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Abstract
In the present study, fifty genotypes were evaluated over 5 years. The analysis of variance revealed significant interaction 
(P < 0.001) between genotype and year (GYI). The results of different stability statistics illustrate that the Kang’s rank-sum 
is a good statistic and based on that, Azadi, Roshan, Mahdavi, Marvdasht, and Naz identified as desirable cultivars. Seven 
environmental factors including maximum temperature, minimum temperature, average temperature, precipitation, relative 
humidity, daylight hours, and soil temperature over eleven twenty-day periods and sixteen molecular markers associated 
with vernalization and photoperiod were used as covariates to interpret the interaction. The Partial least square regression 
biplot with environmental covariates explained 28.23% and with genotypic covariates explained 40.24% of the GYI. The 
results also showed that genotypes do not respond similarly to environmental variables at different stages of development. 
Genotypes have been classified into three groups, the first group being more related to environmental factors at the end of 
the growing season, the second group being more influenced by environmental factors at the beginning of the season, and 
the third group being genotypes of environmental factors throughout the season, especially the mid-season was affected. 
Among environmental factors, relative humidity except for period 9 had a special role in GYI in all periods. On the other 
hand, Ppd.D1D001.KASP, Vrn.B1.B.KASP, Inter1.D.deletion, VRN.A1, Vrn.A1.E7.FT.KASP and Vrn.A1.E4.vern.KASP 
markers had the most impact on the GYI among the different molecular markers. This information on the causes of the GEI 
can be useful in future breeding and management programs.
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Introduction

Wheat (Triticum aestivum L.) is one of the most impor-
tant cereals in the world. Studies show that higher-perfor-
mance lines may not always be stable in all environments. 
This is due to genotype × environment interactions (GEI) 
which, together with environmental and genotype effects, 

are influencing factors in the phenotype of traits (De Leon 
et al. 2016). Predicting which genotypes have high yield 
and stability over different years is an important challenge 
for plant breeders (Monteverde et al. 2019). This is because 
the weather conditions, including rainfall, especially in arid 
and semi-arid regions, change unpredictably from year to 
year. From the farmers’ point of view, yield stability over 
the years is critical to reduce their income fluctuations (Her-
rera et al. 2020). Also, from a breeding point of view, the 
patterns of narrow adaptation of genotypes to specific loca-
tions should be repetitive over different years. Therefore, it 
is important to evaluate the genotype over different years.

To accurately predict the performance of genotypes in 
different environments, researchers need to understand 
the causes of GEI. Understanding the genotypic responses 
to each of these factors can help in the interpretation and 
exploitation of GEI. Some statistical models can use exter-
nal information directly to study GEI. These models are 
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among the analytical models that, unlike empirical models, 
understand the morpho-physiological causes of genotype 
response (Richards 1982; Voltas et al. 2005). Partial least 
square regression (PLSR) and factorial regression (FR) are 
statistical models that combine external variables, both envi-
ronmental and genotypic (such as molecular markers), to 
study and interpret GEI (Elias et al. 2016). When the number 
of variables is greater than the observations and there is high 
collinearity among variables, it is useful to use PLS method 
(Pacheco et al. 2015). This method is an excellent tool to 
identify environmental factors affecting grain yield and other 
wheat traits (Crossa et al. 2010; Kondić-Špika et al. 2019). 
On the other hand, the PLS model with molecular markers 
and environmental covariates can predict performance in 
untested years (Monteverde et al. 2019).

Environmental factors are the most important and influ-
ential factors on plant growth. This has become more impor-
tant with climate change in recent years (Taranto et al. 2018; 
Mansour et al. 2018). For this reason, it has been suggested 
to use envirotyping along with phenotyping and genotyping 
to understand GEI (Xu 2016). In addition, environmental 
factors do not have the same effects at different stages of 
plant growth. Zorić et al. (2017) showed that environmen-
tal parameters had the most significant impact in particu-
lar months. In bread wheat, spike primordia growth stage 
is more sensitive to environmental factor (Reynolds et al. 
2002), or part of the GEI was due to the sensitivity of maize 
genotypes to the minimum temperature at flowering and the 
amount of light during grain filling (Malosetti et al. 2013). 
However, in durum wheat, it was reported that the maximum 
and mean temperature during the entire crop cycle were 
the most important environmental factors influencing GEI 
(Chairi et al. 2020). Another study in durum wheat found 
that freezing days played critical role in genotype × year 
interactions under rainfed conditions (Mohammadi 2017). 
Identification of the responsible environmental factors to the 
GYI and stability of genotypes will help us to determine the 
genetic basis of these effects and enhances the predictability 
of the GEI (Heslot et al. 2014).

