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Abstract
Abiotic stresses such as salinity, submergence, drought and extreme temperatures greatly affect rice production worldwide. 
Marker-assisted selection was effectively used to introgress QTLs for salinity tolerance (Saltol) and submergence tolerance 
(Sub1) into the background of elite rice variety Jyothi. Saltol  introgressed  BC1F2 lines of Jyothi with 79.3% of recipient 
parent genome was crossed with Sub1 introgressed  BC2F2 lines of Jyothi showing 95.9% of parent genome recovery.  F1 
progenies were screened with Saltol and Sub1 linked foreground markers and recombinant markers.  F1 heterozygous plants 
were selfed to produce  F2 generation.  F2 progenies homozygous for both the loci were selected. Phenotypic screening for 
salinity and submergence tolerance was performed to validate the introgressed genes. The plants able to tolerate both salinity 
and submergence stresses were selected for selfing to raise  F3 progenies. The pyramided lines were also similar to recurrent 
parent in agro-morphological and grain quality traits.
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Introduction

Rice is the major food crop in Asian countries. The total pro-
duction of rice in India has increased to 103.75 million tons 
in 2020–21 (Directorate of Economics and Statistics, 2nd 
advance estimates 2020–21). Salinity and submergence are 
the two major abiotic stresses greatly affecting rice produc-
tion worldwide. Global warming and the resulting climate 
change lead to intrusion of seawater to coastal ecosystem and 
make wet lands salt affected and unsuitable for rice produc-
tion (Wassmann et al. 2009; Thuy and Anh 2015). A total of 
6.74 million hectare of land in India are affected by salinity 
resulting in huge economic loss (Biswas and Biswas 2014). 
According to a talk by V. Selvam, executive director of M.S. 
Swaminathan Research Foundation organized by Earth Jour-
nalism Network and The Third Pole, sea level is expected to 
rise by 16 and 32 cm by 2050 and 2100, respectively. Kerala 
state with a coastline of 590 km experiences the problem 

of saline soils and also serious problems of water logging 
as they are situated below the mean sea level (Nambiar and 
Raveendran 2009). Therefore, there is an urgent need to 
develop rice varieties tolerant to several abiotic stresses.

Progress in the field of molecular biology, genetics, bio-
chemistry and bioinformatics has led to the detailed study 
of major QTLs linked to salinity and submergence toler-
ance. These QTLs can be successfully introgressed into high 
yielding rice varieties for cultivation in problem soils (Ismail 
et al. 2007). Marker-assisted backcrossing is the most effec-
tive and economical way to introgress the desired trait while 
retaining the essential characters of elite rice varieties. The 
use of molecular markers in MAB greatly enhances the 
selection process by reducing the time period as compared to 
conventional breeding (Tanksley et al. 1989; Hospital 2003). 
The markers used in MAB include foreground, recombinant 
and background markers. Foreground markers are those that 
are within the locus and recombinant markers are the mark-
ers flanking the desired locus which will minimize the link-
age drag. Background markers are used to accelerate the 
recovery of recurrent parent genome (Collard and Mackill 
2008; Hasan et al. 2015).

The successful development of elite breeding rice 
varieties involves transfer of desirable genes from mul-
tiple parents. This process is called gene pyramiding. 

Communicated by P. Stephen Baenziger.

 * Deepa John 
 shylarajks@gmail.com

1 Rice Research Station, Kerala Agriculture University, 
Vyttila, Kerala, India

http://orcid.org/0000-0001-9065-7089
http://crossmark.crossref.org/dialog/?doi=10.1007/s42976-023-00432-z&domain=pdf


1120 Cereal Research Communications (2024) 52:1119–1126

1 3

MAS-based gene pyramiding offers great opportunity to 
transfer multiple stress-tolerance genes into one single 
variety (Joshi and Nayak 2010). The developed variety 
expresses the introgressed genes from multiple parents 
simultaneously.

