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Abstract
This study was aimed to identify genotypic differences in shoot growth rate and root architecture traits in response to water-
deficit stress at early growth stages of wheat seedling, and to quantify relationships between genotypic variation in shoot 
physiological traits and root system architecture with a drought tolerance at several development stages. Eight bread wheat 
cultivars, namely Bam, Mahooti, Roshan, Tabbasi, Atrak, Falat, Shiraz and Qods, were grown in polyvinyl chloride tubes 
filled with soil in the greenhouse under well-watered and water-deficit stress conditions. Water stress elicited genotypic 
variation in root traits and shoot growth across cultivars. Drought stress decreased root architecture traits, with greater 
effects in drought-sensitive cultivars compared with those that were drought-tolerant. Branch root length was less influenced 
compared with seminal root length. We showed that cultivars Roshan and Bam were most tolerant to drought due to their 
shorter distance between the first branch root and the root tip, higher branch root length, longer seminal roots and higher 
stomatal conductance compared to the other cultivars. Positive relationship between root growth and shoot physiological 
responses was quantified upon drought stress, highlighting the role of leveraging more efficient root systems as a strategy 
to enhance resource uptake under water-deficit conditions. Thus, root growth responses can be used as a drought tolerance 
selection criterion at the seedling stage of employed genotypes.
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Introduction

Plant growth and development are mostly affected by differ-
ent types of abiotic stresses such as temperature extremes, 
drought and salinity (Rahimi et al. 2021; Salehi et al. 2023). 
Crop productivity in semiarid areas is threatened primar-
ily by water availability, which cumulatively over the grow-
ing season should be assessed as a quantum and frequency 
distribution (Harrison et al. 2012a; 2012b). Key extreme 
weather events impacting on global food security are varied 
depending on time of year and location, ranging from heat 
waves, to waterlogging to frost (Langworthy et al. 2018; Liu 
et al. 2020a; 2020b; Harrison 2021), but the most predomi-
nant is drought (Phelan et al. 2015; Bell et al. 2015; Yan 
et al. 2022). Drought stress induces osmotic and nutritional 
constraint that have resultant effects on growth, phenology 
and yield (Ibrahim et al. 2018, 2019). Reduced water uptake 
causes osmotic stress, and consequently, plants experience 
cellular dehydration (Xiong and Zhu 2002). Drought stress 
imposes various biochemical and physiological limitations 
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and negatively affects chlorophyll content, stomatal conduct-
ance, the photosynthesis rate, cell division, and wall and pro-
tein synthesis (Li et al. 2006; Jin et al. 2017; Ghorbanpour 
et al. 2020; Luz et al. 2023). Plants display a broad range 
of molecular and cellular responses under osmotic stress 
(Bohnert et al. 1999; Hasegawa et al. 2000; Hatami et al. 
2017) including stomatal regulation, thus influencing leaf 
photosynthetic capacity (Rahnama et al. 2010a).

Root traits play a vital role in drought tolerance and yield 
improvement in cereals under water-limited conditions 
(Blum 2009; Comas et  al. 2013). The development of 
crops with suitable root traits enable them to increase their 
sustainability and have higher yields in soils with contrasting 
water regimes (Liu et al. 2020a; 2020b; Langworthy et al. 
2018; Sun et al. 2023). As such, the role of root growth traits 
for maintaining crop production is of rising interest to plant 
breeders (Gewin 2010). However, the ability of plant roots to 
exploit deep water depends on root architectural traits, such 
as the root length and root dry weight at depth (Carvalho 
et al. 2014; Zhao et al. 2018), as well as their development 
over time (Harrison et al. 2012a; 2012b; Ho et al. 2014).

Extensive root systems with higher root mass at depth 
facilitate greater water extraction capacity that allows 
sustained transpiration; together these factors can lead 
to higher stomatal conductance and photosynthesis rate 
(Lopes and Reynolds 2010; Falster et al. 2021). Deeper and 
extensive roots are important when plants are grown in soils 
containing inadequate water or nutrients supply, particularly 
at the seedling stage (Bengough et al. 2004). Identification 

of causes of genotypic variation in root traits through plant 
breeding could significantly enhance seedling establishment 
in dry soils, leading to improved crop production (Richards 
2008). However, contemporary techniques for phenotyping 
root architectural traits in the field are challenging, 
suggesting that root traits studied in the laboratory may not 
translate to comparable outcomes in mature plants in the 
field (Wasson et al. 2012).