GEI controls by many regions of the genome (De Leon 
et al. 2016). In the other words, GEI can be due to the non-
linear response of the QTL to the environment. Therefore, 
molecular markers are another important covariates. Func-
tional markers (FMs) are the most valuable markers for crop 
breeding programs. QTL mapping in environments that are 
different in terms of factors helps to understand GEI (Xu 
2016). Among the markers included in the model for pre-
dicting GEI, vernalization and photoperiod markers showed 
more variability and importance (Heslot et al. 2014). It has 
been reported that these genes, along with their interaction 
with environment temperature, determine the potential of 
wheat yield in different environments (Gororo et al. 2001; 
Iqbal et al. 2011). So, these genes are generally yield QTLs 
and affect performance (Whittal et al. 2018; Schmidt et al. 
2019; Alipour and Abdi 2020). They affect traits depend-
ently or independently of environmental cues (Arjona 
et al. 2018). Therefore, it is necessary to identify the genes 
involved in GYI. Crossa et al. (1999) reported that 30 molec-
ular markers out of 86 markers play a special role in their 
interaction and maximum temperature which introduced as 
the most important environmental covariate. The simultane-
ous use of molecular markers and environmental covariates 
can provide a clear perspective on GEI (Crossa et al. 1999; 
Monteverde et al. 2019). The present study was conducted to 
investigating the yield stability of some Iran wheat cultivars 
and determine the GEI causes for wheat grain yield using 
environmental and genotypic covariates.

Materials and methods

Plant material and field evaluation

Fifty wheat cultivars (Table 1) in five cropping years includ-
ing 2013, 2014, 2015, 2017 and 2018 at the research farm 
of Tehran University with latitude 50.58 E and latitude 
35.56 N and 1112.5 m above sea level were evaluated in a 
randomized complete block design with two replications. 

Table 1   Characteristics of the 
studied genotypes

No. Genotype No. Genotype No. Genotype No. Genotype No. Genotype

1 Adl 11 Biston 21 Hamoon 31 Marvdasht 41 Sepahan
2 Akbari 12 Chamran 22 Inia 32 Moghan1 42 Shahi
3 Alborz 13 Darab2 23 Karaj1 33 Moghan2 43 Shahpassand
4 Alvand 14 Darya 24 Karaj2 34 Moghan3 44 Shiraz
5 Arta 15 Dez 25 Karaj3 35 Navid 45 Shiroodi
6 Atrak 16 DN11 26 Kaveh 36 Naz 46 Siosson
7 Azadi 17 Falat 27 Kavir 37 Nicknejad 47 Sistan
8 Azar 18 Fong 28 Khazar1 38 Pishtaz 48 VEE/NAC
9 Bam 19 Ghods 29 Mahdavi 39 Roshan 49 Zagros
10 Bayat 20 Golestan 30 Maroon 40 Sabalan 50 Zarrin
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The dimensions of the plots consisted of four lines with a 
length of 1 m. The distance between the rows was 20 cm 
and the distance between the plants within rows was 5 cm.

Environmental covariates

Climatic parameters as environmental covariates are pre-
sented in Table S1. The environmental factors included max-
imum temperature, minimum temperature, average tempera-
ture, precipitation, relative humidity, daylight hours, and soil 
temperature, which were divided into 11 periods of 20 days 
from date 11 November to date 18 June.