A major QTL for salt tolerance was mapped on chro-
mosome 1 by using an F8 recombinant inbred line (RIL) 
of a Pokkali/IR29 cross (Bonilla et al. 2002). The map-
ping of Saltol QTL provided the opportunity to develop 
many salt tolerant rice varieties through introgression of 
this QTL using MAB (Vu et al.2012; Linh et al.2012; 
Babu et al.2017; Quan et al.2018). Fine mapping, posi-
tional cloning, transformation, expression and valida-
tion of the QTL conferring submergence tolerance Sub1 
located on chromosome 9, facilitated the introgression of 
this QTL into several high yielding rice varieties (Bailey 
et al. 2010; Collard et al. 2013; Mackill et al. 2012; Rah-
man et al. 2018).

In the present work, Saltol and Sub1 QTLs from 
FL-478 and Swarna Sub1 donor parents, respectively, 
were transferred into the background of most popular rice 
variety of Kerala, Jyothi through marker-assisted gene 
pyramiding. Simultaneous and stepwise gene pyramiding 
scheme was followed. The newly developed rice variety 
Jyothi, which is tolerant to both the abiotic stresses, can 
be successfully cultivated in the low-lying coastal areas.

Materials and methods

Plant material

Fl-478 and Swarna Sub1 were used as donors of saline tol-
erance and submergence tolerance, respectively. The recur-
rent parent Jyothi is the most popular rice variety of Kerala 
but sensitive to salinity and submergence. Simultaneous 
and stepwise gene pyramiding pattern was followed. The 
schematic representation of hybridization detail is given in 
Fig. 1.

DNA isolation and quantification

DNA was extracted from young leaf tissues following modi-
fied CTAB method (Doyle and Doyle 1987) and dissolved in 
1X TE buffer. DNA was quantified spectrophotometrically 
using NanoDrop 2000c (Thermo Scientific), and the con-
centration was adjusted to 25 ng/µl for use in polymerase 
chain reaction (PCR).

SSR marker analysis

PCR amplification was carried out in a total volume of 20 µl 
containing a final concentration of 25 ng of genomic DNA, 
1X Taq Buffer with 2.5-mM  MgCl2, 400 µM of dNTPs, 1 
unit of Taq polymerase enzyme and 0.4-µM each of for-
ward and reverse primers. The PCR program involved an 

Fig. 1  Breeding scheme for 
gene pyramiding
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initial denaturation at 94 °C for 5 min followed by 31 cycles 
of denaturation (94 °C for 5 min), annealing at 55–65 °C 
depending on the GC content of the primers for 40 s and 
extension at 72 °C for 40 s. PCR reactions were carried out 
in Thermocycler (Applied Biosystems, Veriti 96-well ther-
mocycler). SSR markers linked to Saltol and Sub1 were used 
for foreground screening. The markers flanking on either 
side of the Saltol and Sub1 locus were used for recombinant 
selection. The details of primers used are given in Table 1.

Genome-wide SSR markers were used for recurrent par-
ent genome recovery analysis. The marker data were ana-
lyzed using the software Graphical Genotyper (GGT2.0). 
The homozygous recipient allele, homozygous donor allele 
and heterozygous allele were scored as ‘A,’ ‘B’ and ‘H,’ 
respectively. Recurrent parent genome recovery in the 
selected Saltol and Sub1 introgressed  F2 lines of Jyothi was 
calculated using the statistics function of GGT 2.0 software.

Phenotypic screening

Screening for salinity tolerance

The rice varieties under study were subjected to pheno-
typic screening for salinity tolerance at seedling stage using 
hydroponics based on the standard protocol of IRRI, Manila, 
Philippines (Gregorio et al. 1997). The set up was prepared 
with monolayer plastic tubs and trays, plastic net sheets 
along with fabricated seedling floats (acrylic make) with 
holes. Two pregerminated seeds were sown per hole on the 
seedling float. The sheet was floated in distilled water for 
3 days. After 3 days, the distilled water was replaced with 

Yoshida nutrient solution (Yoshida et al. 1976) having a pH 
of 5.5 salinized with common salt to obtain the desired EC 
of 12  dSm−1. The nutrient solution was renewed after every 
8 days, and its pH maintained at 5.5 (adjusted by adding 
either 1N NaOH or 1N HCl). Visual salinity tolerant rat-
ing was done according to the modified standard evalua-
tion score (SES) developed at IRRI, Manila, Philippines, 
as shown in Table 2. Progenies with a phenotypic score 
of 3 similar to the donor parent were selected for further 
screening.