Plant adaptations in response to drought stress categorize 
into drought recovery, drought avoidance, drought escape 
and drought tolerance (Fig. 1). A suitable breeding pro-
gram to improve root systems and increase water uptake in 
water-limited crops has been suggested as the most impor-
tant strategy to cope with drought and enhance yields in dry 
land regions (Wasson et al. 2012). Therefore, identifying 
genes that result in beneficial root characteristics would be 
of massive value to crop breeding efforts around the world. 
Previous work has shown that deeper root length may lead 
to more water extraction from various soil during the grain 
filling period, thus increasing dry matter partitioned to grain 
(Manschadi et al. 2006).

Hitherto screening processes for root traits has been 
constrained by available phenotyping technologies for 
diagnosing root systems in the field, mandating the use 
of time-consuming and destructive techniques (Rahnama 
et al. 2019). Such inhibitions have delayed the advance 
in knowledge of mechanisms underlying changes in root 
architecture.

Fig. 1   Schematic representation of plant responses to drought stress (modified from Khan et al. 2016)



Cereal Research Communications	

The current study aimed to (1) identify genetic differ-
ences in shoot physiological traits, seminal and branch roots 
in response to drought stress at seedling stage; (2) quantify 
a relationship between genotypic variation in shoot physi-
ological traits and root architecture traits; and (3) identify 
the corollary of the second aim for drought tolerance dur-
ing subsequent crop growth stages. Successful realization 
of these aims would be expected to facilitate and fast-track 
the screening of large numbers of plants for drought stress 
tolerance.

Materials and methods

Plant materials

Eight contemporary bread wheat (T. aestivum L.) cultivars 
with known differences in drought tolerance, namely Bam, 
Roshan, Mahooti and Tabbasi (drought-tolerant cultivars) 
and Atrak, Falat, Qods and Shiraz (drought-sensitive 
cultivars), were selected; and seeds were provided by the 
National Plant Gene Bank of Iran.

Growth conditions

Soil was thoroughly mixed with adequate amounts of 
nutrients including N, P, K and S. Soil samples were passed 
through a 2 mm standard test sieve to remove stones and 
gravels. Electrical conductivity (EC) was measured by using 
a WTW Inolab conductivity meter Level 1 (the Netherlands). 
Conductivity of the soil samples was ~ 1.5 dS.m−1. PVC™ 
tubes (12.5 cm diameter, 60 cm depth) with small basal 
drainage holes were carefully filled with plastic bags also 
with holes containing a mixture of clay loam and sandy 
soils (40:60 by volume). The deliberate use of plastic bags 
enabled us to remove the whole root system from the PVC 
tubes (Rahnama et al. 2019).

Uniformly weighed and sized seeds were selected, 
surface-sterilized with 2% hypochlorite, washed with sterile 
ultrapure water-imbibed for 18–24 h, transferred to sterile 
filter paper (Whatman, Maidstone, UK) in square Petri 
dishes with distilled water and germinated for two days at 
room temperature (20 ± 2 °C) in the dark. After two days, 
four uniform seedlings with 10 mm long radicles were 
selected, sown in the center of the PVC tubes at 2 cm soil 
depth (Rahnama et al. 2019). PVC tubes were then placed 
in a greenhouse with adequate light intensity and exposed 
to consistent day/night temperatures of 24/14 ± 2 °C. Tubes 
were irrigated every other day with tap water. After seedling 
establishment, seedlings were thinned to two healthy 
seedlings per tube (four days after emergence). Plants were 
grown for 21 days under ambient light with supplementary 

light to get an average daily total radiation of 900–1200 µ 
mol m−2 s−1.

