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Abstract
Static supervised learning—in which experimental data serves as a training sam-
ple for the estimation of an optimal treatment assignment policy—is a commonly 
assumed framework of policy learning. An arguably more realistic but challenging 
scenario is a dynamic setting in which the planner performs experimentation and 
exploitation simultaneously with subjects that arrive sequentially. This paper stud-
ies bandit algorithms for learning an optimal individualised treatment assignment 
policy. Specifically, we study applicability of the EXP4.P (Exponential weighting 
for Exploration and Exploitation with Experts) algorithm developed by Beygelzimer 
et  al. (Proceedings of the Fourteenth International Conference on Artificial Intel-
ligence and Statistics, JMLR Workshop and Conference Proceedings, pp 19–26, 
2011) to policy learning. Assuming that the class of policies has a finite Vapnik–
Chervonenkis dimension and that the number of subjects to be allocated is known, 
we present a high probability welfare-regret bound of the algorithm. To implement 
the algorithm, we use an incremental enumeration algorithm for hyperplane arrange-
ments. We perform extensive numerical analysis to assess the algorithm’s sensitiv-
ity to its tuning parameters and its welfare-regret performance. Further simulation 
exercises are calibrated to the National Job Training Partnership Act (JTPA) Study 
sample to determine how the algorithm performs when applied to economic data. 
Our findings highlight various computational challenges and suggest that the limited 
welfare gain from the algorithm is due to substantial heterogeneity in causal effects 
in the JTPA data.
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1 Introduction

How to make use of evidence for policymaking is a topic of great importance. 
The growing literature on statistical treatment choice (Dehejia, 2005; Manski, 
2004) and on policy learning (Athey & Wager, 2021, Kitagawa & Tetenov, 2018; 
2021, Kitagawa et  al., 2023, Mbakop & Tabord-Meehan, 2021, etc.) develops 
formal frameworks and methods for combining causal inference with the social 
planner’s decision, making use of statistical decision theory and machine learn-
ing methods. A commonly assumed setting is that of static supervised learning, 
wherein experimental data serves as training data and learning an optimal treat-
ment assignment policy happens only once. The attraction of this setting is its 
simplicity; it ignores, however, the important dynamic aspects of learning and of 
implementation of treatment assignment policies. Subjects that are assigned to 
treatments and that contribute to causal evidence often appear sequentially over 
time. Accordingly, operations to accumulate evidence, learn causal effects, and 
assign treatments can run simultaneously over multiple time periods. In such a 
dynamic setting: Which strategy should the social planner implement to maxim-
ise a welfare criterion? Can we expect this strategy to deliver substantial wel-
fare gains in public policy applications? How does this strategy compare with 
the static supervised learning approach, in terms of the assignment policy that it 
implements and the welfare that it generates? And, is it feasible to compute and 
implement a sophisticated dynamic sampling and assignment strategy in practice?

This paper aims to answer these questions by formulating dynamic policy 
learning as a multi-arm bandit problem with contextual information. Multi-arm 
bandit problems capture dynamic environments in which a new subject arrives in 
every period, with the decision-maker assigning the subject to one of the many 
candidate treatments that are available. The decision-maker learns the effects of 
these treatments from the subjects’ responses, and updates the rules by which 
subjects are assigned to treatments sequentially. The goal of the analysis is to 
find rules that maximise the sum of the subjects’ treatment outcomes by effec-
tively balancing exploration and exploitation, for which there is a trade-off. In 
the bandit problem setting, contextual information refers to the observable pre-
treatment characteristics of the sequentially arriving subjects, upon which the 
decision-maker can discriminate (i.e., by ascribing different treatment rules to 
subjects with different pre-treatment characteristics). Individualised assignment 
based upon contextual information outperforms non-individualised assignment if 
treatment effects are heterogeneous across the pre-treatment covariates.

Our approach is to associate an arm in a bandit problem with an individual-
ised treatment assignment rule that maps a subject’s pre-treatment covariates to 
an assigned treatment. We then propose a bandit algorithm to learn an optimal 
individualised treatment assignment policy from a class of policies. We assume 
that the class of individualised treatment assignment policies is finite or is infinite 
with finite Vapnik–Chervonenkis (VC) dimension, as is considered in Kitagawa 
and Tetenov (2018). Hence, we deal with the challenging situation of a bandit 
problem in which there is an infinite number of arms—something that arises if 
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a subject’s pre-treatment covariates include a continuous variable. In contrast to 
contextual linear bandit problems—like those studied in Auer (2002) and Abbasi-
Yadkori et  al. (2011), to list but a few relevant papers—our approach does not 
impose functional form restrictions on the conditional average treatment effect.

Our approach builds upon the influential work of Auer et al. (2002) that proposes 
the EXP4 (Exponential weighting for Exploration and Exploitation with Experts) 
algorithm for an adversarial bandit. Extending the original EXP4 algorithm, Bey-
gelzimer et  al. (2011) proposes the EXP4.P algorithm for learning classification 
rules with a finite VC dimension—which we denote by D < ∞ . Both algorithms 
consider a set of experts and probability distributions over them. Each expert gives 
a recommendation (i.e., which bandit arm to pull given contextual information). 
The decision-maker makes their decision by aggregating the experts’ recommen-
dations according to a probability distribution. Every time a decision is made, the 
decision-maker receives feedback on each expert’s performance, updating the prob-
ability distribution over the experts that they use based upon this feedback. View-
ing an assignment rule as an expert, Beygelzimer et al. (2011) shows that iterative 
implementation over a number of periods—which we denote by T < ∞—attains 
a high-probability upper bound on the distribution of cumulative regret of order 
O(

√
T ⋅ D ⋅ ln(T)) , implying that the average welfare-regret converges at a rate of 

O(
√
D∕T ⋅ ln(T)).

We modify the EXP4.P algorithm to develop a version of the algorithm that is 
tailored to policy learning. Specifically, we associate the aforementioned set of 
experts with a class of individualised treatment assignment rules that is finite or of 
finite VC dimension. Our modified algorithm accommodates treatment choice given 
an additive welfare criterion and a general bounded outcome variable, and we show 
that, for suitable choices of tuning parameters, it achieves a high-probability upper 
bound on the cumulative welfare-regret of order O(

√
T ⋅ D ⋅ ln(T)).

An important step in implementing the EXP4.P algorithms is to coarsen the 
class of assignment rules to a finite class using information gathered from the first 
� observations. This step is computationally non-trivial and, to our knowledge, 
development of computationally efficient methods for this step is an open ques-
tion. Focusing on the class of Linear Eligibility Score (LES) rules, we show that 
the coarsening problem is equivalent to a hyperplane arrangement problem in the 
geometry literature. Various cell enumeration procedures have been proposed in that 
literature, and we suggest using the Incremental Enumeration algorithm introduced 
by Rada and Černý (2018) (and improved upon by Gu & Koenker, 2022) as one way 
to conduct this step.

To illustrate implementation of our modified EXP4.P algorithm and to assess 
its welfare-performance, we perform extensive simulation studies. In one simula-
tion design, we modify the variances of the potential outcomes (i.e., the hetero-
geneity of individual causal effects) whilst holding fixed the magnitude of con-
ditional average treatment effects. We find that the (median and variance of the) 
welfare-performance of the EXP4.P algorithm is sensitive to the heterogeneity 
of individual causal effects, indicating a challenge in those policy applications 
where subjects’ treatment responses are highly heterogeneous in unobservables. 
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We also assess the sensitivity of this welfare-performance to the tuning param-
eters that govern the exploration and exploitation trade-off of the algorithm.

Through a novel simulation design that we calibrate to actual economic data, 
we also investigate how our modified EXP4.P algorithm performs in public policy 
applications. We use data from the National Job Training Partnership Act (JTPA) 
Study to do this. The original JTPA sample contains the time stamp of when each 
experimental subject entered the Study. Maintaining the order of individual entry, 
we perform a counterfactual analysis of the welfare-level that the social planner 
would attain if assignment were based upon the EXP4.P algorithm. We estimate 
potential outcome regressions via random forest methods using the JTPA sam-
ple, and construct distributions of potential outcomes from these and their residu-
als. By applying our modified EXP4.P algorithm to a multitude of samples drawn 
from these distributions, we obtain a distribution over the average welfare that the 
algorithm attains.

Recent research in policy learning extends to and intersects with the machine 
learning literature on bandit algorithms (see Lattimore & Szepesvári, 2020, for 
a monograph on bandit algorithms). The welfare-performance criterion that we 
consider concerns the cumulative welfare for sequentially arriving units rather 
than for the super-population. The latter corresponds to the welfare objective in 
the best-arm identification problems as studied in Ariu et  al. (2021), Kasy and 
Sautmann (2021), Russo and Roy (2016), among others. Athey et al. (2022) and 
Qin and Russo (2024) assess the trade-off between the in-sample welfare and the 
super-population welfare of best-arm identification and study how to balance 
them out. Recent advances in bandit algorithms in the econometrics literature 
include those studied in Adusumilli (2021), Dimakopoulou et  al. (2017), Kock 
et al. (2022), Kuang and Wager (2023), to list but a few relevant papers. Applica-
tion and feasible implementation of EXP4.P algorithms to policy learning have, 
to our knowledge, not been studied in the policy learning literature.

Preceding the EXP4.P algorithm, the literature of online learning has studied 
exponential weighting of experts in prediction and portfolio choice problems; 
see Cesa-Bianchi and Lugosi (2006), Littlestone and Warmuth (1994), and Vovk 
(1990) for a monograph and early works of the topic. Chen (2023) and Viviano 
and Bradic (2023) apply the perspective and methods of online aggregation of 
experts to causal inference with panel data.

This paper’s dynamic approach to policy learning is different from the 
approach considered in the literature on dynamic treatment regimes (Han, 2023; 
Ida et  al., 2024; Ko et  al., 2022; Murphy, 2003; Robins, 1986; Zhang et  al., 
2018). That literature considers estimation of adaptive allocation of treatments 
to the same individual over multiple time periods using exogenous training data. 
For a similar reason, this paper differs from the time-series Empirical Welfare 
Maximisation (EWM)-approach proposed in Kitagawa et al. (2024). Exponential 
weighting over classification rules or individualised treatment rules based upon 
their empirical performance appears, however, in Probably Approximately Cor-
rect (PAC) Bayes analysis present in the supervised learning literature (see Bégin 
et al., 2014, Kitagawa et al., 2022, McAllester, 2003, and references therein).
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2  Framework

A utilitarian social planner is faced with a sequential allocation problem of K treat-
ment arms over T periods—both of which are finite and are known to the social 
planner. The allocation problem involves the repeated interaction of the social plan-
ner with a stable and passive environment (Nature and subjects). The social plan-
ner observes subjects’ responses to realised treatment arms and bases her choice of 
treatment in subsequent periods, in part, upon these responses.