Screening for submergence tolerance

Germinated seedlings of the selected  F2 plants along with 
donor and recurrent parents were sown in pots. IR64 and 
FR13A were used as submergence sensitive and submer-
gence tolerant check varieties, respectively. Fourteen days 
old seedlings were completely submerged in tanks filled with 
turbid water of 1-m height for 14 days following standard 
protocols (Neeraja et al. 2007). The survival percentage of 
plants was scored 14 days after de-submergence according to 
the IRRI standard evaluation system (IRRI, 1988) as shown 
in Table 3. Progenies with a phenotypic score of 3 similar to 
the donor parent were selected for further screening.

Analysis of pyramided lines for agro‑morphological 
and yield traits

Eight Saltol/Sub1introgressed  F3 lines of Jyothi were sub-
jected to field trial during Kharif 2017 at paddy field of Rice 
Research Station, Vyttila. The 21-day-old seedlings of the 
selected  F3 progenies along with the donor and recurrent 

Table 1  SSR markers used for foreground and recombinant selection

Marker Type of marker Abiotic stress resistance Chromosome

AP3206 Foreground Salinity 1
RM3412b Foreground Salinity 1
SUB1BC2 Foreground Submergence 9
ART5 Foreground Submergence 9
RM1287 Flanking Salinity 1
RM140 Flanking Salinity 1
RM8303 Flanking Submergence 9
RM23958 Flanking Submergence 9

Table 2  Modified standard 
evaluation system (SES) score 
of visual salt injury at seedling 
stage in rice

Score Observation Tolerance

1 Nearly normal growth, no leaf symptoms Highly tolerant
3 Nearly normal growth, but leaf tips or few leaves whitish and rolled Tolerant
5 Growth severely retarded; most leaves rolled; only a few are elongating Moderately tolerant
7 Complete cessation of growth; most leaves dry; some plants dying Susceptible
9 Almost all plants dead or dying Highly susceptible

Table 3  Standard evaluation system (SES) score for submergence tol-
erance in rice (IRRI 1988)

Survival % Score Observation Tolerance

100 1 Minor visible symptom of 
injury

Highly tolerant

95–99 3 Some visible symptom of 
injury

Tolerant

75–94 5 Moderate injury Moderately tolerant
50–75 7 Severe injury Susceptible
1–49 9 Partial to complete death Highly susceptible
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parental lines were transplanted in the field. Ten plants were 
randomly selected from each replication for each of the gen-
otypes, and the following observations such as 50% flower-
ing, days to maturity, plant height, panicle length, number 
of productive tillers per plant, number of grains per panicle, 
1000 grain weight and grain yield recorded. The data from 
various agro-morphological and yield traits were statistically 
analyzed by Web Agri Stat Package 2.0 (ICAR Goa).

Results

Parental polymorphism screening

A total of 600 SSR markers covering the 12 chromosomes 
were used to analyze the parental polymorphism. Among 
these, 109 markers showed polymorphism between Jyothi 
and respective donor parents Fl-478 and Swarna Sub1. These 
polymorphic markers were used for further screening of 
Saltol and Sub1 introgressed  F2 generations. Among the 13 
foreground and recombinant markers linked to Saltol locus 
screened, six were found to be polymorphic between Jyothi 
and Fl-478. Similarly, with respect to 10 foreground and 13 

recombinant markers associated with submergence tolerance 
screened, three and four markers were found to be polymor-
phic between Jyothi and Swarana Sub1, respectively.

Foreground and recombinant selection

F1 progenies derived from the hybridization between Sal-
tol and Sub1 introgressed lines of Jyothi were subjected to 
salinity screening. Withstanding plants were genotyped with 
foreground and recombinant markers linked to Saltol and 
Sub1 locus.  F1 plants heterozygous at both the loci were 
selfed to produce  F2 progenies (Fig. 2).  F2 plants were then 
subjected to salinity and submergence screening according 
to the standard protocols, and plants showing a score of 3 
for both salinity and submergence tolerances (Fig. 3) were 
genotyped with foreground and recombinant markers (Fig. 4 
and Fig. 5.) The selected eight  F2 progenies homozygous for 
both the loci were selfed to produce  F3 progenies.

