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Abstract
Statistical treatment rules map data into treatment choices. Optimal treatment rules max-
imize social welfare. Although some finite sample results exist, it is generally difficult 
to prove that a particular treatment rule is optimal. This paper develops asymptotic and 
numerical results on minimax-regret treatment rules when there are many treatments. I 
first extend a result of Hirano and Porter (Econometrica 77:1683–1701, 2009) to show 
that an empirical success rule is asymptotically optimal under the minimax-regret crite-
rion. The key difference is that I use a permutation invariance argument from Lehmann 
(Ann Math Stat 37:1–6, 1966) to solve the limit experiment instead of applying results 
from hypothesis testing. I then compare the finite sample performance of several treat-
ment rules. I find that the empirical success rule performs poorly in unbalanced designs, 
and that when prior information about treatments is symmetric, balanced designs are 
preferred to unbalanced designs. Finally, I discuss how to compute optimal finite sample 
rules by applying methods from computational game theory.

Keywords Statistical decision theory · Statistical treatment choice · Empirical 
welfare maximization

1 Introduction

The purpose of empirical work is often to inform decision-making. Manski (2000, 
2004, 2007a, 2009) argued that our statistical methods should reflect the underly-
ing decision problem. He proposed using Wald’s (1950) statistical decision theory 
framework to formally analyze methods for converting sample data into policy 
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decisions. From a Bayesian perspective, Chamberlain (2000) and Dehejia (2005) 
also argue for the relevance of decision theory to econometrics.

In this paper, I consider statistical decision problems when there are many possi-
ble treatments to choose from. In the first part, I show that an empirical success rule 
which assigns everyone to the treatment with the largest estimated welfare is locally 
asymptotically minimax optimal under regret loss, a result proved for the two treat-
ment case by Hirano and Porter (2009). As in Hirano and Porter (2009), this asymp-
totic approach allows the distribution of the data to be arbitrary with unbounded sup-
port, whereas most existing finite sample results require the distribution of the data to 
have bounded support (e.g., (Schlag, 2003, 2006; Stoye, 2009a)).1 In the second part, 
I examine the performance of various treatment rules in finite samples. In particular, 
I show that the empirical success rule performs poorly when the sampling design is 
highly unbalanced—when some treatments are purposely given a larger proportion of 
subjects than other treatments. My computations also suggest that balanced designs 
are preferred to unbalanced designs. I end by discussing how to numerically compute 
optimal treatment rules by applying results from computational game theory.

Several papers (e.g., (Manski, 2004; Schlag, 2006; Stoye, 2009a, 2012; Tetenov, 
2012; Hirano & Porter, 2009)) have analyzed statistical decision problems using the 
minimax-regret criterion when there is a binary treatment. The first part of this paper 
extends a result of Hirano and Porter (2009) to the many treatment case. In the second 
part of this paper, I show how to use the proof strategy of Stoye (2009a) to numeri-
cally compute optimal treatment rules when the analytical solution appears intractable.

Few papers discuss minimax-regret treatment rules with many treatments. Prior 
to 2013, I am only aware of two previous results: First, Stoye (2007b) derives popu-
lation level treatment rules for more than two treatments (where ambiguity arises 
due to missing data), but does not consider finite sample rules. Second, a series of 
papers by Bahadur (1950), Bahadur and Goodman (1952), and Lehmann (1966) 
showed that the empirical success rule is minimax-regret optimal with many treat-
ments, assuming the data comes from a known parametric family satisfying mono-
tone likelihood ratio in a scalar parameter and under a balanced sampling design 
(see appendix B for further details). In the first part of this paper, I show how this 
result may be used to extend a result of Hirano and Porter (2009). There has been 
more work since 2013: Manski and Tetenov (2016) extend the large deviations anal-
ysis of Manski (2004) to multiple treatments to derive a finite sample bound on the 
maximum regret of the empirical success rule. They then use that result to study the 
choice of sampling design. Appendix B.3 of Kitagawa and Tetenov (2017) discusses 
an extension of empirical welfare minimization to multiple treatments (also see (Kit-
agawa & Tetenov, 2018)). Kallus (2018) and Zhou et al. (2023) derive regret bounds 
for treatment rules with more than two treatments that also incorporate covariate 
information.

The asymptotic results here and in Hirano and Porter (2009) apply to arbitrary 
sampling designs,2 and hence do not allow us to compare specific designs. Likewise, 

1 The finite sample results in section 3 of Tetenov (2012), which allow for unbounded support, are an 
exception.
2 Although I require the design to be ‘asymptotically balanced’; see section 2.5.
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the Bahadur et al results do not apply to unbalanced designs. Regardless of the num-
ber of treatments, the finite-sample minimax-regret treatment rule for an unbalanced 
design is currently unknown. Nonetheless, unbalanced designs are important in 
practice. First, when there are a large number of treatments, it may be difficult or 
impossible to gather data on all treatments. Moreover, the costs of treatment may 
differ, in which case we need to trade off potential gains from a balanced design 
versus the different costs of treatment. Finally, the traditional statistics literature on 
experimental design, based on power analysis of hypothesis tests, sometimes rec-
ommends unbalanced designs. Depending on the a priori information available, this 
recommendation may not be optimal when the minimax-regret treatment choice 
criterion is used instead. My computational results suggest that, without a priori 
restrictions on treatment response, balanced designs are preferred to unbalanced 
designs. My results also suggest that designs which do not commit to an allocation 
in advance, and instead allocate subjects with equal probability to all treatments, are 
preferred to balanced designs.

Although results on binary treatments are insightful, policy-makers often have to 
choose between many different options. In these cases, previous research provides 
insufficient guidance for decision-making. While analytical finite-sample optimality 
results are preferred, this paper shows that asymptotic and numerical results can be a 
useful substitute when analytical results are unavailable.

2  Asymptotics for statistical treatment rules with many treatments

Finite sample optimality results are often difficult to derive. For years, asymptotic 
theory has been used instead when finite sample result are unavailable. Much of 
the foundational work on asymptotics followed Wald’s (1945) statistical decision 
function approach, culminating in Le Cam’s (1986) magnum opus. In this general 
formulation, statistics is viewed as a formal tool for making decisions with finite 
sample data, where the decision maker incurs real losses if she makes a suboptimal 
decision. This view was seemingly forgotten along the way, as researchers focused 
on convenient choices of loss functions which led to now-standard work on estima-
tion problems and hypothesis tests. Recent work by Chamberlain (2000), Dehejia 
(2005), and Manski (2000, 2004), has renewed interest in the decision theory view 
of statistics.

In particular, Hirano and Porter (2009) applied Le Cam’s (1986) local asymp-
totic theory to the comparison of statistical treatment rules when there are two 
treatments to choose from.3 This approach allows them to derive locally asymp-
totically optimal rules under weaker assumptions than needed to derive exact 
finite-sample results, as in Stoye (2009a). This asymptotic approach allows 

3 Instead of using local asymptotics, Otsu (2008) applies the large deviations approach to compare treat-
ment rules. Also see Manski (2004), who uses a large deviation result to derive finite sample bounds on 
maximal regret.
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the data to have unbounded support, and the sampling design may be anything 
which point identifies the parameters.

In this section, I extend one of Hirano and Porter’s (2009) results to show that 
an empirical success rule is asymptotically optimal under the minimax-regret 
criterion when there are an arbitrary, but finite, number of treatments. Specifi-
cally, letting �∗

k,N
 denote the proportion of people to be assigned to treatment k, 

and letting Mk = {s ∈ {1,… ,K} ∶ w(�̂�k,N) = w(�̂�s,N)} , I show that

is locally asymptotically minimax optimal under regret loss, where w(�̂�k,N) is a ‘best’ 
estimate of the welfare achieved by treatment k. Such a function which maps data 
into an allocation of treatments to individuals is called a treatment rule.

As in Hirano and Porter (2009), I use Le Cam’s limits of experiments frame-
work. This framework splits the problem of deriving asymptotically optimal 
rules into four steps: (1) establish that the data generating process converges to 
a ‘limit experiment’, where one observes a single draw from a specific distribu-
tion, often a mean-shifted normal, (2) show that no sequence of rules can do bet-
ter than the optimal rule in the limit experiment, a result called the asymptotic 
representation theorem, (3) derive the optimal rule in the limit experiment, and 
(4) construct a sequence of rules which converges to the optimal rule from step 
3. The key difference between my result and that of Hirano and Porter is step 
3: solving the limit experiment. Since they consider only two treatments, they 
are able to apply finite sample optimality results from hypothesis testing theory, 
namely the Neyman–Pearson lemma. For more than two treatments, I instead 
apply results of Bahadur (1950), Bahadur and Goodman (1952), and Lehmann 
(1966) on picking the normal population with the largest mean, which use per-
mutation invariance arguments.

The rest of this section is organized as follows: In section 2.1 I specify the 
setup of the statistical decision problem. In section  2.2 I derive the distribu-
tion of plug-in estimators of welfare based on estimators like the MLE. I then 
state an asymptotic representation theorem in section 2.3. Consequently, in sec-
tion  2.4, I derive the optimal treatment rule in the limit experiment. Finally, I 
show in section 2.5 that the plug-in rule matches the optimal treatment rule in 
the limit experiment, and hence is locally asymptotically optimal.

2.1  Setup

I begin by describing the general setup of a statistical decision problem used 
in Manski (2004). I then specialize that setup to the case of finitely many treat-
ments and describe the data generating processes under consideration.

(1)𝛿∗
k,N

=

{
1∕|Mk| if w(�̂�k,N) ≥ w(�̂�s,N) for all s ≠ k

0 otherwise,
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2.1.1  General statistical decision theory setup

A treatment t ∈ T  can be applied at the individual level to members of some popula-
tion. When individual i receives treatment t, she experiences the outcome Yi(t) ∈ Y . 
Let Pt denote the distribution of outcomes in the population that would occur if we 
assigned everyone to treatment t. Assume Pt is in a parametric family of distributions, 
so that for each treatment t, Pt = P�t

 for some finite vector �t and a known function 
P�t

= P(�t) . Let � = {�t ∶ t ∈ T} . � is called the state of the world.

