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Abstract
The main genetic factor which initiates the flowering is the Vrn gene system, which determines the rate of many of the 
plant’s growth and development processes. Introgression of new Vrn gene alleles from its relatives into bread wheat makes 
it possible to increase genetic variables connected to the duration of the growing season parameters and individual devel-
opmental phases. Two lines of the winter cultivar of bread wheat Bezostaya 1 (Bez1) with a combination of the dominant 
alleles Vrn-A1L Vrn-B1a and Vrn-A1L Vrn-B1c were created which included the introgression of the Vrn-A1L (or Vrn-A1c 
Langdon-type deletion) allele from Triticum petropavlovskyi Udacz. et Migusch. (or T. aestivum ssp. petropavlovskyi (Udacz. 
et Migusch.) N.P. Gontsch). Homozygous lines were isolated from  F3 hybrids by using marker-assisted selection. This lines 
matured earlier in relation to the original near-isogenic lines which contained the Vrn-A1L, Vrn-B1a, and Vrn-B1c alleles. 
The Bez1 Vrn-A1L Vrn-B1c line had a shorter germination-first node and germination-heading periods compared to Bez1 
Vrn-A1L Vrn-B1a, practically showing no difference, in terms of heading, with the early-maturing line i:Bez1 Vrn-A1a. In 
the current paper the results of research into the productivity of the lines using different combinations of VRN-1 alleles are 
presented. Thus, the obtained results indicate the possibility of using the Vrn-A1L allele carrying out modification for earlier 
maturity arising as a result of combinations with other dominant Vrn-B1 alleles.
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Introduction

The adaptability of wheat to a wide range of environment 
conditions is mainly controlled by genes, determining the 
vernalization requirement (Vrn) and photoperiod sensitiv-
ity (Ppd). The vernalization pathway is responsible for the 
prevention of flowering before or during periods of low tem-
perature which are detrimental to the apical meristem of the 
growth apex. Sensitivity to the photoperiod (day length) in 
wheat is controlled by the PPD-1 genes: Ppd-D1, Ppd-B1, 
and Ppd-A1, localized in the 2D, 2B, and 2A chromosomes, 
respectively, and allelic differences between dominant and 

recessive alleles are determined by deletions or insertions in 
the promoter region (Beales et al. 2007; Nishida et al. 2013). 
PPD-1 is the main activator of TaFT1 (VRN-3).

The response to vernalization is controlled by VRN-1, 
VRN-2, VRN-3, and VRN-4 genes. VRN-1 encode MADS-
box proteins with high similarity to Arabidopsis thaliana 
meristem identity APETALA1. VRN-1 are three ortholo-
gous genes: Vrn-A1, Vrn-B1, and Vrn-D1, located in the 
5A, 5B, and 5D chromosomes, respectively (Yan et al. 
2003). The presence of at least one VRN-1 dominant allele 
determines the spring growth habit in wheat. Plants with 
Vrn-A1 mature earlier than plants with Vrn-B1 or Vrn-D1 
(Goncharov 2004), which correlates with the relative level 
of expression of these genes (Loukoianov et al. 2005). 
VRN-1 is dominant for spring growth habit, whereas VRN-
2 is dominant for winter growth habit (Yan et al. 2004b). 
Although VRN-3 in wheat was originally identified as a 
vernalization gene, the VRN-3 (TaFT1) gene is an ortholog 
of the Arabidopsis FT gene, and an integrator of various 
pathways, involved in the determination of flowering time 
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(Yan et al. 2006). Vrn-D4 is a VRN-1 paralog on chromo-
some 5DS (Kippes et al. 2015). In a simplified form, the 
process of the interaction of VRN genes looks like this: 
prior to the onset of vernalization, the expression level 
of VRN-1 and VRN-3 is low, which prevents plants from 
progressing to the stage of generative development. Due 
to the effects brought about by the influence of vernaliza-
tion, VRN-1 expression increases in the cells of the apical 
meristem, which when reaching a certain threshold value, 
initiates its transition from the vegetative to the generative 
stage (Loukoianov et al. 2005). In leaves, the product of 
the VRN-1 gene suppresses transcription of the flowering 
repressor gene VRN-2, which in turn suppresses transcrip-
tion of VRN-3. The product of the VRN-3 gene, whose 
expression is induced by PPD-1, binds to the promoter 
region of the VRN-1 gene in apical meristem cells. VRN-1 
expression is then activated, which leads to the formation 
of a positive feedback loop, and thus the initiation of flow-
ering (Chen and Dubcovsky 2012).

A polymorphism in the promoter and the first intron of 
VRN-1 genes causes the known allelic diversity of wheat in 
heading time. The most common allele of the Vrn-A1 locus 
in bread wheat, Vrn-A1a, contain a 222 bp insertion and a 
duplication in the promoter (Yan et al. 2004a). In addition 
to Vrn-A1a, several other alleles were described in bread 
wheat: Vrn-A1b (Vrn-A1b.1) and Vrn-A1c with a 20 bp and 
5.5 kb deletion in the promoter (Yan et al. 2004a) and in 
the first intron (Fu et al. 2005), respectively. Zhang et al. 
(2022) identified a new dominant Vrn-A1o and resessive 
vrn-A1n alleles with 54 bp and 11 bp deletions in the pro-
moter region, respectively. In the first intron of bread wheat, 
large deletions are described, that distinguish the dominant 
alleles Vrn-B1a (6.8 kb deletion) (Fu et al. 2005), Vrn-B1b 
(6.8 kb and 36 bp deletions and SNP) (Santra et al. 2009), 
Vrn-B1c (7.6 kb deletion and 400 bp duplication) (Milec 
et al. 2012; Shcherban et al. 2012b), and Vrn-B1d (6.8 kb 
and 187 bp deletions, 4 bp mutation and SNP) (Zhang et al. 
2018) from the recessive ones. A 4.2 kb deletion and 0.8 kb 
insertion in the first intron is characteristic of the Vrn-D1a 
and Vrn-D1s alleles, respectively (Fu et al. 2005; Muterko 
et al. 2015). Vrn-D1b and Vrn-D1c are characterized an SNP 
and a 174 bp insertion in the promoter region, respectively 
(Zhang et al. 2012, 2015).

