
Vol.:(0123456789)

The Japanese Economic Review (2020) 71:101–133
https://doi.org/10.1007/s42973-019-00002-1

1 3

SPECIAL SECTION: ARTICLE

Accommodating various policy goals in matching 
with constraints

Yuichiro Kamada1 · Fuhito Kojima2

Received: 2 April 2019 / Revised: 25 May 2019 / Accepted: 26 June 2019 / Published online: 3 September 2019 
© Japanese Economic Association 2019

Abstract
Distributional constraints are common features in many real matching markets, such 
as medical residency matching, school admissions, and teacher assignment. We pre-
sent a model of matching with constraints that accommodates a wide variety of pol-
icy goals and apply that model to the setting of Kamada and Kojima (Am Econ Rev 
105(1):67–99, 2015). We also formalize a number of other policy goals to show that 
they are subsumed by our model. We prove several comparative statics results such 
as showing that a mechanism we propose is a Pareto improvement for doctors upon 
the constrained medical matching mechanism currently used in Japan.

Keywords Matching · Distributional constraints · Rawls · Stability · Strategy-
proofness · Comparative statics

JEL Classification C70 · D47 · D61 · D63

1 Introduction

Many real matching markets are subject to distributional constraints. For exam-
ple, under the “regional cap” policy in Japanese medical residency matching, each 
region of the country is subject to a regional cap. That is, each region is assigned an 
upper-bound constraint on the total number of residents placed in the region. This 
policy was introduced to regulate the geographical distribution of doctors, which 
was considered to be concentrated too heavily in urban areas at the expense of rural 
areas. Measures that are mathematically isomorphic to the regional cap policy can 
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be found in a wide range of contexts, such as graduate school admission in China, 
college admission in several European countries, residency match in the UK, and 
teacher assignment in Scotland.1

Motivated by these real-life examples, Kamada and Kojima (2015) study the 
design of matching markets under distributional constraints. As standard stability 
may conflict with distributional constraints, they propose a relaxed stability concept. 
They show that existing mechanisms result in instability and inefficiency and offer 
a mechanism that finds a stable and efficient matching and is (group) strategy-proof 
for doctors while respecting the distributional constraints.

A major limitation of that paper, though, is that their stability concept is closely 
tailored to a particular governmental goal to equalize the numbers of doctors across 
hospitals beyond target capacities. Although such a goal may be appealing in some 
contexts as a first-order concern, it may not be appropriate in other applications 
because hospital capacities in a given region may vary wildly. For example, the 
maximum and the minimum capacities of hospitals in Tokyo are 69 and 2, respec-
tively (see Fig. 1). For public elementary schools in Boston, the maximum and the 
minimum capacities of schools are 871 and 165, respectively (see Fig. 2).2 In such 
cases, it may be more appropriate to equalize the ratio between the numbers of doc-
tors (beyond the targets) and the capacities across hospitals.

There may be other reasonable policy goals as well. For instance, the government 
may wish to give a priority to some hospitals within a region over others for a vari-
ety of reasons.3 Thus, it is clear from these examples that focusing on a particular 
policy goal limits the practical applicability of the model of Kamada and Kojima 
(2015).4

To accommodate a wide range of policy goals, we offer a model in which each 
region is endowed with “regional preferences” over distributions of doctors within 
the region. The idea behind this modeling approach is to express policy goals as 
regional preferences, and accommodate different types of policy goals by chang-
ing regional preferences.5 Then, we define a stability concept that takes the regional 
preferences into account. A result by Kamada and Kojima (2018) implies that, under 
some regularity conditions, their flexible deferred acceptance mechanism finds a sta-
ble (and efficient) matching and it is group strategy-proof for doctors.

1 There are a large number of studies in matching problems with various forms of constraints. Exam-
ples include Roth (1991) on gender balance in labor markets, Abdulkadiroğlu and Sönmez (2003), 
Abdulkadiroğlu (2005), Ergin and Sönmez (2006), Hafalir et al. (2013), and Ehlers et al. (2014) on diver-
sity in schools, Westkamp (2013) on trait-specific college admission, Abraham et al. (2007) on project-
specific quotas in projects-students matching, and Biró et al. (2010) on college admission with multiple 
types of tuitions. These models share some similarities with our model, but all of them are independent 
of our study. More detailed discussions are found in our companion paper, Kamada and Kojima (2015), 
so we do not reproduce it here.
2 In Appendix 3, we provide further statistics on heterogeneity of capacities in these markets.
3 In the Japanese medical residency match, a hospital is given preferential treatments if that hospital 
deploys its doctors to underserved areas (Ministry of Health, Labour and Welfare 2014).
4 Some policy goals could be addressed by setting target capacities judiciously. However, it is easy to see 
that policy goals such as those discussed here cannot be fully expressed simply by picking target capaci-
ties.
5 In Section D we provide various types of regional preferences that represent different policy goals.
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This paper offers three sets of results. First, we show that the stability notion of 
Kamada and Kojima (2015) is a special case of our stability concept. More specifi-
cally, their concept is a case of our stability notion in which the regional preferences 

Fig. 1  The hospital capacities in Tokyo. The data are taken from Japan Residency Matching Program 
(2013)

Fig. 2  The school capacities in public elementary schools in Boston. The data are taken from Boston 
Public Schools (2013)
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satisfy a condition called the “Rawlsian” property. Moreover, when the regional 
preferences are Rawlsian, our flexible deferred acceptance mechanism reduces to the 
mechanism of Kamada and Kojima (2015). Thus, we establish the main results of 
Kamada and Kojima (2015) as a special case.

Second, we formalize a wide range of policy goals to demonstrate that they can 
be described by our regional preferences. Consequently, we establish that the cor-
responding flexible deferred acceptance mechanisms find a stable matching with 
respect to those regional preferences.

Third, we prove several policy-relevant comparative statics results. Among other 
things, we compare a mechanism currently used in Japan with the flexible deferred 
acceptance mechanism and establish that all doctors are weakly better off under the 
latter mechanism. Still, we also establish that all doctors are weakly worse off under 
the flexible deferred acceptance mechanism than under the unconstrained deferred 
acceptance mechanism. We note that we obtain all of our comparative statics results 
as straightforward corollaries of a single new comparative statics result.6

The rest of this paper proceeds as follows. In Sect. 2, we present the model. Sec-
tion  3 states preliminary result. In Sect.  4, we offer our analysis. Section  5 con-
cludes. Proofs are in the Appendix unless noted otherwise.

2  Model

This section introduces a model of matching under distributional constraints. 
We describe the model in terms of matching between doctors and hospitals with 
“regional caps,” that is, upper bounds on the number of doctors that can be matched 
to hospitals in each region. However, the model is applicable to various other situ-
ations in and out of the residency matching context. Concrete applications include 
Chinese graduate school admission, UK medical matching, Scottish teacher match-
ing, and college admissions in Ukraine and Hungary.7

Our notation and terminology closely follow those of Kamada and Kojima (2015, 
2018).

2.1  Preliminary definitions

Let there be a finite set of doctors D and a finite set of hospitals H. Each doctor d has 
a strict preference relation ≻d over the set of hospitals and being unmatched (being 
unmatched is denoted by ∅ ). For any h, h� ∈ H ∪ {�} , we write h ⪰d h

� if and only if 
h ≻d h

′ or h = h� . Each hospital h has a strict preference relation ≻h over the set of 
subsets of doctors. For any D′,D′′ ⊆ D , we write D� ⪰h D

�� if and only if D′ ≻h D
′′ 

6 Our general comparative statics result extends existing results such as Gale and Sotomayor (1985a, b), 
Crawford (1991), and Konishi and Ünver (2006). See also Kelso and Crawford (1982), who derive simi-
lar results in a matching model with wages. Echenique and Yenmez (2015) and Chambers and Yenmez 
(2017) independently obtain similar results in a framework based on choice functions as primitives.
7 See Kamada and Kojima (2015) for detailed descriptions.
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or D� = D�� . We denote by ≻= (≻i)i∈D∪H the preference profile of all doctors and 
hospitals.