Example 1 A simple example is to let the density of Pt be the location model 
f (y − �t) , where f is a known density function, symmetric about zero. In this model, 
�t ∈ ℝ is the median of Pt . �t is also the mean of Pt , if it exists.

Suppose outcome distributions are ranked by a scalar mapping W, called the welfare 
function. Larger values of welfare are preferred. For example, we may rank outcome 
distributions by their average outcome: W(Pt) = ��t

[Yi(t)] . Let w(�t) = W(P�t
) denote 

the welfare achieved when all people are assigned to treatment t and the true state of the 
world for treatment t is �t . If we knew � , then the welfare w(�t) would be known for all 
treatments t and hence to maximize welfare we would solve

Unfortunately, we do not know the true state of the world � . To learn about � , we 
gather sample data � which lies in some sample space Ω . Given the sample data, we 
make a decision about what distribution of treatments t we will assign in the popula-
tion. Denote this distribution by �(t ∣ �) . This �(⋅ ∣ �) is a density function on T  for 
all � . That is,

where � is a �-finite measure on T  . Call �(⋅ ∣ ⋅) ∈ D a statistical treatment rule.
Let Q� denote the sampling distribution of the data � when the true state of the 

world is � . Following Wald (1950), we evaluate statistical treatment rules according 
to their mean performance across repeated sampling. Performance is measured using a 
function L(�, �) , called a loss function. The mean loss of a rule � is called the risk:

Although many loss functions may be considered, I focus on regret loss, defined as 
follows. For a given dataset � , the rule � yields the welfare

Define the regret from the rule � at state � to be

(2)sup
t∈T

w(�t).

∫
T

�(t ∣ �) d�(t) = 1,

R(�, �) = ∫Ω

L(�(⋅ ∣ �), �) dQ�(�).

W[�(⋅ ∣ �), �] = ∫
T

�(t ∣ �)w(�t) d�(t).
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where

is the maximal welfare if we knew the state of the world was � . Then the risk of � 
under regret loss is

Since � is unknown, the risk R(�, �) cannot be used directly to evaluate statistical 
treatment rules. Two common ways of eliminating � are: (1) averaging risk over � 
with respect to some distribution �(�) , or (2) looking at the worst case � . I focus 
on worst case analysis. Since regret is bad, larger values of risk are bad. Hence the 
worst case risk is

Define a finite sample minimax-regret treatment rule �∗ as a solution to

2.1.2  Finitely many treatments

Deriving finite sample minimax-regret treatment rules for an arbitrary set of treat-
ments T  is quite challenging. Most previous work has focused on the binary treat-
ment case. In this paper, I consider the case where T  is a finite set of K distinct 
treatments, T = {t1,… , tK} . In this case, �(⋅ ∣ �) is a probability mass function, with 
�k(�) ≡ �(tk ∣ �) denoting the percentage of the population to be assigned to treat-
ment tk given data � . Note that 

∑K

k=1
�k(�) = 1 must hold for all � . From here on, I 

suppress dependence on � and just write �k instead.

Regret[�(⋅ ∣ �), �] = U∗
�
−W[�(⋅ ∣ �), �],

U∗
�
= sup

t∈T

w(�t)

R(�, �) = ∫Ω

L(�(⋅ ∣ �), �) dQ�(�)

= ∫Ω

Regret[�(⋅ ∣ �), �] dQ�(�)

= U∗
�
− ∫Ω

W[�(⋅ ∣ �), �] dQ�(�)

= U∗
�
− ∫Ω

{
∫
T

�(t ∣ �)w(�t) d�(t)

}
dQ�(�)

= U∗
�
− ∫

T

��[�(t ∣ �)]w(�t) d�(t).

sup
�

R[�, �].

inf
�
sup
�

R[�, �].
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For simplicity, I assume there is a unique solution to equation (2). That is, there is 
a unique optimal treatment. Under this assumption, the infeasible optimal treatment 
rule is

where I let �k = �tk . It is helpful to rewrite the regret loss function using this infeasi-
ble optimal rule:

Note that, when K = 2 , this loss function simplifies to that in Hirano and Porter 
(2009). The risk is then

Next I specify the sampling process. Here I let N = n1 +⋯ + nK denote the total 
number of observations.

Assumption 1 (Data generating process) 

1. For each k we observe a random sample of size nk of data from P�k
 . This sample 

is independent of the other datasets.
2. nk∕N → �k ∈ (0, 1) as N → ∞.

Throughout this paper I also assume the parameters �k are point identified. See 
Song (2014) for some related asymptotic results in the partially identified case

Assumption 2 (Identification) Each �k is point identified.

Assumptions 1 and 2 together let us use the data from sample k to consistently 
estimate �k.

2.2  Distribution of plug‑in estimators of welfare under local alternatives

The purpose of this paper is to give conditions under which the plug-in rule

𝛿∗
k
= 1(w(𝜃k) > w(𝜃s) for all s ≠ k)

Regret[𝛿, 𝜃] = max{w(𝜃1),… ,w(𝜃K)} −

K∑
k=1

w(𝜃k)𝛿k

=

K∑
k=1

w(𝜃k)[1(w(𝜃k) > w(𝜃s) for all s ≠ k) − 𝛿k].

R[𝛿, 𝜃] =

K∑
k=1

w(𝜃k)[1(w(𝜃k) > w(𝜃s) for all s ≠ k) − �𝛿k].

(1)𝛿∗
k,N

=

{
1∕|Mk| if w(�̂�k,N) ≥ w(�̂�s,N) for all s ≠ k

0 otherwise,
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is locally asymptotically minimax under regret loss, where �̂�k,N is a ‘best regular’ 
estimator of �k and Mk = {s ∈ {1,… ,K} ∶ w(�̂�k,N) = w(�̂�s,N)} . Many treatment 
rules will be consistent, in the sense that they asymptotically select the optimal 
treatment:

Local asymptotic theory allows us to more finely distinguish between any two treat-
ment rules, by considering a sequence of parameter values such that the best treat-
ment is not clear, even asymptotically. This ‘local sequence’ prevents the decision 
problem from becoming trivial asymptotically. To this end, I consider parameter 
sequences of the form

where �0 is, without loss of generality, such that w(�0) = 0.4 Thus, under this 
sequence, all treatments are eventually equivalent (since w is continuous by assump-
tion 3 below). The parameters hk are called local parameters.

Assumption 3 (Model regularity) 

1. For each k, �k ∈ Θ where Θ is an open subset of the Euclidean space ℝd� . �0 ∈ Θ 
satisfies w(�0) = 0.

2. The class {P� ∶ � ∈ Θ} is differentiable in quadratic mean (QMD): There exists 
a vector of measurable functions �̇𝜃 , called the score functions, such that 

 as h → 0 , where p� denotes the density of P� with respect to the measure � . Let 
the information matrix I0 = �𝜃0

[�̇𝜃0
�̇�
𝜃0
] be nonsingular.

3. w(�) is continuous, and is differentiable at �0.

It is not necessary that the distribution of outcomes under each treatment lies in 
the same parametric family, or that �k all have the same dimensions, but it simplifies 
the exposition to do so. This generality follows from assumption 1.1, which says 
that all the samples are jointly independent, and the fact that the joint distribution 
of independent normals is the multivariate normal distribution. Also see remark 1 
below.

Let �̂�k,N be a best regular estimator of �k , meaning that

lim
N→∞

��k,N =

{
1 if k = argmax

k

w(�k)

0 otherwise.

(3)

�
�0 +

h1√
N
,… , �0 +

hK√
N

�
, h = (h1,… , hK),

∫
�√

p𝜃+h −
√
p𝜃 −

1

2
h��̇𝜃

√
p𝜃

�2
d𝜇 = o(‖h‖2)

4 This can be achieved by simply adding the same constant to all welfare values, which will not affect 
the decision problem.
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for all hk . For example, �̂�k,N can be the MLE of �k . Let �̂N = (�̂��
1,N

,… , �̂��
K,N

)� , 
w(�̂N) = (w(�̂�1,N),… ,w(�̂�K,N))

�,

Then we have the following result on the distribution of plug-in estimators of wel-
fare under the sequence of local alternatives (3).

Proposition 1 Suppose assumptions 1, 2, and 3 hold. Then, for every h,

where �̂�k,N are best regular estimators of �k,N.

This proof, along with all others, is given in appendix A. It follows by applying Le 
Cam’s third lemma to the asymptotic linear representations of 

√
Nw(�̂N) (obtained via 

the delta method and since �̂N is best regular) and the log-likelihood ratio (which satis-
fies local asymptotic normality due to the QMD assumption).

In particular, this proposition gives

for each k. It’s important that we have obtained the asymptotic distribution under 
the sequence of local alternatives, and not under the fixed ‘true’ distribution P�0

 . 
Indeed, as used in the proof of this proposition, standard asymptotic theory shows 
that 

√
Nw(�̂�k,N) converges to a normal distribution centered at zero under P�0

 . Propo-
sition 1 is analogous to lemma 3 of Hirano and Porter (2009).

2.3  The asymptotic representation theorem

In the previous section I derived the limiting distribution of plug-in estimators of wel-
fare under a sequence of local alternatives. In this section, I first scale the risk and loss 
functions to keep them nontrivial asymptotically. I then state an asymptotic representa-
tion theorem, which formalizes the notion that no sequence of treatment rules can be 
better than the best treatment rule in the limit experiment.