2.1  Timing and the flow of information

A subject—here, subject t—is characterised by a collection of J features together 
with a collection of K counterfactual responses (i.e., by the subject’s response to 
each treatment arm). We denote the collection of features by xt ∈ X ⊂ ℝ

J and refer 
to these as covariates, with xt,j ∈ ℝ denoting the jth covariate. We denote the collec-
tion of counterfactual responses by yt = (yt(1),… , yt(K))

⊺ ∈ ℝ
K and refer to these 

as potential outcomes, with yt(k) ∈ ℝ denoting the potential outcome corresponding 
to the kth treatment arm. We denote the population by P, which constitutes a joint 
distribution over covariates and potential outcomes that we concatenate as (y⊺t , x

⊺
t ) . 

We maintain the following assumptions on the population throughout.

Assumption 1 (Stationary population) A sequence of random variables (y⊺t , x
⊺
t ) is 

independently and identically distributed to P.

Remark 1 Assumption 1 is standard in stochastic bandit problems. We impose this 
assumption in our numerical analysis and so make this assumption here too. A per-
formance guarantee for welfare-regret under a nonstationary or adversarial environ-
ment is, however, known for EXP-type algorithms (see Lattimore & Szepesvári, 
2020).

Assumption 2 (Bounded outcomes) yt is such that 0 ≤ yt(k) ≤ M for all k = 1,… ,K 
and t = 1,… , T .

Remark 2 Assumption 2 requires that outcome data is both bounded and non-nega-
tive. Economic data can always be bounded, but may not be guaranteed to be non-
negative. Via the addition of a positive constant, economic data can be made non-
negative to satisfy Assumption 2. As is discussed in Kitagawa and Tetenov (2018) 
in the context of static policy learning, an estimated optimal policy is not generally 
invariant to the addition of constants to outcomes. See Remark 3 below for further 
discussion.

At the beginning of each period, a single subject is randomly selected from the 
population. We adopt the convention of labelling subjects according to the order in 
which they are selected (i.e., Nature selects subject t in period t). Once a subject 
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is selected, their covariates are revealed to the social planner (i.e., the social plan-
ner observes xt ). The social planner then—directly or as the outcome of some ran-
domisation—administers a treatment, which we denote by kt ∈ {1,… ,K} , and 
we assume that the subject fully complies with the assigned treatment. The social 
planner then observes the realised outcome (i.e., the social planner observes yt(kt) ) 
without delay. On the other hand, the social planner does not observe the potential 
outcomes corresponding to unrealised treatment arms. At the end of each period, the 
social planner retains their accumulated knowledge up to that point (i.e., the social 
planner adds (xt, kt, yt(kt)) to the information that she possesses at the beginning of 
period t) and carries this through to the next period. Nature continues to select sub-
jects until the population is exhausted—we reiterate that T, in addition to K, is finite 
and is known.

2.2  The social planner’s actions

We denote the information set of the social planner at the beginning of period t by 
It . The information set of the social planner is empty at the beginning of the first 
period, and otherwise evolves according to

as per Sect. 2.1. We emphasise that a subject’s covariates are revealed to the social 
planner in advance of her choice (i.e., the information set of the social planner in 
period t at the time that she makes her choice comprises It and xt).

Following the terminology of the online learning literature (e.g., Cesa-Bianchi 
& Lugosi, 2006), we define an expert as f ∶ X → ΔK —a mapping from covariates 
to a probability distribution over the set of treatments. Each expert specifies a time-
invariant individualised assignment rule (as a function of covariates) that allows 
for randomised allocation. That is, f (xt) constitutes a K-vector whose kth entry—
which we denote by fk(xt)—specifies the probability that subject t is assigned to 
treatment k. For instance, when there are only two treatment arms, the single index 
policy f (xt) = (1((1, x

⊺
t )𝛽 < 0), 1((1, x

⊺
t )𝛽 ≥ 0))⊺ that is often considered in the con-

text of static treatment choice (e.g., Kitagawa & Tetenov, 2018) corresponds to an 
expert that allocates one of two treatment arms deterministically according to a fixed 
threshold rule for the sign of (1, x⊺t )� . We denote the set of experts by �.

The social planner’s goal is to efficiently learn a best expert (i.e., individualised 
treatment assignment) in � from sequentially arriving subjects. We define a treat-
ment assignment policy (of the social planner) as a dynamic strategy for assigning 
subjects to treatment arms that learns the best-performing experts in � using infor-
mation contained in It . Specifically, a treatment assignment policy (constructed 
upon available data) is given by a sequence {pt ∶ It × X → ΔK|t = 1,… , T} , where 
pt is an It-measurable map that maps subject t’s covariates xt to a probability for 
each treatment arm. As such, the treatment of subject t is allocated according to 
kt|(It, xt) ∼ pt(xt).

The learning algorithms that we consider in this paper build an assignment pol-
icy by aggregating experts in � according to their performance up to period t. As 

(2.1)It+1 =
(
It, kt, x

⊺
t , yt(kt)

)
,
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we present in the next section, what drives the aggregation formula for pt in the 
EXP algorithm and derivative algorithms is a probability distribution over � that 
we denote by qt . It is convenient to separate the construction of qt according to the 
cardinality of �.

Assumption 3 (Complexity) Either: 

(a) Finite experts—K < ∞ and � has finite cardinality equal to N; or
(b) Experts with complexity controlled by a finite VC dimension—K = 2 and � 

consists of deterministic rules of the form f (x) = 1(x ∈ G) , G ⊂ X  , and the class 
G = {G} that spans � has finite VC dimension equal to D.1

In Sect. 3.1, we study the case of Assumption 3a, where the number of treatment 
arms can be more than two and some experts in � are allowed to be probabilis-
tic but, crucially, the number of experts is finite. In Sect. 3.2, we study the case of 
Assumption 3b, where the number of treatment arms is allowed to be infinite but, 
crucially, there are only two treatment arms—further extension to more than two 
treatment arms is beyond the scope of this paper—and the set of experts comprises 
deterministic rules whose complexity is controlled by a finite VC dimension. We 
present the EXP4.P algorithm for each case, respectively.

2.3  The social planner’s preferences and regret

The objective of the social planner is to maximise some welfare criterion. Follow-
ing the literature on bandit algorithms, we assume that the objective function of the 
social planner is the sum of the subjects’ outcomes, and that the social planner is 
risk-neutral.

We define the empirical and average welfare attained by implementing the rec-
ommendations of a single expert f throughout the entirety of the time horizon by

respectively, where the equality on the right-hand side of Eq.  (2.3) follows by 
Assumption  1. Here, f (xt)⊺yt is the welfare contribution of subject t weighted 
according to the randomisation over treatment arms that is induced by f. We note 

(2.2)ŴT (f ) ≐
T∑
t=1

f (xt)
⊺yt,

(2.3)WT (f ) ≐ EP

�
T∑
t=1

f (xt)
⊺yt

�
= T ⋅ EP(f (xt)

⊺yt),

1 We let X�
≐ {x1,… , x�} be a non-empty finite set with � points in X  . Given G —a class of subsets 

in X—we define N(X�) = |{X� ∩ G ∶ G ∈ G}| as the number of different subsets of X� picked out by 
G ∈ G . The VC dimension of G is the largest � such that supX� N(X�) = 2� holds. See Vapnik (1998) for 
more detailed explanation and numerous examples.
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that the optimal welfare defined by supf∈� WT (f ) agrees with the social planner’s 
target welfare of the super-population in the static setting of treatment choice  in 
Kitagawa and Tetenov (2018).

Given (kt)Tt=1 —a sequence of treatment arms assigned to each subject—we define 
the empirical regret and regret as

respectively. R̂T is defined relative to the benchmark of the maximal empirical wel-
fare, while RT is defined relative to the maximal average welfare. Since covariates, 
potential outcomes (and so realised outcomes), and realised treatments are all ran-
dom, both R̂T and RT are random. We assess the performance of a treatment assign-
ment policy generating (kt)Tt=1 by some distributional features of empirical regret or 
regret. In particular, the performance guarantees that we provide in Sect. 3 for the 
EXP4.P algorithm are stated in terms of a uniform high-probability upper bound 
for the right-tail of the distribution of R̂T or of RT . The reason that we focus on a 
high-probability upper bound rather than the mean of the regret distribution is that 
bounding the mean can overlook the thick-tail phenomenon of the regret distribu-
tion for EXP-type algorithms (see, for instance, 2020, §Chapter12). Conversely, by 
noting that the mean of regret can be written as the integration of tail probabilities, 
we can obtain an upper bound for the mean regret based upon the high-probability 
upper bounds for the tail probabilities (as long as the implementation of the algo-
rithm does not depend upon the confidence level). We reiterate that the regret crite-
rion that we consider in this paper is defined in terms of the T subjects in the sample 
rather than in terms of the super-population of subjects, which is in contrast to the 
literature on best-arm identification in bandit problems.

3  The EXP4.P algorithm and performance guarantees

The EXP4.P algorithm is a learning algorithm that aims to find a best expert by 
efficiently balancing exploration and exploitation. It incorporates information about 
the effectiveness of previously undertaken interventions into the choice of current 
assignment by ascribing more weight to experts that have previously performed 
well. In this section, we introduce the EXP4.P algorithm and provide high-proba-
bility performance guarantees for the regret that it incurs. Our exposition depends 
upon whether Assumption 3a or Assumption 3b holds, and we separate our analysis 
of these two cases—modifying the EXP4.P algorithm accordingly to operate in each 
environment.

(2.4)R̂T ≐ sup
f∈�

ŴT (f ) −
T∑
t=1

yt(kt),

(2.5)RT ≐ sup
f∈�

WT (f ) −
T∑
t=1

yt(kt),
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3.1  The F–EXP4.P variant

In this section, we assume that Assumption 3a holds such that there there are a finite 
number of experts in � , and adapt the EXP4.P algorithm to this setting—we refer to 
this variant of the algorithm as F–EXP4.P.

Algorithm 1 (F–EXP4.P; Beygelzimer et al., 2011) Input the following objects. 

 i. A collection of tuning parameters, denoted by (�, � , �) , such that 0 ≤ � ≤ 1 , 
0 ≤ � ≤ 1 , and � ≥ 0;

 ii. a finite class of experts, denoted by � , such that � = {f 1,… , f N} with 
N = |�| < ∞ ; and

 iii. a maximum outcome value, denoted by M, such that 0 < M < ∞.

Let qi
1
= 1∕N for i = 1,… ,N . For each t = 1,… , T  , iterate 

1. For each k = 1,… ,K , calculate a policy weight via 

2. Sample kt from {1,… ,K} according to (pt(1),… , pt(K)).
3. For each k = 1,… ,K , calculate an estimate of the associated potential outcome 

via 

4. For each i = 1,… ,N , calculate a score via 

 and a cumulative score via2

5. Update the probability weights over the experts via 

End   ◻

(3.1)pt(k) = [1 − �] ⋅
N∑
i=1

f i
k
(xt) ⋅ q

i
t
+ �∕K.

(3.2)ỹt(k) = [𝛽 ⋅M2 + yt(kt) ⋅ 1(kt = k)]∕pt(k).