Experimental set up and treatments

Based on pre-experimental results with two wheat cultivars 
(Roshan and Qods), a water potential of −7 to −8 MPa 
was selected to obtain a significant difference in shoot and 
root growth response at vegetative stage (Supplementary 
Tables S1, S2). The current experiment was thus carried 
out using eight bread wheat cultivars and two treatments (0 
to −0.3 MPa as a control and −7 to −8 MPa as the water-
deficit treatment). There were six tubes per treatment per 
genotype comprising a total of 96 tubes for the experiment. 
We also prepared 16 tubes without plants as null controls 
to estimate the soil water potential and the amount of soil 
surface evaporation.

Soil moisture was continuously monitored using TDR 
soil moisture meters (Delta-T Devices Ltd, Cambridge, 
UK); TDR probes were installed horizontally and vertically 
into the soil around the roots. Controls were watered every 
other day to keep the soil moisture close to field capacity. 
Before sampling, tubes were allowed to drain until soil 
water content reached desired percentage of field capacity, 
corresponding to a pre-defined volumetric soil moisture. 
Readings were taken daily with the TDR soil moisture meter 
to maintain the desired volumetric moisture content, and 
the amount of water lost was added to each tube to ensure 
that target soil moisture was maintained (Porcel et al. 2004).

The water stress treatment was initiated from the point 
at which the fourth leaf was fully expanded. The sampling 
time corresponded to the day when water remained at a 
water potential of −7 to −8 MPa. Exactly 28 days after 
emergence, stomatal conductance was measured using a 
porometer (Delta-T Devices, Burwell, Cambridge, CB25 
0EJ, UK) on the abaxial leaf 4 surface. Six replicate plants 
for each genotype and treatment were harvested, one from 
each tube. Leaf area measurement was taken using a leaf 
area meter (Delta-T Devices, UK). Leaf chlorophyll content 
was recorded using a nondestructive, SPAD-502 m (Minolta, 
Osaka, Japan). Average SPAD chlorophyll records were 
calculated from four measurements from different parts of 
leaf blade.

Leaf relative water content (RWC)

RWC was calculated using 1 cm2 segment of leaf tissue; 
each leaf segment was weighed immediately to record a 
fresh weight (FW). The relative water content was calculated 
as:

RWC (%) =
FW−DW

TW−DW
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where TW is turgid weight when leaf segments were floated 
in distilled water for 4 h and DW is dry weight when leaf 
segments were dried at 80 °C for 2 days.

Plants were harvested 28 days after emergence. Plastic 
bags containing roots and soil were carefully removed 
from the PVC tubes, placed horizontally, cut vertically and 
washed slowly with running water from a tap followed by 
washing with deionized water. Roots were removed from 
the soil without losing or destroying any material and then 
were preserved in 50% ethanol for further measurements 
(Rahnama et al. 2019).

Root system architecture

The seminal roots length and the distance between the first 
branch root and the root tip was measured with a ruler. 
Root surface area, root diameter and total root length were 
quantified using a Delta-T Scan (Delta-T Devices, Burwell, 
UK). Total branch root length was calculated by subtracting 
the seminal root length from the total root length. Shoots 
were cut below the crown, and shoot and root dry weight was 
calculated after the shoot and root samples were oven-dried 
at 72 °C for 2 days.

Statistical analysis

Statistical analysis was conducted using SAS V9.2. Mean 
values were compared using a Duncan's tests at the p < 0.05 
probability level unless stated otherwise.

Results

Genotypic variation in root traits in response 
to water‑deficit stress

Effects of water deficit and cultivars were significant for all 
root traits examined. The water deficit × cultivar interaction 

was significant in all root traits except for the distance 
between the first branch root and the tip (Table 1).

Root architecture traits

For the controls, Bam, Tabbasi, Qods and Mahooti had the 
highest total seminal axile root length; axile root length was 
lower for Falat and Roshan. Total seminal axile root length 
was significantly reduced for all cultivars in response to −7 
to −8 MPa at the vegetative stage, with larger reductions 
in sensitive cultivars (Atrak, Shiraz, Qods and Falat with 
41, 38, 37 and 32%, respectively) than tolerant cultivars 
(Roshan, Bam, Tabbasi and Mahooti with 22, 25, 27 and 
28%, respectively) (Table 2). Total seminal axile root length 
was decreased by 22–41% for all cultivars, with cultivar 
Roshan maintaining the highest total seminal axile root 
length relative to the control (78%). In contrast, Falat had the 
lowest total seminal axile root length relative to the control 
(57%; Table 2).