Genotypic covariates

Genomic DNA of all 260 investigated samples were 
extracted using a modified cetyltrimethyl ammonium bro-
mide (CTAB) method (Saghai-Maroof et al. 1984) from 
five two-week-old seedlings. For each STS reaction, a PCR 
mix contained 50 ng of genomic DNA, 0.2 mM of each 
dNTP, 1 × ammonium sulfide PCR buffer, 0.1 µM of for-
ward primer, 0.15 µM of reverse primer, 2.5 mM of Mg2+, 
0.05 µM of dye-labeled M13 primer and 1 unit of Taq poly-
merase. A touchdown program for PCR amplification started 
at 95 °C for 5 min, followed by five cycles of 45 s at 95 °C, 
5 min of annealing at 68 °C which decreased by 2 °C in 
each subsequent cycle, and 1 min extension at 72 °C. In the 
subsequent five cycles, the annealing time was reduced to 
2 min with a decrease in 2 °C in each subsequent cycle. PCR 
was continued for an additional 25 cycles of 45 s at 94 °C, 
2 min at 50 °C, and 1 min at 72 °C, with a final extension 
at 72 °C for 5 min. PCR products were detected using an 
ABI Prism 3730 DNA Analyzer, and the fragment size was 
scored using GeneMarker version 1.97 (SoftGenetics, LLC). 
Some of the most closely linked SNPs to vernalization and 
photoperiod genes have been converted to Kompetitive 
allele-specific PCR (KASP) assay were also used to screen 
the investigated samples. KASP assays were performed in a 
6-µl reaction volume (3 µl 2X KASP Master Mix, 0.0825 µl 
KASP primer mix and 3 µl genomic DNA at 25 ng/µl) and 
data were analyzed in an ABI 7900HT Real-Time PCR 
System (Life Technology, Grand Island, NY) following the 
instruction for KASP analysis (http://www.lgcgr​oup.com). 
The list of investigated markers is given in Table S2. Only 
polymorph markers were considered as genotypic covariates.

Statistical analysis

Three different types of statistics were used to evaluate yield 
stability. Univariate statistics included Wricke’s ecovalance 
(Wricke 1962), Shukla’s stability variance (Shukla 1972), and 
Kang’s rank-sum (Kang 1988). Multivariate statistics included 
AMMI stability value (Purchase 1997), AMMI stability index 

(Jambhulkar et al. 2014), sums of the absolute value of the 
IPC scores (Sneller et al. 1997), absolute value of the rela-
tive contribution of IPCs to the interaction (Zali et al. 2012) 
and averages of the squared eigenvector values (Sneller et al. 
1997). Finally, statistics based on mixed models included a 
harmonic mean of genotypic values, the relative performance 
of genotypic values and harmonic mean of the relative perfor-
mance of genotypic values (Resende 2007). To investigate the 
relationship between statistics and yield, the principal compo-
nent analysis (PCA) was performed based on the rankings of 
the genotypes.

PLS method was used to understand the effect of covari-
ates. This model uses the cultivar responses (Y) over environ-
ments on environmental and genotypic covariables (Z) and is 
as follows:

where matrix T contains the Z-scores, matrix P contains the 
Z-loadings, matrix Q contains the Y-loadings, and E and F 
are the residuals matrix. Therefore:

where Y ′ contains genotypic response over environments (the 
rows of Y), T contains the Z-scores (indexed by environ-
ments). W the Z-loadings (or weight, indexed by environ-
mental and genotypic variables), Q the Y-loadings (indexed 
by genotypes), � contains the approximation of PLS to 
regression coefficient of the responses, Y ′ to the explanatory 
variables in Z.

Therefore, in the PLS biplot, projection of the jth environ-
ment (row) of T on the ith genotype (row) of Q approximates 
the GE; projection of the hth environmental covariables (row) 
of Q on the ith genotype (row) of Q approximates the regres-
sion coefficient of the ith genotype on the hth environmental 
covariable.

Analysis of variance and AMMI analysis were performed 
using agricolae R-package (de Mendiburu 2016). Yield stabil-
ity measures were calculated using ammistability (Ajay et al. 
2019) and metan (Olivoto and Lúcio 2020) packages in RStu-
dio 1.0.136. The STABILITYSOFT online program (Pour‐
Aboughadareh et al. 2019) was also used to calculate some of 
the stability statistics. PCA loading plot was drawn with factoex-
tra R-package (Kassambara and Mundt 2017). Finally, GEA-R 
software (Pacheco et al. 2015) was used for PLSR analysis.