(3.3)s̃i
t
=

K∑
k=1

f i
k
(xt) ⋅ ỹt(k),

(3.4)S̃i
t
=

{
s̃i
t

if t = 1,

S̃i
t−1

+ s̃i
t

if t = 2,… , T .

(3.5)qi
t+1

= exp(𝜂 ⋅ S̃i
t
)∕

N∑
𝓁=1

exp(𝜂 ⋅ S̃𝓁
t
).

2 The exponential terms in this formula can grow quickly and so, to avoid computational overflow, it is 
practical to normalise S̃i

t
 by subtracting max� S̃

�
t
.
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Similar to the EXP-type algorithms proposed in the machine learning litera-
ture, F–EXP4.P is premised around three key ideas.

First, F–EXP4.P administers treatment randomly according to pt , which we 
recall is a probability distribution over the treatment arms. This probability dis-
tribution evolves according to the outcomes that are realised in earlier periods. 
Specifically, the evolution of pt is tied to the evolution of qt , which we recall is 
a probability weighting over experts; pt assigns more weight to treatment arms 
that experts weighted heavily by qt recommend. The regularisation term of �∕K 
in Eq. (3.1) ensures a desirable amount of exploration, with the tuning parameter 
of � set so as to converge to zero as T → ∞ . Conversely, qt is constructed based 
upon estimates of the average cumulative score for each expert—captured by the 
dependence of Eq.  (3.5) upon (S̃i

t
)N
i=1

 . Experts with higher cumulative scores are 
given more weight in qt . The combined implication of pt and qt is that a treat-
ment arm whose average outcome is estimated to be higher is more likely to be 
assigned.

Second, to construct estimates of expert performance, F–EXP4.P enacts an 
inverse probability weighting. Ignoring the regularisation term of � ⋅M2 in Eq. (3.2), 
the remaining term is the observed outcome inverse weighted by the probability 
of assigned treatment, which provides an unbiased estimate for the average poten-
tial outcome conditional on It and xt . The regularisation term of � ⋅M2 provides a 
default imputation value for the missing potential outcomes. Theorem 1 suggests a 
value for � that converges to zero—alongside the regularisation term of which it is a 
part—as T → ∞.

Third, F–EXP4.P constructs the probability weighting over the experts so that it 
is proportional to the exponential tilting of estimates of their cumulative scores. The 
sensitivity of qt to realisations of data is controlled by � , which we emphasise is pos-
itive; the larger � is, the more sensitive are the weights to experts’ cumulative scores, 
implying that the algorithm leans more towards exploitation than exploration. The 
choice of � balances the relative strength of the exploration and exploitation motives 
and so affects the concentration rate of the algorithm.

We now present a welfare-regret guarantee for F–EXP4.P in terms of the empiri-
cal regret. The choices of the tuning parameters presented in the next theorem opti-
mises the rate of high-probability regret upper bound.

Theorem  1 (Beygelzimer et  al., 2011, § Theorem  2) Assume that Assumption  3a 
holds alongside Assumptions 1 and 2. Let 0 < 𝛿 < 1 and � ≐

√
ln(N∕�)∕K , and set

as the parameters of the EXP4.P algorithm. Provided that � includes a ran-
domising expert f random that ascribes equal probability to each treatment arm 
(or includes a subset of experts that can be linearly combined to mimic one) and 
max(�2, 4K ⋅ ln(N)) ≤ T  , then

(3.6)

� = � ⋅
√
1∕T ⋅ 1∕M,

� = � ⋅
√
1∕T ⋅

√
ln(N)∕ ln(N∕�) ⋅ K,

� = � ⋅
√
1∕T ⋅

√
ln(N)∕ ln(N∕�) ⋅ 1∕2M,
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holds with probability at least 1 − �.

We present proof of Theorem  1 in Sect.  A. Theorem  1 extends Beygelzimer 
et al. (2011, §Theorem2), which requires that the potential outcomes be contained 
in the unit interval—rather than bounded and non-negative, as we assume. This 
extension modifies the choice of tuning parameters from that of Beygelzimer et al. 
(2011, §Theorem2). The maximal regret bound that we obtain then differs from 
that of Beygelzimer et al. (2011, §Theorem2) in that the regret that we obtain is 
scaled by M, and we include this as an additional parameter. We emphasise that 
our maximal regret bound—and the algorithm itself—coincides with that of Bey-
gelzimer et al. (2011, §Theorem2) if the potential outcomes are contained in the 
unit interval.

Remark 3 We note that the assignment policies that are delivered by F–EXP4.P 
(with tuning parameters chosen according to Eq. (3.6)) are not invariant to the addi-
tion of a constant to the outcome variable. This is because the inverse probability 
weighted estimate of the expert’s score (denoted by s̃i

t
 ) is not equivariant to addi-

tive constants. Accordingly, in those situations in which outcomes are observed to 
take negative values, the allocations produced by Algorithm 1 can be sensitive to 
the choice of constant that is added to outcomes so as to satisfy the nonnegativity 
requirement of Assumption 2.

3.2  The VC–EXP4.P variant

The standard setting in policy learning is one in which � contains infinitely many 
treatment assignment rules. F–EXP4.P restricts the class of treatment assignment 
rules to be finite (i.e., only a finite number of individualised assignment rules 
are allowed), and so is incompatible with the standard setting. In this section, we 
assume that Assumption 3b holds such that there are infinitely many deterministic 
(i.e., non-random) experts in � with complexity controlled by a finite VC dimen-
sion, and adapt the EXP4.P algorithm to this setting—we refer to this variant of the 
algorithm as VC–EXP4.P.

Algorithm 2 (VC–EXP4.P; Beygelzimer et al., 2011) Input the following objects. 

 i. A duration for the coarsening phase, denoted by � , such that � ∈ ℝ++ and 𝜏 < T;
 ii. a class of experts, denoted by � , of finite VC dimension; and
 iii. a maximum outcome value, denoted by M, such that 0 < M < ∞.

Generate treatment assignments by implementing the following algorithm: 

1. For t = 1,… , ⌈�⌉ , sample kt randomly from the uniform distribution on {1,… ,K}.

(3.7)R̂T ≤ 7M ⋅ 𝜔 ⋅
√
K2 ⋅ T = 7M

√
K ⋅ T ⋅ ln(N∕𝛿)
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2. Coarsen � to � ⊂ � such that for any f ∈ � , there exists exactly one g ∈ � 
satisfying f (xt) = g(xt) for all t = 1,… , ⌈�⌉.

3. Let N = |�| − 1 and implement F–EXP4.P over t = ⌈�⌉ + 1,… , T  using 
� ∪ f random as the set of experts.

End   ◻

The key innovation of VC–EXP4.P is the initial refinement of � to � , which 
occurs during an initial coarsening phase. Once � is formed, the algorithm proceeds 
to a run phase during which F–EXP4.P is enacted on � ∪ f random . The reason that we 
append f random to the coarsened class is to meet the assumption for the regret guar-
antee of F-EXP4.P shown in Theorem 1. Whether this coarsening is straightforward 
to implement or not depends upon how � is specified. For instance, when � com-
prises assignment rules based upon linear eligibility scores, we present a feasible 
algorithm for hyperplane arrangements to refine � to �.

We now present a welfare-regret guarantee for VC–EXP4.P that holds for particu-
lar choices of the tuning parameters and duration of the coarsening phase.

Theorem  2 (Beygelzimer et  al., 2011§ Theorem  5) Assume that Assumption  3b 
holds alongside Assumptions 1 and 2. Let 0 < 𝛿 < 1 and set

as the parameters of the EXP4.P algorithm given

as the duration of the coarsening phase. Provided that D ≪ T ,3 then, with a univer-
sal constant c > 0,

(3.8)

� = � ⋅
√
1∕[T − ⌈�⌉] ⋅ 1∕M,

� = � ⋅
√
1∕[T − ⌈�⌉] ⋅

√
ln(N)∕ ln(N∕�) ⋅ K,

� = � ⋅
√
1∕[T − ⌈�⌉] ⋅

√
ln(N)∕ ln(N∕�) ⋅ 1∕2M,

(3.9)� =
√
T ⋅ [2D ⋅ ln(T ⋅ e∕D) + ln(3∕�)],

3 For the EXP4.P algorithm to be well-defined, � or � cannot be too rich. The condition that 
max(�2, 4K ⋅ ln(N)) ≤ T  is necessary to ensure this when � is finite. When � is infinite, however, we 
require not only that this condition holds for the � that is obtained from it but that 𝜏 < T  . Since �2 ≤ � , 
it is necessary that

holds, which, under N = |�| , translates to

by Sauer’s Lemma. For Eq. (3.10) to hold generally then, the condition that D ⋘ T  is sufficient (i.e., the 
VC dimension is small relative to the time horizon).

(3.12)max(8 ln(N), 2 ln(N) + ln(2∕�)) ≤ T

(3.13)
T ∈ {t ∶ max(8D ⋅ ln(� ⋅ e∕D), 2D ⋅ ln(� ⋅ e∕D) + ln(2∕�)) ≤ t � � =

√
t ⋅ [2D ⋅ ln(t ⋅ e∕D) + ln(2∕�)]}
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holds with probability at least 1 − �.

We present proof of Theorem 2 in Sect. A. An important implication of control-
ling the complexity of (deterministic) experts in � by limiting the VC dimension is 
that, given (xt)

⌈�⌉
t=1

 , we can construct � = {g ∶ X → {0, 1}} to represent the remaining 
experts in � in the sense that there exists exactly one g ∈ � satisfying f (xt) = g(xt) 
for all t = 1,… , ⌈�⌉ . The cardinality of � can be much smaller than 2� , the cardinal-
ity of binary functions mapping � points. Theorem 2 implies that choosing � to be 
of the order of O(

√
T ⋅ D ⋅ ln(T)) gives a sufficient degree of coarsening for the run 

phase to have a high-probability regret bound of the order of O(
√
T ⋅ D ⋅ ln(T)).

An important and practically relevant class of experts is the Linear Eligibility 
Score (LES) class (Kitagawa and Tetenov, 2018):

which corresponds to the class of 0-1 assignments spanned by hyperplane partitions 
in X ⊂ RJ . If � is an LES class, we can improve upon Eq.  (3.12) by providing a 
tighter bound on the cardinality of � . Define, for t ≥ 2

as per Harding (1967). We note that Harding(t, J) is the maximum number of dis-
tinct signed partitions of t points in ℝJ+1—the ambient space—that can be induced 
by hyperplanes.4 As such, Eq. (3.14) corresponds to the maximum number of linear 
assignment rules that induce distinct allocations of t observations over the two treat-
ment arms. It is straightforward to show that Eq. (3.14) is less than the correspond-
ing bound on the cardinality of � that is implied by Sauer’s Lemma (Sauer, 1972; 
Shelah, 1972; Vapnik and Chervonenkis, 1971)—which is central to our derivation 
of Theorem 2—when � = �J.