Each hospital h ∈ H is endowed with a (physical) capacity qh , which is a non-
negative integer. We say that preference relation ≻h is responsive with capacity qh 
(Roth 1985) if

1. For any D′ ⊆ D with |D′| ≤ qh , d ∈ D ⧵ D� and d� ∈ D� , (D� ∪ d) ⧵ d� ⪰h D
� if and 

only if d ⪰h d
�,

2. For any D′ ⊆ D with |D′| ≤ qh and d� ∈ D� , D� ⪰h D
� ⧵ d� if and only if d� ⪰h � , 

and
3. ∅ ≻h D

′ for any D′ ⊆ D with |D′| > qh.

In words, preference relation ≻h is responsive with a capacity if the ranking of a doc-
tor (or keeping a position vacant) is independent of her colleagues, and any set of 
doctors exceeding its capacity is less preferred to the outside option. We assume that 
preferences of each hospital h are responsive with capacity qh throughout the paper.

Doctor d is said to be acceptable to hospital h if d ≻h ∅.8 Similarly, h is accept-
able to d if h ≻d ∅ . It will turn out that only rankings of acceptable partners matter 
for our analysis, so we often write only acceptable partners to denote preferences. 
For example,

means that hospital h is the most preferred, h′ is the second most preferred, and h 
and h′ are the only acceptable hospitals under preferences ≻d of doctor d.

There is a finite set R which we call the set of regions. The set of hospitals H 
is partitioned into hospitals in different regions, that is, Hr ∩ Hr� = � if r ≠ r� and 
H = ∪r∈RHr , where Hr denotes the set of hospitals in region r ∈ R . For each h ∈ H , 
let r(h) denote the region r such that h ∈ Hr . For each region r ∈ R , there is a 
regional cap qr , which is a nonnegative integer.

A matching � is a mapping from D ∪ H , where we write “ �i ” for “ �(i) ” for each 
i ∈ D ∪ H . This mapping satisfies (i) �d ∈ H ∪ {�} for all d ∈ D , (ii) 𝜇h ⊆ D for 
all h ∈ H , and (iii) for any d ∈ D and h ∈ H , �d = h if and only if d ∈ �h . That 
is, a matching simply specifies which doctor is assigned to which hospital (if any). 
A matching is feasible if |�r| ≤ qr for all r ∈ R , where �r = ∪h∈Hr

�h . In other 
words, feasibility requires that the regional cap for every region is satisfied. This 
requirement distinguishes the current environment from the standard model with-
out regional caps: We allow for (though do not require) qr <

∑
h∈Hr

qh , that is, the 
regional cap can be smaller than the sum of hospital capacities in the region.

To accommodate the regional caps, we introduce a concept that generalizes the 
standard stability notion. For that purpose, we first define two basic concepts. A 
matching � is individually rational if (i) for each d ∈ D , �d ⪰d � , and (ii) for each 
h ∈ H , d ⪰h � for all d ∈ �h , and |�h| ≤ qh . That is, no agent is matched with an 
unacceptable partner and each hospital’s capacity is respected.

≻d ∶ h, h�

8 We denote singleton set {x} by x when there is no confusion.
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Given matching � , a pair (d, h) of a doctor and a hospital is called a blocking pair 
if h ≻d 𝜇d and either (i) |𝜇h| < qh and d ≻h ∅ , or (ii) d ≻h d

′ for some d� ∈ �h . In 
words, a blocking pair is a pair of a doctor and a hospital who want to be matched 
with each other (possibly rejecting their partners in the prescribed matching) rather 
than following the proposed matching.

When there are no binding regional caps (in the sense that qr >
∑

h∈Hr
qh for 

every r ∈ R ), a matching is said to be stable if it is individually rational and there 
is no blocking pair. Gale and Shapley (1962) show that there exists a stable match-
ing in that setting. In the presence of binding regional caps, however, there may be 
no such matching that is feasible (in the sense that all regional caps are respected). 
Thus, in some cases every feasible and individually rational matching may admit a 
blocking pair.

A mechanism � is a function that maps preference profiles to matchings. The 
matching under � at preference profile ≻ is denoted 𝜑(≻) and agent i’s match is 
denoted by 𝜑i(≻) for each i ∈ D ∪ H.

A mechanism � is said to be strategy-proof for doctors if there does not exist 
a preference profile ≻ , a doctor d ∈ D , and preferences ≻′

d
 of doctor d such that 

𝜑d(≻
�
d
,≻−d) ≻d 𝜑d(≻) . A mechanism � is said to be group strategy-proof for doc-

tors if there is no preference profile ≻ , a subset of doctors D′ ⊆ D , and a preference 
profile (≻�

d�
)d�∈D� of doctors in D′ such that

That is, no subset of doctors can jointly misreport their preferences to receive a 
strictly preferred outcome for every member of the coalition under the mechanism.

As this paper analyzes the effect of regional caps in matching markets, it is use-
ful to compare it with the standard matching model without regional caps. Gale and 
Shapley (1962) consider a matching model without any binding regional cap, which 
corresponds to a special case of our model in which qr >

∑
h∈Hr

qh for every r ∈ R . 
In that model, they propose the following (doctor-proposing) deferred acceptance 
algorithm:

• Step 1: Each doctor applies to her first choice hospital. Each hospital rejects the 
lowest-ranking doctors in excess of its capacity and all unacceptable doctors 
among those who applied to it, keeping the rest of the doctors temporarily (so 
doctors not rejected at this step may be rejected in later steps).

In general,

• Step t: Each doctor who was rejected in Step (t − 1) applies to her next highest 
choice (if any). Each hospital considers these doctors and doctors who are tem-
porarily held from the previous step together and rejects the lowest-ranking doc-
tors in excess of its capacity and all unacceptable doctors, keeping the rest of the 
doctors temporarily (so doctors not rejected at this step may be rejected in later 
steps).

𝜑d((≻
�
d�
)d�∈D� , (≻i)i∈D∪H⧵D� ) ≻d 𝜑d(≻) for all d ∈ D�.
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The algorithm terminates at a step in which no rejection occurs. The algorithm 
always terminates in a finite number of steps. Gale and Shapley (1962) show that 
the resulting matching is stable in the standard matching model without any binding 
regional cap.

Even though there exists no strategy-proof mechanism that produces a stable 
matching for all possible inputs, the deferred acceptance mechanism is (group) strat-
egy-proof for doctors (Dubins and Freedman 1981; Roth 1982). This result has been 
extended by many subsequent studies, suggesting that the incentive compatibility of 
the mechanism is quite robust and general.9

Kamada and Kojima (2015) present examples that show that a simple adaptation 
of the deferred acceptance mechanism results in inefficiency and instability. Moti-
vated by this problem, the current paper presents a theory of stable matching under 
distributional constraints in the subsequent sections.

2.2  Model with regional preferences

Let regional preferences ⪰r be a weak ordering over nonnegative-valued integer vec-
tors Wr ∶= {w = (wh)h∈Hr

|wh ∈ ℤ+} . That is, ⪰r is a binary relation that is complete 
and transitive (but not necessarily antisymmetric). We write w ≻r w

′ if and only if 
w ⪰r w

� holds but w� ⪰r w does not. Vectors such as w and w′ are interpreted to be 
supplies of acceptable doctors to the hospitals in region r, but they only specify how 
many acceptable doctors apply to each hospital and no information is given as to 
who these doctors are. Given ⪰r , a function C̃hr ∶ Wr → Wr is an associated quasi 
choice rule if C̃hr(w) ∈ arg max⪰r

{w�|w� ≤ w} for any non-negative integer vec-
tor w = (wh)h∈Hr

.10 We require that the quasi choice rule C̃hr be consistent, that is, 
C̃hr(w) ≤ w� ≤ w ⇒ C̃hr(w

�) = C̃hr(w).11 This condition requires that, if C̃hr(w) is 
chosen at w and the supply decreases to w′ ≤ w but C̃hr(w) is still available under 
w′ , then the same choice C̃hr(w) should be made under w′ as well. Note that there 
may be more than one quasi choice rule associated with a given weak ordering ⪰r 
because the set arg max⪰r

{w�|w� ≤ w} may not be a singleton for some ⪰r and w. 