The influence of different mutations of the VRN-1 locus 
on the timing of the onset of flowering and heading of bread 
wheat has been established. The most early to mature are 
the genotypes carrying the Vrn-A1a. Genotypes carrying 
Vrn-B1c, in turn, are faster to mature compared to carriers 
of Vrn-B1a (Emtseva et al. 2013). Plants whose develop-
ment type is controlled by more than one dominant allele 
(Vrn-A1a, Vrn-B1a, Vrn-B1c or Vrn-D1a) tend to be faster 
maturing than those containing only one allele (Kiss et al. 
2014; Efremova et al. 2016).

The determined distribution of allelic variants of Vrn and 
Ppd differs by geographical region, and different ecologi-
cal and geographical zones, with different combinations of 
alleles possessing an advantage and providing a wide level of 
ecological plasticity in bread wheat (Shcherban et al. 2012a, 
2015; Milec et al. 2013; Zhang et al. 2015, 2022; Efremova 
et al. 2016; Whittal et al. 2018; Shi et al. 2019). The majority 
of spring cultivars in Russia (including Western Siberia), as 
well as a number of temperate regions, is characterized by 
the presence of the two dominant genes Vrn-A1 (Vrn-A1a) 
and Vrn-B1 (Vrn-B1a, Vrn-B1c) which are faster in maturing 
and more productive than cultivars with a single Vrn gene 
(Potokina et al. 2012; Likhenko et al. 2015; Efremova et al. 
2016; Smolenskaya et al. 2022).

To increase the genetic diversity of common wheat, domi-
nant alleles found in the Vrn genes of its wild relatives can 
be introgressed into bread wheat genome (Stelmakh and 
Avsenin 1996; Zhang et al. 2008; Ivaničová et al. 2016). We 
obtained the near-isogenic line (NIL) of the winter cultivar 
Bezostaya 1 (Bez1) with the dominant Vrn-A1L allele (or 
Vrn-A1c Langdon-type deletion) introgressed from hexa-
ploid wheat Triticum petropavlovskyi (Udacz. et Migusch.) 
(or T. aestivum ssp. petropavlovskyi (Udacz. et Migusch.) 
N.P. Gontsch), the effect of which is connected to a signifi-
cant increase in heading time when compared to the Vrn-
A1a allele (Chumanova et al. 2023). Vrn-A1L occurs in the 
tetraploid wheat species (Shcherban and Salina 2017; Shi 
et al. 2019). However, as mentioned above, modern cultivars 
of spring bread wheat in the world mainly carry alleles of 
two dominant genes, Vrn-A1 and Vrn-B1. It would therefore 
be of interest to study the phenotypic effects of the inter-
action of the Vrn-A1L allele with common alleles of the 
Vrn-B1 locus (Vrn-B1a и Vrn-B1c) present among mod-
ern commercial bread wheat cultivars in Russia (including 
Western Siberia) and a number of temperate countries. For 
these reasons this work is devoted to obtaining and studying 
lines possessing a combination of these alleles in the genetic 
background of the winter cultivar Bez1 and studying their 
influence on the duration of individual developmental phases 
and productivity.

Materials and methods

Plant material

In the current paper, the lines of the winter cultivar Bez1 
with a combination of dominant alleles were obtained by 
crossing a i:Bez1 Vrn-B1a and i:Bez1 Vrn-B1c with the 
i:Bez1 Vrn-A1L (Table 1). PCR markers were used to iden-
tify homozygous plants among  F2 and  F3 hybrids (Table 2). 
The lines presented in Table 1 were also used as research 
material.
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DNA extraction and PCR amplification

Genomic DNA was extracted from leaves following Sharp 
et al. (1988). PCR was performed in a 25 μL volume with 
12.5 μl BioMaster HS-Taq PCR (2 ×) (Biolabmix, Russia) 
(100 mM Tris–HCl (pH 8.5 at 25 °C) 100 mM KCl, 0.4 mM 
of each dNTP, 4 mM  MgCl2, 0.06 U/μl Taq DNA polymer-
ase, 0.2% Tween 20, stabilizers of HS-Taq DNA polymer-
ase), 0.5 μM of each primer, 100 ng of genomic DNA and 
 H2O, up to 25 μL. The structure of the used primers and 
PCR conditions were consistent with the published proto-
cols (Table 2). The reactions were run on a BIO-RAD T100 
Thermal Cycler (Bio-Rad, USA). The amplification products 
were separated by electrophoresis on a 1.5% agarose gel in 
1 × TAE buffer stained with ethidium bromide and visualized 
using the Doc-Print II gel documentation system (Vilber 
Lourmat, France).