Lanes 1–15:  F1 progenies, lane 16: recurrent parent 
Jyothi, lane 17: donor parent and lane L: 100-bp ladder.

Lanes 1–15:  F1 progenies, lane 16: recurrent parent 
Jyothi, lane 17: donor parent and lane L: 100-bp ladder.

A B

Fig. 2  Molecular screening of  F1 progenies with key Saltol marker AP3206 A and key Sub1 linked marker Sub1BC2 B 

Fig. 3  Screening of  F2 progenies for salinity tolerance A and submergence tolerance B 
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Background selection

A total of eight  F2 progenies survived after salinity sub-
mergence screening were selected after genotypic screening 
with respective foreground and recombinant markers. These 
progenies were subjected to background screening with the 

polymorphic markers. Marker data generated from the back-
ground screening of the selected  F2 progenies were analyzed 
with GGT 2.0 software, and the recurrent parent genome 
content was found to be in the range of 72.1–82.9% (Fig. 6). 
Graphical genotype of the best plant MC-F3-4 with maxi-
mum recurrent parent genome recovery is shown in Fig. 6.

A B

Fig. 4  Molecular screening of  F2 progenies with key Saltol marker AP3206 A and key Sub1 linked marker Sub1BC2 B 

A B C D

Fig. 5  Molecular screening of  F2 progenies with key Saltol linked recombinant marker RM8303 A, RM23958 B and key Sub1 linked recombi-
nant marker RM1287 C and RM140 D. Lanes 1–4:  F2 progenies, lane 5: recurrent parent Jyothi, lane 6: donor parent and lane M: 100-bp ladder
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Fig. 6  Recovery of recurrent parent genome (percentage) in  F2 progenies
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Agro‑morphological traits and grain yield 
of pyramided lines

The selected eight pyramided lines along with the donor 
parents and recurrent parent were evaluated during Kha-
rif 2017 at paddy field of Rice Research Station, Vyttila. 
Agro-morphological traits such as plant height, days to 
maturity, number of productive tillers, panicle length, 
number of filled grains per panicle, 1000 grain weight and 
seed length determine the yield of a rice variety (Mold-
enhauer and Nathan 2004; Sakamoto and Matsuoka 2008; 
Huang et al. 2013). Most of the pyramided lines performed 
better than the recurrent parent in the field. The agro-mor-
phological characters of the pyramided lines were almost 
similar to the recurrent parent Jyothi. All the pyramided 
lines produced higher grain yield than the recurrent par-
ent (Table 4).

The donor parent for submergence tolerance (Swarna-
Sub1) showed longest days to maturity (144 days). How-
ever, all the pyramided lines had maturation days on par 
with the recurrent parent Jyothi which matured earlier 
(120). Varieties with duration of 110–135 days are more 
preferable as they produce better yield than those maturing 
earlier or later under most of the agronomic and climatic 
conditions (Jennings et al. 1979). A significant difference 
was observed for plant height among the pyramided lines, 
and it ranged from 91.51 to 111.43 cm with an average of 
99.49 cm. The mean plant height of recurrent parent was 
found to be 95.97 cm for Jyothi, whereas in case of donor 
parent, it was found to be 114.47 cm for Swarna-Sub1 and 
88.43 cm for FL-478. All the pyramided lines were found 
to be medium tall. With respect to productive tiller num-
ber, which is another important trait contributing to yield 
of a variety, seven out of the eight pyramided lines were 
found to bear on par or more number of productive tillers 
with respect to recurrent and donor parents.