Total root length was decreased in response to water-
deficit conditions (Table 2). Total root length of all tolerant 
cultivars declined by 8.2% for all tolerant cultivars, 
compared with a 17.9% decline in total root length for all 
sensitive cultivars. Total root length was longer in Roshan 
than in Atrak, mainly due to the larger seminal root length 
and branch root length under water-deficit conditions 
(Table 2). Propensity for growth of deeper roots would 
seem to be a target trait for improving drought tolerance, 
notwithstanding the fact that genotypic variation for drought 
tolerance may be impacted by a number of traits, suggesting 
a need for studies that examine multiple metrics at the same 
time (viz. Harrison et al. 2021b).

Water stress reduced total branch roots for all cultivars, 
although with differences between tolerant and sensitive 
cultivars. There was a 2% decline in total branch roots 
for tolerant cultivars compared with a 10% decline in 
total branch roots for sensitive cultivars (Table 2). No 
significant differences were found between control and 
drought stress effects on branch root length, while tolerant 

Table 1   Analysis of variance for total seminal axile root length 
(TSARL), total root length (TRL), branch root length (BRL), distance 
from the tip (DT), root diameter (RD), root surface area (RSA), root 

dry weight (RDW), stomatal conductance (gs), relative chlorophyll 
content (SPAD number), relative water content (RWC) and leaf area 
(LA) of wheat cultivars under water-deficit stress

* and ** Significant at the 0.05 and 0.01 probability levels, respectively; ns, nonsignificant

SOV Mean square

Df TSARL TRL BRL DT RD RSA RDW gs SPAD RWC​ LA

Water deficit (A) 1 892** 992** 40,665** 0.67 ns 0.93* 321* 0.0006** 26,295** 25.04** 35.08* 0.006**
Cultivar (B) 7 1013** 28,846** 262,069** 10.93** 11.61** 496** 0.007** 72,825** 56.76** 127.5** 0.086**
A × B 7 483* 471** 13,086* 0.40 ns 1.61** 166* 0.0002** 16,520** 1.75 ns 4.83 ns 0.006**
Error 32 116 45.92 761 0.39 0.28 25.2 0.00003 2216 2.30 14.53 0.0009
CV (%) 8.23 6.16 6.3 16 14.3 11.3 8.8 22.9 3.66 4.69 6.96
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cultivars exhibited greater ability to elongate branch roots 
at -8 MPa (Table 2).

Water stress reduced the distance between the first 
branching point and the root tip; across cultivars, this 
distance declined by 45% on average (Table  2). Our 
results demonstrate that water-deficit stress inhibited 
seminal root elongation, inducing lateral root initiation 
twice as close to the root tip (Table 2).

Root diameter was significantly reduced in response 
to water deficit (declining by 22–42%), with Roshan 
maintaining the highest root diameter relative to the 
control (58%) and Shiraz showing the greatest reduction 
(78%) (Table 2). Root surface area was similarly reduced 
in response to water stress, but more so in drought-
sensitive cultivars (47%) than tolerant cultivars (28%; 
Table 2). Cultivar Roshan maintained the highest surface 
area relative to the control (76%) while cultivar Qods had 
the lowest root surface area relative to the control (45%).

Root dry weight was reduced in response to water-
deficit stress for all cultivars except for Mahooti, again 
with lower effects on tolerant (16%) compared with 
sensitive cultivars (32%). Mahooti generally exhibited 
greater stress tolerance than other cultivars in terms of 
biomass production.

Genetic variation in shoot physiological traits 
in response to water stress

The effects of water deficit and cultivars were significant 
for shoot physiological traits. The water deficit × cultivar 
interaction was significant for all traits except for relative 
water content and relative chlorophyll content (SPAD 
number; Table 1).