9 Researches generalizing (group) strategy-proofness of the mechanism include Abdulkadiroğlu (2005), 
Hatfield and Milgrom (2005), Martinez et al. (2004), Hatfield and Kojima (2009, 2010), and Hatfield and 
Kominers (2012).
10 For any two vectors w = (wh)h∈Hr

 and w� = (w�
h
)h∈Hr

 , we write w ≤ w′ if and only if wh ≤ w′
h
 for all 

h ∈ Hr . We write w ⪇ w′ if and only if w ≤ w′ and wh < w′
h
 for at least one h ∈ Hr . For any W ′

r
⊆ Wr , 

arg max⪰r
W �

r
 is the set of vectors w ∈ W �

r
 such that w ⪰r w

� for all w� ∈ W �
r
.

11 Analogous conditions are used by Blair (1988), Alkan (2002), and Alkan and Gale (2003) in different 
contexts. Kamada and Kojima (2018) show that if a regional preference satisfies substitutability and its 
associated quasi choice rule is acceptant, as defined later, then the quasi choice rule satisfies consistency. 
Fleiner (2003) and Aygün and Sönmez (2012) prove analogous results although they do not work on sub-
stitutability defined over the space of integer vectors.
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Note also that there always exists a consistent quasi choice rule.12 We assume that 
the regional preferences ⪰r satisfy the following mild regularity conditions:

1. w′ ≻r w if wh > qh ≥ w′
h
 for some h ∈ Hr and w�

h�
= wh� for all h′ ≠ h.

  This property says that the region desires no hospital to be forced to be assigned 
more doctors than its real capacity. This condition implies that, for any w, the 
component [C̃hr(w)]h of C̃hr(w) for h satisfies [C̃hr(w)]h ≤ qh for each h ∈ Hr , that 
is, the capacity constraint for each hospital is respected by the (quasi) choice of 
the region.

2. w′ ≻r w if 
∑

h∈Hr
wh > qr ≥

∑
h∈Hr

w�
h
.

  This property simply says that region r prefers the total number of doc-
tors in the region to be at most its regional cap. This condition implies that ∑

h∈Hr
(C̃hr(w))h ≤ qr for any w, that is, the regional cap is respected by the (quasi) 

choice of the region.
3. If w� ⪇ w ≤ qHr

∶= (qh)h∈Hr
 and 

∑
h∈Hr

wh ≤ qr , then w ≻r w
′.

  This condition formalizes the idea that region r prefers to fill as many posi-
tions of hospitals in the region as possible so long as doing so does not lead to a 
violation of the hospitals’ real capacities or the regional cap. This requirement 
implies that any associated quasi choice rule is acceptant, that is, for each w, if 
there exists h such that [C̃hr(w)]h < min{qh,wh} , then 

∑
h�∈Hr

[C̃hr(w)]h� = qr.13 
This captures the idea that the social planner should not waste caps allocated to 
the region: If some doctor is rejected by a hospital even though she is acceptable 
to the hospital and the hospital’s capacity is not binding, then the regional cap 
should be binding.

Definition 1 The regional preferences ⪰r are substitutable if there exists an associ-
ated quasi choice rule C̃hr that satisfies w ≤ w�

⇒ C̃hr(w) ≥ C̃hr(w
�) ∧ w.14

Notice that the condition in this definition is equivalent to

This condition says that, when the supply of doctors is increased, the number of 
accepted doctors at a hospital can increase only when the hospital has accepted all 
acceptable doctors under the original supply profile.15 Formally, condition (1) is 
equivalent to

(1)w ≤ w�
⇒ [C̃hr(w)]h ≥ min{[C̃hr(w

�)]h,wh} for every h ∈ Hr.

(2)w ≤ w� and [C̃hr(w)]h < [C̃hr(w
�)]h ⇒ [C̃hr(w)]h = wh.

12 See Kamada and Kojima (2018) for the detail.
13 A similar condition is used by Alkan (2001) and Kojima and Manea (2010) in the context of choice 
functions over matchings.
14 For any two vectors w,w� ∈ Wr , w ∧ w� is defined as a vector (min{wh,w

�
h
})h∈Hr

∈ Wr.
15 This definition of substitutability is analogous to persistence by Alkan and Gale (2003).
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To see that condition (1) implies condition (2), suppose that w ≤ w′ and 
[C̃hr(w)]h < [C̃hr(w

�)]h . These assumptions and condition (1) imply 
[C̃hr(w)]h ≥ wh. Since [C̃hr(w)]h ≤ wh holds by the definition of C̃hr , this implies 
[C̃hr(w)]h = wh . To see that condition (2) implies condition (1), suppose that 
w ≤ w′ . If [C̃hr(w)]h ≥ [C̃hr(w

�)]h , the conclusion of (1) is trivially satisfied. If 
[C̃hr(w)]h < [C̃hr(w

�)]h , then condition (2) implies [C̃hr(w)]h = wh , thus the conclu-
sion of (1) is satisfied.

Given a profile of regional preferences (⪰r)r∈R , stability is defined as follows.

Definition 2 A matching � is stable if it is feasible, individually rational, and if 
(d, h) is a blocking pair then (i) |�r(h)| = qr(h) , (ii) d′ ≻h d for all doctors d� ∈ �h , and

(iii) either �d ∉ Hr(h) or w ⪰r(h) w
�,

where wh� = |�h� | for all h� ∈ Hr(h) and w�
h
= wh + 1 , w�

�d
= w�d

− 1 and w�
h�
= wh� 

for all other h� ∈ Hr(h).

As stated in the definition, only certain blocking pairs are tolerated under stabil-
ity. Any blocking pair that may remain is in danger of violating the regional cap 
since condition (i) implies that the cap for the blocking hospital’s region is cur-
rently full, and condition (ii) implies that the only blocking involves filling a vacant 
position.

There are two possible cases under (iii). The first case implies that the blocking 
doctor is not currently assigned in the hospital’s region, so the blocking pair violates 
the regional cap. The second part of condition (iii) considers blocking pairs within 
a region (note that �d ∈ Hr(h) holds in the remaining case). It states that if the block-
ing pair does not improve the doctor distribution in the region with respect to its 
regional preferences, then it is not regarded as a legitimate block.16

The way that regional preferences are determined could depend on the policy 
goal of the region or the social planner. One possibility for regional preferences, 
studied in detail by Kamada and Kojima (2015), is to prefer distributions of doc-
tors that have “fewer gaps” from the target capacities; see Sect. 4.1 for detail. Other 
regional preferences are analyzed in Sect. 4.2.

Clearly, our stability concept reduces to the standard stability concept of Gale and 
Shapley (1962) if there are no binding regional caps. Kamada and Kojima (2017) 
show that a stable matching is constrained efficient, i.e., there is no feasible match-
ing �′ such that ��

i
⪰i �i for all i ∈ D ∪ H and 𝜇′

i
≻i 𝜇i for some i ∈ D ∪ H.

3  Preliminaries

This section has two goals. The first goal is to demonstrate that a stable matching 
exists under our general definition of stability under distributional constraints. The 
second goal is to show that a stable matching can be found by a mechanism that is 

16 See Kamada and Kojima (2015, 2018) for a fuller discussion of the interpretation of our stability con-
cept.
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strategy-proof for doctors. To achieve these goals, we begin by introducing the fol-
lowing (generalized) flexible deferred acceptance algorithm:

The (Generalized) Flexible Deferred Acceptance Algorithm For each region r, 
fix an associated quasi choice rule C̃hr which satisfies condition (1). Note that the 
assumption that ⪰r is substitutable assures the existence of such a quasi choice rule.

1. Begin with an empty matching, that is, a matching � such that �d = � for all d ∈ D.
2. Choose a doctor d arbitrarily who is currently not tentatively matched to any 

hospital and who has not applied to all acceptable hospitals yet. If such a doctor 
does not exist, then terminate the algorithm.

3. Let d apply to the most preferred hospital h̄ at ≻d among the hospitals that have 
not rejected d so far. If d is unacceptable to h̄ , then reject this doctor and go 
back to Step 2. Otherwise, let r be the region such that h̄ ∈ Hr and define vector 
w = (wh)h∈Hr

 by (a) wh̄ is the number of doctors currently held at h̄ plus one, and 
(b) wh is the number of doctors currently held at h if h ≠ h̄.

4. Each hospital h ∈ Hr considers the new applicant d (if h = h̄ ) and doctors who 
are temporarily held from the previous step together. It holds its (C̃hr(w))h most 
preferred applicants among them temporarily and rejects the rest (so doctors held 
at this step may be rejected in later steps). Go back to Step 2.