To prevent regret loss from going to zero asymptotically, I scale it by 
√
N:

(4)
√
N

�
�̂�k,N −

�
𝜃0 +

hk√
N

��
hk
⇝N(0, 𝜆−1

k
I−1
0
)

ẇ =
𝜕w

𝜕𝜃

���𝜃=𝜃0 , ẇ
� =

⎛⎜⎜⎝

ẇ� ⋯ 0

⋮ ⋱ ⋮

0 ⋯ ẇ�

⎞
⎟⎟⎠
, and I0 =

⎛
⎜⎜⎜⎝

𝜆1I0 0 ⋯ 0

0 𝜆2I0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜆KI0

⎞
⎟⎟⎟⎠
.

√
Nw(�̂N)

h
⇝N

�
ẇ

�h, ẇ�
I
−1
0
ẇ
�
,

√
Nw(�̂�k,N)

hk
⇝N

�
ẇ�hk, 𝜆

−1
k
ẇ�I−1

0
ẇ
�
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where the third line follows since

which holds by a Taylor expansion and since w(�0) = 0.
Scaled finite sample risk under the local sequence is

where I have defined

Assumption 4 (Pointwise convergence) The rule �N is such that for each component 
k and each h, �k,N(h) converges to some limit �k(h).

Under this pointwise convergence assumption, scaled finite sample risk converges 
to asymptotic risk as follows:

Theorem  1 (Asymptotic representation theorem) Suppose assumptions 1–4 hold. 
Then for each k there exists a function �k ∶ ℝ

dim(hk) → [0, 1] such that for every hk,

and 
∑K

k=1
�k(Δk) = 1 for all Δ = (Δ1,… ,ΔK).

√
N Regret

�
𝛿, 𝜃0 +

h√
N

�

=

K�
k=1

√
Nw

�
𝜃0 +

hk√
N

��
1

�√
Nw

�
𝜃0 +

hk√
N

�
>
√
Nw

�
𝜃0 +

hs√
N

�
for all s ≠ k

�
− 𝛿k

�

→

K�
k=1

ẇ
�
hk[1(ẇ

�
hk > ẇ

�
hs for all s ≠ k) − 𝛿k] as N → ∞

≡ L∞(𝛿, h),

√
Nw

�
𝜃0 +

hk√
N

�
→ ẇ�hk as N → ∞,

√
NRN

�
𝛿N , 𝜃0 +

h√
N

�

=
√
N�

𝜃0+h∕
√
N
Regret

�
𝛿N , 𝜃0 +

h√
N

�

=

K�
k=1

√
Nw

�
𝜃0 +

hk√
N

��
1

�√
Nw

�
𝜃0 +

hk√
N

�
>
√
Nw

�
𝜃0 +

hs√
N

�
for all s ≠ k

�
− 𝛽k,N (h)

�
,

�k,N(h) = �
�0+h∕

√
N
�k,N .

√
NRN

�
𝛿N , 𝜃0 +

h√
N

�
→

K�
k=1

ẇ�hk[1(ẇ
�hk > ẇ�hs for all s ≠ k) − 𝛽k(h)].

�k(h) = ∫ �k(Δk) dN(Δk ∣ hk, �
−1
k
I−1
0
),



511

1 3

The Japanese Economic Review (2023) 74:501–537 

Assumption 3 implies that {Pn1
𝜃1
⊗⋯⊗ P

nK
𝜃K

∶ 𝜃 ∈ ΘK} converges to the limit 
experiment {N(h1, 𝜆

−1
1
I−1
0
)⊗⋯⊗N(hK , 𝜆

−1
K
I−1
0
)} (see Van der Vaart (1998) chap-

ter 9 for a formal discussion of convergence of experiments). The asymptotic represen-
tation theorem states that for any rule �N = (�1,N ,… , �K,N) which has a limit in the 
sense of assumption 4, there exists a rule � = (�1,… , �K) in the limit experiment 
whose risk R∞(�, h) equals the limiting risk of �N . We say that �N is matched by � in the 
limit experiment. This theorem is a special case of theorem 9.3 on page 127 of Van der 
Vaart (1998) (see also theorem 15.1 on page 215 and proposition 7.10 on page 98 for 
similar special cases), and hence its proof is omitted.

2.4  The optimal treatment rule in the limit experiment

Because of the asymptotic representation theorem, no rule can do better than the best 
rule in the limit experiment, which I derive in this section. In the limit experiment, 
{N(h1, 𝜆

−1
1
I−1
0
)⊗⋯⊗N(hK , 𝜆

−1
K
I−1
0
)} , we observe a single draw Δ = (Δ�

1
,… ,Δ�

K
)� 

from the distribution

The risk of a rule � in this limit experiment is

where

A rule �∗ is minimax optimal in this experiment if it solves

Because of the form of the limit risk R∞ , the (infeasible) optimal choice of treat-
ments in the limit experiment is

In the main result of this section, I show that if we replace the unknown mean hk by 
the observed realization Δk , we obtain a minimax optimal treatment rule:

N

⎛⎜⎜⎝

⎛⎜⎜⎝

h1
⋮

hK

⎞⎟⎟⎠
,

⎛⎜⎜⎝

�−1
1
I−1
0

⋯ 0

⋮ ⋱ ⋮

0 ⋯ �−1
K
I−1
0

⎞⎟⎟⎠

⎞⎟⎟⎠
.

R∞(𝛿, h) ≡
K∑
k=1

ẇ�hk[1(ẇ
�hk > ẇ�hs for all s ≠ k) − 𝛽k(h)]

�k(h) = ∫ �k(Δk) dN(Δk ∣ hk, �
−1
k
I−1
0
).

inf
�
sup
h

R∞(�, h).

𝛿k =

{
1 if ẇ�hk > ẇ�hs for all s ≠ k

0 otherwise.

(5)𝛿∗
k
=

{
1 if ẇ�Δk > ẇ�Δs for all s ≠ k

0 otherwise.
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Because the limit risk R∞ only depends on h through the linear combinations ẇ′hk , 
for all k, the random variable ẇ�Δ is a sufficient statistic in the following sense.

Lemma 1 For any rule �k(Δ) which is a function of the entire vector Δ , there exists 
a rule 𝛿k(ẇ�Δ) which is a function of only ẇ�Δ , and yet achieves the same risk as �k.

This result is a kind of complete class theorem. Hence it suffices to consider 
the limit experiment where we observe a single draw ẇ�Δ from the distribution

The following assumption states that, asymptotically, the sample sizes are equal.

Assumption 5 (Asymptotically balanced samples) �1 = ⋯ = �K = 1∕K.

This assumption implies that the only differences between treatments in the 
limit experiment are their means hk . Consequently, the question of finding the 
optimal treatment rule is simply that of finding the optimal rule when the goal is 
to pick the normal population with the largest mean, when all populations have 
equal variance. This problem was solved in a series of papers by Bahadur (1950), 
Bahadur and Goodman (1952), and Lehmann (1966).

Theorem  2 The rule �∗ defined in equation (5) is minimax optimal in the limit 
experiment:

This result follows immediately from the above discussion and the results of 
Bahadur, Goodman, and Lehmann, which I discuss in appendix B. Their results 
use permutation invariance arguments. This is quite different from the approach 
in Hirano and Porter (2009), who apply results from hypothesis testing. In par-
ticular, they use the Neyman-Pearson lemma; see Van der Vaart (1998) proposi-
tion 15.2 on page 217. The hypothesis testing approach does not appear to gener-
alize to the case with more than two treatments.

Theorem 2 relies on assumption 5 to ensure equal variances in the limit. Prac-
tically, this means that rules which approximate �∗ (see section 2.5) can only be 
guaranteed to be optimal when the sample sizes in finite samples are roughly 
equal. Such rules may have poor finite sample performance when the sample sizes 
are dramatically different. Relaxing this assumption has proven to be quite diffi-
cult analytically. In the binary treatment case, Hirano and Porter (2009) do not 
require an assumption like 5. Nonetheless, their main results are similar to theo-
rem 2, in that they also show that an empirical success rule is asymptotically opti-
mal. This empirical success rule may also have poor finite sample performance 

N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎝

ẇ�h1
⋮

ẇ�hK

⎞
⎟⎟⎠
,

⎛
⎜⎜⎜⎝

𝜆−1
1
ẇ�I−1

0
ẇ 0 ⋯ 0

0 𝜆−1
2
ẇ�I−1

0
ẇ ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜆−1
K
ẇ�I−1

0
ẇ

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
.

sup
h

R∞(�
∗, h) = inf

�
sup
h

R∞(�, h).
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when sample sizes are dramatically different (see section 3), and hence this calls 
into question the value of the local asymptotic approximation for these cases.5

Remark 1 As mentioned earlier, the results generalize to allow different para-
metric models across treatments. In this case, assumption 5 must be modified to 
require the variances 𝜆−1

k
ẇ�
k
I−1
0,k
ẇk to be equal for all k, where I0,k is the information 

matrix corresponding to the kth treatment, evaluated at the centering point �0,k , and 
wk(�k) = W(Pk(�k)).

2.5  Local asymptotic minimaxity of the plug‑in rule

Theorem 2 shows that the optimal decision rule in the limit experiment is

Proposition 1 shows that 
√
Nw(�̂�k,N) has an asymptotic normal distribution with 

mean ẇ′hk under the sequence of local alternatives; i.e., the same distribution as 
ẇ�Δk . This suggests that an optimal rule might be obtained by replacing ẇ�Δk with √
Nw(�̂�k,N) in �∗ . In this section, I show that this plug-in rule,

matches the optimal rule in the limit experiment, and hence that this plug-in rule is 
locally asymptotically minimax under regret loss.

Let D denote the set of all sequences of rules �N that converge in the sense of 
assumption 4. The following result shows that the minimax value in the limit experi-
ment is an asymptotic risk bound.

Lemma 2 (Asymptotic minimax bound) Suppose assumptions 1–5 hold. Then for all 
�N ∈ D,

where the outer supremum over J is taken over all finite subsets J of ℝdim(h).

We call any �N which achieves the lower bound a locally asymptotically minimax 
rule. The following theorem is the main asymptotic result of this paper.