Growth conditions and data analysis

The study of the duration of the individual developmen-
tal phases in the lines presented in Table 1 was carried out 
during spring sowing in 2022 in the experimental field of 
the Institute of Cytology and Genetics (IC&G SB RAS) 

(Novosibirsk) (55°N, 82°E) under natural long day (LD) 
(day length for the May–August period, 17 h). Seed sowing 
was on May 17 in 2021 and May 31 in 2022. The experiment 
was also conducted in a hydroponic greenhouse of the Labo-
ratory of Artificial Plant Growth of IC&G under conditions 
with controlled temperature (20–25 °C) and illumination. 
The experiment was conducted under both LD (18 h light) 
and short day (SD, 14 h light) conditions. Plants were grown 
in pots with volume of 5 L with ten plants per pot.  F1 and 
 F3 hybrids were grown in the greenhouse under SD, while 
 F2 hybrids were grown under LD conditions. Phenological 
stages were recorded following the Zadoks scale (Tottman 
et al. 1979). The following developmental phases were noted 
both in the field and in the greenhouse: Z10 (emergence), 
Z31 (first node), Z39 (flag leaf) and Z60 (full heading). At 
least 30 plants from each line were studied in each experi-
ment. To assess the significance of the differences between 
the mean values, Student’s test was used. The productivity of 
the plants from the new lines was evaluated during cultiva-
tion in the field in 2022. Bez1 Vrn-A1a Vrn-B1a and Bez1 
Vrn-A1a Vrn-B1c lines were grown in 2021. The productiv-
ity components of the main spike and plant, the weight of 
1000 grains, and plant height were examined. 25 plants from 
each line were studied.

Table 1  Lines of the Bez1 cultivar with different Vrn alleles used in the study

Lines Haploid Vrn genotype Donor of dominant Vrn gene References

i:Bez1 Vrn-A1a Vrn-A1a vrn-B1 vrn-D1 Triple Dirk D Efremova (unpublished)
i:Bez1 Vrn-A1L Vrn-A1L vrn-B1 vrn-D1 T. aestivum ssp. petropavlovskyi (KIZ) (Chumanova et al. 2023)
i:Bez1 Vrn-B1a vrn-A1 Vrn-B1a vrn-D1 cv. Diamant II (Efremova et al. 2011; Shcherban et al. 2012b)
i:Bez1 Vrn-B1c vrn-A1 Vrn-B1c vrn-D1 cv. Saratovskaya 29 (Efremova et al. 2011; Shcherban et al. 2012b)
Bez1 Vrn-A1a Vrn-B1a Vrn-A1a Vrn-B1a vrn-D1 i:Bez1 Vrn-A1a

i:Bez1 Vrn-B1a
(Chumanova et al. 2018)

Bez1 Vrn-A1a Vrn-B1c Vrn-A1a Vrn-B1c vrn-D1 i:Bez1 Vrn-A1a
i:Bez1 Vrn-B1c

(Chumanova et al. 2018)

Bez1 Vrn-A1L Vrn-B1a Vrn-A1L Vrn-B1a vrn-D1 i:Bez1 Vrn-A1L
i:Bez1 Vrn-B1a

Present study

Bez1 Vrn-A1L Vrn-B1c Vrn-A1L Vrn-B1c vrn-D1 i:Bez1 Vrn-A1L
i:Bez1 Vrn-B1c

Present study

Table 2  Set of primers used in the present study

Primers name Sequence (5′ to 3′) Alleles Annealing tem-
perature (°C)

Expected size
of product (bp)

References

Intr1/C/F
Intr1/AB/R

GCA CTC CTA ACC CAC TAA CC
TCA TCC ATC ATC AAG GCA AA

vrn-A1 56 1068 Fu et al. (2005)

Ex1/C/F
Intr1/A/R3

GTT CTC CAC CGA GTC ATG GT
AAG TAA GAC AAC ACG AAT GTG AGA 

Vrn-A1L 56 522

Intr1
Intr1/B/R3

ATC ATC TTC TCC ACC AAG GG
CTC ATG CCA AAA ATT GAA GATGA 

Vrn-B1a
Vrn-B1c

58 1124
737

Shcherban et al. (2012b)

Intr1/B/F
Intr1/B/R4

CAA GTG GAA CGG TTA GGA CA
CAA ATG AAA AGG AAT GAG AGCA 

vrn-B1 56 1149 Fu et al. (2005)
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Overall, 2021 was quite favorable in the field of plant 
growth and development (Fig. 1). May was characterized 
by high temperatures and a strong lack of precipitation. The 
average daily temperature was 14.2 °C, which was 3.3 °C 
higher than annual average. May and July were character-
ized by below-normal precipitation (70% and 40% of annual 
average, respectively). Precipitation in June was 130% of 
the annual average. The meteorological conditions of the 
2022 growing season, were unfavorable for the growth of 
plants. May also was characterized by high temperatures and 
a strong lack of precipitation. The average daily temperature 
was 15.4 °C, which was 4.5 °C higher than annual average. 
The total amount of precipitation for the month (3 mm) was 
only 8% of the annual average. Before sowing, there was a 
significant lack of moisture in the soil, which, together with 
the high temperatures, had a negative impact on the initial 
periods of plant growth. In June, on the contrary, the first ten 
days turned out to be cold with an average temperature of 
about 12 °C. Also, the second ten days of July turned out to 
be dry, during which only 1 mm of precipitation fell, which 
could have affected the passage of the phases starting from 
the appearance of the first node until heading. In August, the 
first and third ten day periods were characterized by below-
normal precipitation (40% of annual average). In general, 
2022 was characterized by a significant lack of precipitation 
during the growing season.