Stomatal conductance

Significant genotypic differences in stomatal conductance 
were observed among cultivars and across treatments 
(Table 3). For the controls, Atrak and Roshan had the highest 
stomatal conductance while Shiraz and Tabbasi had the 
lowest. Water-deficit exposure reduced stomatal conductance 
by 16–44% with Roshan maintaining the highest stomatal 
conductance over the control (84%) and Qods the lowest 
(56%). Reductions in stomatal conductance were lower in 
drought-tolerant cultivars (23%) than for drought-sensitive 
cultivars (41%; Table 3).

SPAD number

Genotypic differences in SPAD value were observed among 
cultivars. Qods and Atrak exhibited lower SPAD values than 
other cultivars (Fig. 2A). For the controls, Tabbasi had the 

Table 3   Effects of water-deficit stress on stomatal conductance (gs), relative chlorophyll content (SPAD number), relative water content (RWC) 
and leaf area (LA) of eight bread wheat cultivars

Means labeled with the same letter are not significantly different according to the Duncan multiple range tests at the significance level of 
P ≤ 0.05

Cultivars Water potential
(MPa)

gs
(mmol m-2 s-1)

%
Change

SPAD
number

%
Change

RWC​
(%)

%
Change

LA
(cm2)

%
Change

Drought-tolerant
Roshan −0.3 323 a − 43.1 ab − 82.9 a − 30.5 b −

−8 270 b −16.4 42.4 ab −1.6 81.3 a −1.9 21.8 c−e −28.5
Bam −0.3 286 b − 44.0 ab − 83.3 a − 37.1 a −

−8 233 c −18.5 40.7 b−d −7.5 80.5 a −3.3 21.3 de −42.5
Tabbasi −0.3 95 f − 45.7 a − 83.9 a − 25.1 c −

−8 69 g −27.4 42.1 a−c −7.9 82.7 a −1.4 19.1 e −24
Mahooti −0.3 233 c − 43.9 ab − 84.8 a − 34.5 a −

−8 166 d −28.7 41.9 a−c −4.5 81.8 a −3.5 21.8 c−e −36.8
Drought-sensitive
Qods −0.3 170 d − 39.8 b−d − 78.2 a − 25.0 c −

−8 110 f −35.3 37.0 d −7.1 75.0 a −4.1 13.6 f −45.6
Atrak −0.3 233 c − 39.9 b−d − 83.4 a − 24.5 cd −

−8 143 e −38.6 37.6 d −5.7 79.5 a −4.7 14.0 f −44.9
Shiraz −0.3 280 b − 40.4 b−d − 83.2 a − 21.7 c−e −

−8 156 de −44.3 39.8 b−d −1.5 78.3 a −5.9 13.8 f −36.4
Falat −0.3 320 a − 42.7 a−b − 83.0 a − 19 e −

−8 179 d −44 40.6 b−d −4.9 76.8 a −7.5 11.9 f −37.4
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highest SPAD number while Atrak and Qods had the low-
est (Table 3). Relative chlorophyll content decreased by 
5% relative to controls for all cultivars in response to water 
stress (Fig. 3A). Slight differences in the chlorophyll content 
of control and drought-treated plants were measured here.

Relative water content

There were no significant differences in relative water 
content among cultivars except for Shiraz (Fig. 2B). Relative 
water content slightly decreased by 4% relative to controls in 
response to water stress (Fig. 3B). For the controls, relative 
water content was similar for all cultivars except for Qods, 
which had lower water content. Relative water content was 
reduced by 6% for sensitive cultivars, with Falat maintaining 
92.5% of the level achieved by the control and Qods, 95.9% 
(Table 3).

Leaf area

For the controls, Bam and Mahooti had the greatest leaf 
area, while Qods and Atrak had the lowest. Leaf area of 
the cultivars was reduced to 37% of control levels for 

all cultivars under water deficit (Table 3). No statistical 
differences were found between the leaf areas of sensitive 
cultivars under water stress conditions (Table 3).