(2)𝛿∗
k
=

{
1 if ẇ�Δk > ẇ�Δs for all s ≠ k

0 otherwise.

(1)𝛿∗
k,N

=

{
1∕|Mk| if w(�̂�k,N) ≥ w(�̂�s,N) for all s ≠ k

0 otherwise,

sup
J

lim inf
N→∞

sup
h∈J

√
NRN

�
�N , �0 +

h√
N

�
≥ inf

�
sup
h

R∞(�, h),

5 One possibility is to consider the �k ’s as unknown parameters of the sampling process, rather than 
known constants. They can then be included in the local parameterization. I leave this extension to future 
research.
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Theorem 3 Suppose assumptions 1–5 hold. Let �̂N be a best regular estimator, as 
described by equation (4). Then the plug-in rule �∗

N
 defined in (1) is locally asymp-

totically minimax:

where the outer supremum over J is taken over all finite subsets J of ℝdim(h).

Compared to the finite sample results discussed in appendix B, this asymptotic 
result has several advantages. It does not require each treatment distribution to lie in 
the same parametric class (although I have assumed this in the exposition for sim-
plicity). It does not require sample sizes to be exactly balanced, although the approx-
imation will likely be poor if the sample size is far from being balanced. It does not 
require the parameters �k to be scalar, and does not require the distribution of data to 
have monotone likelihood ratio.

2.6  Discussion

In this section, I have shown that, when there are a finite number of treatments, the 
rule which assigns everyone to the treatment with the largest estimated welfare is 
locally asymptotically minimax under regret loss. This extends one of the results in 
Hirano and Porter (2009), and relies on applying permutation invariance results by 
Bahadur (1950), Bahadur and Goodman (1952), and Lehmann (1966) in the limit 
experiment, instead of results from hypothesis testing. One limitation of this result 
is that I required the sample sizes to be asymptotically balanced, which was not 
required by Hirano and Porter when there are only two treatments. This requirement 
suggests that the empirical success rule defined in equation (1) may perform poorly 
when the sample size is far from balanced. More generally, the performance of the 
rule (1) depends on how well the limit experiment approximates the actual finite-
sample distribution of �̂N . I leave a further exploration of the quality of the finite-
sample approximation to future research. Likewise, I leave the problem of asymp-
totically unbalanced samples to future research.

3  Numerical computation of finite‑sample minimax‑regret treatment 
rules

Finite-sample minimax-regret treatment rules are often difficult to derive analytically. 
When analytical results are not available, we can instead numerically compare the per-
formance of any proposed treatment rules, and also compute optimal treatment rules. 
In this section, I first compare selected treatment rules. I show that optimal rules for 
certain sampling designs may perform quite poorly for other designs. In particular, the 
empirical success rule does poorly for unbalanced designs. I next show how optimal 

sup
J

lim inf
N→∞

sup
h∈J

√
NRN

�
�∗
N
, �0 +

h√
N

�
= inf

�
sup
h

R∞(�, h),
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rules can be computed. Minimax-regret rules can be thought of as solutions to a fic-
titious game between nature and the decision-maker. Consequently, numerical tech-
niques used to compute equilibria of games can be used to compute minimax-regret 
rules.

3.1  Setup

The general setup is as in section 2. Here I describe several additional assumptions I 
use for the numerical finite-sample results, and I describe the sampling designs I con-
sider throughout the section.

3.1.1  Additional assumptions

Assume the welfare function is the population mean outcome: 
W(P�t

) = ��t
[Yi(t)] ≡ m�(t) , where � = {�t ∶ t ∈ T} . Assume outcomes have an arbi-

trary distribution on a common bounded support, which is normalized to [0, 1]. Using 
Schlag’s (2003) ‘binary randomization’ technique, described below, it suffices to only 
consider the case where outcomes are binary, Yi(t) ∈ Y = {0, 1} , where 1 is a success 
and 0 is a failure. Under this assumption, the population mean function is just the pro-
portion of individuals in the population who achieve a success, m�(t) = ℙ[Yi(t) = 1] . 
Since outcomes are binary, the state of the world is fully described by the vector 
� = (�1,… ,�K) of means �k = m�(tk) . Assume Θ is the product space [0, 1]K.

Our sample data � has the form {(Yi, ki)}Ni=1 . Let Nk denote the number of observa-
tions with treatment k. Each Yi is an independent draw from the Bernoulli distribution 
with mean �ki

 . Let nk denote the number of successes among subjects with treatment k. 
If the number of observations Nk of each treatment is non-random, the vector of suc-
cess counts (n1,… , nK) is a sufficient statistic for the sample data, and so from now on 
we view � as producing this vector. If the number of observations Nk is random, then 
we augment the vector of success counts with the realized number of observations of 
each treatment.

Remark 2 Schlag (2003) showed that by performing a ‘binary randomization’ it suf-
fices to only consider binary outcomes. This technique is described as follows. As 
above, we assume outcomes have an arbitrary distribution with a common bounded 
support, normalized to [0,  1]. Replace each observation Yi ∈ [0, 1] by Ỹi ∈ {0, 1} , 
obtained by making a single draw of a Bernoulli(Yi) random variable. Now apply a 
treatment rule 𝛿 to the binary data Ỹi . Let � denote the overall rule, including both the 
binary randomization step and the application of 𝛿 . It turns out that if 𝛿 is minimax-
regret optimal for binary data, then � is minimax-regret optimal for the original data.

3.1.2  Sampling designs

Thus far I have not fully described how the data � is gathered. I consider two kinds 
of sampling designs. For simplicity, I describe them in terms of just two treatments. 
Call the pair (N1,N2) of sample sizes an allocation.
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• Ex ante known allocation. The researcher chooses N1 and N2 . Among all the 
possible combinations of subjects which achieve this allocation, one of them is 
chosen at random with equal probability. When N1 = N2 , we say the design is 
balanced. Otherwise, it is unbalanced.6

• Ex ante unknown allocation. The researcher chooses the total sample size 
N = N1 + N2 . Individuals are independently assigned to treatment 1 or 2 with 
equal probability. Thus, before performing the experiment, any pair (N1,N2) 
such that N1 + N2 = N is possible. In particular, it is possible that all subjects are 
assigned to the same group and we make no observations in the other group. For 
this design, I assume the decision-maker commits to a decision rule � before the 
allocation (N1,N2) is revealed.7

The ex ante unknown allocation is easy to implement, but it may lead to extremely 
unbalanced samples ex post. This feature makes it intuitively unattractive to many 
researchers, who consequently prefer an ex ante known balanced design. On the 
other hand, traditional design of experiments based on analysis of power often rec-
ommends an ex ante known unbalanced design.8 For example, suppose there are two 
treatments with normally distributed outcomes and known variances but unknown 
means. Then the power of a t-test for a difference in the means is maximized by 
making more observations of the treatment with a larger variance. In section 3.2, I 
consider optimal sampling designs based instead on minimizing maximum regret.

3.2  Comparison of selected rules

In this section, I consider several cases where the analytical optimal rule is unknown. 
I compare several ‘reasonable’ rules by numerically calculating the maximal regret 
associated with each rule. These are the empirical success rule, various Bayes’ rules, 
and Stoye’s (2009a) rule, which is minimax-regret optimal for the ex ante unknown 
allocation and two treatments.

I begin with ex ante known allocations with an unbalanced design and two treat-
ments. The main findings are that the empirical success rule is not optimal for 
unbalanced designs, and that balanced designs are preferred to unbalanced designs. 
Moreover, the empirical success rule does worse as the design becomes even more 
unbalanced, and its maximal regret may actually increase with the sample size. 
The same results hold for three treatments. With ex ante unknown allocations and 
three treatments, the obvious extension of Stoye’s rule is not optimal. Finally, my 

7 Without commitment, we are back in the situation of looking at decision rules for an ex ante known 
allocation.
8 For example, see List et al. (2011).

6 Note that a balanced allocation requires a total sample size that is a multiple of the number of treat-
ments, K.
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calculations here suggest that an ex ante unknown design is preferred to any ex ante 
known design.

3.2.1  Ex ante known allocation, unbalanced design

Suppose there are two treatments with sample sizes N1 ≠ N2 . I consider three differ-
ent treatment rules.9 All rules have the form

Define the comparison numbers I21 as follows.

• Empirical success: Define 

• Stoye’s rule: Define 

 Note that when Nj = 0 , we choose i if and only if the sample success proportion 
ni∕Ni is greater than 1/2. Thus 1/2 is the a priori mean.

• Squared error minimax: Define 

Note that all rules are equivalent when N1 = N2.10 “Stoye’s rule” is the minimax-
regret optimal rule for K = 2 and an ex ante unknown allocation, as shown by Stoye 
(2009a). The squared error minimax rule is derived as follows. Consider group 1. 
We observe n1 ∼ Bin(�1,N1) . With a Beta(�, �) prior on �1 , the Bayes estimator of 
�1 under squared error loss is

𝛿2 =

⎧
⎪⎨⎪⎩

1 if I21 > 0

1∕2 if I21 = 0

0 if I21 < 0,

𝛿1 = 1 − 𝛿2.

IES
ij

=
ni

Ni

−
nj

Nj

.

Iij = ni − nj −
Ni − Nj

2

= Ni

(
ni

Ni

−
1

2

)
− Nj

(
nj

Nj

−
1

2

)
.

IM
ij

=
(1∕2)

√
Ni + ni√

Ni + Ni

−
(1∕2)

√
Nj + nj√

Nj + Nj

.