Result

After performing the homogeneity of variance test by 
Bartlett test and assuring that this assumption was valid, 
the results of combined analysis of variance showed sig-
nificant differences among environments, genotypes, and 

Z = TP
�

+ EY = TQ
�

+ F

E(Y) =
(

TQ
�)

�

= QW
�

Z
�

= �Z
�

http://www.lgcgroup.com
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genotype × year interaction. Also, based on AMMI analy-
sis, the two components were significant and explained 
a total of 70% of GEI changes (Table 2). The box plot 
showed that the genotypes had the highest yield in the sec-
ond and first year, respectively (Fig. 1). Also, according to 
this graph, genetic variance is homogeneous across envi-
ronments. The average grain yield of the genotypes at all 
years is presented in Table 3. Genotypes Alvand, Roshan, 
Naz, and Mahdavi had the highest yield, respectively, 
while genotype Shahpassand had the lowest performance.

AMMI1 biplot is very important in the simultaneous 
and straightforward evaluation of performance and stabil-
ity by placing the average yield of genotypes and envi-
ronments against the first principal component (PC1). 
Accordingly, genotypes Azadi, and Shiroodi with high 
yield and PC1 were close to zero were desirable (Fig. 2a). 
The AMMI2 biplot provides only information about the 
stability of genotypes. Genotype Moghan2 was the most 
stable in all years due to its proximity to the origin of 
the biplot. On the other hand, the first and second years 
of the experiment played the most important role in GYI 
(Fig. 2b).

Genotypes Marvdasht, Dez, Inia, and Hamoon had the 
lowest ecovalence and stability variability, respectively, 
therefore had high stability. Genotypes Azadi and Roshan 
ranked first in yield and stability, and they were desir-
able genotypes in terms of Kang’s rank-sum, but geno-
type DN11 was undesirable in terms of these two features. 
Based on the parameters of the AMMI model, the geno-
types Moghan2, Azadi, Dez, and Hamoon had high yield 
stability. According to HMGV, RPGV and HMRPGV sta-
tistics, genotypes Alvand, Roshan and Falat had the high-
est values and the most desirable genotypes in terms of 
yield, stability and adaptability, while, genotypes Azar, 
Shahpassand and VEE/NAC were the worst (Table 3). 
Examination of the relationship between statistics using 
PCA showed that the HMGV, RPGV and HMRPGV sta-
tistics were highly positive correlated with grain yield 
because the angle between their vectors was less than 90°. 

Other statistics, except for the Kang’s rank-sum, had a 
90° angle with yield, so they had no correlation with it. 
As expected, Kang’s rank-sum was moderate between the 
two groups (Fig. 3).

The PLSR biplot with environmental covariates explained 
28.23% of the GEI variance (Fig. 4a). Genotypes were 
divided into three groups based on this biplot. In the first 
group, genotypes Akbari, Arta, Atrak, Bayat, Biston, Darya, 
DN11, Hamoon, Karaj1, Karaj3, Kavir, Pishtaz, Roshan, 
Sabalan, Shiraz, and Zagros were present. This group was 
associated with year four and the parameters of maximum 
temperature (mx1 and mx10), minimum temperature (mn9 
and mn10), average temperature (at9 and at10), precipita-
tion (pr7 and pr9), relative humidity (rh4, rh5, rh7 and r8), 
daylight hours (dl6 and dl10) and soil temperature (st9 and 
st10) had the most influence on them. The second group 
consisted of genotypes Adl, Azadi, Chamran, Ghods, Mah-
davi, Maroon, Marvdasht, Moghan1, Moghan3, Sepahan, 
Shahi, Shahpassand, VEE/NAC, and Zarrin were scattered 
between the first and second year environmental vectors. 