Discussion

Here we have documented remarkable genotypic variation 
in total seminal axile root length and total root length of 
cultivars subjected to water stress, similar to previous results 
for barley (Bengough et al. 2004), maize (Li et al. 2015) 
and rice (Kano-Nakata et al. 2011). The differences we 
observed in total seminal root length between cultivars may 
be attributed to genetic variability. Our results also indicate 
that root plasticity is a key trait under drought conditions 
to benefit plant growth. Data gathered in the present study 
has thus added valuable genetic resources including a range 
of agronomic and morphological traits to the scientific 
literature; these data could be used in future to improve crop 
stress tolerance. The effects of water stress on total seminal 
axile root length observed here are consistent with previous 
reports that show decreased total seminal axile root length 

Fig. 2   Mean comparison (main effects) of SPAD number (A) and relative water content (B) among wheat cultivars

Fig. 3   Mean comparison (main 
effects) of SPAD number (A) 
and relative water content (B) 
between water-deficit treatments
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of bread wheat (Shahzad et al. 2012; Ehdaie et al. 2012) and 
rice (Kano-Nakata et al. 2011).

We also showed that water deficit reduced total root 
length (expect for cultivar Roshan). Drought-tolerant 
cultivars exhibited larger root systems than drought-sensitive 
cultivars. This phenomenon increased water uptake as shown 
by positive correlations between relative water content and 
total root length (r = 0.47**), which in turn contributed to 
greater stomatal conductance and photosynthesis under 
water deficit (Table 4). Similar effects of defoliation on the 
alleviation of water stress have been observed for rainfed 
winter wheat in Australia (Harrison et al. 2010; Harrison 
et al. 2011a; 2011b). In this experiment, it is possible that 
exposure longer to water deficit than previous studies 
provided sufficient time to fully realize the genotypic 
sensitivity of total root length to water deficit. Future studies 
could consider pursuing such treatments over the entire crop 
life cycle to examine whether cumulative effects of genetic 
variability in root architecture and water uptake translate 
into dry matter production and yield. Such studies could also 
be explored in the field and using simulation frameworks 
to extrapolate results across management, genotypes and 
environment types (Liu et al. 2020a, b; Ibrahim et al. 2019; 
Farina et al. 2020).

Here, we showed that water stress caused a moderate 
reduction in total branch roots, which demonstrates that 
water stress impacted root system morphology of wheat 
upon exposure to water stress. The results may be a com-
pensation strategy for the reduction to total seminal root 
length under salinity stress (Rahnama et al. 2011) noting 
that suppression of lateral root meristems can reduce root 
branching (Malamy et al. 2005). Given that enhanced lateral 
root production plays a main role for adaptation to drought 
stress (Suralta et al. 2010), we suggest that further work 

should aim to identify genetic causes of variability in such 
traits (Table 4).

It was shown that water stress reduced the distance 
from the root tip. Reduced primary root elongation results 
from a decrease in cell numbers in the root elongation 
zone leading to a decrease in the distance between the first 
branch root and the seminal root tip (Rahnama et al. 2011). 
Previous work has shown that the distal branch roots were 
shortened by twofold for bread wheat (Rahnama et al. 2019) 
and sixfold for durum cultivars (Rahnama et al. 2011) in 
response to salinity. It should be noted here that root system 
architecture is primarily determined by root length, seminal 
root number and root branching (Rahnama et al. 2019). It 
has been previously suggested that osmotic conditions may 
cause a loss of apical dominance in the axile root tips, while 
carbohydrates and water continued to be delivered to the 
branch root primordia via the phloem to enable growth 
(Boyer et al. 2010).

The results of the present study revealed that water deficit 
reduced the seminal axile root elongation more than total 
root length, while there was a slight reduction in branch 
root length. Branch root length increased slightly in all eight 
cultivars under water stress, probably to counteract reduced 
seminal root length. Conversely, water deficit modified the 
proportion of the root system component through promo-
tion of the lateral roots and inhibition of the seminal roots 
to maintain a large root system for access to water. Such 
plasticity may underpin a comparative advantage for crops 
grown under abiotic stress (Rahnama et al. 2011, 2019). 
Zolla et al. (2010) found that root systems in Arabidopsis 
proliferated branch roots while axile root length slowed 
when grown on agar with basal nutrient medium with 
50 mM NaCl. It was suggested that the axile tips are more 
sensitive than the branch roots and that differentiation of 