9 Another rule, suggested by Schlag (2006), is to randomly drop data until sample sizes are equal. I do 
not consider this rule here.
10 This case, the ex ante known allocation with a balanced design, is what Stoye (2009a) called 
“matched pairs.” In this case, his proposition 1(i) shows that the empirical success rule is finite sam-
ple minimax-regret optimal, when outcomes are binary. His proposition 2 then extends this result to 
outcomes with bounded support by using the the binary randomization technique. Here my focus is on 
unbalanced designs, in which case the finite sample optimal rule is unknown.
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Rule �M
1

 uses the prior � = � = (1∕2)
√
N1 for treatment 1 and � = � = (1∕2)

√
N2 

for treatment 2.11 This corresponds to the minimax optimal rule for estimating �1 
and �2 separately, each under squared error loss. Thus, in rule �M , we first estimate 
�1 and �2 separately by their Bayes’ estimators under squared error loss and a par-
ticular prior. These estimators are just the posterior means, a consequence of using 
squared error loss. The rule then picks the treatment with the largest Bayes’ estima-
tor. The Bayes’ estimator biases the sample proportion toward 1/2, the a priori mean. 
For example, if N1 = 1,

For large N1 , the Bayes estimators are approximately equal to the sample propor-
tions; �̂�B

1
≈ n1∕N1 . Despite the fact that the beta-prior Bayes estimators were derived 

for a different purpose, they lead to treatment rules that often perform better than the 

�̂�B
1
=

𝛼 + n1

𝛼 + 𝛽 + N1

=

(
𝛼 + 𝛽

𝛼 + 𝛽 + N1

)
𝛼

𝛼 + 𝛽
+

(
N1

𝛼 + 𝛽 + N1

)
n1

N1

.

�̂�B
1
(n1) =

{
1∕4 if n1 = 0

3∕4 if n1 = 1.

Table 1  Maximal regret for 
Stoye’s rule. Row is N

1
 , 

Column is N
2

1 2 3 4 5 10 15 20

1 0.125 0.148 0.174 0.198 0.209 0.263 0.288 0.309
2 0.148 0.087 0.105 0.134 0.160 0.226 0.266 0.287
3 0.174 0.105 0.071 0.082 0.109 0.197 0.239 0.270
4 0.198 0.134 0.082 0.061 0.067 0.163 0.218 0.249
5 0.209 0.160 0.109 0.067 0.054 0.136 0.193 0.233
10 0.263 0.226 0.197 0.163 0.136 0.038 0.091 0.143

Table 2  Maximal regret for 
Empirical success rule 

1 2 3 4 5 10 15 20

1 0.125 0.125 0.129 0.136 0.143 0.167 0.182 0.192
2 0.125 0.087 0.074 0.077 0.078 0.090 0.099 0.105
3 0.129 0.074 0.071 0.064 0.064 0.060 0.066 0.071
4 0.136 0.077 0.064 0.061 0.058 0.051 0.052 0.052
5 0.143 0.078 0.064 0.058 0.054 0.047 0.044 0.043
10 0.167 0.090 0.060 0.051 0.047 0.038 0.035 0.033

11 I also considered the uniform prior, � = � = 1 , and the Jeffreys prior, � = � = 1∕2 . These rules tend 
to perform slightly worse than �M , but better than empirical success or Stoye’s rule.
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empirical success rule.12 Tables 1, 2, and 3 show maximal regret for various sample 
sizes.

Among the rules considered, Stoye’s rule performs the worst. This outcome 
underlines the importance of the sampling design for evaluating optimality. Stoye’s 
rule is optimal if we commit to it before seeing the allocation, but it is not opti-
mal if we allow ourselves to condition on the realized allocation. The empirical suc-
cess rule performs better, but the beta-prior Bayes rule typically performs best. In 
particular, it improves upon the empirical success rule significantly more as the the 
allocation becomes more unbalanced; that is, as N1 − N2 gets large. This latter fact 
follows since the maximal regret of the empirical success rule is increasing in N2 , 
when N1 is fixed (likewise if we fix N2 ). In fact, most of the rules have this prop-
erty (including the uniform prior and Jeffreys prior Bayes rules, not shown). Only 
the squared error minimax rule seems to mostly escape it. This result is related to 
the fact that the probability the empirical success rule makes a correct selection is 
decreasing in the sample size of the best population.13 Thus, neither Stoye’s rule nor 
the empirical success rule are minimax-regret optimal with ex ante known unbal-
anced allocations.14 The apparently good performance of the beta-prior Bayes rules 
suggests the true optimal rule may look similar.

These results also shed light on Manski’s example from Stoye (2009a). Suppose 
N = 1100 , N1 = 1000 , n1 = 550 , N2 = 100 , n2 = 99 . Then Stoye’s rule chooses 
treatment 1. The empirical success rule and the beta-prior Bayes rule both choose 
treatment 2. Thus the counterintuitive result that Stoye’s rule chooses treatment 1 
with this data may just reflect the fact that Stoye’s rule is not optimal for an ex ante 
known unbalanced allocation.

Tables  1, 2, and 3 allow us to examine optimal sample size allocation. Equal 
sample size allocations are essentially always preferred to unequal allocations. For 
example, suppose N = 6 . Compare the allocation N1 = 5 , N2 = 1 to the allocation 
N1 = 3 , N2 = 3 . Maximal regret for empirical success is cut in half, from 0.143 to 

Table 3  Maximal regret for 
Squared error minimax rule 

1 2 3 4 5 10 15 20

1 0.125 0.148 0.105 0.097 0.108 0.106 0.108 0.111
2 0.148 0.087 0.105 0.094 0.067 0.082 0.064 0.071
3 0.105 0.105 0.071 0.082 0.067 0.054 0.052 0.068
4 0.097 0.094 0.082 0.061 0.067 0.057 0.048 0.045
5 0.108 0.067 0.067 0.067 0.054 0.051 0.045 0.043
10 0.106 0.082 0.054 0.057 0.051 0.038 0.036 0.036

12 Abughalous and Miescke (1989) also discuss Bayes rules in this two treatment, unbalanced allocation 
setting, under 0-1 loss and monotone permutation invariance loss.
13 For example, see Tong and Wetzell (1979) and also Bofinger (1985).
14 This does not mean that they are not admissible, however. Note for example when N

1
= 3 , N

2
= 2 , 

the empirical success rule is the best of the five. For normal data, Miescke and Park (1999) prove that 
the empirical success rule is admissible for regret loss. I am not aware of a proof for binary outcomes, 
however.
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0.071. Maximal regret for Stoye’s rule goes from 0.209 to 0.071. Maximal regret for 
the squared error minimax rule goes from 0.108 to 0.071. For an equal allocation, 
N1 = N2 , increasing total sample size N always lowers maximal regret. For N = 10 , 
all rules deliver a regret of 5.5%. For N = 11 , regret is below 5%.15 The sampling 
cost and importance of decreasing regret by a small percent will lead to an optimal 
total sample size.

Next suppose there are three treatments. As in the two treatment case, I computed 
maximal regret for the three-treatment generalization of the three rules considered 
above. All rules have the form

for some pairwise comparison numbers Iij defined as in the previous section on two 
treatments. �2 and �3 are defined analogously. Since Bayes rules form a complete 
class, and Bayes rules can be defined in terms of pairwise comparisons, we can 
restrict attention to rules with the form above.

Table 4 shows the maximal regret for various allocations. The findings here are 
similar to the two treatment case—the beta-prior Bayes rule does the best, then the 
empirical success rule, and then Stoye’s rule. Note, in particular, the poor perfor-
mance of Stoye’s rule when the sample sizes are most unequal. For example, when 
N3 = 1,N1 = 8,N2 = 10.

3.2.2  Ex ante unknown allocations

Thus far I have only considered ex ante known allocations. In this section, I briefly 
consider ex ante unknown allocations. For these allocations, Stoye (2009a) derived 
the minimax-regret optimal rule for K = 2 . I show that the obvious generalization of 
this rule is not minimax-regret optimal. Furthermore, I show that ex ante unknown 
allocations appear to be preferred to ex ante known allocations. Intuitively, com-
mitting to an allocation in advance gives nature an advantage in choosing her least 
favorable prior.

Table 5 shows maximal regret for Stoye’s rule and the beta-prior Bayes rule using 
the Jeffreys prior, both described in the previous section. The Jeffreys Bayes rule 
beats Stoye’s rule when N = 4 and N = 6 , while Stoye’s rule wins when N = 8 and 
N = 10 . Although this shows that Stoye’s rule is not optimal, its maximal regret is 
not much larger than that of the Jeffreys Bayes rule in the cases where it loses.

𝛿1 =

⎧
⎪⎪⎨⎪⎪⎩

1 if I12 > 0, I13 > 0

1∕2 if I12 > 0, I13 = 0

1∕2 if I12 = 0, I13 > 0

1∕3 if I12 = 0, I13 = 0

0 if I12 < 0 or I13 < 0

15 This is Schlag’s (2006) “Eleven tests needed for a recommendation” result. (By ‘tests’ he means 
‘observations’.)
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Table 4  Maximal regret for three treatment rules when K = 3 under ex ante known allocations

Maximal regret for Stoye’s rule, �
�
= � . Row is N1 . Column is N2

1 5 10

1 0.21038 0.26136 0.29936
2 0.22425 0.27451 0.30632
4 0.25568 0.29727 0.32303
8 0.28856 0.32076 0.34099

Stoye’s rule, �
�
= �

1 5 10

1 0.27477 0.31094 0.33341
2 0.28357 0.24675 0.282
4 0.30436 0.12883 0.19417
8 0.3262 0.12695 0.13582

Empirical success rule, �
�
= �

1 5 10

1 0.21038 0.23344 0.26903
2 0.21038 0.18586 0.21394
4 0.22385 0.17891 0.19081
8 0.25715 0.18844 0.19701

Empirical success rule, �
�
= �

1 5 10

1 0.24224 0.18394 0.19396
2 0.19292 0.10747 0.11161
4 0.18161 0.083565 0.077335
8 0.19035 0.076931 0.067696

Squared error minimax rule, �
�
= �

1 5 10

1 0.21038 0.17716 0.17596
2 0.22425 0.17374 0.17304
4 0.16702 0.14075 0.13733
8 0.17132 0.13505 0.13813

Squared error minimax rule, �
�
= �

1 5 10

1 0.19248 0.15101 0.14574
2 0.16659 0.10185 0.11062
4 0.14677 0.10185 0.077224
8 0.13941 0.077254 0.067684
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When K = 2 and N is even,16 the ex ante unknown allocation design and the 
ex ante known balanced design lead to identical values of regret.17 Neither is pre-
ferred over the other. This conclusion no longer holds when K = 3 . Tables  4 and 
5 provide a counter-example. When N = 3 , the ex ante known balanced alloca-
tion N1 = N2 = N3 = 1 yields minimal maximal regret 0.21038 (due to the Baha-
dur–Goodman–Lehmann theorem; see appendix B). Stoye’s rule under an ex ante 
unknown allocation, however, has a smaller maximal regret of 0.1860. The optimal 
rule for an ex ante unknown allocation may do even better than 0.1860.