To implement improvement of Eq. (3.12) then, we leverage Eq. (3.14) to derive 
a tighter bound on the maximal cardinality of � when this coincides with the LES 
class.

Theorem 3 Assume that Assumption 3b holds alongside Assumptions 1 and 2 and, 
moreover, that � = �J . Let 0 < 𝛿 < 1 and set

(3.10)RT ≤ cM ⋅
√
⌈�⌉2 + T ⋅ ln(3∕�)

(3.11)�J ≐
{
(1((1, x⊺)𝛽 < 0), 1((1, x⊺)𝛽 ≥ 0))⊺ ∶ 𝛽 ∈ ℝ

J+1
}
,

(3.14)Harding(t, J) ≐ 2
J∑
j=0

�
t − 1

j

�
,

4 Harding (1967) in fact determines the maximum number of distinct partitions of t points in ℝJ+1 that 
can be induced by hyperplanes; the maximum number of distinct signed partitions is obtained trivially by 
doubling the maximum number of distinct partitions.
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as the parameters of the EXP4.P algorithm given

as the duration of the coarsening phase. Provided that J + 1 ≪ T ,

holds with probability at least 1 − � with a univesal constant c > 0.

Coarsening the LES class can be formulated as a cell enumeration problem and 
achieved using an incremental enumeration algorithm—outlined below, alongside 
some practical recommendations.

3.3  Coarsening the class of linear eligibility assignment rules

Suppose that � = �J so that f ∈ � can be indexed by � ∈ ℝ
J+1 . The fundamental 

insight that we build upon to coarsen � to � is that, for f i ∈ � and f � ∈ � , there 
must exist some xt in (xt)

⌈�⌉
t=1

 such that

In words, that we can find a subject (during the coarsening phase) for whom f i and 
f � recommend different treatments.

Mathematically, Eq.  (3.18) is equivalent to �i and �� being located on opposite 
sides of the hyperplane defined by

The problem of constructing the coarse class for the LES class can be seen as a cell 
enumeration problem. That is, the problem of determining which cells—identified 
by a label (i.e., the concatenation of a sign for each subject in the sample according 
to whether the left- or right-hand side of Eq. (3.18) is true) and equivalent to a parti-
tion of the parameter space of �—are compatible with a given hyperplane arrange-
ment, and calculating a point in the interior of each cell.

The cell enumeration formulation highlights that � is not unique. If � i and �� both 
induce the same label in the sample then � can include � i or �� but not both, and are 
said to belong to a common equivalence class—or cell. The invariance of treatment 
allocations in the same equivalence class is also exploited by Pinkse (1993, see also 
Rosen & Ura, 2019) in the closely-related problem of maximum score estimation.

The incremental enumeration algorithm introduced by Rada and C̆erný 
(2018, building upon earlier work by Avis & Fukuda, 1996; Sleumer, 1998) and 

(3.15)

� = � ⋅
√
1∕[T − �] ⋅ 1∕M,

� = � ⋅
√
1∕[T − �] ⋅

√
ln(N)∕ ln(N∕�) ⋅ K,

� = � ⋅
√
1∕[T − �] ⋅

√
ln(N)∕ ln(N∕�) ⋅ 1∕2M,

(3.16)� =
√
T ⋅ [2 ln ◦Harding(T , J) + ln(3∕�)],

(3.17)RT ≤ cM ⋅
√
⌈�⌉2 + T ⋅ ln(3∕�)

(3.18)Sign
(
(1, x

⊺
t )�

i
)
≠ Sign

(
(1, x

⊺
t )�

𝓁
)
.

(3.19)Ht ≐ {� ∶ (1, x
⊺
t )� = 0}.
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improved upon by Gu and Koenker (2022) is an efficient way to construct � . It 
considers the enumeration problem one hyperplane at a time, exploiting the simi-
larity of neighbouring cells. The number of operations that the algorithm involves 
is proportional to the number of cells that are compatible with a hyperplane 
arrangement, which Buck (1943) establishes is less than �J , and far fewer than the 
2� partitions that a naïve brute force algorithm operates over and that is infeasible 
for even moderately-sized samples.

Before discussing how the incremental enumeration algorithm works, how-
ever, we clarify what we mean by cell and by label. To facilitate this clarification, 
imagine that we (are able to and do) plot a hyperplane of the form that is given in 
Eq. (3.19) for each subject in the sample. A cell is the intersection of half-spaces 
defined by a given hyperplane arrangement. A label is a consistent identifier of 
whether a point is located in the positive or negative half-spaces defined by a 
hyperplane arrangement. For instance, by recording whether a cell is above or 
below each hyperplane in the sense of Eq. (3.18), we can identify it by a sequence 
of pluses and minuses, which we refer to as a label. A naïve consideration of the 
problem then is to consider a label—of which there are 2� possible permutations 
of pluses and minuses—and to determine whether such a label identifies a non-
empty cell. Given that each cell is defined as the intersection of half-spaces, this 
amounts to solving a linear programme in which the objective is to maximise a 
slackness variable 0 ≤ r ≤ 1 subject to the constraints of the form;

where �+ ∈ ℝ
J+1
+

 and �− ∈ ℝ
J+1
+

 are the positive and negative parts of � , respec-
tively, in the sense that � = �+ − �− holds, and (�+, �−) are choice variables in the 
linear programme.

The incremental enumeration algorithm exploits the fact that if there does not 
exist a feasible solution to the linear programme for t subjects (i.e., the linear pro-
gramme with constraints of the form that is given in Eq. (3.20)—one constraint 
for each � = 1,… , t ) for a given label, then there is no feasible solution to the lin-
ear programme for t + 1 subjects that appends this label by a plus or a minus. Put 
simply, empty cells cannot be divided.

We now present a (deliberately) simple description of the steps of the incre-
mental enumeration algorithm (see Rada & C̆erný 2018 for a more detailed 
description).

Algorithm 3 (Incremental enumeration; Rada & C̆erný, 2018) The user is required 
to input the following objects. 

 i. A duration for the coarsening phase, denoted by � , such that � ∈ ℝ++ and 𝜏 < T ; 
and

 ii. a LES class of experts �J of finite VC dimension D = J + 1.

(3.20)

Constraintt =

�
(1, x

⊺
t )�− − (1, x

⊺
t )�+ + r ⋅ ‖(1, x⊺t )‖2 ≤ 0, if Sign((1, x

⊺
t )�) = +,

(1, x
⊺
t )�+ − (1, x

⊺
t )�− + r ⋅ ‖(1, x⊺t )‖2 ≤ 0, if Sign((1, x

⊺
t )�) = −,
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For t = 1,… , ⌈�⌉ , iterate. 

a. If t = 1 then propose + and − as labels; else append + and − separately to any 
existing labels comprising t − 1 pluses and minuses.

b. Construct and solve a linear programme with constraints of the form that is given 
in Eq. (3.20)—one constraint for each � = 1,… , t—for each proposed label.

c. If the linear programme associated with a proposed label has a feasible solution 
then keep this label and store the solution; else disregard the proposed label.

For each stored label, construct and solve a linear programme with constraints of the 
form that is given in Eq. (3.20)—one constraint for each � = 1,… , t—and return � 
as the collection of � = �+ − �− that are found as part of the solution.

End   ◻

Since the total number of labels that can be proposed at any step of Algorithm 3 
is twice the number of labels that are carried forward from the previous step, the 
total number of labels that need to be checked is given by Eq. (3.14). Provided that 
a label is admitted, then a natural witness to the associated cell is its Chebyshev 
centre5; the solution to the linear programme for t subjects is the pseudo-Chebyshev 
centre of a cell and is, incidentally, also the witness to its division (i.e., any non-
empty cell that is obtained from it upon the addition of another constraint).

Figure 1 illustrates the output of the incremental enumeration algorithm for four 
randomly generated points. Every admissible cell is the mirror image of another; it 
is, therefore, sufficient to characterise the full set of admissible cells by excluding all 
cells that are mirror images of another cell in the characterisation. We exploit this 
property in Fig. 1 to limit the number of treatment rules that we need to state. The 
generated points are compatible with a total of 14 cells, which is fewer than the 16 
cells that naïve calculation suggests.

4  Linear experiments

To provide some insight into the practical implementation and performance of 
VC–EXP4.P,6 we create several artificial datasets, run VC–EXP4.P with the LES 
class of assignments, and assess its welfare-performance.

5 The Chebyshev centre of a bounded convex set is defined as the origin of the largest possible circle that 
can be drawn that is entirely enclosed within that set; by specifying an upper limit on the radius of the 
circle, we can compute something akin to the Chebyshev centre for a possibly unbounded convex set. We 
emphasise that cells need not be unbounded, with notable examples being + and − (i.e., the cells that are 
compatible with a single hyperplane).
6 We use three Intel Core i7-8700 CPU @ 3.20GHz computers equipped with 32GB RAM running 
Ubuntu 20.04.6 LTS (Focal Fossa) or Windows 10 Enterprise LTSC and R 4.3.0.
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4.1  Design

We construct 1000 artificial datasets, each comprising 1000 realisations of 
a collection of two covariates—which we denote by xt = (xt,1, xt,0)

⊺ ∈ ℝ
2 , 

as before—and of a collection of two private shocks—which we denote by 
ut = (ut,1, ut,0)

⊺ ∈ ℝ
2 . The covariates and private shocks—which play the role of 

underlying heterogeneity—together generate a subject’s potential outcomes. We 
fix the realisations of the covariates across the datasets (i.e., xt is the same in 
every dataset) but allow the realisations of the private shocks to vary; by also fix-
ing � , we can use the same � throughout our simulations to significantly reduce 
computation time. We relate the covariates and unobserved heterogeneity to the 
potential outcomes via a log-normal specification. We maintain log-normality 
throughout the remainder of Sect. 4 only, assuming that the covariates are gen-
erated from a uniform distribution on the unit square. Motivating our choice of 
specification is the appropriateness of a log-normal distribution as an approxi-
mation of income or other wealth-related indices—common measures of welfare 
in treatment choice applications—and the non-negativity of log-normal random 
distributions—in accordance with the non-negativity requirement of Assump-
tion  2. The log-normality assumption does not, however, satisfy the bounded-
ness requirement of Assumption 2. To implement VC–EXP4.P, we use the first 
� observations to both compute � and to inform our choice of the tuning param-
eters of the F–EXP4.P-step that occurs during the run phase.

Fig. 1  A sufficient characterisation of admissible treatment rules for � = 4 observations
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Assumption 4 (Log-normality) The relationship between the covariates and unob-
served heterogeneity, and the potential outcomes is governed by

where ut ∼ Normal((0, 0)⊺, �2 ⋅ �2).

We note that, aside from its interpretation as a standard deviation, � controls the 
signal-to-noise ratio under Assumption 4, and is, therefore, related to what we regard 
as the degree of difficulty of learning the optimal policy of an artificial dataset.

The first-best optimal assignment rule under Assumption  4 is given by 
1
(
x
t,1

≥ x
t,2

)
 . This rule belongs to the LES class.