Table 4   Correlation coefficient between shoot and root traits of eight wheat cultivars under water deficit

ns Nonsignificant; Sc stomatal conductance; SPAD n. SPAD number; RWC​ relative water content; LA leaf area; TSRL total seminal root length; 
TRL total root length; RB root branch; DT distance from the tip; RSA root surface area; RD root diameter; RDW root dry weight
‡* and ** Significant at the 0.05 and 0.01 probability levels, respectively

Traits SC SPAD RWC​ LA TSRL TRL RB DT RSA RD RDW

SC 1
SPAD n 0.12 n.s 1
RWC​ 0.40** 0.65** 1
LA 0.48** 0.66** 0.62** 1
TSRL 0.42** 0.58** 0.63** 0.77** 1
TRL 0.41** 0.49** 0.47** 0.66** 0.49** 1
RB 0.35** 0.33* 0.36* 0.53** 0.27 n.s 0.57** 1
DT 0.47** 0.36 n.s 0.59** 0.69** 0.62** 0.57** 0.43** 1
RSA 0.85** 0.52** 0.38** 0.68** 0.63** 0.26 n.s 0.12 n.s −0.56** 1
RD −0.71** −0.03 n.s −0.62** −0.67** −0.83** −0.59** −0.43** 0.78** −0.41** 1
RDW 0.33* 0.081 n.s −0.37* −0.20 n.s 0.38** 0.23 n.s 0.35 n.s 0.27 n.s 0.36 n.s −0.38** 1
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stelar pericycle cells was maintained to stimulate formation 
of new branch root primordia. These results suggest that 
root system architecture is a complex trait that affects water 
capture and is mediated by environmental stresses.

Water deficit caused a significant reduction in root 
diameter for all cultivars we examined. Production of thinner 
roots has been proposed as an advantage in facilitating water 
and nutrient uptake under conditions of limiting resources 
(Bonifas and Lindquist 2009; Wasson et al. 2012; Corneo 
et al. 2016). Thinner roots with small diameter and greater 
specific root length enable plants to increase hydraulic 
conductance by increasing root surface area in contact 
with soil water, thus generating greater area for water and 
resource uptake (Bonifas and Lindquist 2009; Comas et al. 
2013). Here, we found a negative correlation between 
stomatal conductance with root diameter (r = −0.71) and 
relative water content (r = −0.62), suggesting that reduced 
root diameter enabled greater relative water content and 
enhancement of stomatal aperture. Production of thinner 
root systems and consequently a larger root surface area in 
response to water-limited conditions has been previously 
reported for bread wheat (Becker et al. 2016), and barley 
and durum wheat (Carvalho et al. 2014).

The stereotypical impact of drought stress on plant 
performance is suboptimal dry matter production 
(Langworthy et  al. 2018; 2020). Here, we showed that 
seminal and total root length decreased in Mahooti, but root 
biomass was not affected by water deficit due to increased 
branch rooting, a compensatory result that maintained root 
biomass. This result was also partially due to the ability of 
cultivar Mahooti to develop a larger root system, allowing 
greater water uptake and photosynthesis under water stress. 
Previous reports have shown that root biomass in dry soils 
may be greater than well-watered conditions (Munns and 
Cramer 1996), perhaps a consequence of stimulation of 
lateral root initiation in dry soil (Jupp and Newman 1987). 
As well, the metabolic costs of a thinner root system (lower 
root diameter with lower root biomass) are lower than the 
cost of a system of roots with larger diameters (Elazab et al. 
2016).