Table 2   Combined Analysis 
of experiments based on 
randomized complete block 
design

Source of variations Df Sum Sq Mean Sq F value Pr (> F) Acum Percent

Year 4 114.59 28.648 26.65 0.00144
Replication (Year) 5 5.37 1.075 4.91 0.00027
Genotype 49 30.89 0.63 2.88 4.196e-08
Genotype × Year 196 78.18 0.40 1.82 4.385e-06
PC1 52 33.41 0.64 2.94 0.0000 42.7 42.7
PC2 50 21.82 0.44 1.99 0.0003 27.9 70.6
PC3 48 14.30 0.30 1.36 0.0706 18.3 88.9
PC4 46 8.65 0.19 0.86 0.7254 11.1 100
Residuals 245 53.62 0.219
Total 499 282.65

Fig. 1   Box plot for grain yield in five years evaluated
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Table 3   The results of various 
statistics on the yield stability of 
50 wheat yields in 5 years

W
2
i
 wricke’s ecovalence, �2 Shukla’s stability variance, KR Kang’s rank-sum, ASV AMMI stability value, 

ASI AMMI stability index, SIPC sums of the absolute value of the IPC scores, ZA absolute value of the 
relative contribution of IPCs to the interaction, EV averages of the squared eigenvector values, HMGV Har-