When K = 3 , ex ante unknown allocations also appear to perform better than 
ex ante known unbalanced allocations. For example, when N = 4 , Stoye’s rule 
under an ex ante unknown allocation has maximal regret 0.1630, while Stoye’s 
rule under the ex ante known allocation N1 = 2,N2 = 1,N3 = 1 has maximal regret 
0.2243. Likewise, when N = 6 , Stoye’s rule under an ex ante unknown allocation 
has maximal regret 0.1335, while Stoye’s rule under the ex ante known allocation 
N1 = 4,N2 = 1,N3 = 1 has maximal regret 0.2557.

3.3  Computation of optimal rules

Although analytical finite-sample optimal treatment rules are often unknown, in this 
section I show how they can be computed numerically. I first consider a simple, but 
naive approach to numerically calculating optimal rules. I illustrate it by comput-
ing optimal rules for various unbalanced allocations. These calculations suggest that 
there exists an optimal rule which mixes at more than just one realization of the 
data, a distinct feature of minimax rules (e.g., (Manski, 2007b; Manski & Tetenov, 
2007)). I next discuss a more sophisticated approach based on results from computa-
tional game theory.

Consider the two treatment case. With binary outcomes, the sample space is 
finite. Thus any treatment rule can be written as a finite vector specifying the frac-
tion allocated to treatment 1 versus 2 for each element of the sample space. Specifi-
cally, the sample space for the sufficient statistics nk is

Table 5  Maximal regret when the allocation is ex ante unknown and K = 3

Total sample size = 1 2 3 4 6 8 10

Stoye’s rule 0.3333 0.2268 0.1860 0.1630 0.1335 0.1158 0.1037
Jeffreys Bayes rule 0.3333 0.2268 0.1860 0.1574 0.1324 0.1169 0.1050

17 See proposition 6 of Stoye (2007a).

16 Required so that a perfect balanced design is possible.
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Any treatment rule � is completely defined by (N1 + 1) ⋅ (N2 + 1) constants

The probability that � selects treatment 2, prior to gathering the data, is

where a and b are the unknown probabilities of success from treatments 1 and 2, 
respectively. Regret is

Ω = {(0, 0), (0, 1),… , (0,N2),

(1, 0), (1, 1),… , (1,N2),

⋮

(N1, 0), (N1, 1),… , (N1,N2)}.

�ij ≡ ℙ[�selects treatment 2 ∣ � = (i, j)].

(6)

𝔼�2 =
∑
i,j

�ijℙ(� = (i, j))

=

N1∑
i=0

N2∑
j=0

�ij

(
N1

i

)
ai(1 − a)N1−i

(
N2

j

)
bj(1 − b)N2−j,

(7)
R(�, �) = R[{�ij}, (a, b)]

= max{a, b} − (a��1 + b��2).

Table 6  Some minimax-regret optimal rules for unbalanced allocations

Column is n2 . Row is n1 . The cells are �∗
n1,n2

= ℙ[�selects treatment 2 ∣ � = (n1, n2)]

N1 = 1,N2 = 2 0 1 2

0 0.3343 1 1
1 0 0 0.6657

N1 = 2,N2 = 3 0 1 2 3

0 0.494 1 1 1
1 0 0 1 1
2 0 0 0 0.506

N1 = 1,N2 = 3 0 1 2 3

0 0.1266 1 1 1
1 0 0 0 0.8733

N1 = 1,N2 = 4 0 1 2 3 4

0 0.0008 0.886 1 1 1
1 0 0 0 0.114 0.9992

N1 = 1,N2 = 5 0 1 2 3 4 5

0 0.1872 0.5668 1 1 1 1
1 0 0 0 0 0.4332 0.8128
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The minimax-regret problem is

For small sample sizes, we can solve the minimax-regret problem by using nonlinear 
optimization packages like KNITRO to solve a nested optimization problem, where 
we first solve the inner problem, and then solve the outer problem. I implemented 
this approach for several cases. The solutions are displayed in table  6. Note that 
there may not be a unique optimal rule, and therefore the numerical solutions are 
just one possible optimal rule.

These calculations suggest several things. The rules are monotonic in n2 hold-
ing n1 fixed (likewise if we swap n1 and n2 ). That is, for each fixed n1 , the prob-
ability that we choose treatment 2 is increasing in n2 . For the first three cases, mix-
ing only occurs in the extreme cases where either there are no successes for both 
treatments, or there are only successes for both treatments. In the second two cases, 
when N1 = 1 and N2 = 4 or 5, the rule mixes for more than just those extreme cases.

Table 7 lists the value of maximal regret for the three rules considered previously, 
and the optimal rules computed above. Reassuringly, maximal regret is strictly 
decreasing in sample size, although the benefits of increasing sample size on a treat-
ment which already has most of the observations are quite small.

Although these initial computations are helpful, more sophisticated numerical 
approaches have been developed for solving these kinds of computational problems. 
Schlag (2003, 2006) and Stoye (2009a) reconsidered Wald’s (1945) game theory 
technique for deriving exact, analytical finite sample results. Stoye (2009a) describes 
this approach in detail (see also (Berger, 1985)), so I will only briefly review the 
main idea. Under conditions that are satisfied here, any minimax-regret rule �∗ 
is equivalent to a Bayes rule with respect to some prior �∗ on Θ , called the least 
favorable prior. We envision a fictional game between the decision-maker, who 
must choose the rule �∗ , and nature, who chooses the prior �∗ . It is well known that 
�∗ is a minimax-regret rule if (�∗,�∗) is a Nash equilibrium of this game. Thus it 
suffices to derive a Nash equilibrium of this game. Schlag (2003, 2006) and Stoye 
(2009a) use this idea to derive analytical results, but these proofs often rely on sym-
metry properties of the setup, which make them difficult to extend to more general 
settings, such as allowing for many treatments with differing costs, or for unbalanced 
sampling designs. Rather than analytically finding equilibria, we can compute equi-
libria numerically, and hence numerically compute optimal treatment rules. I sketch 
the game to be solved numerically in chapter 2 of Masten (2013), and I discuss the 

min
�ij∈[0,1]

max
(a,b)∈[0,1]2

R[{�ij}, (a, b)].

Table 7  Maximal regret for the 
optimal rule, along with several 
other rules

N1,N2 = 1,2 1,3 1,4 1,5 2,3

Stoye’s rule 0.1482 0.1740 0.1975 0.2088 0.1055
Empirical success 0.1250 0.1293 0.1361 0.1428 0.0741
Squared error minimax 0.1482 0.1055 0.0971 0.1083 0.1055
Optimal 0.0986 0.0921 0.0918 0.0911 0.0732
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computational methods that can be used below. I leave actual implementation of 
these methods to future research, however.

Several papers ((Judd, Renner, and Schmedders, 2012; Kubler & Schmedders, 
2010), and (Borkovsky, Doraszelski, and Kryukov, 2010)) discuss computational 
techniques for solving for equilibria of games with continuous strategies, with a 
particular emphasis on computing all equilibria, when there are multiple equilib-
ria. This feature is particularly important in statistical decision theory: two player 
games often have multiple equilibria, and hence it is likely the game considered here 
will also have multiple equilibria. If there are many qualitatively different optimal 
rules, the minimax-regret criterion will suffer from the same problem that Bayes 
rules users face when choosing priors.18 The presence of multiple minimax-regret 
treatment rules will require a method for choosing a particular rule.

These methods compute equilibria by solving the system of first order condi-
tions for the two players subject to any required constraints (e.g., Judd (1998) pages 
162–165). Consequently, these methods can be seen as simply numerical methods 
for solving systems of equations. The first approach is called all-solutions homotopy. 
The idea behind homotopy methods is to start with a system of equations g(x) = 0 
whose solutions are known, and to then continuously transform that system into the 
system of interest f (x) = 0 , whose solutions are desired. Assuming g(x) = 0 has as 
many solutions as f (x) = 0 , each solution of g(x) = 0 will map into a solution of 
f (x) = 0 . Judd et al. (2012) discuss the theory, application, and implementation of 
this method; also see Borkovsky et  al. (2010). The second approach is called the 
Gröbner basis method. This approach is based on a result in algebraic geometry 
which lets us reduce the problem of solving for all solutions to a system of equa-
tions to the problem of finding all solutions to just a single equation with a single 
unknown. Kubler and Schmedders (2010) describe this approach and illustrate its 
application in economics.

Both approaches require the system to be a polynomial, which is satisfied here.19 
The Gröbner basis method has the nice feature that when the system of interest is 
polynomial with rational coefficients, it proves exact analytical solutions, not just 
numerical approximations. If we restrict the decision-maker’s �ij ’s to be rational, 
then the first-order conditions of the statistical decision game are rational, since 
binomial coefficients are rational. The downside of Gröbner basis methods is that it 
can only handle smaller systems of equations, compared to all-solutions homotopy. 
One limitation of the numerical approach is that as the sample size increases, so 
does the number of equations in the system, eventually making the problem infeasi-
ble under either method. Nonetheless, at such sample sizes, the asymptotic approxi-
mation results of section 2 are likely to be reasonable, and can be used instead.