We define the (generalized) flexible deferred acceptance mechanism to be a mech-
anism that produces, for each input, the matching given at the termination of the 
above algorithm.

This algorithm is a generalization of the deferred acceptance algorithm of Gale 
and Shapley (1962) to the model with regional caps. The main differences are found 
in Steps  3 and  4. Unlike the deferred acceptance algorithm, this algorithm limits 
the number of doctors (tentatively) matched in each region r at qr . This results in 
rationing of doctors across hospitals in the region, and the rationing rule is governed 
by regional preferences ⪰r . Clearly, this mechanism coincides with the standard 
deferred acceptance algorithm if all the regional caps are large enough and hence 
non-binding.

We take the following result as the starting point of our analysis.

Proposition 0 (A Corollary of Theorem 1 of Kamada and Kojima (2018)) Suppose 
that ⪰r is substitutable for every r ∈ R . Then, the flexible deferred acceptance algo-
rithm stops in finite steps. The mechanism produces a stable matching for any input 
and is group strategy-proof for doctors.

This proposition offers a sense in which it is possible to design a desirable mech-
anism even under distributional constraints and various policy goals. As will be seen 
in subsequent sections, the class of substitutable regional preferences subsumes the 
“Rawlsian” regional preferences motivated by a residency matching application 
(see Sect. 4.1) as well as others (see Sect. 4.2). For each of these cases, the flexible 
deferred acceptance mechanism finds a stable matching that addresses a given pol-
icy goal, while inducing truthful reporting by doctors. Moreover, because stability 
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implies efficiency (Kamada and Kojima 2017), the algorithm produces an efficient 
matching.

A formal proof for a more general case can be found in Kamada and Kojima 
(2018), while a proof that is adapted to our present setting is in Appendix 1.17 We 
illustrate a sketch of the proof here.

Our proof strategy is to connect our matching model with constraints to the 
“matching with contracts” model (Hatfield and Milgrom 2005).18 More specifi-
cally, given the original matching model under constraints, we define an “associated 
model,” a hypothetical matching model between doctors and regions instead of doc-
tors and hospitals; In the associated model, we regard each region as a hypothetical 
consortium of hospitals that acts as one agent. By imagining that a region (hospital 
consortium) makes a coordinated employment decision, we can account for the fact 
that acceptance of a doctor by a hospital may depend on doctor applications to other 
hospitals in the same region, an inevitable feature in markets under distributional 
constraints. This association necessitates, however, that we distinguish a doctor’s 
placements in different hospitals in the given region. We account for this complica-
tion by defining a region’s choice function over contracts rather than doctors, where 
a contract specifies a doctor–hospital pair to be matched. We construct such a choice 
function using two pieces of information: the preferences of all the hospitals in the 
given region, and regional preferences. The idea is that each hospital’s preferences 
are used for choosing doctors given the number of allocated slots, while regional 
preferences are used to regulate slots allocated to different hospitals in the region. In 
other words, regional preferences trade off multiple hospitals’ desires to accept more 
doctors, when accepting more is in conflict with the regional cap. With the help of 
this association, we demonstrate that any stable allocation in the associate model 
with contracts induces a stable matching in the original model with distributional 
constraints (Proposition 9).

Once this association is established, with some work we show that the key condi-
tions in the associated model—the substitutes condition and the law of aggregate 
demand—are satisfied (Proposition 8). This enables us to invoke existing results for 
matching with contracts, namely that an existing algorithm called the “cumulative 
offer process” finds a stable allocation, and it is (group) strategy-proof for doctors 
in the associated model (Hatfield and Milgrom 2005; Hatfield and Kojima 2009; 
Hatfield and Kominers 2012). Then, we observe that the outcome of the cumula-
tive offer process corresponds to the matching produced by the flexible deferred 
acceptance algorithm in the original model with constraints (Remark 1). This corre-
spondence establishes that the flexible deferred acceptance mechanism finds a stable 
matching in the original problem and this algorithm is group strategy-proof for doc-
tors, proving Proposition 0.

17 The notation and concepts in that section are used for proofs for other results.
18 Fleiner (2003) considers a framework that generalizes various mathematical results. A special case of 
his model corresponds to the model of Hatfield and Milgrom (2005), although not all results of the latter 
(e.g., those concerning incentives) are obtained in the former. See also Crawford and Knoer (1981) who 
observe that wages can represent general job descriptions in their model, given their assumption that firm 
preferences satisfy separability.
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The full proof, presented in Appendix 1, formalizes this idea. The proof is some-
what involved because one needs to exercise some care when establishing corre-
spondences between the two models and confirming that a property in one model 
induces the corresponding property in the other.

4  Results

4.1  Stability in Kamada and Kojima (2015)

In this section, we establish the main result of Kamada and Kojima (2015) by 
showing that their stability concept can be rewritten using a substitutable regional 
preferences.

In Kamada and Kojima (2015), there is an exogenously given (government-
imposed) nonnegative integer q̄h ≤ qh called target capacity, for each hospital h such 
that 

∑
h∈Hr

q̄h ≤ qr for each region r ∈ R . Given a profile of target capacities, they 
define a stability concept. We refer to this concept as T-stability (where “T” signifies 
target capacities) to avoid confusion with stability defined earlier.

Definition 3 A matching � is T-stable if it is feasible, individually rational, and if 
(d, h) is a blocking pair then (i) |�r(h)| = qr(h) , (ii) d′ ≻h d for all doctors d� ∈ �h , and

(iii) either �d ∉ Hr(h) or |𝜇�
h
| − q̄h > |𝜇�

𝜇d
| − q̄𝜇d

,
where �′ is the matching such that ��

d
= h and ��

d�
= �d� for all d′ ≠ d.

Kamada and Kojima (2015) define the flexible deferred acceptance algorithm in 
their setting as follows. For each r ∈ R , specify an order of hospitals in region r: 
Denote Hr = {h1, h2,… , h|Hr|} and order hi earlier than hj if i < j . Given this order, 
consider the following algorithm.

1. Begin with an empty matching, that is, a matching � such that �d = � for all d ∈ D.
2. Choose a doctor d who is currently not tentatively matched to any hospital and 

who has not applied to all acceptable hospitals yet. If such a doctor does not exist, 
then terminate the algorithm.

3. Let d apply to the most preferred hospital h̄ at ≻d among the hospitals that have 
not rejected d so far. Let r be the region such that h̄ ∈ Hr.

4. (a) For each h ∈ Hr , let D′
h
 be the entire set of doctors who have applied to but 

have not been rejected by h so far and are acceptable to h. For each hospital 
h ∈ Hr , choose the q̄h best doctors according to ≻h from D′

h
 if they exist, and oth-

erwise choose all doctors in D′
h
 . Formally, for each h ∈ Hr choose D′′

h
 such that 

D′′
h
⊂ D′

h
 , |D��

h
| = min{q̄h, |D�

h
|} , and d ≻h d

′ for any d ∈ D��
h
 and d� ∈ D�

h
⧵ D��

h
 . (b) 

Start with a tentative match D′′
h
 for each hospital h ∈ Hr . Hospitals take turns to 

choose (one doctor at a time) the best remaining doctor in their current applicant 
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pool. Repeat the procedure (starting with h1 , proceeding to h2, h3,… and going 
back to h1 after the last hospital) until the regional quota qr is filled or the capacity 
of the hospital is filled or no doctor remains to be matched. All other applicants 
are rejected.19

Kamada and Kojima (2015) define the flexible deferred acceptance mechanism to 
be a mechanism that produces, for each input, the matching at the termination of the 
above algorithm.20 The following proposition is stated as the main result of Kamada 
and Kojima (2015).

Proposition 1 (Theorem 2 of Kamada and Kojima (2015)) In the setting of Kamada 
and Kojima (2015), the flexible deferred acceptance algorithm stops in finite steps. 
The mechanism produces a T-stable matching for any input and is group strategy-
proof for doctors.

In the remainder of this section, we establish this result as a corollary of the main 
result of the present paper, Proposition 0.