Gen Mean yield Univariate Multivariate Mixed model

W
2
i

�
2 KR ASV ASI SIPC ZA EV HMGV RPGV HMRPGV

1 2.28 0.55 0.14 50 0.35 0.10 0.38 0.07 0.010 2.25 0.99 0.98
2 2.71 0.68 0.17 38 0.28 0.08 0.34 0.06 0.010 2.40 1.08 1.08
3 2.33 1.80 0.47 76 0.85 0.24 0.56 0.12 0.038 2.20 0.99 0.98
4 2.80 1.04 0.27 44 0.62 0.17 0.74 0.13 0.045 2.48 1.11 1.11
5 2.43 1.52 0.39 63 0.77 0.22 0.75 0.14 0.039 2.30 1.02 1.01
6 2.28 0.84 0.22 59 0.38 0.11 0.45 0.08 0.018 2.19 0.98 0.97
7 2.63 0.30 0.07 15 0.15 0.04 0.16 0.03 0.003 2.46 1.08 1.08
8 1.87 0.52 0.13 70 0.46 0.13 0.30 0.06 0.011 1.92 0.86 0.86
9 2.65 1.01 0.26 52 0.52 0.15 0.62 0.11 0.034 2.37 1.07 1.06
10 2.37 0.36 0.09 33 0.40 0.11 0.29 0.06 0.009 2.28 1.01 1.00
11 1.93 0.30 0.07 54 0.36 0.10 0.26 0.05 0.007 1.96 0.88 0.87
12 2.46 0.29 0.07 26 0.28 0.08 0.23 0.05 0.004 2.31 1.03 1.03
13 2.58 1.47 0.38 58 0.64 0.18 0.71 0.11 0.061 2.30 1.05 1.04
14 2.30 0.63 0.16 62 0.29 0.08 0.30 0.06 0.006 2.14 0.97 0.97
15 2.35 0.11 0.03 38 0.16 0.05 0.18 0.03 0.004 2.27 1.00 1.00
16 2.17 1.76 0.45 100 0.69 0.19 0.46 0.10 0.025 2.07 0.94 0.93
17 2.71 0.61 0.15 29 0.62 0.17 0.54 0.10 0.022 2.51 1.11 1.10
18 2.30 1.38 0.36 86 0.41 0.12 0.40 0.08 0.011 2.24 0.99 0.99
19 2.44 0.32 0.08 32 0.40 0.11 0.33 0.07 0.009 2.27 1.02 1.01
20 2.35 1.24 0.32 71 0.82 0.23 0.72 0.14 0.039 2.25 1.00 0.99
21 2.45 0.14 0.03 30 0.19 0.05 0.14 0.03 0.002 2.31 1.03 1.02
22 2.09 0.13 0.03 42 0.19 0.05 0.23 0.04 0.005 2.08 0.92 0.92
23 2.19 0.46 0.12 61 0.25 0.07 0.29 0.05 0.009 2.10 0.94 0.94
24 2.23 0.58 0.15 67 0.33 0.09 0.28 0.06 0.006 2.11 0.96 0.95
25 2.15 0.90 0.23 84 0.56 0.16 0.65 0.11 0.043 2.12 0.95 0.94
26 2.08 0.33 0.08 49 0.33 0.09 0.28 0.06 0.006 2.06 0.92 0.92
27 2.59 0.43 0.11 25 0.24 0.07 0.25 0.05 0.004 2.41 1.07 1.06
28 2.34 0.56 0.14 53 0.53 0.15 0.43 0.09 0.015 2.25 1.00 0.99
29 2.72 0.40 0.10 17 0.29 0.08 0.35 0.06 0.010 2.48 1.10 1.10
30 2.58 0.67 0.17 45 0.45 0.13 0.54 0.09 0.025 2.34 1.05 1.05
31 2.56 0.10 0.02 17 0.20 0.06 0.21 0.04 0.003 2.37 1.05 1.05
32 2.42 0.87 0.22 58 0.51 0.14 0.46 0.09 0.015 2.32 1.03 1.02
33 2.18 0.44 0.11 58 0.04 0.01 0.05 0.01 0.000 2.07 0.94 0.93
34 2.16 0.36 0.09 58 0.36 0.10 0.41 0.07 0.011 2.10 0.94 0.94
35 2.45 0.63 0.16 62 0.72 0.20 0.81 0.15 0.045 2.24 1.01 1.01
36 2.62 0.20 0.05 17 0.23 0.06 0.20 0.04 0.003 2.40 1.07 1.07
37 2.18 0.92 0.24 75 0.61 0.17 0.73 0.12 0.046 2.18 0.96 0.95
38 2.53 1.81 0.47 67 0.95 0.26 0.69 0.14 0.047 2.32 1.04 1.03
39 2.77 0.33 0.08 15 0.33 0.09 0.32 0.06 0.007 2.52 1.12 1.11
40 2.10 0.58 0.15 69 0.53 0.15 0.53 0.10 0.019 2.11 0.93 0.93
41 2.34 0.43 0.11 47 0.27 0.07 0.32 0.06 0.008 2.27 1.00 1.00
42 2.34 0.56 0.14 58 0.63 0.18 0.61 0.12 0.026 2.26 1.00 1.00
43 1.77 1.59 0.41 97 0.73 0.20 0.86 0.15 0.054 1.93 0.85 0.84
44 2.49 1.47 0.38 54 0.77 0.22 0.85 0.15 0.049 2.25 1.02 1.01
45 2.52 0.45 0.11 38 0.22 0.06 0.23 0.04 0.008 2.30 1.04 1.03
46 2.74 1.54 0.40 52 0.91 0.25 0.75 0.15 0.046 2.44 1.10 1.09
47 2.57 0.75 0.19 42 0.49 0.14 0.55 0.10 0.022 2.33 1.05 1.05
48 1.84 0.82 0.21 85 0.67 0.19 0.74 0.13 0.037 1.92 0.86 0.85
49 2.00 0.77 0.20 81 0.61 0.17 0.41 0.09 0.020 1.95 0.89 0.88
50 2.34 0.44 0.11 42 0.24 0.07 0.18 0.04 0.003 2.27 1.00 1.00



686	 Cereal Research Communications (2021) 49:681–690

1 3

This group had a positive interaction with environmental 
factors such as maximum temperature (m × 4, m × 8 and 
m × 9), minimum temperature (mn1, mn2 and mn8), aver-
age temperature (at4 and at8), precipitation (pr1 and pr2), 
relative humidity (rh1, rh2 and rh3), daylight hours (dl7, 
and dl9) and soil temperature (st1, st2 and st8). Genotypes 
Alborz, Alvand, Azar, Bam, Darab2, Dez, Falat, Fong, 
Golestan, Inia, Karaj2, Kaveh, Khazar1, Moghan2, Navid, 
Naz, Nicknejad, Shiroodi, Siosson, and Sistan belonged to 
the third group and were associated with the fifth year. This 
group was influenced by environmental factors of maximum 
temperature (m × 2, m × 3, m × 5 and m × 7), minimum tem-
perature (mn3, mn5 and mn7), average temperature (at2, at3, 

at5 and at7), precipitation (pr4, pr6, pr10 and pr11), relative 
humidity (rh6, rh10 and rh11), daylight hours (dl1, dl2 and 
dl4) and soil temperature (st3, st5 and st11).