Results

Production of Bez1 winter wheat lines 
with a combination of dominant alleles Vrn‑A1L 
Vrn‑B1a and Vrn‑A1L Vrn‑B1c using molecular 
markers

Using PCR markers (Table 1) in plants  F1: i:Bez1 Vrn-
A1L × i:Bez1 Vrn-B1a and i:Bez1 Vrn-A1L × i:Bez1 Vrn-
B1c, amplification fragments possessing the expected size 
characteristic of heterozygous genotypes were identified 
(Fig. 2). In the  F1 hybrids late maturation prevailed. The 
duration of the period before the heading of plants in both 
hybrid combinations was 69 days, which corresponded to 
the heading time of plants i:Bez1 Vrn-A1L.

Analysis was carried out on 38 plants possessing the 
combination  F2 i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1a, and 37 
of those with the combination  F2 i:Bez1 Vrn-A1L × i:Bez1 
Vrn-B1c. In Fig. 3 and Fig. 4 electrophoregrams of differ-
ent plant genotypes that were detected in the analysis of 
 F2 hybrids are shown. In the first combination, 27 plants 
(71.0%) with two dominant alleles were isolated and in the 
second combination there were 20 plants (54.0%), among 
which the number of plants with two Vrn genes homozy-
gous for one of the alleles was 32–50%. Homozygous 
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Fig. 1  Temperature and precipitation in the 2021 and 2022. Tempera-
ture is represented as a line, precipitation as a histogram

Fig. 2  Identification of dominant and recessive alleles of Vrn-A1 and Vrn-B1 loci in  F1 hybrids: i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1a (1) and i:Bez1 
Vrn-A1L × i:Bez1Vrn-B1c (2) using PCR markers: a Vrn-A1L, b vrn-A1, c Vrn-B1a and Vrn-B1c, d vrn-B1. M – 100 bp Ladder

Fig. 3  Identification of dominant and recessive alleles of Vrn-A1 
and Vrn-B1 loci in  F2 hybrids: i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1a 
using PCR markers: a Vrn-A1L, b vrn-A1, c Vrn-B1a, d vrn-B1. M 
– 100  bp Ladder. 1 to 7—different genotypes: 1—Vrn-A1L vrn-A1 
vrn-B1 vrn-B1; 2—Vrn-A1L vrn-A1 Vrn-B1a vrn-B1; 3—Vrn-A1L 
Vrn-A1L Vrn-B1a vrn-B1; 4—Vrn-A1L vrn-A1 Vrn-B1a Vrn-B1a; 
5—vrn-A1 vrn-A1 Vrn-B1a Vrn-B1a; 6—Vrn-A1L Vrn-A1L vrn-B1 
vrn-B1; 7—vrn-A1 vrn-A1 vrn-B1 vrn-B1 
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plants with two dominant alleles in the  F2  generation2 were 
not isolated (Tables 3 and 4).

The heading time of plants with the combination of  F2: 
i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1a, carrying the Vrn-B1a 
allele varied from 48.3 to 53.5 days, and those with the com-
bination  F2: i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1c, carrying the 
Vrn-B1c allele ranged from 44.8 to 53.9 days. The lowest 
number of days before heading in both combinations was 
typical for plants of the Vrn-B1 Vrn-B1 Vrn-A1L vrn-A1 
genotype. The highest number of days before heading was 
observed in plants of the Vrn-A1L vrn-A1 vrn-B1 vrn-B1 
genotype (69.0 and 65.4 days, respectively).

Further, during the self-pollination of plants with the Vrn-
A1L Vrn-A1L Vrn-B1a vrn-B1 and Vrn-A1L Vrn-A1L Vrn-
B1c vrn-B1 genotypes of generation  F3, homozygous plants 
were isolated. In the first combination there were 4 such 
plants out of the 38 that were analyzed and in the second 13 
out of 39 (Table 5 and 6, Fig. 5).

There was a clear trend in heading time differences 
depending on the allelic state Vrn-B1a and Vrn-B1c locus 
in  F3 hybrids since Vrn-A1L was in the homozygous state 
in all plants. The effect of Vrn-B1a and Vrn-B1c on head-
ing time was 10–11 days in the presence of the Vrn-A1L 
allele in homozygous state (Tables 5 and 6). The difference 
between homozygotes for dominant and recessive alleles 
was 24 and 38 days in the hybrid combination  F3: i:Bez1 
Vrn-A1L × i:Bez1 Vrn-B1a and i:Bez1 Vrn-A1L × i:Bez1 
Vrn-B1c, respectively. Plants with Vrn-B1c headed earlier 
than those with Vrn-B1a, which corresponds to the previ-
ously obtained data concerning the differences in the timing 
of heading of isogenic lines i:Bez1 Vrn-B1c and i:Bez1 Vrn-
B1a (Emtseva et al. 2013; Chumanova et al. 2020).

Thus, the use of molecular markers has proven to be 
effective in isolating plants, homozygous for Vrn loci tar-
getting in  F3 generation hybrids.