To start the analysis, fix a region r. Given the target capacity pro-
file (q̄h)h∈Hr

 and the vector w ∈ Wr , define the ordered excess weight vector 
�(w) = (�1(w),… , �|Hr|(w)) by setting �i(w) to be the i’th lowest value (allowing rep-
etition) of {wh − q̄h|h ∈ Hr} (we suppress dependence of � on target capacities). For 
example, if w = (wh1

,wh2
,wh3

,wh4
) = (2, 4, 7, 2) and (q̄h1 , q̄h2 , q̄h3 , q̄h4 ) = (3, 2, 3, 0) , 

then �1(w) = −1, �2(w) = �3(w) = 2, �4(w) = 4.
Consider the regional preferences ⪰r that compare the excess weights lexico-

graphically. More specifically, let ⪰r be such that w ≻r w
′ if and only if there exists 

an index i ∈ {1, 2,… , |Hr|} such that �j(w) = �j(w
�) for all j < i and 𝜂i(w) > 𝜂i(w

�) . 
The associated weak regional preferences ⪰r are defined by w ⪰r w

� if and only if 
w ≻r w

′ or �(w) = �(w�) . We call such regional preferences Rawlsian.

Proposition 2 T-stability is a special case of stability such that the regional prefer-
ences of each region are Rawlsian.

Proof See Appendix 2.1.   ◻

Consider the (generalized) flexible deferred acceptance algorithm in a previous 
subsection. With the following quasi choice rule, this algorithm is equivalent to the 

19 Formally, let �i = 0 for all i ∈ {1, 2,… , |Hr|} . Let i = 1 . (i) If either the number of doctors already 
chosen by the region r as a whole equals qr , or �i = 1 , then reject the doctors who were not chosen 
throughout this step and go back to Step  2. (ii) Otherwise, let hi choose the most preferred (accept-
able) doctor in D′

hi
 at ≻hi

 among the doctors that have not been chosen by hi so far, if such a doctor 
exists and the number of doctors chosen by hi so far is strictly smaller than qhi . (iii) If no new doctor 
was chosen at Step 4(b)ii, then set �i = 1 . If a new doctor was chosen at Step 4(b)ii, then set �j = 0 for all 
j ∈ {1, 2,… , |Hr|} . If i < |Hr| then increment i by one and if i = |Hr| then set i to be 1 and go back to 
Step 4(b)i.
20 Propositions 0, 2, and 3 show that the algorithm stops in a finite number of steps.
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flexible deferred acceptance algorithm in Kamada and Kojima (2015): For each 
w� ∈ Wr,

where w0 = (min{w�
h
, q̄h})h∈Hr

 and wk ∈ Wr (k = 1, 2,…) is defined by

with “ � ” being an indicator function. Note that there is a unique maximum in (3) 
because wk� ≤ wk�+1 for every k� = 1, 2,… by the definition of wk.21

Proposition 3 Rawlsian preferences are substitutable with the associated quasi 
choice rule (3).

Proof See Appendix 2.1.   ◻

Propositions 0, 2, and 3 imply Theorem 2 of Kamada and Kojima (2015).
In Appendix 4, we discuss how to allocate target capacities among hospitals in a 

region, within the Rawlsian framework. There we observe that the allocation prob-
lem is similar to the celebrated “bankruptcy problem,” and consider several rules 
studied in that literature.

4.2  Alternative criteria

Although Kamada and Kojima (2015) focus on a particular stability concept (T-sta-
bility) and corresponding regional preferences, called Rawlsian preferences, it is 
quite plausible that some societies may prefer to impose different criteria from the 
Rawlsian preferences. This section proposes other criteria that seem to be appeal-
ing. They are examples of regional preferences that satisfy substitutability defined in 
Definition 1. Therefore, the corresponding flexible deferred acceptance mechanisms 
find a stable matching with respect to those regional preferences.

In the following, we assume that 0 ≻r w for any weight vector w such that ∑
h∈Hr

wh > qr or wh > qh for some h ∈ Hr . Thus in (1)–(4) below, we assume that 
any weight vector w satisfies 

∑
h∈Hr

wh ≤ qr and wh ≤ qh for all h ∈ Hr.

1. Equal gains Let the region prefer a distribution that equalizes the weights across 
hospitals in the region as much as possible. Formally, such a preference, which 
we call the equal gains preferences, can be expressed as the Rawlsian preferences 
for the special case in which the target capacity for every hospital is set at zero. 

(3)
̃Chr(w

�) = max
w=wk for some k∑

h∈Hr
wh≤qr

w,

wk
hj
= min{w�

hj
, qhj ,w

k−1
hj

+ �j≡k (mod |Hr|)} for each j = 1, 2,… , |Hr|,

21 See footnote 10 for the definition of the order on Wr.
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Since Proposition 3 shows that the Rawlsian preferences are substitutable for any 
target capacity profile, the equal gains preferences satisfy substitutability.

2. Equal Losses Let the region prefer to equalize the “losses,” that is, the differ-
ences between the (physical) capacities and the weights across hospitals in the 
region. More generally, one could consider the preferences for equal losses 
above target capacities, that is, the regional preferences first prefer to fill as 
many positions as possible to meet target capacities and then (lexicographically 
less importantly) prefer to equalize the losses. To formally define such prefer-
ences ≻r , recall that �(w) denotes the ordered excess weight vector as defined 
in Sect. 4.1, and define �̂�(w) as a |Hr|-dimensional vector whose i’th compo-
nent �̂�i(w) is the i’th highest value (allowing repetition) of {qh − wh|h ∈ Hr} . We 
let w ≻r w

′ if and only if (a) there exists an index i ∈ {1, 2,… , |Hr|} such that 
min{�j(w), 0} = min{�j(w

�), 0} for all j < i and min{𝜂i(w), 0} > min{𝜂i(w
�), 0} , 

or (b) min{�i(w), 0} = min{�i(w
�), 0} for every index i ∈ {1, 2,… , |Hr|} , and 

there exists an index i ∈ {1, 2,… , |Hr|} such that �̂�j(w),= �̂�j(w
�) for all j < i and 

�̂�i(w) < �̂�i(w
�).

3. Proportional The proportional regional preferences prefer to allocate positions 
to hospitals in a proportional manner subject to integer constraints. More pre-
cisely, define �̃�(w) as a |Hr|-dimensional vector whose i’th component �̃�i(w) is 
the i’th lowest value (allowing repetition) of {wh∕qh|h ∈ Hr} . We let w ≻r w

′ if 
there exists an index i ∈ {1, 2,… , |Hr|} such that �̃�j(w),= �̃�j(w

�) for all j < i and 
�̃�i(w) > �̃�i(w

�) . As above, one could consider preferences for proportional losses 
as well. Also, these preferences can be generalized so that these concerns enter 
only above target capacities (this generalization is somewhat tedious but straight-
forward, and can be done as in Item 2). Finally, when constructing �̃�i , we can use 
a denominator different from qh.22

4. Hospital-lexicographic Let there be a pre-specified order over hospitals, and the 
region lexicographically prefers filling a slot in a higher-ranked hospital to filling 
that of a lower-ranked hospital. For instance, the region may desire to fill positions 
of hospitals that are underserved within the region (say, a prefecture may desire 
to fill positions of a hospital in a remote island within the prefecture before other 
hospitals). Formally, hospital-lexicographic regional preferences ≻r are defined 
as follows. Fix an order over hospitals in r, denoted by h1, h2,… , and h|Hr| . Let 
w ≻r w

′ if and only if there exists an index i ∈ {1, 2,… , |Hr|} such that whj
= w�

hj
 

for all j < i and whi
> w′

hi
 . We note that one can also consider hospital-lexico-

graphic preferences above targets using the criterion for hospital-lexicographic 
preferences for weights above targets.

All the above regional preferences have associated quasi choice rules that satisfy the 
property that we call “order-respecting.” To define this property, let there be a finite 
sequence of hospitals in region r such that each hospital h appears, potentially 

22 Moreover, the generalizations mentioned above can be combined. For example, the region may desire 
to fill capacities above targets proportionally to qh − q̄h.
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repeatedly, qh times in the sequence, and the total size of the sequence is 
∑

h∈Hr
qh . 

