localized with 
TKW QTLs (Börner et al., 2002; Huang et al. 2003; Huang 
et al. 2006; Li et al. 2022; Williams et al., 2014; Okamoto 
et al. 2013; Simmonds et al. 2014; Zhang et al. 2015; Kumar 
et al. 2019; Cabral et al. 2018; Liu et al. 2017). However, 
many QTLs for grain morphology are not detectable in dif-
ferent environments and explain only a small proportion of 
the phenotypic variation for grain weight. Taken together, 
these factors mean that such QTLs are unsuitable for use 
in marker-assisted selection for wheat breeding. However, 
such QTLs are strongly affected by the environment and 
not all major QTLs are repeatedly detected in all environ-
ments (Akram et al., 2020; Li et al. 2019; Suliman et al. 
2021; Alemu et  al. 2020; White et  al. 2022; Gao et  al. 
2021). Therefore, molecular marker-assisted breeding for 
wheat grain traits is challenging. The present RIL popula-
tions were used for QTL analysis in multiple environments, 
which is a beneficial approach for breeding to select loci 
that can be detected in different environments. The present 
study detected 15 QTLs for grain morphology. With refer-
ence to previous studies, four QTLs for TKW identified in 
previous reports were detected on chromosomes 1A (1), 2A 
(2), and 2D (1). The co-localized GL and TKW locus QTL1 
(537.54–544.74 Mb) is located at a similar position to that 
of the TKW QTL on chromosome 1A reported by Yang 
et al. (2020), and three QTLs located on chromosomes 2A 
and 2D have been reported in multiple studies. Interestingly, 
all of the favorable alleles associated with TKW were inher-
ited from CM104 (Table 4). Among the 15 QTLs associ-
ated with grain morphology and grain weight identified in 
the present study, 14 QTLs have been located in previous 
studies except for QTL15. However, the physical location of 
QTL15 is near that of QTL14, and thus, they may represent a 

single QTL (Akram et al. 2021; Li et al. 2019; Suliman et al. 
2021; Alemu et al. 2020; White et al. 2022; Gao et al. 2021; 
Okamoto et al. 2013; Tyagi et al. 2015; Gahlaut et al. 2021; 
Yang et al. 2020; Chidzanga et al. 2022; Sun et al. 2009; 
Azadi et al. 2015). In the current study, three QTLs asso-
ciated with grain morphology were identified in multiple 
environments on chromosomes 5B and 5D, namely QTL10, 
QTL11, and QTL12, and their favorable alleles were all 
derived from CM104. Among these three stable QTLs, 
QTL10 and QTL11 explained 3.34–5.06% and 5.32–6.50% 
of the phenotypic variation, respectively, whereas QTL12 
explained 6.00–12.13% of the phenotypic variation, which 
was significantly higher than that for QTL10 and QTL11. 
These results indicated that QTL12 was an important QTL 
for the grain morphology of CM104 (Table 4). These stable 
QTLs (QTL10, QTL11, and QTL12) detected in multiple 
environments provide a foundation for fine-mapping of 
TKW and grain morphology-related genes and improvement 
of the yield traits of CM104 by molecular marker-assisted 
selection. Additionally, the major and minor QTLs presented 
the excellent genetic basis to ensure the stable phenotype of 
grain traits of CM104 in multiple environments. It was also 
an effective strategy to cultivate high and stable yield wheat 
varieties with widely adaptation by pyramiding major and 
minor QTLs and utilizing the synergistic effect of major and 
minor QTLs.

Conclusion

The high-yielding and phenotypically stable wheat variety 
CM104 harbored favorable alleles for TKW and grain mor-
phology. Eight previously reported QTLs were identified in 
CM104, but only three stable QTLs (QTL10, QTL11, and 
QTL12) were detected in multiple environments. Therefore, 
these three QTLs may be the genetic basis for the phenotypic 
stability of the TKW and grain morphology of CM104 in 

Fig. 6  Pearson’s correlation coefficients (r) between thousand-kernel 
weight (TKW), grain length (GL), grain width (GW), grain length–
width ratio (GR), grain circumference (GC), and grain surface area 

(GSA). a Grain phenotypic correlation analysis of CM104 was per-
formed in nineteen environments; b grain phenotypic correlation 
analysis of CM104 × BMM RILs population in three environments
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multiple environments. Pyramiding major and minor QTLs 
will be also useful to improve wheat varieties and contribute 
to the yield stability in multiple environments in future.
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