Determination of the influence of combinations 
of dominant alleles of VRN‑1 loci on the heading 
time and the duration of individual developmental 
phases

The earliest maturing lines in the field and in the green-
house were Bez1 Vrn-A1L Vrn-B1a and Bez1 Vrn-A1L Vrn-
B1c (Table 7, Figs. 6 and 7) which practically did not differ 
from each other with regard to the duration up to Z60 period 
(38.7 and 38.1 days in the field and 40.9 and 42.2 in the 
greenhouse). In addition, these lines differed significantly 
in heading time from NIL with the allele Vrn-A1a associ-
ated with faster maturation, which possessed a duration of 
the up to Z60 period which varied from 44.5 to 49.2 days. 
On the contrary the Vrn-A1L allele is associated with late 
maturation. NIL was headed in 62.8–69.7 days. The heading 
time of i:Bez1 Vrn-B1c varied from 47.8 to 59.4 days, and 
i:Bez1 Vrn-B1a from 48.6 to 59.3 days. Plants of lines Bez1 

Fig. 4  Identification of dominant and recessive alleles of Vrn-A1 
and Vrn-B1 loci in  F2 hybrids: i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1c 
using PCR markers: a Vrn-A1L, b vrn-A1, c Vrn-B1c, d vrn-B1. 
M—100  bp Ladder. 1 to 6—different genotypes: 1—Vrn-A1L vrn-
A1 Vrn-B1c vrn-B1; 2—Vrn-A1L Vrn-A1L Vrn-B1c vrn-B1; 3—Vrn-
A1L vrn-A1 vrn-B1 vrn-B1; 4—Vrn-A1L vrn-A1 Vrn-B1c Vrn-B1c; 
5—vrn-A1 vrn-A1 Vrn-B1c Vrn-B1c; 6—vrn-A1 vrn-A1 vrn-B1 vrn-
B1 

Table 3  The average value of the number of days before the heading 
of the  F2 hybrid plants: i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1a 

– Indicates that values were not obtained before the experiment 
stopped (after 120 days from shoots)

Combination of genotype Number of plants Average head-
ing time (days)

Vrn-A1L vrn-A1 Vrn-B1a Vrn-
B1a

4 (10.5%) 48.3

Vrn-A1L Vrn-A1L Vrn-B1a 
vrn-B1

11 (28.9%) 51.0

Vrn-A1L vrn-A1 Vrn-B1a vrn-B1 12 (31.6%) 52.6
vrn-A1 vrn-A1 Vrn-B1a Vrn-B1a 2 (5.3%) 53.5
Vrn-A1L Vrn-A1L vrn-B1 vrn-B1 2 (5.3%) 65.0
Vrn-A1L vrn-A1 vrn-B1 vrn-B1 1 (2.6%) 69.0
vrn-A1 vrn-A1 vrn-B1 vrn-B1 6 (15.8%) –
Total 38 (100%)

Table 4  The average value of the number of days before the heading 
of the  F2 hybrid plants: i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1c 

– Indicates that values were not obtained before the experiment 
stopped (after 120 days from shoots)

Combination of genotype Number of plants Average head-
ing time (days)

Vrn-A1L vrn-A1 Vrn-B1c Vrn-
B1c

6 (16.2%) 44.8

vrn-A1 vrn-A1 Vrn-B1c Vrn-B1c 3 (8.1%) 46.0
Vrn-A1L Vrn-A1L Vrn-B1c 

vrn-B1
3 (8.1%) 47.0

Vrn-A1L vrn-A1 Vrn-B1c vrn-B1 11 (29.7%) 53.9
Vrn-A1L vrn-A1 vrn-B1 vrn-B1 7 (18.9%) 65.4
vrn-A1 vrn-A1 vrn-B1 vrn-B1 7 (18.9%) –
Total 37 (100%)
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Vrn-A1L Vrn-B1a and Bez1 Vrn-A1L Vrn-B1c had faster 
maturation rates than the original NILs with the alleles 
Vrn-A1L, Vrn-B1a and Vrn-B1c, respectively (P < 0.05), 
although, initially no differences were assumed with respect 
to carriers of the Vrn-B1. Thus, the difference in heading 
time between Bez1 Vrn-A1L Vrn-B1a and NILs with Vrn-
A1L and Vrn-B1a alleles was 11.6–25.3 and 3.7–8.7 days 
depending on the vegetation, respectively (P < 0.05), and 
the difference between Bez1 Vrn-A1L Vrn-B1c and NILs 
with alleles Vrn-A1L and Vrn-B1c were 16.2–28.0 and 
6.1–8.2 days, respectively (P < 0.05). At the same time, 
under LD conditions in the greenhouse, there were no dif-
ferences in heading time between Bez1 Vrn-A1L Vrn-B1a 
and Bez1 Vrn-A1L Vrn-B1c, in the field or in the greenhouse 

under SD conditions, the line with the Vrn-B1c allele had 
faster heading than with the Vrn-B1a allele and the differ-
ence reached a period of 6.6 days (P < 0.05). In addition, 
it turned out that in terms of heading time Bez1 Vrn-A1L 
Vrn-B1c practically did not differ from the faster maturation 
line i:Bez1 Vrn-A1a. The observed differences between the 
genotypes with regard to the heading time, both in the field 
and in the greenhouse, are determined by differences in the 
duration of the up to Z31 period, which mainly determines 
the differences in the duration of the germination-head-
ing period (Emtseva et al. 2013; Chumanova et al. 2020) 
(Figs. 6 and 7). For the duration of the periods Z31–Z39 
and Z39–Z60, there was no unambiguous trend. It should be 
noted that for all the studied lines, a reaction to the length of 
the day associated with the Ppd-D1a allele was character-
istic and caused moderate photoperiodic sensitivity of the 
Bez1 cultivar, which was expressed in an increase in the 
duration of the period before heading (by 4–11 days) under 
SD conditions mainly due to an increase in the duration of 
the up to Z31 period (by 4–14 days) while the duration of 
the periods Z31–Z39 and Z39–Z60 either showed almost no 
practical change or only decreased slightly.