A property of the EXP4.P algorithm—and other exponential tilting procedures—
is that it more heavily updates the current policy when the realised outcome is large. 
Compressing the distribution of effects (i.e., the differences between the potential 
outcomes) is, in theory, likely to decrease the convergence rate of the EXP4.P algo-
rithm to whatever assignment rule is best-in-class.

Our intention in normalising the potential outcomes by �2∕2 is to ensure compa-
rability of the means of the potential outcomes for different standard deviations of 
the unobserved heterogeneity. To guarantee that Assumption 2 holds, we normalise 
the potential outcomes by dividing Eq. (4.1) by the maximum value of the potential 
outcomes that is realised for a given standard deviation of the unobserved hetero-
geneity,7 but reverse this normalisation prior to presenting the results of our experi-
ments to maintain comparability.

To vary the difficulty of learning, we manipulate the variance of the unobserved 
heterogeneity in Eq.  (4.1). We then measure the corresponding difficulty via the 
population probability of misclassification under the optimal rule.

Figure 2 plots the relationship between the standard deviation of the unobserved het-
erogeneity and the measure of difficulty; the black line is the theoretical difficulty 
implied by Eq. (4.2).

4.2  Implementation

We restrict attention to LES rules with two covariates and set � = �2 . To coarsen 
�2 , we utilise the incremental enumeration algorithm described in Sect.  3.3. We 
find that 31,154 assignment rules are compatible with the first 177 realisations of 
the covariates (the duration of the coarsening phase suggested by Eq. (3.16) given 

(4.1)
yt,1 = exp(xt,1 − xt,2 + ut,1 − �2∕2),

yt,0 = exp(ut,0 − �2∕2),

(4.2)Difficulty = Pr(Sign(yt,1 − yt,0) ≠ Sign(xt,1 − xt,2)).

7 For these experiments, we leverage our position as the oracle to set M equal to the maximum value of 
both potential outcomes across all of the artificial datasets. In practice, this is not feasible and so we sug-
gest using the first � observations to estimate some maximal value, or else to rely on insight or economic 
theory.
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Eq. (3.6)),8 which we emphasise are constant across all 1000 artificial datasets—we 
only vary the unobserved heterogeneity and so the potential outcomes. For compari-
son, this is the same number of assignment rules that Harding (1967) suggests could 
be admitted.

To assess whether the coarsening phase generate a sizeable welfare loss, it is use-
ful to know whether the coarse class contains the optimal rule, or assignment rules 
that are close to it. We find that the coarse class does not contain the optimal rule, 
but does contain several assignment rules that are close to it. In particular, the coarse 
class contains an assignment rule that allocates only one individual (out of 1000) 
differently to the oracle rule.

To draw meaningful conclusions about the performance of the EXP4.P algo-
rithm, we also implement two other simple estimators whose performance we can 
use as a benchmark for comparison. We implement (i.) the optimal rule through 
t = 1,… , 1000—what we refer to as the oracle rule; and (ii.) randomisation over the 
first 177 observations followed by the best-performing deterministic assignment rule 
in � according to the empirical welfare criterion of Kitagawa and Tetenov (2018)—
what we refer to as �-EWM.

8 As a guide, our implementation of the incremental enumeration algorithm completes in seven minutes 
on our computer system.

Fig. 2  The difficulty of Eq. (4.1) computed using Monte Carlo approximation
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4.3  Results

We conduct numerous experiments that vary the standard deviation of the unob-
served heterogeneity or the tuning parameters of the EXP4.P algorithm. We set � to 
the standard 95%-level

We capture the behaviour of the EXP4.P algorithm by computing the probabil-
ity that the social planner’s chosen policy enacts the same intervention as the opti-
mal assignment rule. This probability can be computed for every observation and is 
induced by pt—the probability distribution over the treatment arms—underlying the 
assignment probability of the EXP4.P algorithm. A higher chance of correct clas-
sification (i.e., coincidence of the treatment assignment of VC–EXP4.P and that of 
the optimal rule) leads to a lower regret; how much and how quickly the probability 
of correct classification increases over time is informative as to the performance of 
the EXP4.P algorithm. We plot the probability of correct classification as Figs. 3, 4, 
5 and 6.

In Figs. 3, 4, 5 and 6, the black ribbon captures the sample probability that the 
policy enacts the same intervention as the optimal rule in each of the 1000 artificial 
datasets that we construct; the white line that bisects the ribbon is the median prob-
ability amongst these datasets. In Figs. 4, 5 and 6, the orange line that dissects the 
ribbon is the corresponding median probability when the standard deviation of the 
unobserved heterogeneity is set to zero and is included for comparison.

We observe that the planner’s chosen policy is more likely to coincide with the 
treatment assignment of the optimal rule over time but that the magnitude and 

Fig. 3  The performance of VC–EXP4.P as the standard deviation of the unobserved heterogeneity 
increases
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rate of this improvement largely depends upon the difficulty and the choice of 
tuning parameters.

First, we investigate how changing the standard deviation of the unobserved 
heterogeneity affects performance. In each panel of Fig. 3 (from left to right) we 
increase the standard deviation of the unobserved heterogeneity, holding fixed the 
tuning parameters of the EXP4.P algorithm at the level recommended by Theo-
rem  1. We emphasise that although each dataset reveals identical sequences of 
the covariates, at every iteration both the intervention (even for an identical pol-
icy) and the potential outcomes that are realised differ and it is this attribute that 
generates the distribution of probabilities that is captured by the black ribbon. 
As is to be expected, as the standard deviation of the unobserved heterogeneity 
increases, the EXP4.P algorithm finds it increasingly difficult to learn an optimal 
policy. The difficulty corresponding to each panel is zero, 10.1%, 18.2%, 24.5%, 
29.1%, and 32.5%, respectively. The EXP4.P algorithm struggles to show even 
minimal signs of convergence for comparatively high standard deviations of the 
unobserved heterogeneity.

Second, we investigate how changing � affects the performance of the EXP4.P 
algorithm. In each panel of Fig. 4 (from left to right) we scale � relative to its rec-
ommended value in Theorem  1, holding fixed the other tuning parameters of the 
EXP4.P algorithm at the level recommended by Theorem 1. The exploration motive 
is increasing in � , which governs how much to score unrealised treatment arms (and 
so too the experts that recommend these treatment arms). Fig. 4 suggests that the 
EXP4.P algorithm converges more slowly to the optimal rule as � increases.

Fig. 4  The performance of VC–EXP4.P as � varies given � = 0.1
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Third, we investigate how changing � affects the performance of the EXP4.P 
algorithm. In each panel of Fig. 5 (from left to right) we scale � relative to its rec-
ommended value in Theorem  1, holding fixed the other tuning parameters of the 
EXP4.P algorithm at the level recommended by Theorem 1. The exploration motive 
is increasing in � , which governs the willingness to randomise versus adopting 
expert recommendations (weighted by the expert weights). Fig. 5 suggests that the 
EXP4.P algorithm is not particularly sensitive to the choice of �.

Fourth, we investigate how changing � affects the performance of the EXP4.P 
algorithm. In each panel of Fig. 6 (from left to right) we scale � relative to its recom-
mended value in Theorem 1, holding fixed the other tuning parameters at the level 
recommended by Theorem 1. The exploitation motive is increasing in � , which gov-
erns the sensitivity of the assignment probability to realised outcomes. Fig. 6 sug-
gests that the EXP4.P algorithm is particularly sensitive to the choice of �—more 
so than to the values of the other tuning parameters. The median probability of cor-
rect classification is increasing in � (i.e., the white line reaches a higher maximum), 
although this is accompanied by an increase in the variance of the correct classifica-
tion sample probability (i.e., the black ribbon widens). This trade-off between the 
average and variance of performance resembles the bias-variance trade-off that com-
monly appears in nonparametric estimation for the choice of a smoothing parameter.

The patterns that we observe in Figs. 3, 4, 5 and 6 mirror differences in the aver-
age welfare-level that the EXP4.P algorithm attains that are evident in Tables 1 and 
2—experiments in which VC–EXP4.P converges slowly to the oracle rule correspond 
to those experiments in which it attains a lower average welfare-level. Theorems 1 to 

Fig. 6  The performance of VC–EXP4.P as � varies given � = 0.1
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3 and their proofs necessitate only fairly weak constraints on the values of the param-
eters of the EXP4.P algorithm with the definitions contained therein serving only, in 
practice, as recommendations. Theorems 1 to 3 and their proofs can, for instance, be 
suitably adjusted to facilitate more aggressive updating, such as Figs. 3, 4, 5 and 6 and 
Tables 1 and 2 suggest is necessary for the EXP4.P algorithm to attain a higher aver-
age welfare-level. How much more aggressively the EXP4.P algorithm would need 
to update to attain an average welfare-level that is similar to that attained by �-EWM 
is, however, unclear but would appear substantial. Not only does �-EWM outperform 
VC–EXP4.P across all of our experiments but does so whilst incurring far less compu-
tational expense.

Table 1  The average welfare-level attained by various estimators as the standard deviation of the unob-
served heterogeneity increases

Estimator �

No noise 0.1 0.2 0.3 0.4 0.5

Oracle rule 2.001 2.001 2.000 2.000 2.000 1.999
�-EWM 1.891 1.891 1.891 1.890 1.886 1.884
VC–EXP4.P 1.782 1.761 1.745 1.733 1.726 1.721

   Coarsening phase 1.707 1.707 1.708 1.708 1.709 1.709
   Run phase 1.798 1.772 1.753 1.739 1.729 1.723

Table 2  The average welfare-level attained by various estimators as the parameters of the EXP4.P algo-
rithm vary given � = 0.1

Estimator Tuning parameter value

1/4 Rec 2/4 Rec 3/4 Rec Rec 5/4 Rec 6/4 Rec

Oracle rule 2.001 2.001 2.001 2.001 2.001 2.001
�-EWM 1.890 1.890 1.890 1.890 1.890 1.890
VC–EXP4.P ( �) 1.771 1.767 1.764 1.761 1.758 1.755

   Coarsening phase 1.707 1.707 1.707 1.707 1.707 1.707
   Run phase 1.784 1.780 1.776 1.772 1.769 1.766

VC–EXP4.P ( �) 1.765 1.764 1.762 1.761 1.759 1.758
   Coarsening phase 1.707 1.707 1.707 1.707 1.707 1.707
   Run phase 1.777 1.776 1.774 1.772 1.771 1.769

VC–EXP4.P ( �) 1.728 1.742 1.752 1.761 1.767 1.773
   Coarsening phase 1.707 1.707 1.707 1.707 1.707 1.707
   Run phase 1.733 1.749 1.762 1.772 1.780 1.787
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5  National job training partnership act study

The National Job Training Partnership Act (JTPA) Study comprises 9223 obser-
vations of subjects, their education level and prior earnings. Applicants were 
enrolled onto the Study throughout the years 1987–1989, and were randomly 
allocated to one of two treatment arms—some applicants were extended train-
ing, job search assistance and other services provided by the JTPA, with the 
remaining applicants denied this support. Along with information collected prior 
to enrollment, the Study also collected administrative and survey data relating to 
applicants’ earnings in the 30 months following its start. Further details about 
the data and the Study can be found elsewhere (see, for instance, Bloom et al., 
1997). We restrict attention to a sample of 9,223 observations for which data on 
years of education and pre-programme earnings amongst the sample of adults 
(aged 22 years and older) used in the original evaluation of the programme and 
in subsequent studies (Abadie et al., 2002; Bloom et al., 1997; Heckman et al., 
1997) is available. Applicants in the Study were assigned to the two treatment 
arms in the ratio of two to one. Like Kitagawa and Tetenov (2018), we define the 
intervention to be the initial assignment of treatment, rather than the actual take-
up due to the presence of non-compliance in the experiment.