18 Although all optimal rules yield the same value of maximal regret, and hence the decision-maker is 
technically indifferent between them.
19 In general, homotopy methods whose only goal is to find one solution apply to arbitrary systems. Only 
the all-solutions homotopy imposes the polynomial restriction.
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3.4  Discussion

The results in this section show that when no analytical finite-sample optimality 
results are available, numerical computations can be a useful substitute. I showed 
that optimality depends importantly on the sampling design. The empirical suc-
cess rule, while optimal for balanced designs, performs poorly in highly unbal-
anced designs. My results suggest that, when choosing the sampling design, all 
treatments should be treated as symmetrically as possible. For example, ex ante 
known allocations with balanced designs yield lower regret for many rules com-
pared to ex ante known allocations with unbalanced designs. Likewise, ex ante 
unknown allocations are preferred to ex ante known allocations.

Much future work remains. In particular, implementing the computational 
methods discussed will help analyze more complicated settings, such as larger 
sample sizes, more than three treatments, and asymmetric costs of treatment.

A Proofs

Proof of proposition 1 Assumption 3.2 implies that the sequence of experiments

is locally asymptotically normal with norming rate 
√
N . Let

where h = (h�
1
,… , h�

K
)� . Then

where

Here ΔN,�0

�0
⇝N(0, I0) . The corresponding limit experiment consists of observing K 

independent normally distributed variables with means hk and variances �−1
k
I−1
0

.
Since �̂�k,N is a best regular estimator of �k , the converse part of lemma 8.14 of 

Van der Vaart (1998) implies that the estimator sequence �̂�k,N satisfies the expansion

{P
n1
𝜃1
⊗⋯⊗ P

nK
𝜃K

∶ 𝜃 ∈ ΘK}

PN,h = P
n1

𝜃0+h1∕
√
N
⊗⋯⊗ P

nK

𝜃0+hK∕
√
N
.

log
dPN,h

dPN
�0

= h�ΔN,�0
−

1

2
h�I0h + oP�0

(1),

ΔN,𝜃0
=

⎛⎜⎜⎝

ΔN,𝜃0,1

⋮

ΔN,𝜃0,K

⎞⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

√
𝜆1√
n1

n1�
i=1

�̇�𝜃0
(X1i)

⋮√
𝜆K√
nK

nK�
i=1

�̇�𝜃0
(XKi)

⎞
⎟⎟⎟⎟⎟⎟⎠

, and I0 =

⎛⎜⎜⎜⎝

𝜆1I0 0 ⋯ 0

0 𝜆2I0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜆KI0

⎞
⎟⎟⎟⎠
.
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By the delta method,

where recall that

Recall that �̂N = (�̂��
1,N

,… , �̂��
K,N

)� , w(�̂N) = (w(�̂�1,N),… ,w(�̂�K,N))
� , and

Then the previous results show that

where note that

Hence, by Slutsky’s theorem (this allows us to drop the oP�0

(1) terms) and a multi-
variate CLT, we have

where 𝜓𝜃𝜃
= ẇ

�
I
−1
0
�̇𝜃0

 , and we have defined

√
N(�̂�k,N − 𝜃0) = 𝜆−1

k
I−1
0
ΔN,𝜃0,k

+ oP𝜃0

(1).

√
N[w(�̂�k,N) − w(𝜃0)] =

√
Nw(�̂�k,N)

= ẇ�𝜆−1
k
I−1
0
ΔN,𝜃0,k

+ oP𝜃0

(1),

ẇ =
𝜕w

𝜕𝜃

|||𝜃=𝜃0 .

ẇ
� =

⎛
⎜⎜⎝

ẇ� ⋯ 0

⋮ ⋱ ⋮

0 ⋯ ẇ�

⎞
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.

√
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�
I
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0
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Then �𝜃0
�̇𝜃0

�̇
�

𝜃0
= I0 , where note that the off-diagonal entries are zero since the K 

samples are independent and the expected score is zero. Hence the third line follows 
since

and

Thus, by Le Cam’s third lemma (see example 6.7, page 90 of (Van der Vaart, 1998)):

  ◻

Proof of theorem 2 This result follows from the results in appendix B, as summa-
rized in corollary S1. Note that assumption 5 ensures that the variances are equal in 
the limit experiment, as needed to apply those results.   ◻

The following lemma restates the parts of lemma 4 of Hirano and Porter (2009) 
which are relevant here, for reference.

Lemma S1 (Hirano and Porter (2009) lemma 4) Suppose assumptions 1–4 hold. Let 
�N be a sequence of treatment assignment rules which is matched by a rule � in the 
limit experiment, as given by the asymptotic representation theorem. Let J be a finite 
subset of ℝdim(h) . If

holds for all h ∈ ℝ
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�
I
−1
0
�𝜃0

[�̇𝜃0
�̇
�

𝜃0
]I−1

0
ẇ
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where the outer supremum over J is taken over all finite subsets J of ℝdim(h).

Proof of lemma 2 By the asymptotic representation theorem, �N ∈ D is matched by a 
rule 𝛿 , meaning that �

𝜃0+h∕
√
N
𝛿k,N → �h𝛿k for all h. Consequently, by our risk func-

tion calculations in section 2.3, we have

for all h. Thus

where the first line follows by lemma 4 of Hirano and Porter (2009).   ◻

Proof of theorem 3 By proposition 1,

for all h. Thus, by our risk calculations in section 2.3, �∗
N

 is matched in the limit 
experiment by �∗ ; that is,

for all h. Then

where the outer supremum over J is taken over all finite subsets of ℝdim(h) . The first 
line follows by lemma 4 of Hirano and Porter (2009). The second line follows since 
�∗ is optimal in the limit experiment, by theorem 2.   ◻
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N→∞

√
NRN

�
𝛿N , 𝜃0 +

h√
N

�
= R∞(𝛿, h)

sup
J

lim inf
N→∞

sup
h∈J

√
NRN

�
𝛿N , 𝜃0 +

h√
N

�
= sup

h

R∞(𝛿, h)

≥ inf
𝛿
sup
h

R∞(𝛿, h),

𝛽∗
k,N

(h) ≡ 𝔼
𝜃0+h∕

√
N
𝛿∗
k,N

= P
𝜃0+h∕

√
N

�√
Nw(�̂�k,N) >

√
Nw(�̂�s,N) for all s ≠ k

�

→ ℙh(ẇ
�Δk > ẇ�Δs for all s ≠ k) as N → ∞

= 𝔼h[𝛿
∗
k
(Δ)]

= � 𝛿∗
k
(Δk) dN(Δk ∣ hk, 𝜆

−1
k
I−1
0
)

≡ 𝛽∗
k
(h)

lim
N→∞

√
NRN

�
�∗
N
, �0 +

h√
N

�
= R∞(�

∗, h)

sup
J

lim inf
N→∞

sup
h∈J

√
NRN

�
�∗
N
, �0 +

h√
N

�
= sup

h

R∞(�
∗, h)

= inf
�
sup
h

R∞(�, h),



530 The Japanese Economic Review (2023) 74:501–537

1 3

B The finite‑sample results of Bahadur, Goodman, and Lehmann

In this appendix I reproduce several results from Lehmann (1966), who built on Bahadur 
(1950) and Bahadur and Goodman (1952). Theorem 2 in the present paper is an imme-
diate corollary of these results. None of the results in this section are new (except for 
corollary S2, which is a minor extension); I include them here for reference and acces-
sibility. I have also made a few notational changes. The basic approach is to first show 
that the empirical success rule is uniformly best within the class of permutation invariant 
rules, and then show that this implies that it is a minimax rule among all possible rules. 
Although theorem 2 only requires this result to hold for normally distributed data, the 
result holds more generally, and so I present the general result here.

Suppose there are K treatments. From each treatment group k = 1,… ,K we 
observe a vector of outcomes Xk . Let P� denote the joint distribution of the data 
X = (X1,… ,XK) , where � = (�1,… , �K) and �k ∈ ℝ . Let L(k, �) = Lk(�) denote 
the loss from assigning everyone to treatment k. Let

be a finite group of transformations.

Example 2 (Permutation group) Let � ∶ {1,… ,K} → {1,… ,K} be a function 
which permutes the indices of � . So �(k) denotes the new index which k is mapped 
into. �−1(k) denotes the old index which maps into the new kth spot. Let {�j} be the 
set of all J permutations of indices. The set of transformations

which permute the indices of � is called the permutation group. For example, let 
� = (�1, �2, �3) . Consider the particular permutation �j with �j(1) = 2 , �j(2) = 1 , and 
�j(3) = 3 . Then

Assume from now on that G is the permutation group. Let � denote an arbi-
trary treatment rule. We say � is invariant under G if

Assumption S1 The following hold. 

G = {g1,… , gJ}

gj(�) = (��−1
j
1,… , ��−1

j
K)

gj(�) = (�2, �1, �3).

gj[(�1(X),… , �K(X))] = (�1(gjX),… , �K(gjX)) for all jand all X.
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1. (Invariant distribution). P� is invariant under G. That is, the distribution of gj(X) 
is Pgj(�)

 for all j.20

2. (Invariant loss). L(k, �) is invariant under G. That is, if L((1,… ,K), �) is the vector 
of losses then 

 for all j.
3. (Independence). X = (X1,… ,XK) has a probability density of the form 

 with respect to a �-finite measure � , where Tk = Tk(Xk) , are real valued statis-
tics, and T = (T1,… , TK).

4. (MLR). f�k has monotone (non-decreasing) likelihood ratio in Tk for each k.
5. (Monotone loss). Larger parameter values are weakly preferred. That is, the loss 

function L satisfies 

Example 3 (Independent normal observations with equal variances) Let 
Xk ∼ N(�k, �

2) , and Xk is independent of all other observations. Then this data satis-
fies assumptions (1), (3), and (4), with Tk = Xk.