The PLSR biplot with genotypic covariates (molecular 
markers) explained 40.24% of the GEI variance (Fig. 4b). 
Unlike the previous biplot, genotypes did not have a clear 
distribution in this biplot. However, genotypes Golestan, 
Mahdavi, Moghan2 and Naz were associated with the first 
year and were influenced by the Ppd.D1D001.KASP marker. 
Genotypes Khazar1 and Sistan were in the interval between 
first and second year and the Vrn.B1.B.KASP marker was 
influenced them. Genotypes Siosson, Pishtaz, Alvand, Sepa-
han, Moghan2, and Falat were associated with the second 

monic mean of genotypic values, RPGV relative performance of genotypic values, HMRPGV Harmonic 
mean of relative performance of genotypic values

Table 3   (continued)

Fig. 2   AMMI1 (a) and AMMI2 (b) biplots for 50 wheat genotypes in 5 years
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year and were influenced by the Inter1.D.deletion marker. 
Finally, genotypes Arta, Azar, Chamran, Kaveh, and Shahi 
were located between the second and third year environ-
mental vectors and were associated with the VRN.A1, Vrn.
A1.E7.FT.KASP and Vrn.A1.E4.vern.KASP markers.

Discussion

Significant differences among genotypes indicate genetic 
differences between investigated genotypes. Differences 
between environments are due to different climatic condi-
tions, as it has been previously reported that climate change 
from year to year clearly affects wheat production (Macholdt 
and Honermeier 2019). We found that environmental vari-
ables do not have the same effect in different years. In the 
third year, no specific variable related to GEI was identified, 
and it had a smaller vector length in the PLS diagram, while 
the first and fifth years were associated with more variables 
and showed the longest vector length. In the fifth year, the 
temperature at the beginning of the growing season and rela-
tive humidity at the end of the growing season affected yield. 
Such a trend was somewhat reversed in the fourth year, with 
temperatures at the end of the growing season and relative 
humidity in the middle of the growing season having the 
remarkable effect. In the first and second years, environmen-
tal parameters were also effective almost in the middle of the 
season. The above, along with other unknown factors, led to 
fluctuations in the performance of genotypes during these 

Fig. 3   Loading plot obtained from principal component analysis with 
genotype yield and stability statistics ranks. GY mean grain yield, 
Wricke Wricke’s ecovalence, Shukla Shukla’s stability variance, KR 
Kang’s rank-sum, ASV AMMI stability value, ASI AMMI stability 
index, SIPC sums of the absolute value of the IPC scores, ZA abso-
lute value of the relative contribution of IPCs to the interaction, EV 
averages of the squared eigenvector values, HMGV harmonic mean 
of genotypic values, RPGV relative performance of genotypic values, 
HMRPGV harmonic mean of relative performance of genotypic val-
ues

a b 

Fig. 4   Biplot based on PLSR method with environmental (a) and 
molecular marker (b) covariates for grain yield of 50 wheat genotypes 
in 5 years. mx maximum temperature, mn minimum temperature, at 

average temperature, pr precipitation, rh relative humidity, dl daylight 
hours and sc soil temperature
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five years. In this regard, Mohammadi (2017) reported that 
the effect of genotype × year on grain yield and some other 
traits in durum wheat is significant.

We found that the wheat cultivars introduced in Iran have 
different yields and stability. Among them, Alvand and 
Roshan cultivars had the best grain yield. This difference 
can be examined with different statistics. Our results showed 
that multivariate and univariate statistics other than Kang’s 
rank-sum independently of yield lead to a similar ranking 
of genotypes in terms of yield stability. Similar results have 
been observed before (Olivoto et al. 2019; Vaezi et al. 2019). 
These statistics only provide information on yield stability, 
while yield is more important. Therefore, researchers have 
used different methods to simultaneously examine genotypes 
in terms of performance, stability and adaptability. Among 
them the promising methodologies are HMGV, RPGV and 
HMRPGV statistics (Rosado et al. 2019). In the present 
study, selection based on the above three statistics had simi-
lar results to selection based on performance. This similar-
ity is also mentioned in the study of Coan et al. (2018). 
Part of the similarity in our research could be that culti-
vars have only been evaluated in one place over the years. 
The Kang’s rank-sum statistic seems to be useful because 
it pays attention to both yield and stability. Based on that, 
Azadi, Roshan, Mahdavi, Marvdasht and Naz cultivars were 
recommended.