Fig. 7  Date of enrollment into the National JTPA Study
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5.1  Design

We exploit the sequential arrival of applicants in the JTPA Study to test the perfor-
mance of VC–EXP4.P. We sort applicants by the date of their enrollment onto the 
Study, randomly ordering applicants with the same date of enrollment to mitigate 
any possible systematic issues arising from data entry—although it seems apparent 
from Fig. 7 that there are no systematic time trends in the distribution of observa-
bles during the Study. We maintain this order throughout. A restrictive feature of 
our analysis is that we assume that the social planner observes the realised outcome 
of an applicant before the next applicant arrives. This is certainly an unrealistic 
assumption and presumes a favourable scenario. The purpose of our analysis, how-
ever, is to study whether the EXP4.P algorithm performs well even in such an ideal 
situation. A more realistic analysis would replace the actual outcome by a short-run 
surrogate, as considered in Athey et al. (2019). We leave this extension for future 
research.

The Study data reports applicants’ earnings only for the treatment arm that 
they were allocated to—we do not observe their counterfactual earnings for obvi-
ous reasons. Although implementation of the EXP4.P algorithm does not require 
the social planner to observe the outcomes associated with other treatment arms, 
our simulation exercises do since the treatment implemented by the EXP4.P algo-
rithm need not coincide with the treatment arm that applicants were allocated to. 
We use random forest methods (Breiman, 2001) to regress applicants’ earnings on 
their education level and prior earnings separately for each group of applicants—
the applicants that were offered support, and the applicants that were denied sup-
port. We subtract the average cost $774 from applicants’ earnings for those subjects 
that were offered support, prior to running the random forests. Given that treatment 
was randomised in the JTPA study, we take these random forest regressions as esti-
mators for the potential outcome regressions of E[yt(1)|xt] and E[y(0)|xt] . We use 
these regressions to form a prediction about applicants’ earnings for each of the two 
treatment arms—with the applicant’s education level and prior earnings as predic-
tors—regardless of the treatment arm that they were allocated to. We also use these 
regressions to construct an empirical distribution of residual earnings for each treat-
ment arm, by subtracting the difference between an applicant’s earnings and their 
predicted earnings for the treatment arm that they were allocated to. By randomly 
drawing a residual earning from each empirical distribution and adding these to an 
applicant’s predicted earnings for the corresponding treatment arm, we are able to 
construct a simulated outcome for each applicant for each of the two treatment arms, 
including the counterfactual one. We repeat this process to generate many simulated 
samples and apply VC–EXP4.P (setting � to the standard 95%-level, and setting the 
values of the tuning parameters as per Theorem 3) to them to obtain a distribution of 
welfare-performance.

As we do for our previous simulation exercises, we compare the performance of 
VC–EXP4.P with several benchmarks. We implement (i.) the optimal rule, which 
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we determine from the random forest9; (ii.) the infeasible quintic rule, which is an 
optimal assignment rule among the class of single indices formed by a fifth-order 
polynomial of the two covariates; (iii.) an optimal assignment rule in the LES class; 
(iv.) to treat everyone; (v.) to treat no-one; (vi.) �-EWM with the first 898 applicants 
used for coarsening �10; and (vii.) �-EWM over the first 609 applicants. Given that 
VC–EXP4.P involves a coarsening phase, we can also compare the average welfare-
level that is accrued during this sequence of observations to the average welfare-
level during the subsequent run phase.

5.2  Implementation

Aside from enrollment date, Fig. 7 also reports education level and prior earnings in 
the sample. We note two things about the distribution of covariates. First, education 
level is recorded on a discrete scale (although data is artificially jittered for legibil-
ity), in years. An implication is that any assignment rule that allocates an applicant 
to a particular treatment arm must also allocate applicants with the same education 
level and lower prior earnings (or higher, depending upon the sign of the rule) to 
the same treatment arm. Second, prior earnings are highly concentrated for every 
education level. In particular, many applicants have zero prior earnings. An implica-
tion is that the Study can, in practice, be reduced to a far smaller number of unique 
observations (of education level and prior earnings) for the purpose of refining the 
assignment rules.11

To ensure that the potential outcomes are non-negative, we add $34, 027 to every 
observation, subsequently subtracting this amount before reporting our results. Spe-
cifically, we add $34, 027 so as to ensure Assumption 2, since applicants’ simulated 
earnings can otherwise be negative due to the lack of restriction that we impose 
on the random forests (predicted earnings and residual earnings can both be neg-
ative). We set M to $257, 300 , which is the sum of the maxima of the predicted 
earnings and residual earnings that are returned by the random forests following this 
normalisation.12

To reduce the LES class, we utilise the incremental enumeration algorithm 
described in Sect. 3.3. We find that 104,252 assignment rules are compatible with 
the education level and prior earnings of the first 609 applicants to enroll on the 

10 898 roughly corresponds to the number of applicants in the study that were enrolled during the first 90 
days (i.e., one quarter). For comparison, the suggested duration of the coarsening phase as per Theorem 2 
is 609 applicants.
11 The 609 applicants that are considered during the coarsening phase reduce to 365 unique observa-
tions.
12 We note that the maximum potential outcome that could be observed in each simulation during the 
first 609 periods ranges from as little as $98, 023 to as much as $198, 337 ; the standard deviation of these 
observations is less than $20, 000 in each simulation. How to set M in the absence of full information is 
an open question.

9 The infeasible optimal rule allocates is to offer support whenever the random forest predicts that the 
difference between the potential outcomes plus the difference in the average residuals between the two 
treatment arms—which is not zero—is positive, and denies support otherwise.
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Study. For comparison, Harding (1967) suggests that up to 370,274 assignment 
rules could be admitted if the Study data did not include duplicates or applicants 
with the same prior earnings (particularly, zero prior earnings) and different edu-
cation levels, or if education level were not discrete. As such, the EXP4.P algo-
rithm can incur substantial computational expense—especially in terms of mem-
ory usage.

Table 3  Distributional features of the welfare-level attained by various estimators

Estimator Quantile Mean

0% 10% 25% 50% 75% 90% 100%

Infeasible optimal rule 16,821 17,144 17,238 17,338 17,433 17,529 17,876 17,337
Infeasible quintic rule 16,312 16,615 16,714 16,815 16,911 17,001 17,275 16,812
Optimal LES rule 16,187 16,486 16,579 16,683 16,776 16,873 17,120 16,676
Treat everyone 16,000 16,314 16,406 16,513 16,609 16,705 16,996 16,508
Treat no-one 14,865 15,122 15,218 15,319 15,414 15,493 15,861 15,315
�-EWM with � = 898 15,007 15,598 15,776 16,003 16,220 16,393 16,841 16,000
�-EWM with � = 609 15,015 15,539 15,719 15,996 16,215 16,404 16,868 15,979
VC–EXP4.P 15,430 15,726 15,822 15,924 16,020 16,117 16,366 15,922

   Coarsening phase 14,172 15,193 15,555 15,971 16,399 16,746 17,814 15,967
   Run phase 15,395 15,711 15,817 15,918 16,018 16,122 16,363 15,918

Fig. 8  The simulated performance of VC–EXP4.P based on the samples in the National JTPA Study
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5.3  Results

We construct 1000 simulated samples that we use to assess the performance of 
VC–EXP4.P and our benchmark procedures. We report quantiles and the mean of 
the welfare-level that each method attains in Table  3. We plot the probability of 
classification as Fig. 8. The black ribbon captures the probabilities that the policy 
enacts the same intervention as the optimal LES rule at every iteration in each of 
the 1000 artificial datasets that we construct; the white line that bisects the ribbon 
is the median probability amongst these simulated datasets; the orange line that dis-
sects the ribbon is the corresponding median probability when the comparison is the 
intervention dictated by the infeasible oracle rule—rather than the optimal LES rule.

We plot the allocation that is prescribed for the Study as Fig. 9. We contrast the 
prescription of the infeasible optimal rule with the prescription of the optimal LES 
rule that is to offer support to those subjects to the left of the downwards-sloping 
line. We note several findings.

First, on average, applicants benefit from training, job search assistance and other 
services provided by the JTPA, as is illustrated by the higher welfare-level attained 
by treating everyone versus treating no-one. The magnitude and sign of this effect 
is, however, known to be heterogeneous; individualised assignment can be benefi-
cial, as is shown in Kitagawa and Tetenov (2018). Comparison of the welfare-level 
attained by the infeasible optimal rule (the plug-in rule based on the random for-
est estimates) and by the treat everyone policy are in line with heterogeneity in the 
sign of the treatment effect. The difference in welfare-level shrinks, however, if we 

Fig. 9  The allocation that is prescribed by the infeasible oracle rule for the National JTPA Study
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compare the results for the optimal quintic rule or optimal LES rule with the treat 
everyone policy.

Second, in terms of the average welfare for in-sample subjects, neither the 
EXP4.P algorithm nor EWM performs well, as is evidenced by the inferior mean 
welfare-levels that are attained by VC–EXP4.P and �-EWM versus the treat eve-
ryone policy. Theorem 2 suggests that the welfare-level of VC-EXP4.P converges 
to the welfare-level of the optimal LES rule, but we do not observe this happening. 
This result is also indicative of the Study having a high degree of difficulty. The 
counterpart to Eq. (4.1) that we employ here is the probability that the sign of the 
difference in potential outcomes—as predicted by the random forest or by the clos-
est assignment rule in the LES class—is different from the sign of the difference 
in potential outcomes that is realised. We find that the Study has a difficulty rating 
of 44.0% and 47.6% (relative to a maximum of 50.0%) according to these meas-
ures, respectively. This conclusion is also supported by Fig.  8, which shows that 
the probability of correct classification does not grow over time and remains close 
to one half—the same as can be achieved by pure randomisation using an unbiased 
coin. The infeasible optimal rule is highly non-linear, and rules in the LES class 
are unable to effectively replicate it—resulting in the large welfare gap between the 
infeasible optimal rule and the optimal LES rule.

Third, VC–EXP4.P attains a similar welfare-level to �-EWM. This indicates that, 
in the JTPA Study sample, the welfare gain from performing sequential learning 
using VC–EXP4.P is small compared with the simpler two-stage learning procedure 
of �-EWM, despite a substantial difference in computational cost.