Consider a quasi choice rule that increases the weights of hospitals one by one fol-
lowing the specified order.23 Formally, fix a vector (h1, h2,… , h∑

h∈Hr
qh
) ∈ (Hr)

∑
h∈Hr

qh 

such that #{i ∈ {1, 2,… ,
∑

h∈Hr
qh}�hi = h} = qh for each h ∈ Hr , and define C̃hr(w) 

through the following algorithm:

1. Let w0 be the |Hr|-dimensional zero vector, indexed by hospitals in Hr.
2. For any t ≥ 0 , if 

∑
h∈Hr

wt
h
= qr or wt

h
= min{qh,wh} for all h ∈ Hr , then stop the 

algorithm and define C̃hr(w) = wt  . If not, define wt+1 by: (a) If 
wt
ht+1

< min{qht+1 ,wht+1
} , then let wt+1

ht+1
= wt

ht+1
+ 1 ; otherwise, let wt+1

ht+1
= wt

ht+1
 . (b) 

For every h ≠ ht+1 , let wt+1
h

= wt
h
.

It is easy to see that any order-respecting quasi choice rule satisfies the condi-
tion in the definition of substitutability. Also it is easy to see that, for each of the 
above regional preferences (1)–(4), there exists an associated quasi choice rule that 
is order-respecting. By these observations, all the above regional preferences are 
substitutable.

4.3  Comparative statics

As illustrated in Sect. 3, our analytical approach is to construct an associated match-
ing model with contracts and to utilize results from that model to obtain correspond-
ing results in the original market. This connection enables us to exploit structural 
properties of stable allocations in the matching model with contracts. In particular, 
we obtain many comparative statics results as corollaries of a new general result in 
the matching with contract model (Lemma 1 in Appendix 2.2).

We begin by stating various comparative statics results presented in Kamada and 
Kojima (2015). They formalize the current practice in Japan, the Japan Residency 
Matching Program (JRMP) mechanism. The JRMP mechanism is a rule that pro-
duces the matching resulting from the deferred acceptance algorithm except that, for 
each hospital h, it uses q̄h ≤ qh instead of qh as the hospital’s capacity. In words, the 
JRMP mechanism pretends that the target capacities are actual physical capacities.

The first result establishes comparisons across the flexible deferred acceptance, 
JRMP, and the (unconstrained) deferred acceptance algorithms:

Proposition 4 (Theorem 3 of Kamada and Kojima (2015)) Consider the model of 
Kamada and Kojima (2015). For any preference profile,

23 Order-respecting quasi choice rules are similar to choice functions based on the precedence order of 
Kominers and Sönmez (2016), although we find no logical relationship between these two concepts.
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1. Each doctor d ∈ D weakly prefers a matching produced by the deferred accept-
ance mechanism to the one produced by the flexible deferred acceptance mecha-
nism to the one produced by the JRMP mechanism.

2. If a doctor is unmatched in the deferred acceptance mechanism, she is unmatched 
in the flexible deferred acceptance mechanism. If a doctor is unmatched in the 
flexible deferred acceptance mechanism, she is unmatched in the JRMP mecha-
nism.

The next result pertains to the effect of changes in regional caps.

Proposition 5 (Proposition 3 of Kamada and Kojima (2015)) Consider the model of 
Kamada and Kojima (2015). Fix a picking order in the flexible deferred acceptance 
mechanism. Let (qr)r∈R and (q�

r
)r∈R be regional caps such that q′

r
≤ qr for each r ∈ R . 

Then, the following statements hold.

1. Each doctor d ∈ D weakly prefers a matching produced by the flexible deferred 
acceptance mechanism under regional caps (qr)r∈R to the one under (q�

r
)r∈R.

2. For each region r such that qr = q�
r
 , the number of doctors matched in r at a 

matching produced by the flexible deferred acceptance mechanism under regional 
caps (q�

r
)r∈R is weakly larger than at the matching under (qr)r∈R.

Another comparative statics result is about the changes in the imposed constraints 
under the JRMP mechanism.

Proposition 6 (Proposition 4 of Kamada and Kojima (2015)) Consider the model of 
Kamada and Kojima (2015). Let (q̄h)h∈H and (q̄�

h
)h∈H be target capacities such that 

q̄′
h
≤ q̄h for each h ∈ H . Then, the following statements hold.24

1. Each doctor d ∈ D weakly prefers a matching produced by the JRMP mechanism 
under target capacities (q̄h)h∈H to the one under (q̄�

h
)h∈H.

2. Each hospital h ∈ H such that q̄h = q̄�
h
 weakly prefers a matching produced by 

the JRMP mechanism under target capacities (q̄�
h
)h∈H to the one under (q̄h)h∈H . 

Moreover, the number of doctors matched to any such h in the former matching 
is weakly larger than that in the latter.

The following result, also from Kamada and Kojima (2015), shows that, when-
ever a hospital or a region is underserved under the flexible deferred acceptance 
mechanism, the (unconstrained) deferred acceptance mechanism cannot improve the 
match at such a hospital or a region.

24 Since the JRMP mechanism is equivalent to the deferred acceptance mechanism with respect to the 
target capacities, this result can also be obtained by appealing to the “Capacity Lemma” by Konishi and 
Ünver (2006), although we obtain these results as corollaries of a more general result, Lemma 1.
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Proposition 7 (Proposition 2 of Kamada and Kojima (2015)) Consider the model of 
Kamada and Kojima (2015).

1. If the number of doctors matched with h ∈ H in the flexible deferred acceptance 
mechanism is strictly less than its target capacity, then the set of doctors matched 
with h under the (unconstrained) deferred acceptance mechanism is a subset of 
the one under the flexible deferred acceptance mechanism.

2. If the number of doctors matched in r ∈ R in the flexible deferred acceptance 
mechanism is strictly less than its regional cap, then each hospital h in r weakly 
prefers a matching produced by the flexible deferred acceptance mechanism to 
the one under the (unconstrained) deferred acceptance mechanism. Moreover, 
the number of doctors matched to any such h in the former matching is weakly 
larger than that in the latter.

We obtain all these results as corollaries of a single general comparative statics 
result in the matching with contracts model. More specifically, we establish that if 
the choice function of a region becomes larger in the set inclusion sense, then all 
doctors are made weakly better off and all other regions are made weakly worse 
off in the doctor-optimal stable allocation (Lemma 1 in Appendix 2.2). Also, Hat-
field and Milgrom (2005) show that the outcome of a cumulative offer process is a 
doctor-optimal allocation. Given these results, we can prove all the above results by 
demonstrating that all the comparisons above can be interpreted as comparisons of 
outcomes of cumulative offer processes under different choice functions of regions. 
The formal statement of the Lemma and proofs of all the results in this section can 
be found in Appendix 2.2.

5  Conclusion

This paper presented a model of matching under distributional constraints. Building 
upon an approach of Kamada and Kojima (2015), we defined a stability concept that 
takes distributional constraints into account. We presented a general model to allow 
for a variety of policymaker preferences over doctor distributions. We showed that 
the generalization subsumes the model of Kamada and Kojima (2015) as a special 
case, while admitting a number of other practically relevant cases. Using our general 
model, we proved policy-relevant comparative statics results.

We note that our analysis builds upon a new connection between matching with 
constraints and matching with contracts. After the first draft of this paper was writ-
ten, a similar approach was adopted by other studies such as Goto et al. (2014), Goto 
et al. (2016), and Kojima et al. (2018).25

25 See Sönmez and Switzer (2013) for a more direct application of matching with contracts model, 
where a cadet can be matched with a branch under one of the two possible contracts. See also Sönmez 
(2013) and Kominers and Sönmez (2016).
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In addition to its intrinsic theoretical interest, our major motivation for a general 
theory was the desire to accommodate various constraints and policy preferences 
in practice, thus enabling applications to diverse types of real problems. As already 
mentioned, geographic and other distributional constraints are prevalent in practice; 
Concrete examples include British and Japanese medical matches, Chinese gradu-
ate admission, European college admissions, and Scottish teacher allocation, just 
to name a few. Although all these markets are subject to distributional constraints, 
because of differences in details, the same mechanism may be suitable in one mar-
ket while unfit in another. This is a major reason that a general theory is needed. 
Moreover, we are quite confident that there are many other markets with specific 
constraints which have yet to be recognized or addressed in the literature. We hope 
that this paper provides a useful building block for market design in those undis-
covered markets and stimulates further research in matching under constraints and, 
more generally, practical market design.
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Appendix 1: Proof of Proposition 0

As stated earlier, Proposition  0 is a special case of Theorem  1 of Kamada and 
Kojima (2018). We provide the proof of Proposition 0 for the reader’s convenience, 
while the language in the proof closely follows that of Kamada and Kojima (2018).