The yield of a crop is an important parameter to be 
considered while crop improvement programs to select 
superior. Therefore, total yield of all the pyramided lines 
and recurrent and donor parents was calculated. Four of 
the pyramided lines had total yield on par with the recur-
rent parent (MC-F3-4, MC-F3-5, MC-F3-6 and MC-F3-7); 
whereas, three pyramided lines yielded on par with the 
donor parent (MC-F3-1, MC-F3-2 and MC-F3-8). One of 
the pyramided lines (MC-F3-3) showed better yield than 
both the recurrent and donor parents. All the pyramided 
lines were found to have long medium grains similar to 
the recurrent parent. Therefore, the pyramided lines were 
almost similar to the recurrent parent in terms of agro-
morphological traits. Similar results were obtained in 
other gene pyramiding program (Pradhan et al. 2015; Hsu 
et al.2020).
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Discussion

Submergence and salinity are the two major abiotic 
stresses affecting rice cultivation in coastal areas. Climate 
changes increase the risk of sea level rise and flooding. 
Submergence and salinity can occur separately, or both 
the stresses can affect simultaneously. Therefore, modify-
ing high yielding rice varieties to withstand submergence 
and salinity stresses has become crucial for meeting the 
ever-increasing demand. Advance techniques like marker-
assisted breeding have enabled introgression of QTLs 
imparting tolerance to various abiotic stresses into the 
genetic background of high yielding mega rice varieties. In 
the current study, the two different QTLs for salinity toler-
ance and submergence tolerance were pyramided into one 
single genotype using marker-assisted simultaneous and 
stepwise gene transfer method. Similar methodology was 
followed by researchers to pyramid two or more stress-
tolerance genes into a single genetic background (Singh 
et al. 2013; Jamaloddin et al. 2020).

The recombinant progenies were screened with SSR 
markers linked to Saltol locus (Chowdhury et al. 2016; 
Singh et al. 2018; Adak et al. 2020) and SSR markers 
linked to Sub1 loci (Neeraja et al. 2007) to confirm the 
introgression of both the QTLs. The codominant nature 
of SSR markers makes it easier to detect the recombi-
nant progenies even in the heterozygous state (Yang et al. 
2016). Background markers were used to screen out the 
progenies possessing the maximum recovery of the recur-
rent parent genome. Background markers are used to 
accelerate the recovery of recurrent parent genome and 
thereby reduce the breeding cycle (Collard and Mackill 
2008, Hospital and Charcosset 1997). Therefore, with the 
help of molecular markers, the recurrent parent genome 
could be restored in the pyramided lines and highlights the 
significance of marker-assisted breeding (Olalekan et al. 
2019).

The backcross inbred lines pyramided with Saltol and 
Sub1 loci were evaluated for their tolerance to salinity 
and submergence stresses. All the selected progenies could 
withstand the stress conditions similar to the respective 
donor parents; whereas, the recurrent parent exhibited 
complete susceptibility. This confirmed the effectiveness 
of the QTLs introgressed into the genetic background of 
Jyothi. Similar results were demonstrated in other intro-
gressed progenies (Neeaja et al. 2007; Septiningsih et al. 
2009; Rahman et al. 2018; Singh et al. 2018; Valarmathi 
et al. 2019).

The grain quality parameters and total duration of the 
pyramided lines were found to be very similar to the recur-
rent parent. The improved lines also exhibited higher grain 
yield than the recurrent and donor parents. Therefore, the 

current study clearly demonstrates the success of marker-
assisted breeding technique in pyramiding two QTLs 
imparting tolerance against both salinity and submergence 
stresses into the genetic background of high yielding mega 
rice variety of Kerala. This is the first ever work reported 
in Kerala.

Conclusion

Marker-assisted backcrossing was successfully used to pyra-
mid the two major abiotic stress-tolerant traits into the most 
popular rice variety of Kerala within a short span of time. 
The size of each donor fragments was limited assisted with 
the use of foreground and recombinant markers. The par-
ent genome recovery was also ensured with the use of rice 
genome background markers. The pyramided lines showed 
similar agro-morphological characters like the recurrent par-
ent. The total grain yield was much better than the recurrent 
parent. Four best lines with higher grain yield were selected 
for further field trials necessary for future release proce-
dures. The newly developed rice variety will be tolerant to 
both salinity and submergence with all the other favorable 
traits of the recipient parent retained. This variety can be 
successfully cultivated in low-lying coastal areas leading to 
increased rice production. The present study successfully 
demonstrates the application of marker-assisted gene pyr-
amiding as an efficient tool to introgress multiple abiotic 
stress genes into a single variety. These developed pyra-
mided lines can be used by breeders as donors suiting to 
their respective needs.
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