In summary, the results of our simulations—based upon the JTPA Study sam-
ple—indicate limited benefits to implementing the EXP4.P algorithm, even in an 
unrealistically ideal scenario in which the social planner can update the assign-
ment policies of as many as 8000 subjects and in which treatment response can be 
observed immediately after assignment. We attribute this limited benefit to substan-
tial heterogeneity and non-linearity in treatment effect in the JTPA Study sample 
(i.e., the JTPA Study sample is a difficult sample). Although the effect of non-line-
arity can be mitigated somewhat by increasing the VC dimension of �—evidenced 
by our results for the infeasible quintic rule—increasing the complexity of � leads to 
a substantial increase in the computational cost of implementing the EXP4.P algo-
rithm, particularly during the coarsening phase of VC–EXP4.P.

6  Conclusions

This paper studies applicability of the existing EXP4.P algorithm to the problem 
of treatment choice, where the social planner’s goal is to learn an optimal individu-
alised treatment assignment policy within a constrained class of assignment rules. 
For general bounded outcome variables, we provide a welfare-regret guarantee for 
the EXP4.P algorithm, and a practical method for coarsening the class of assign-
ment rules—a necessary step when this class is infinite with complexity controlled 
by a finite VC dimension—that exploits the similarity of the coarsening problem to 
a hyperplane arrangement and cell enumeration problem.
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We study the suitability of the EXP4.P algorithm to treatment choice problems 
through numerical analysis. Using a novel simulation design that is based upon the 
JTPA Study sample and that mimics the empirical context of assignment to job train-
ing, we assess the performance of the EXP4.P algorithm relative to oracle assign-
ment rules and a non-adaptive benchmark policy based upon static EWM. Our main 
finding is somewhat discouraging. Specifically, we find that the EXP4.P algorithm 
can perform poorly in situations in which the standard deviation of unobserved het-
erogeneity is large relative to the size of conditional average treatment effects or in 
which non-linearity of these effects limits the welfare gain of simple (linear) assign-
ment policies.13 The JTPA Study sample exhibits these properties and, as a result, 
implementing the EXP4.P algorithm does not deliver a notable welfare gain relative 
to the policy recommended by non-sequential EWM. Moreover, although our theo-
retical results establish uniform convergence of welfare-regret, we do not observe 
this convergence in practice.

We regard several issues as open questions and interesting topics for future 
research. First, implementation of the EXP4.P algorithm, importantly, requires that 
the time horizon (i.e., the number of periods over which allocation is to occur) is 
fixed and known in advance. This assumption is restrictive. Second, our analysis 
of the EXP4.P algorithm when the class of assignment rules is infinite with com-
plexity controlled by a finite VC dimension is limited to the case of two treatment 
arms. Extending this analysis to more treatment arms complicates the coarsening 
step that must be undertaken, and the link to hyperplane arrangements needs to be 
properly modified. Whether information about treatment response yielded during 
the coarsening step can be incorporated (it is currently discarded) to improve the 
performance of the EXP4.P algorithm is unclear, and is pertinent even in the case of 
two treatment arms. Finally, our analysis of the EXP4.P algorithm does not consider 
budget or capacity constraints. Such constraints are important in many public policy 
applications.

Proofs

Proof of Theorem 1 Our proof closely follows the proof given in Beygelzimer et al. 
(2011) except that our proof explicitly introduces the upper bound of the outcome 
variable M. Throughout, we subscript the expectation operator by time, to denote 
the conditional expectation that is contingent upon the information set possessed by 
the social planner in a given period; we subscript the expectation operator by i and 
time, to denote the probability distribution over treatment arms that is induced by f i 
in a given period. We otherwise maintain the notation defined in the main text, addi-
tionally defining si

t
=
∑K

k=1
yt(k) ⋅ f

i
k
(xt) and Si

t
=
∑t

�=1
si
�
 . The provisos of the theo-

rem dictate that � includes a randomising expert (ascribing equal probability to each 

13 We conduct further experiments as to the effect of non-linearity of conditional average treatment 
effects on the performance of the EXP4.P algorithm supporting this statement, the results of which are 
available upon request.
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treatment arm), and T ≥ �2 ∨ [4K ⋅ ln(N)] . These requirements translate directly, to 
0 ≤ � ≤ 1∕M and 0 ≤ 𝛾 < 1∕2.

First, we establish a large deviation inequality for S̃i
T
 relative to Si

T
 and, in par-

ticular, for a best performing expert. Let Et denote the conditional expectation given 
(It, xt) and consider

where Eq.  (A.2) makes use of Jensen’s Inequality. Since � ⋅ yt(k) ≤ 1 by Assump-
tion 2 together with our requirement upon the magnitude of � as assumed in Theo-
rem 1, an exponential bound exp(z) ≤ 1 + z + z2 whenever z ≤ 1 implies

We note that Eqs. (A.4)–(A.5) relies on the fact that the realised treatment is drawn 
according to pt , with the expectation of the linear term in the exponential bound 
then equals to zero, and Eqs. (A.6)–(A.7) makes use of the alternative exponential 
bound that is 1 + z ≤ exp(z) , and Assumption 2 together with our requirement upon 
the magnitude of � being bounded by 1/M as implied by the assumptions of Theo-
rem 1. It then follows that

By Markov’s inequality and Eq. (A.8), we obtain

(A.1)

Et(exp(𝛽 ⋅ si
t
− 𝛽 ⋅ s̃i

t
))

= Et

�
exp

�
K∑
k=1

(𝛽 ⋅ yt(k) − 𝛽 ⋅ ỹt(k))f
i
k
(xt)

��

(A.2)≤ Et

�
K∑
k=1

exp(𝛽 ⋅ yt(k) − 𝛽 ⋅ ỹt(k)) ⋅ f
i
k
(xt)

�

(A.3)=
K∑
k=1

Et(exp(� ⋅ yt(k) − � ⋅ [� ⋅M2 + yt(k) ⋅ 1(kt = k)]∕pt(k))) ⋅ f
i
k
(xt),

(A.4)
Et(exp(𝛽 ⋅ yt(k) − 𝛽 ⋅ ỹt(k)))

= Et(exp(𝛽 ⋅ yt(k) − 𝛽 ⋅ yt(k) ⋅ 1(kt = k)∕pt(k))) ⋅ exp(pt(k)∕[𝛽 ⋅M]2)

(A.5)≤ Et(1 + [� ⋅ yt(k) − � ⋅ yt(k) ⋅ 1(kt = k)∕pt(k)]
2) ⋅ exp(pt(k)∕[� ⋅M]2)

(A.6)≤ [1 + �2 ⋅ Et(yt(k)
2)∕pt(k)] ⋅ exp(pt(k)∕[� ⋅M]2)

(A.7)≤ 1.

(A.8)EP

�
exp(𝛽 ⋅ Si

T
− 𝛽 ⋅ S̃i

T
)
�
≤

T∏
t=1

Et

�
exp(𝛽 ⋅ si

t
− 𝛽 ⋅ s̃i

t
)
�
≤ 1.
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where A = �KM2 . By the choice of � as per Theorem 1, we obtain

Note that Eq. (A.12) holds for an arbitrary expert, building on which we can obtain a 
large deviation inequality of maxi(S̃

i
T
) relative to maxi(S

i
T
) . Let i∗ ≐ argmaxiS

i
T
 and, 

note that

Hence, by applying the union bound, we obtain

Next, we establish a high probability bound for the welfare regret using Eq. (A.13). 
Define

which we can relate to a (prospective) policy weight using qi
t
= exp(𝜂 ⋅ S̃i

t−1
)∕Ct−1 , 

where we interpret S̃i
0
= 0 for i = 1,… ,N . Hence,

(A.9)
P
(
Si
T
− S̃i

T
≥ [𝛽 ⋅ K ⋅M2] ⋅ T

)

= P
(
exp(𝛽 ⋅ Si

T
− 𝛽 ⋅ S̃i

T

)
≥ exp

(
𝛽 ⋅ [𝛽 ⋅ K ⋅M2] ⋅ T)

)

(A.10)≤ EP

(
exp(𝛽 ⋅ Si

T
− 𝛽 ⋅ S̃i

T
)
)
⋅ exp

(
− 𝛽 ⋅ [𝛽 ⋅ K ⋅M2] ⋅ T

)

(A.11)≤ exp(−� ⋅ A ⋅ T),

(A.12)P
(
Si
T
− S̃i

T
≥ A ⋅ T

)
≤ 𝛿∕N

{
max

i
(Si

T
) ≥ max

i
(S̃i

T
) + A ⋅ T

}
⊂
{
Si

∗

T
≥ (S̃i

∗

T
) + A ⋅ T

}

⊂ {∃i Si
T
≥ S̃i

T
+ A ⋅ T} =

N⋃

i=1

{Si
T
≥ S̃i

T
+ A ⋅ T}.

(A.13)P
�
max

i
(Si

T
) − A ⋅ T ≥ maxi(S̃

i
T
)
�
≤

N∑
i=1

P
�
Si
T
− S̃i

T
≥ A ⋅ T

�
≤ 𝛿

(A.14)Ct ≐

�
N for t = 0∑N

i=1
exp(𝜂 ⋅ S̃i

t
) for t = 1,… , T

(A.15)Ct∕Ct−1 =
N∑
i=1

exp(𝜂 ⋅ s̃i
t
) ⋅ exp(𝜂 ⋅ S̃i

t−1
)∕Ct−1

(A.16)=
N∑
i=1

exp(𝜂 ⋅ s̃i
t
) ⋅ qi

t

(A.17)
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We note that Eqs. (A.16)–(A.17) relies on the exponential bound previously used in 
Eq. (A.5), which is applicable here by Assumption 2 together with the given speci-
fications of � , � and � in the current theorem. The two labelled terms in Eq. (A.17) 
can then be bounded as follows.