Thus, despite the fact that the Vrn-A1L allele causes late 
maturity in plants, it can be successfully used in breeding for 
faster maturation as a result of combination with the domi-
nant alleles of the Vrn-B1.

Study of the productivity of lines in the Bez1 
cultivar

Determining the influence of the various dominant alleles of 
Vrn loci and their combinations on productivity indicators is 
an important task that allows us to select valuable genotypes 

Table 5  The average value of 
the number of days before the 
heading of the  F3 offspring from 
the self-pollination of plants 
of genotype Vrn-A1L Vrn-A1L 
Vrn-B1a vrn-B1 

Combination of genotype Number of plants Average heading time 
(days)

Min–max 
days to 
heading

Vrn-A1L Vrn-A1L Vrn-B1a Vrn-B1a 4 54.3 51–58
Vrn-A1L Vrn-A1L Vrn-B1a vrn-B1 18 65.1 58–71
Vrn-A1L Vrn-A1L vrn-B1 vrn-B1 16 78.4 71–88
Total 38

Table 6  The average value of 
the number of days before the 
heading of the F3 offspring 
from the self-pollination of 
plants of genotype Vrn-A1L 
Vrn-A1L Vrn-B1c vrn-B1 

Combination of genotype Number of plants Average heading time 
(days)

Min–max 
days to 
heading

Vrn-A1L Vrn-A1L Vrn-B1c Vrn-B1c 13 42.9 41–43
Vrn-A1L Vrn-A1L Vrn-B1c vrn-B1 14 53.2 42–62
Vrn-A1L Vrn-A1L vrn-B1 vrn-B1 12 80.7 66–88
Total 39

Fig. 5  Identification of dominant and recessive alleles of Vrn-A1 and 
Vrn-B1 loci in  F3 hybrids: i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1a (1–3) 
and i:Bez1 Vrn-A1L × i:Bez1 Vrn-B1c (4–6) using PCR markers: a 
Vrn-A1L, b Vrn-B1a or Vrn-B1c, c vrn-B1. M—100 bp Ladder
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for breeding purposes. A comparative study of the productiv-
ity of new lines revealed that the main spike and plant pro-
ductivity of the line with a combination of alleles Vrn-A1L 
and Vrn-B1a, in all of the studied characters, exceeded those 
with a line possessing a combination of alleles Vrn-A1L and 
Vrn-B1c (Table 8). The greatest differences were observed in 
terms of the spikelet number, grain weight per spike and plant 
productivity (exceeding by 13–25%) (P < 0.05). Comparison 
of lines with a combination of Vrn-A1a Vrn-B1a and Vrn-A1a 
Vrn-B1c alleles showed that the first line was more productive 

than the second line, which is especially evident with respect 
to grain weight per spike and per plant and weight of 1000 
grains (exceeding by 33–49%) (P < 0.05) (Table 8).

Discussion

DNA markers (marker-assisted selection) are widely used 
in genetic research and plant breeding to solve theoretical 
problems and accelerate and simplify the breeding process. 

Table 7  Student's test for days to heading of the Bez1 lines with different dominant alleles of VRN loci and their combinations in field and in 
greenhouse

Significant differences: 1—from i:Bez1 Vrn-A1a, 2—from i:Bez1 Vrn-A1L, 3—from i:Bez1 Vrn-B1a, 4—from i:Bez1 Vrn-B1c, 5—from Bez1 
Vrn-A1L Vrn-B1a, 6—from Bez1 Vrn-A1a Vrn-B1a, 7—from Bez1 Vrn-A1a Vrn-B1c. * P < 0.05. Values are means ± standard deviation. SD1 
and SD2 – two experiments under short days conditions

Lines Field, 2022 Greenhouse

SD1 SD2 LD

i:Bez1 Vrn-A1a 44.47 ± 4.46 47.40 ± 2.27 49.17 ± 1.95 43.95 ± 1.35
i:Bez1 Vrn-A1L 69.68 ± 3.44 *1 66.56 ± 1.99 *1 67.43 ± 1.99 *1 62.80 ± 1.10 *1

Difference 25.21 19.16 18.26 18.85
i:Bez1 Vrn-B1a 48.60 ± 3.08 *1 58.73 ± 1.44 *1 59.29 ± 2.89 *1 52.82 ± 1.13 *1

i:Bez1 Vrn-B1c 47.81 ± 3.02 *1 55.42 ± 3.13 *1 *3 59.40 ± 2.80 *1 50.00 ± 1.81 *1 *3

Difference 0.79 3.31 0.11 2.82
Bez1 Vrn-A1L Vrn-B1a 44.40 ± 2.54 *2 *3 *6 55.00 ± 3.22 *1 *3 *6 52.62 ± 2.89 *1 *2 *3 44.08 ± 1.13 *2 *3

Bez1 Vrn-A1L Vrn-B1c 41.71 ± 3.14 *1 *2 *4 *5 *7 48.41 ± 2.99 *4 *5 *7 51.23 ± 2.22 *1 *2 *4 43.88 ± 2.91 *2 *4