Example 4 (Regret loss) The regret loss function

satisfies (2) and (5).

Let

denote the set of treatments which yield the largest observed statistics Tk . Define the 
empirical success rule by

L(gj((1,… ,K)), gj(�)) = L((1,… ,K), �)

h�(T) = C(�)f�1 (T1)⋯ f�K (TK),

𝜃i < 𝜃j ⇒ Li(𝜃) ≥ Lj(𝜃).

L(k, �) = max
i

�i − �k

M = {k ∶ Tk ≥ Tj for all j}

(8)𝛿∗
k
(X) =

{
1∕|M| if Tk ≥ Tj for all j

0 if Tk < Tj for some j.

20 Compare the assumption of invariance to the assumption that P� is exchangeable. Exchangeability is 
stronger: it says that gj(X) ∼ P� for all j—we do not have to permute the parameters. Also note that this 
invariant distribution assumption is violated as soon as we allow unequal sample sizes. For example, 
if T

0
∼ N(�

0
, �2∕N

0
) and T

1
∼ N(�

1
, �2∕N

1
) , then permuting the indices yields T

0
∼ N(�

0
, �2∕N

1
) and 

T
1
∼ N(�

1
, �2∕N

0
) , which is not true when N

0
≠ N

1
.
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When the Tk are continuously distributed, it is not necessary to define what �∗ does 
in the event of ties, since they occur with probability zero. When Tk are discretely 
distributed, however, ties may occur with positive probability.

Theorem S1 (Bahadur–Goodman–Lehmann) Suppose assumption S1 holds. Then 
the empirical success rule (8) uniformly over � minimizes the risk R(�, �) among all 
rules � based on T which are invariant under G.

Proof First note that �∗ is invariant under G. By lemma 1 of Lehmann (1966) 
(see below), it suffices to prove that, for all � , �∗ minimizes risk averaged over all 
permutations,

among all procedures (not just invariant ones). The risk of a rule � is

Average risk is

where we defined

Suppose without loss of generality that 𝜃1 < ⋯ < 𝜃K . We will show that, for a fixed 
t, Ak(t) is minimized over k by any i such that

r(�, �) ≡ 1

J

J∑
j=1

R(�, gj�),

R(�, �) =

K∑
k=1

Lk(�)�[�k(T)]

=

K∑
k=1

Lk(�)∫ �k(t)h�(t) d�(t).

r(�, �) =
1

J

J∑
j=1

R(�, gj�)

=
1

J

J∑
j=1

K∑
k=1

Lk(gj�)∫ �k(t)hgj�(t) d�(t)

=
1

J

K∑
k=1

∫
[

J∑
j=1

Lk(gj�)hgj�(t)

]
�k(t) d�(t)

=
1

J

K∑
k=1

∫ Ak(t)�k(t) d�(t),

Ak(t) =

J∑
j=1

Lk(gj�)hgj�(t).
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Consequently, the average risk r(�, �) is minimized for any rule � which puts 
�k(t) = 0 whenever tk < max ti . Finally, since the lemma requires the procedure 
�∗ to be invariant under G, we break ties between maxima at random with equal 
probability.

Thus all we have to do is show that for a fixed t,

Ai minimized means Ai ≤ Ak for all k, or Ai − Ak ≤ 0 for all k. Thus consider the 
difference

We will look at each term in the sum separately. Consider a permutation g defined 
by � such that 𝜋−1i < 𝜋−1k . By our ordering of the parameters, this implies that 
𝜃𝜋−1i < 𝜃𝜋−1k . Let g′ be the permutation obtained from g by swapping �−1i and �−1k.

The contribution to Ai − Ak from the terms corresponding to g and g′ is

Since the loss function is invariant,

So the previous equation reduces to

The first piece is positive (nonnegative at least) since 𝜃𝜋−1k > 𝜃𝜋−1i . Consider the sign 
of the second term. By the form of the density,

Since g′ is the same permutation as g, except that ji and jk are switched, hg��(t) is the 
same as above, except that f�

�−1 i
 is evaluated at tk and f�

�−1k
 is evaluated at ti . Thus, 

when we compare the difference hg�(t) − hg��(t) to zero, we can divide by all the 
shared terms (including the constant C, which is invariant), which all cancel, leaving 
just the �−1i and �−1k terms remaining.

Thus

ti = max
k

tk

Ai(t) = min
k

Ak(t) if and only if ti = max
k

tk.

Ai − Ak =

J∑
j=1

[Li(gj�) − Lk(gj�)]hgj�(t).

[Li(g�) − Lk(g�)]hg�(t) + [Li(g
��) − Lk(g

��)]hg��(t).

Li(g�) = Lk(g
��) and Lk(g�) = Li(g

��).

[Li(g�) − Lk(g�)][hg�(t) − hg��(t)].

hg�(t) = C(g�)f�
�−11

(t1)⋯ f�
�−1K

(tK)

hg�(t) − hg��(t) ≥ (≤)0 ⇔ f�
�−1 i

(ti)f�
�−1k

(tk) ≥ (≤)f�
�−1k

(ti)f�
�−1 i

(tk)

⇔

f�
�−1k

(tk)

f�
�−1 i

(tk)
≥ (≤) f��−1k (ti)

f�
�−1 i

(ti)

⇔ tk ≥ (≤)ti.
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The last line follows since ��−1k ≥ ��−1i and f� has MLR. Thus, when tk ≤ ti , the sec-
ond term is negative, and hence the entire term is negative.

Now, every permutation g� must have either 𝜋−1i < 𝜋−1k or 𝜋−1i > 𝜋−1k . So 
if we consider the set of all permutations with 𝜋−1i < 𝜋−1k then we can uniquely 
pair each one of these with a permutation with 𝜋−1k < 𝜋−1i . This is what we did 
above. By doing so, we have considered every term in the summation which defines 
Ai − Ak . Thus, when tk ≤ ti , every term in the sum has the desired sign, and hence

as desired.   ◻

Lemma S2 (Lehmann (1966) lemma 1) Fix � . A necessary and sufficient condition 
for an invariant procedure �∗ to minimize the risk R(�, �) among all invariant proce-
dures is that it minimizes the average risk

among all procedures (not just the invariant ones).

Proof 

1. (Sufficient). Let �∗ be an invariant procedure which minimizes average risk r(�, �) 
among all procedures. Let �′ be any other invariant procedure. Now, the risk func-
tion of any invariant procedure is constant over each orbit21

 Thus 

 since both �′ and �∗ are invariant. By the assumption that �∗ minimizes average 
risk among all procedures, 

 Hence 

2. (Necessary). Suppose that �∗ minimizes risk R(�, �) among all invariant proce-
dures. Let �′ be any procedure. There exists an invariant procedure �′′ such that 

Ai − Ak ≤ 0,

r(�, �) =
1

J

J∑
j=1

R(�, gj�)

{gj� ∶ j = 1,… , J}.

R(��, �, ) = r(��, �) and R(�∗, �) = r(�∗, �),

r(�∗, �) ≤ r(��, �).

R(�∗, �) ≤ R(��, �).

r(��, �) = r(���, �).

21 See Berger (1985) page 396 for proof.
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 For example, we can take 

 Thus we have 

  ◻

Finally, this result implies certain optimality properties among all rules, not 
just permutation invariant ones. To this end, suppose all rules are ranked by a 
complete and transitive ordering ⪰.

Example 5 The minimax criterion orders rules as follows: �� ⪰ � if

This ordering satisfies all the assumptions of Lehmann’s lemma 2 below.

Lemma S3 (Lehmann (1966) lemma 2) 

1. If the ordering ⪰ is such that 

(a) �� ⪰ � implies g�g−1 ⪰ g��g−1 , and
(b) for any finite set of rules �(i) , i = 1,… , r , �(i) ⪰ � for all i implies 1

r

∑r

i=1
�(i) ⪰ �.

   then given any procedure � there exists an invariant procedure �′ such that 
�� ⪰ �.

2. Suppose that in addition to (a) and (b) above, the ordering satisfies 

(c) R(��, �) ≤ R(�, �) for all � implies �� ⪰ �.

   Then, if there exists a procedure �∗ that uniformly minimizes the risk among all 
invariant procedures, �∗ is optimal with respect to the ordering ⪰ . That is, �∗ ⪰ � 
for all �.

Proof 

1. Note that 

 is invariant and, by (a) and (b), at least as good as �.

��� =
1

J

J∑
j=1

gj[�
�(g−1

j
X)].

r(�′, �) = r(�′′, �) = R(�′′, �)
≥ R(�∗, �) = r(�∗, �).

sup
�

R(��, �) ≤ sup
�

R(�, �).

�� =
1

r

r∑
j=1

gj�g
−1
j
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2. Let � be any rule. By part 1, there exists an invariant �′ that is preferred to � . �∗ 
uniformly minimizes risk among all invariant procedures. In particular, it has 
uniformly smaller risk than �′ . Thus, by (c), �∗ ⪰ �� ⪰ �.

  ◻

Thus, combining the BHL theorem with Lehmann’s lemma 2 yields the following 
result.

Corollary S1 The empirical success rule (8) is minimax optimal under regret loss in 
the experiment where, for all k, Xk ∼ N(�k, �

2) and Xk is independent of all other 
observations.

As a final remark, Schlag (2003) showed that when outcomes have an arbitrary 
distribution on a common bounded support, it suffices to only consider binary out-
comes by performing a ‘binary randomization’. This technique can be used to extend 
the Bahadur-Goodman-Lehman result as follows.

Corollary S2 Let Xk be a vector (Xk,1,… ,Xk,nk
) of nk scalar observations. Suppose 

n1 = ⋯ = nK . Suppose the parameter space for the distribution of Xk,i is the set of 
all distributions with common bounded support, for all i = 1,… , nk , for all k. Then 
the empirical success rule (8) is minimax optimal under any loss function satisfying 
assumptions (2) and (5).
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