We note that Eqs. (A.19)–(A.20) is by the construction of pt.14

We note that Eqs.  (A.22)–  (A.23) makes use of the Cauchy–Schwarz Inequality 
and the fact that f is constrained to the unit simplex15; Eqs.  (A.24)–(A.25) makes 

(A.18)B1t =
N∑
i=1

K∑
k=1

ỹt(k) ⋅ f
i
k
(xt) ⋅ q

i
t

(A.19)=
K∑
k=1

[� ⋅M2 + yt(kt) ⋅ 1(kt = k)]∕pt(k) ⋅
N∑
i=1

f i
k
(xt) ⋅ q

i
t

(A.20)≤ 1∕[1 − �] ⋅
K∑
k=1

[� ⋅M2 + yt(kt) ⋅ 1(kt = k)]

(A.21)=
(
A + yt(kt)

)
∕[1 − �]

(A.22)B2t =
N∑
i=1

[ỹ
⊺
t f

i(xt)]
2 ⋅ qi

t

(A.23)≤

N∑
i=1

K∑
k=1

ỹt(k)
2 ⋅ f i

k
(xt) ⋅ q

i
t

(A.24)=
K∑
k=1

[[� ⋅M2 + yt(kt) ⋅ 1(kt = k)]∕pt(k)]
2 ⋅

N∑
i=1

f i
k
(xt) ⋅ q

i
t

(A.25)≤ 2
K∑
k=1

[[� ⋅M2]2 + yt(kt)
2 ⋅ 1(kt = k)]∕pt(k) ⋅

N∑
i=1

f i
k
(xt) ⋅ q

i
t
∕pt(k)

(A.26)≤ 2∕[1 − �] ⋅
K∑
k=1

[[� ⋅M2]2 + yt(kt)
2 ⋅ 1(kt = k)]∕pt(k)

(A.27)≤ 2∕(1 − �) ⋅
[
A2∕� +M ⋅ yt(kt)∕pt(kt)

]

14 Specifically, pt(k) = [1 − �] ⋅
∑N

i=1
f i
k
(xt) ⋅ q

i
t
+ �∕K , or pt(k) ≥ [1 − �] ⋅

∑N

i=1
f i
k
(xt) ⋅ q

i
t
 . Similarly, 

pt(k) ≥ �∕K.
15 We use the expectation version of the Cauchy–Schwarz Inequality here, with f i playing the role of 
probability weights.



The Japanese Economic Review 

use of the quadratic inequality [a + b]2 ≤ 2[a2 + b2] ; and Eq.  (A.25)–(A.26) and 
Eqs. (A.26)–(A.27) are by the construction of pt and Assumption 2. Applying a log-
arithmic telescope to Eq. (A.15), we obtain

We note that Eq. (A.28)– (A.29) implements Eq. (A.17); we note that Eqs. (A.29)–
(A.30) makes use of the logarithmic inequality ln(1 + z) ≤ z ; we note that 
Eqs.  (A.30)–(A.31) implements Eqs.  (A.21) and (A.27); and we note that 
Eqs. (A.31)–(A.32) is by rearrangement and by the specifications of � , � and � as per 
Theorem 1. Rewriting Eq. (A.32) via multiplication by the inverse of the common 
term, we obtain the following upper bound.

(A.28)

ln(CT∕C0)

=
T∑
t=1

ln(Ct∕Ct−1)

(A.29)≤

T∑
t=1

ln(1 + � ⋅ B1t + �2 ⋅ B2t)

(A.30)≤

T∑
t=1

[� ⋅ B1t + �2 ⋅ B2t]

(A.31)

≤ � ⋅ T ⋅ [1 + 2� ⋅ A∕�] ⋅ A∕[1 − �]

+ � ⋅
T∑
t=1

[1 + 2� ⋅M∕pt(kt)] ⋅ yt(kt)∕[1 − �]

(A.32)

(A.33)

[1 − �]∕� ⋅ ln(CT∕C0)

≤ A� +
T∑
t=1

yt(kt) + �∕K ⋅
T∑
t=1

yt(kt)∕pt(kt)

(A.34)≤ A� +
T∑
t=1

yt(kt) + 𝛾 ⋅
T∑
t=1

K∑
k=1

ỹt(k)∕K

(A.35)= A� +
T∑
t=1

yt(kt) + 𝛾 ⋅ S̃random
T

(A.36)≤ A� +
T∑
t=1

yt(kt) + 𝛾 ⋅maxi(S̃
i
T
),
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where S̃random
T

 is the cumulative score of the pure randomizing expert that enacts 
each possible action with equal probability.

We also obtain the following lower bound.

where Eq. (A.37) follows since 
∑N

i=1
exp(𝜂S̃i

T
) ≥ exp(𝜂maxi(S̃

i
T
)) and Eq. (A.38) fol-

lows by the uniformity of the initial weights as specified in Theorem 1. Combining 
Eqs. (A.36) and (A.38) yields

Each of the two terms in the right-hand side of Eq.  (A.39) can be bounded as 
follows:

where this inequality follows by � ≤ 1∕M as implied by the assumptions of 
Theorem 1.

where we note that 0 < 𝛿 < 1 . Applying Eq.  (A.13)—more precisely, its comple-
ment—to the left-hand side of Eq. (A.39) and rearranging, we determine that

holds with probability at least 1 − � . Utilising the results of Eqs.  (A.40) and 
(A.41), making use of the support condition maxi(S

i
T
) ≤ M ⋅ T  , and noting 

(1 − 2�) ⋅ A ⋅ T ≤ M
√
K ⋅ T ⋅ ln(N∕�) , we obtain the conclusion of Theorem 1.   ◻

Proof of Theorem 2 Let f ∗ ∈ arg supf∈�WT (f ) , and g∗ ∈ � be a best expert in the 
run phase in the sense of g∗ ∈ argmaxg∈�

∑T

t=⌈�⌉+1 g(xt)
⊺yt . For the class of experts 

with non-randomised assignments, Sauer’s lemma bounds the cardinality of 

{(f (x1),… , f (xT � )) ∶ f ∈ F} from above by 
(

eT ′

D

)D

 . Consider the following decom-
position of RT:

(A.37)
[1 − 𝛾]∕𝜂 ⋅ ln(CT∕C0)

≥ [1 − 𝛾] ⋅maxi(S̃
i
T
) − [1 − 𝛾]∕𝜂 ⋅ ln(C0)

(A.38)≥ [1 − 𝛾] ⋅maxi(S̃
i
T
) − [1 − 𝛾]∕𝜂 ⋅ ln(N),

(A.39)

(A.40)A� ≤ 2 ⋅ A ⋅ T = 2M ⋅
√
K ⋅ T ⋅ ln(N∕�),

(A.41)
A�� = 2M ⋅

√
K ⋅ ln(N) ⋅ [

√
T −

√
K ⋅ ln(N)] ≤ 2M ⋅

√
K ⋅ T ⋅ ln(N∕�),

(A.42)
R̂T =max

i
(Si

T
) −

T∑
t=1

yt(kt) ≤ 2𝛾 ⋅maxi S
i
T
+ [1 − 2𝛾]

⋅ A ⋅ T + A� + A��
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Here, term (i) corresponds to the error accumulated during the coarsening phase for 
the first ⌈�⌉ periods. The sum of terms (ii) and (iii) capture the error accumulated by 
using � instead of � . Term (iv) corresponds to the regret associated with the run 
phase when the EXP4.P–F variant is implemented for the next T − ⌈�⌉ periods with 
the coarsened class �.

We bound each of (i) - (iv) terms separately. By Assumption 2, (i) can be upper 
bounded by ⌈�⌉M . To bound (ii), we invoke Chernoff’s inequality,

Note that (iv) corresponds to the empirical regret of the EXP4.P-F algorithm for 
T − ⌈�⌉ periods under the coarse class � whose cardinality is bounded by 

��� ≤
�

e⌈�⌉
D

�D

 by Sauer’s lemma. Hence, with probability at least 1 − �∕3 , it holds

where c1 is a universal constant.
Given a sequence of subjects, note that (iii) can be bounded by M ⋅ ‖f ∗ − g∗‖ , 

where

Under Assumption 1, this sequence is as likely to occur as any other sequence of 
subjects, of which there are a total of T! such permutations. Denote a permutation by 
a one-to-one function � ∶ {1,… , T} → {1,… , T} , and consider a uniform distribu-
tion over the T! permutations denoted by P� . Conditional on a given sequence and 
the covariates associated with it, we have

(A.43)

(A.44)

(A.45)

P

�
T∑

t=⌈�⌉+1
f ∗(xt)

⊺yt − EP

�
T∑

t=⌈�⌉+1
f ∗(xt)

⊺yt

�
≤ M

√
(T − ⌈�⌉)∕2 ⋅ ln(3∕�)

�

≥ 1 − �∕3.

(A.46)(iv) ≤ c1M ⋅
√
[T − ⌈�⌉] ⋅ [2D ⋅ ln(⌈�⌉ ⋅ e∕D) + ln(3∕�)],

‖f ∗ − g∗‖ ≐

T∑
t=⌈�⌉+1

1(f ∗(xt) ≠ g∗(xt)).
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We note that Eq. (A.47) maintains the requirement that f and h share the same classi-
fication of the first ⌈�⌉ subjects and disagree more than m times during the run phase, 
Eqs. (A.47)–(A.48) is the product of an upper bound on the number of possible pairs 
of functions and an upper bound on the probability that a random permutation pro-
duces at least m errors, Eqs. (A.48)–Eq. (A.49) makes use of Sauer’s Lemma, and 
relies on the properties of binomial coefficients,16 and Eqs. (A.49)–Eq. (A.50) makes 
use of the exponential bound, 1 + z ≤ exp(z) . Since Eq. (A.50) does not depend upon 
the sequence in which subjects arrive, the same bound applies for the unconditional 
probability over all possible sequences. By setting

we determine that the error accumulated by using � in place of � is bounded from 
above by m with probability at least 1 − �∕3.

Combining Eqs. (A.43), (A.45), (A.46), and (A.51), we obtain that for a universal 
constant c2 > 0,

with probability at least 1 − � . We can then minimise the right-hand side of 
Eq. (A.54) by setting � such that m = �2∕⌈�⌉ . The statement of Theorem 2 then fol-
lows.   ◻

(A.47)

P𝜒

�
T∑

t=⌈𝜏⌉+1
1(f ∗(x𝜒(t)

�
≠ g∗(x𝜒(t))) > m)

≤ P𝜒 (∃f ∈ � and h ∈ � satisfying ‖f − h‖ > m

and f (x𝜒(t)) = h(x𝜒(t)) for t ≤ ⌈𝜏⌉)

(A.48)≤ ���2 ⋅
�
T − m

⌈�⌉

�
∕T!

(A.49)≤ [e ⋅ T∕D]2D ⋅ [1 − m∕T]⌈�⌉

(A.50)≤ [e ⋅ T∕D]2D ⋅ exp(−⌈�⌉ ⋅ m∕T).

(A.51)m =
T

⌈�⌉ ⋅ [2D ⋅ ln(e ⋅ T∕D) + ln(3∕�)]

(A.52)RT∕M ≤ ⌈�⌉ + c2

√
[T − ⌈�⌉] ⋅ [2D ⋅ ln(⌈�⌉ ⋅ e∕D) + ln(3∕�)] + m

(A.53)≤ ⌈�⌉ + c2

√
T ⋅ [2D ⋅ ln(T ⋅ e∕D) + ln(3∕�)] + T ⋅ ln(3∕�) + m

(A.54)≤ ⌈�⌉ + c2

√
m ⋅ ⌈�⌉ + T ⋅ ln(3∕�) + m

16 Specifically, (T − m)∕T ≥ (T − m − z)∕(T − z).



The Japanese Economic Review 

Proof of Theorem 3 We follow the proof of Theorem 2, modifying those parts that 
make reference to � . Specifically, we exploit the assumption that � = �J to obtain a 
tighter bound on its cardinality by invoking Harding(t, J) rather than Sauer’s lemma. 
We omit the details for brevity.   ◻
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