Difference 2.70 6.59 1.39 0.20
Bez1 Vrn-A1a Vrn-B1a 38.68 ± 2.64 *1 *3 40.93 ± 1.68 *1 *3

Bez1 Vrn-A1a Vrn-B1c 38.13 ± 2.66 *1 *4 42.11 ± 1.91 *4

Difference 0.55 1.18
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Fig. 6  The duration of developmental phases according to the Zadoks 
scale (Tottman et  al. 1979) of Bez1 lines with dominant alleles of 
VRN-1 in field 2022. Significant differences: 1—from i:Bez1 Vrn-
A1a, 2—from i:Bez1 Vrn-A1L, 3—from i:Bez1 Vrn-B1a, 4—from 

i:Bez1 Vrn-B1c, 5—from Bez1 Vrn-A1L Vrn-B1a, 6—from Bez1 
Vrn-A1a Vrn-B1a, 7—from Bez1 Vrn-A1a Vrn-B1c. *P < 0.05. Error 
bars are standard deviation of the means
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Markers are also used for the pyramiding of genes control-
ling the same trait. The use of markers allows for the identi-
fication of genotypes containing the targeted combinations 
of genes at the earliest stages of the creation of breeding 
material (Song et al. 2023). In this work, homozygous Bez1 
cultivar lines were obtained among  F3 hybrids. The use of 
PCR markers developed for the regions of the promoter and 
the first intron of VRN-1 makes it possible to increase the 
screening efficiency of alleles of Vrn genes and reduce the 
selection time of target gene combinations.

The use of different alleles or different combinations of 
allelic variants of VRN-1 with different phenotypic mani-
festations at the heading time provides an opportunity for 
the manipulation of the length of the growing season inher-
ent in bread wheat (Kamran et al. 2014; Shi et al. 2019). 
The genetic models we used include combinations of Vrn-
A1a/Vrn-A1L alleles with Vrn-B1aVrn-B1c. The presence 
of different sets of genotypes makes it possible to study the 
genetic effects of different combinations of alleles within 
a specific targeted genetic background. The lines with the 
Vrn-A1 locus: Vrn-A1a and Vrn-A1L differ from each other 
in heading time (Chumanova et al. 2023), and the differences 
between NILs with Vrn-B1c and Vrn-B1a are were about 
4 days (Emtseva et al. 2013). Based on this, the dominant 

alleles of VRN-1 in order to decrease the duration of the 
period before heading can be arranged as follows: Vrn-A1a 
˃ Vrn-B1c ˃ Vrn-B1a ˃ Vrn-A1L. The data presented and 
obtained earlier (Chumanova et al. 2020) show that the lines 
with theVrn-A1a Vrn-B1a and Vrn-A1a Vrn-B1c alleles do 
not differ in the timing of heading or the duration of the 
developmental phases, and they are also faster in maturation 
compared to i:Bez1 Vrn-A1a. It is known that Vrn-A1 has 
the strongest effect on the acceleration of heading among 
the three VRN-1 genes (Goncharov et al. 2004) and that the 
Vrn-A1a allele is epistatic with respect to the alleles of the 
Vrn-B1 (Li et al. 2017). However, plants bearing combina-
tions of two or three dominant alleles tend to possess faster 
maturation than those with a single allele, including Vrn-
A1a, which is associated with the additive effect of genes 
(Potokina et al. 2012; Kiss et al. 2014; Zhang et al. 2014; 
Shcherban et al. 2015; Efremova et al. 2016). Interesting 
results were obtained when studying the second group of 
lines possessing a combination of alleles. The introduction 
of the dominant Vrn-A1L allele into the genotype of the win-
ter cultivar Bez1, which determines the late maturity of the 
plants, in combination with alleles of the Vrn-B1 led to the 
production of faster maturing lines relative to the original 
NILs, carriers of these alleles. It is probable that there is also 

Fig. 7  The duration of devel-
opmental phases of Bez1 lines 
with dominant alleles of VRN-1 
in greenhouse under SD and LD 
conditions. Significant differ-
ences: 1—from i:Bez1 Vrn-A1a, 
2—from i:Bez1 Vrn-A1L, 3—
from i:Bez1 Vrn-B1a, 4—from 
i:Bez1 Vrn-B1c, 5—from Bez1 
Vrn-A1L Vrn-B1a, 6—from 
Bez1 Vrn-A1a Vrn-B1a, 7—
from Bez1 Vrn-A1a Vrn-B1c. * 
P < 0.05. Error bars are SD of 
the means. SD1 and SD2-exper-
iments under short days in 2022 
and in 2023, respectively
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an additive effect of homeologous Vrn genes, that is that in 
the presence of Vrn-B1, there is an increase in the expres-
sion of Vrn-A1L, which manifests itself in a decrease in the 
duration of the period from germination to heading, due to 
a decrease in the duration of the period before the appear-
ance of the first node. We hope that experiments into the 
study of expression, which we plan to carry out in the future, 
will help to answer this question. In addition, the Bez1 Vrn-
A1L Vrn-B1c line differed slightly from the NIL with the 
Vrn-A1a. Similar results were obtained in the work (Dowla 
et al. 2020). A synthetic cultivar of wheat with Vrn-A1L 
from Langdon durum wheat and Vrn-B1a, had a pre-heading 
period duration only 2 days longer than lines with Vrn-A1a 
Vrn-B1a alleles. In our work, the combination of Vrn-A1L 
and Vrn-B1c alleles leads to slightly earlier heading, as well 
as lessening the duration of the period before the appearance 
of the first node, than that of the combination of Vrn-A1L 
and Vrn-B1a, which may be explained by differences in the 
heading times of monogenic carriers with Vrn-B1c and Vrn-
B1a as described Emtseva et al. (2013) as well as the genetic 
background of the lines.