Let there be two types of agents, doctors in D and regions in R. Note that we 
regard a region, instead of a hospital, as an agent in this model. There is a set of 
contracts X = D × H.

We assume that, for each doctor d, any set of contracts with cardinality two 
or more is unacceptable, that is, a doctor wants to sign at most one contract. For 
each doctor d, her preferences ≻d over ({d} × H) ∪ {�} are given as follows.26 We 

26 We abuse notation and use the same notation ≻d for preferences of doctor d both in the original model 
and in the associated model with contracts.
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assume (d, h) ≻d (d, h
�) in this model if and only if h ≻d h

′ in the original model, and 
(d, h) ≻d � in this model if and only if h ≻d ∅ in the original model.

For each region r ∈ R , we assume that the region has preferences ⪰r and its 
associated choice rule Chr(⋅) over all subsets of D × Hr . For any X� ⊂ D × Hr , let 
w(X�) ∶= (wh(X

�))h∈Hr
 be the vector such that wh(X

�) = |{(d, h) ∈ X�|d ≻h �}| . For 
each X′ , the chosen set of contracts Chr(X�) is defined by

That is, each hospital h ∈ Hr chooses its (C̃hr(w(X�)))h most preferred contracts 
available in X′.

We extend the domain of the choice rule to the collection of all subsets of X by 
setting Chr(X�) = Chr({(d, h) ∈ X�|h ∈ Hr}) for any X′ ⊆ X.

Definition 4 (Hatfield and Milgrom (2005)) Choice rule Chr(⋅) satisfies the sub-
stitutes condition if there does not exist contracts x, x� ∈ X and a set of contracts 
X′ ⊆ X such that x� ∉ Chr(X

� ∪ {x�}) and x� ∈ Chr(X
� ∪ {x, x�}).

In other words, contracts are substitutes if adding a contract to the choice set 
never induces a region to choose a contract it previously rejected. Hatfield and Mil-
grom (2005) show that there exists a stable allocation (defined in Definition 6) when 
contracts are substitutes for every region.

Definition 5 (Hatfield and Milgrom (2005)) Choice rule Chr(⋅) satisfies the law of 
aggregate demand if for all X′ ⊆ X′′ ⊆ X , |Chr(X�)| ≤ |Chr(X��)|.27

Proposition 8 Suppose that ⪰r is substitutable. Then, choice rule Chr(⋅) defined 
above satisfies the substitutes condition and the law of aggregate demand.28

Proof Fix a region r ∈ R . Let X′ ⊆ X be a subset of contracts and x = (d, h) ∈ X ⧵ X� 
where h ∈ Hr . Let w = w(X�) and w� = w(X� ∪ x) . To show that Chr satisfies the sub-
stitutes condition, we consider a number of cases as follows.

1. Suppose that ∅ ≻h d . Then, w� = w and, for each h� ∈ Hr , the set of acceptable 
doctors available at X� ∪ x is identical to the one at X′ . Therefore, by inspection 
of the definition of Chr , we have Chr(X� ∪ x) = Chr(X

�) , satisfying the conclusion 
of the substitutes condition in this case.

(4)

Chr(X
�) =

⋃

h∈Hr

{
(d, h) ∈ X� |||

||{d� ∈ D|(d�, h) ∈ X�, d� ⪰h d}
|| ≤ (C̃hr(w(X

�)))h

}
.

27 Analogous conditions called cardinal monotonicity and size monotonicity are introduced by Alkan 
(2002) and Alkan and Gale (2003) for matching models without contracts.
28 Note that choice rule Chr(⋅) allows for the possibility that multiple contracts are signed between the 
same pair of a region and a doctor. Without this possibility, the choice rule may violate the substitutes 
condition (Sönmez and Switzer 2013; Sönmez 2013). Hatfield and Kominers (2013) explore this issue 
further.
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2. Suppose that d ≻h ∅ . (a) Consider a hospital h� ∈ Hr ⧵ h . Note that we 
have w�

h�
= wh� . This and the inequality [C̃hr(w�)]h� ≤ w�

h�
 (which always 

holds by the definition of C̃hr ) imply that [C̃hr(w�)]h� ≤ wh� . Thus, we obtain 
min{[C̃hr(w

�)]h� ,wh� } = [C̃hr(w
�)]h� . Since w′ ≥ w and condition (1) holds, this 

implies that 

 Also observe that the set {d� ∈ D|(d�, h�) ∈ X�} is identical to 
{d� ∈ D|(d�, h�) ∈ X� ∪ x} , that is, the sets of doctors that are available to hospital 
h′ are identical under X′ and X� ∪ x . This fact, inequality (5), and the definition 
of Chr imply that if x� = (d�, h�) ∉ Chr(X

�) , then x� ∉ Chr(X
� ∪ x) , obtaining the 

conclusion for the substitute condition in this case. (b) Consider hospital h. (i) 
Suppose that [C̃hr(w)]h ≥ [C̃hr(w

�)]h . In this case, we follow an argument similar 
to (but slightly different from) Case (2a): Note that the set {d� ∈ D|(d�, h) ∈ X�} 
is a subset of {d� ∈ D|(d�, h) ∈ X� ∪ x} , that is, the set of doctors that are 
available to hospital h under X′ is smaller than under X� ∪ x . These proper-
ties and the definition of Chr imply that if x� = (d�, h) ∈ X� ⧵ Chr(X

�) , then 
x� ∈ X� ⧵ Chr(X

� ∪ x) , obtaining the conclusion for the substitute condition in 
this case. (ii) Suppose that [C̃hr(w)]h < [C̃hr(w

�)]h . This assumption and (2) 
imply [C̃hr(w)]h = wh . Thus, by the definition of Chr , any contract (d�, h) ∈ X� 
such that d′ ≻h ∅ is in Chr(X�) . Equivalently, if x� = (d�, h) ∈ X� ⧵ Chr(X

�) , then 
∅ ≻h d

′ . Then, again by the definition of Chr , it follows that x� ∉ Chr(X
� ∪ x) for 

any contract x� = (d�, h) ∈ X� ⧵ Chr(X
�) . Thus, we obtain the conclusion of the 

substitute condition in this case.
To show that Chr satisfies the law of aggregate demand, simply note that C̃hr is 
acceptant by assumption. This leads to the desired conclusion.   ◻

A subset X′ of X = D × H is said to be individually rational if (1) for any 
d ∈ D , |{(d, h) ∈ X�|h ∈ H}| ≤ 1 , and if (d, h) ∈ X� then h ≻d ∅ , and (2) for any 
r ∈ R , Chr(X�) = X� ∩ (D × Hr).

Definition 6 A set of contracts X′ ⊆ X is a stable allocation if

1. it is individually rational, and
2. there exists no region r ∈ R , hospital h ∈ Hr , and a doctor d ∈ D such that 

(d, h) ≻d x and (d, h) ∈ Chr(X
� ∪ {(d, h)}) , where x is the contract that d receives 

at X′ if any and ∅ otherwise.

When condition (2) is violated by some (d, h), we say that (d, h) is a block of 
X′ . A doctor-optimal stable allocation in the matching model with contracts is a 
stable allocation that every doctor weakly prefers to every other stable allocation 
(Hatfield and Milgrom 2005).

Given any individually rational set of contracts X′ , define a correspond-
ing matching �(X�) in the original model by setting �d(X

�) = h if and only if 
(d, h) ∈ X� and �d(X

�) = � if and only if no contract associated with d is in X′ . 
Since each doctor regards any set of contracts with cardinality of at least two as 

(5)[C̃hr(w)]h� ≥ [C̃hr(w
�)]h� .
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unacceptable, each doctor receives at most one contract at X′ and hence �(X�) is 
well defined for any individually rational X′.

Proposition 9 If X′ is a stable allocation in the associated model with contracts, 
then the corresponding matching �(X�) is a stable matching in the original model.

Proof Suppose that X′ is a stable allocation in the associated model with contracts 
and denote � ∶= �(X�) . Individual rationality of � is obvious from the construction 
of � . Suppose that (d, h) is a blocking pair of � . Denoting r ∶= r(h) , by the defini-
tion of stability, it suffices to show that the following conditions (6) and (7) hold if 
�d ∉ Hr , and (6), (7) and (8) hold if �d ∈ Hr:

where w = (wh)h∈Hr
 is defined by wh� = |�h� | for all h� ∈ Hr while w� = (w�

h
)h∈Hr

 is 
defined by w�

h
= wh + 1 , w�

�d
= w�d

− 1 (if �d ∈ Hr ) and w�
h�
= wh� for all other 

h� ∈ Hr.