The presence of all environmental covariates in the biplot 
indicates the complexity of the GYI. Environmental factors 
far from the center of the biplot played a major role in GYI 
and since they are close together, they are highly correlated. 
The presence of environmental vectors in different directions 
indicates different responses of genotypes in different years. 
The GYI in the first and fifth years appear to be greater and 
more important than in the other years. This is certainly due 
to changes in known and unknown environmental factors. 
In addition, genotypes do not respond similarly to environ-
mental variables at different stages of development. This 
is related to changes in gene expression (Fusi et al. 2013). 
Among environmental factors, relative humidity except for 
period 9 had a special role in GYI in all periods. Genotypes 
do not respond equally to environmental factors at different 
stages of development. The genotypes of the first group were 
mainly influenced by environmental factors at the end of the 
growing season. In the second group, the main effects of 
environmental parameters are observed at the beginning of 
the growing season. The influence of factors on seed germi-
nation during this period can be one of the reasons. On the 
other hand, rainfall at the beginning of the growing season 
can stimulate the disease. In the third group, environmental 
variables at different stages of growth, especially in mid-
season, had more effect on genotypes. Voltas et al. (2005) 
showed that spring and winter wheat cultivars respond dif-
ferently to environmental variables.

A small percentage of the GEI variance was explained by 
biplot. This result was expected and agrees with the results 
of other researchers (Crossa et al. 2010; Zorić et al. 2017; 
Kondić-Špika et al. 2019). As the number of genotypes, 
environments, and covariates increase, interpretation of 
the PLS biplot will become difficult and require expertise 
(Ramburan et al. 2012). But model crop could help us to 
parameterize and reduce the environment data dimensions 
from daily weather variables to a few covariates based on 
the crop growth stages (Heslot et al. 2014). It is not easy 
to reduce the number of covariates. In particular, only cli-
matic parameters were used here, while soil quality, disease 
resistance and environmental stress could be other covariates 
(Heslot et al. 2014).

As with environmental covariates, genotypic covariates 
that play a role in the GYI have small main effects. The 
first dimension was well able to separate molecular mark-
ers. Approximately 30% of the markers used had a role in 
the GYI. Similar results have been reported by Crossa et al. 
(1999). Vernalization genes played a greater role in GYI 
than in Photoperiod genes. In this regard, Kamran et al. 
(2014) reported that vernalization genes had a greater effect 
on phenological stages. However, the Ppd-D1 gene is also of 
particular importance. The Ppd-D1 marker has been reported 
to be the most variable marker in a subset of markers with 
particularly effects across environments (Heslot et al. 2014). 
As Likhenko et al. (2015) stated, the compounds Ppd-D, 
Vrn-A1 and Vrn-B1 have a greater effect on traits. Allelic 
compounds in these genes may provide a better interpreta-
tion of GYI. Some of these allelic compounds can reduce 
the negative effects of climate change (Arjona et al. 2020). 
A review of the literature shows very few studies in this area. 
Perhaps one of the reasons for the lack of statistical methods 
is appropriate.

As a final conclusion, it can be stated that there is a 
high difference between Iranian wheat cultivars in terms of 
yield and yield stability during the studied years. Part of 
this diversity is due to differences in functional markers of 
Vrn and Ppd. Also, the GYI pattern could almost be inter-
preted by environmental factors, where relative humidity 
and temperature-related parameters played the most impor-
tant role. Although obviously, the causes of the GYI are not 
limited to the above and there are various factors involved, 
even unknown ones. However, the same information on the 
causes of environmental factors responsible for the GYI can 
be influential in future management plans. In this regard, 
identifying of molecular markers in the selection process 
can be used in breeding programs.
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