It is well known that the heading time of bread wheat 
and the duration of the individual developmental phases are 
extremely important features that determine the ability of 
bread wheat cultivars to adapt to varied climatic conditions, 
thereby contributing to a consistently high productivity 
(Kamran et al. 2014). When choosing cultivars for cultiva-
tion that are most suitable for the climatic conditions of a 
particular region, it is necessary to take into account the mat-
uration speed of different cultivars, so that the most sensitive 
phases of development, take place under the most optimal 
environmental conditions (Santra et al. 2009; Gomez et al. 
2014; Kamran et al. 2014; Grogan et al. 2016; Amo et al. 
2022). In Siberia the selection of early ripening cultivars is 
one of the important aspects in the breeding of spring bread 
wheat. Among modern widespread cultivars in Western 
Siberia, genotypes with a combination of Vrn-A1a and Vrn-
B1a or Vrn-B1c alleles predominate, since it is this combina-
tion of alleles that ensures optimal heading times and yield 
potential when taking into account the specific features of 
the climatic conditions of the region (Likhenko et al. 2015; 
Efremova et al. 2016; Smolenskaya et al. 2022). The lines 
with a combination of Vrn-A1L and Vrn-B1a or Vrn-B1c 
alleles can be classified as medium-ripe in terms of head-
ing time, which demonstrates the importance of the results 
obtained for the conditions of Western Siberia. Therefore, 
the Vrn-A1L allele, which was previously introgressed by 
us from T. petropavlovskyi, which had previously not yet 
been involved in the selection of bread wheat, can be used in 
breeding for faster maturation as a result of the combination 
with alleles of the Vrn-B1. Introgression of dominant alleles 
of Vrn genes from related cereal species, or the use of rare 
alleles already available in the gene pool but not yet seeing Ta
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wide distribution, is a popular direction for of fundamental 
and breeding research, since it allows for the increasing of 
the adaptive potential of bread wheat by increasing the exist-
ing allelic diversity in genes that determine the timing of key 
developmental phases, including flowering.

A comparative study of the productivity of new lines 
showed that a line combining Vrn-A1L and Vrn-B1a turned 
out to result in higher productivity than that containing Vrn-
A1L and Vrn-B1c. However, a comparison of combinations 
of Vrn-A1a Vrn-B1a and Vrn-A1a Vrn-B1c alleles with each 
other, in fact showed the opposite to be true. It is known that 
a longer vegetative period allows the wheat plant to produce 
a greater number of productive shoots and consequently a 
high number of grains under favorable conditions (Royo 
et al. 2018). Probably, the observed differences in produc-
tivity between Bez1 Vrn-A1L Vrn-B1a and Bez1 Vrn-A1L 
Vrn-B1c lines are due to the longer period before first node 
formation of the first line (3 days difference), due to which 
we observe the formation of a greater number of produc-
tive shoots and, consequently, a higher grain number and 
grain weight per plant. However, the observed differences 
between Bez1 Vrn-A1L Vrn-B1a and Bez1 Vrn-A1L Vrn-B1c 
lines cannot be explained by differences in the duration of 
developmental phases. It is known that in Western Siberia 
cultivars with a combination of alleles Vrn-A1a Vrn-B1c are 
more common than with a combination of Vrn-A1a Vrn-B1a 
(Efremova et al. 2016; Smolenskaya et al. 2022), which is 
associated not only with a shorter period to earing, but also, 
probably, with greater adaptation to climatic conditions and 
productivity of such genotypes. Unfortunately, experiments 
conducted over the course of different years do not allow a 
comparison to be made between these four combinations, 
since the realization of productive potential occurs in close 
interaction with the genotype and the external conditions. 
Therefore, we plan to conduct repeated experiments in order 
to obtain unambiguous conclusions regarding the effect of 
different combinations of VRN-1 on actual yield, which 
would allow us to identify genotypes capable of maximiz-
ing their yield potential in Western Siberia.

Thus, the possibility has been demonstrated for the 
manipulation of the length of the growing season of bread 
wheat by combining the Vrn-A1L allele, which determines 
late maturity, with alleles of the Vrn-B1 locus, has been 
demonstrated to facilitate obtaining earlier ripening geno-
types that can be used for breeding of bread wheat in West-
ern Siberia.

Conclusion

In this work, lines with two dominant alleles: Vrn-A1L Vrn-
B1a and Vrn-A1L Vrn-B1c were obtained within the genetic 
background of the winter cultivar of wheat Bez1. Isolation 

of homozygous plants was performed using marker-assisted 
selection. The obtained lines produced a shorter duration 
of germination-heading and germination-first node periods 
relative to the original NILs with alleles Vrn-A1L, Vrn-B1a 
and Vrn-B1c. At the same time, the Bez1 Vrn-A1L Vrn-B1c 
line possessed a shorter duration of the period before head-
ing and the period of germination of the first node compared 
to Bez1 Vrn-A1L Vrn-B1a practically did not differ from the 
precocious NIL with the Vrn-A1a allele. In summary, Vrn-
A1L allele can be successfully used in breeding for faster 
maturation in Western Siberia in combination with Vrn-B1a 
and Vrn-B1c alleles.
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