Stomatal conductance was reduced under water deficit; 
higher reductions were observed in drought-sensitive 
cultivars compared with drought-tolerant cultivars. 
Several studies have shown a similar reduction in stomatal 
conductance as a result of salinity (Rahnama et al. 2010b) 
and water stress (Xu et  al. 2008; Pour-Aboughadareh 
et al. 2017). In this study, tolerant cultivars maintained 
the highest total and seminal root length in response to 
water deficit. Hence, roots of drought-tolerant cultivars 
can extract more water from the soil to maintain higher 
stomatal conductance during water stress compared to the 
other cultivars. It is generally recognized that stomatal 
response to water potential of the soil is determined by 

root signals, with roots being involved in the perception 
and transduction of the drought stress signals (Dubos and 
Plomion 2003). While it has been postulated that ABA 
plays a central role in such phenomena (Davies et al. 2005), 
stomatal conductance is also responsible for other plant 
functions, including canopy-level evaporative cooling 
through control of transpiration (Langworthy et al. 2020). 
Here, we found a positive correlation between stomatal 
conductance and seminal root length (r = 0.42) and 
relative water content (r = 0.40), suggesting that stomatal 
conductance is tightly linked with drought tolerance at the 
pot scale. Further work remains in elucidating whether 
such effects hold true under field conditions.

Genotypic variability in relative chlorophyll content 
(SPAD readings) were found between cultivars under water 
deficient, similar to previous reports (Pour-Aboughadareh 
et al. 2017). Drought also reduces leaf area, so reductions 
in chlorophyll concentrations possibly linked with smaller 
cell size and higher chloroplast concentration per unit 
area (James et al. 2002). Water-deficit stress is thought 
to reduce chlorophyll content through lipid peroxidase 
and electrolytic leakage from chloroplasts and thylakoid 
membranes (Ristic et al. 2007; Djanaguiraman et al. 2010).

Leaf relative water content as an estimate of plant 
water status is used as an important index for water stress 
tolerance (Anjum et al. 2011). In all cultivars studied here, 
leaf relative water content decreased under water stress, 
although this result may have been offset by changes in 
stomatal conductance, given known effects of drought on 
stomatal apertures (Rahnama et al. 2010a; Torres-Ruiz 
et al. 2013; Nemeskeri et al. 2015; Clauw et al. 2015). 
Stomatal closure reduces cell enlargement, lead area 
production and growth rate and—depending on the extent 
and duration of stomatal closure over the crop life cycle—
can severely reduce yield and biomass (Nemeskeri et al. 
2015). Indeed, Ball et al. (2000) reported that limitation 
of assimilate production and storage during the seed filling 
period can penalize yields.

In the present study, shoot physiological traits were 
an indicator of root growth traits. Stomatal conductance, 
SPAD number and relative water content were found 
to be correlated with root length, root specific area, root 
diameter and root branching under water-deficit conditions, 
suggesting that root growth traits might be driving factors 
for improving plant growth and productivity in drought 
conditions. Cultivars Bam and Roshan experienced the 
lowest inhibition in seminal and total root length and the 
lowest inhibition in stomatal conductance and relative 
water content in response to water deficit. It was previously 
reported that longer root length is useful when screening 
for yield potential in plants under salinity stress conditions 
(Rahnama et al. 2011, 2019). These results suggest that the 
relatively higher root length and degree of branching under 
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drought conditions confers drought tolerance to current 
cultivars in terms of shoot physiological traits.

Conclusion

We showed that exposure to water deficit during the seedling 
stage reduced root growth and negatively impacted on shoot 
physiological traits in wheat cultivars. We have shown the 
interaction between water stress and root growth, including 
effects of root system architecture on perceived water stress 
through inhibition of seminal root length, promotion of 
branch root elongation and shortening distal branch roots. 
Such root plasticity in response to variation in soil moisture 
stress may engender increased soil water acquisition and 
reduce negative effects of water deficit. We identified 
cultivars Bam and Roshan as the most tolerant to water 
deficit due to their shorter seminal axile root tips, longer 
seminal roots and higher branch roots, higher stomatal 
conductance and relative water content compared with 
other cultivars. A positive relationship was found between 
genotypic variation in shoot physiological traits and root 
growth traits. We believe these relationships represent a 
drought tolerance strategy in which root growth results in a 
greater collective root surface area to harvest water in drying 
soils. We showed that root traits are useful indicators for 
proxies that may improve crop productivity, highlighting the 
role of root systems to improve water and nutrient uptake 
under water deficit. We suggest that genetic variability in 
root traits during early phenology could be used by plant 
breeders to drought tolerance.
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