Claim 1 Conditions (6) and (7) hold (irrespectively of whether �d ∈ Hr or not).

Proof First note that the assumption that h ≻d 𝜇d implies that (d, h) ≻d x where x 
denotes the (possibly empty) contract that d signs under X′ . Let w�� = (w��

h
)h∈Hr

 be 
defined by w��

h
= wh + 1 and w��

h�
= wh� for all other h� ∈ Hr.

1. Assume by contradiction that condition (7) is violated, that is, d ≻h d
′ for some 

d� ∈ �h . First, by consistency of C̃hr , we have [C̃hr(w��)]h ≥ [C̃hr(w)]h.29 That 
is, weakly more contracts involving h are signed at X� ∪ (d, h) than at X′ . This 
property, together with the assumptions that d ≻h d

′ and that (d�, h) ∈ X� imply 
that (d, h) ∈ Chr(X

� ∪ (d, h)).30 Thus, together with the above-mentioned property 
that (d, h) ≻d x , (d, h) is a block of X′ in the associated model of matching with 
contracts, contradicting the assumption that X′ is a stable allocation.

(6)|�Hr
| = qr,

(7)d� ≻h d for all d� ∈ 𝜇h,

(8)w ⪰r w
�,

29 To show this claim, assume for contradiction that [C̃hr(w
��)]h < [C̃hr(w)]h . Then, 

[C̃hr(w
��)]h < [C̃hr(w)]h ≤ wh. Moreover, since w��

h�
= wh� for every h′ ≠ h by construction of w′′ , it fol-

lows that [C̃hr(w��)]h� ≤ w��
h�
= wh� . Combining these inequalities, we have that C̃hr(w��) ≤ w . Also we 

have w ≤ w′′ by the definition of w′′ , so it follows that C̃hr(w��) ≤ w ≤ w��. Thus, by consistency of C̃hr , 
we obtain C̃hr(w��) = C̃hr(w) , a contradiction to the assumption [C̃hr(w��)]h < [C̃hr(w)]h.
30 The proof of this claim is as follows. Chr(X�) induces hospital h to select its [C̃hr(w)]h most preferred 
contracts while Chr(X� ∪ (d, h)) induces h to select a weakly larger number [Chr(w��)]h of its most pre-
ferred contracts. Since (d�, h) is selected as one of the [C̃hr(w)]h most preferred contracts for h at X′ and 
d ≻h d

′ , we conclude that (d, h) should be one of the [Chr(w��)]h ≥ [C̃hr(w)]h most preferred contracts at 
X� ∪ (d, h) , thus selected at X� ∪ (d, h).
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2. Assume by contradiction that condition (6) is violated, so that |�Hr
| ≠ qr . Then, 

since |�Hr
| ≤ qr by the construction of � and the assumption that X′ is individu-

ally rational, it follows that |𝜇Hr
| < qr . Then, (d, h) ∈ Chr(X

� ∪ (d, h)) because 
(a) d ≻h ∅ by assumption, (b) since 

∑
h∈Hr

wh =
∑

h∈Hr
�𝜇h� = �𝜇Hr

� < qr , it fol-
lows that 

∑
h∈Hr

w��
h
=
∑

h∈Hr
wh + 1 ≤ qr . Moreover, |𝜇h| < qh because (d, h) 

is a blocking pair by assumption and (7) holds, so w��
h
= |�h| + 1 ≤ qh . These 

properties and the assumption that C̃hr is acceptant imply that C̃hr(w��) = w�� . 
In particular, this implies that all contracts (d�, h) ∈ X� ∪ (d, h) such that d′ ≻h ∅ 
is chosen at Chr(X� ∪ (d, h)) . Thus, together with the above-mentioned property 
that (d, h) ≻d x , (d, h) is a block of X′ in the associated model of matching with 
contract, contradicting the assumption that X′ is a stable allocation.

  ◻

To finish the proof of the proposition suppose that �d ∈ Hr and by con-
tradiction that (8) fails, that is, w′ ≻r w . Then, it should be the case that 
[C̃hr(w

��)]h = w��
h
= wh + 1 = |𝜇h| + 1.31 Also, we have |𝜇h| < qh and hence 

|�h| + 1 ≤ qh and d ≻h ∅ , so

This relationship, together with the assumption that h ≻d 𝜇d , and hence (d, h) ≻d x , 
is a contradiction to the assumption that X′ is stable in the associated model with 
contracts.   ◻

Remark 1 Each step of the flexible deferred acceptance algorithm corresponds to 
a step of the cumulative offer process (Hatfield and Milgrom 2005), that is, at each 
step, if doctor d proposes to hospital h in the flexible deferred acceptance algorithm, 
then at the same step of the cumulative offer process, contract (d, h) is proposed. 
Moreover, the set of doctors accepted for hospitals at a step of the flexible deferred 
acceptance algorithm corresponds to the set of contracts held at the corresponding 
step of the cumulative offer process. Therefore, if X′ is the allocation that is pro-
duced by the cumulative offer process, then �(X�) is the matching produced by the 
flexible deferred acceptance algorithm.

Proof of Proposition 0 By Proposition 8, the choice function of each region satisfies 
the substitutes condition and the law of aggregate demand in the associate model 
of matching with contracts. By Hatfield and Milgrom (2005), Hatfield and Kojima 
(2009), and Hatfield and Kominers (2012), the cumulative offer process with choice 
functions satisfying these conditions produces a stable allocation and is (group) 

(d, h) ∈ Chr(X
� ∪ (d, h)).

31 To show this claim, assume by contradiction that [C̃hr(w��)]h ≤ wh . Then, since w��
h�
= wh� for any 

h′ ≠ h by the definition of w′′ , it follows that C̃hr(w��) ≤ w ≤ w��. Thus, by consistency of C̃hr , we 
obtain C̃hr(w��) = C̃hr(w). But C̃hr(w) = w because X′ is a stable allocation in the associated model of 
matching with contracts, so C̃hr(w��) = w . This is a contradiction because w′ ≤ w′′ and w′ ≻r w while 
C̃hr(w

��) ∈ arg max⪰r
{w���|w��� ≤ w��}.
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strategy-proof.32 The former fact, together with Remark 1 and Proposition 9, implies 
that the outcome of the flexible deferred acceptance algorithm is a stable matching 
in the original model. The latter fact and Remark 1 imply that the flexible deferred 
acceptance mechanism is (group) strategy-proof for doctors.   ◻

Appendix 2: Proofs for Sect. 4

2. 1 Proofs for Sect. 4.1

Proof of Proposition 2 Let � be a matching and w be defined by wh� = |�h� | for each 
h� ∈ Hr and w′ by w�

h
= wh + 1 , w�

�d
= w�d

− 1 , and w�
h�
= wh� for all 

h� ∈ Hr ⧵ {h,�d} . It suffices to show that w ⪰r w
� if and only if 

|𝜇h| + 1 − q̄h > |𝜇𝜇d
| − 1 − q̄𝜇d

.
Suppose that |𝜇h| + 1 − q̄h > |𝜇𝜇d

| − 1 − q̄𝜇d
 . This means that 

wh + 1 − q̄h > w𝜇d
− 1 − q̄𝜇d

 , which is equivalent to either 
wh − q̄h = w𝜇d

− 1 − q̄𝜇d
or wh − q̄h ≥ w𝜇d

− q̄𝜇d
. In the former case, obviously 

�(w) = �(w�) , so w ⪰r w
� . In the latter case, 

{h�|w�
h�
− q̄h� <

|||𝜇𝜇d

||| − q̄𝜇d
} = {h�|wh� − q̄h� <

|||𝜇𝜇d

||| − q̄𝜇d
} ∪ {𝜇d} , and wh� = w�

h�
 

for all h� ∈ {h�|wh� − q̄h� <
|||𝜇𝜇d

||| − q̄𝜇d
} . Thus, we obtain w ≻r w

′.
If |𝜇h| + 1 − q̄h ≤ |𝜇𝜇d

| − 1 − q̄𝜇d
 , then obviously w′ ≻r w . This completes the 

proof.   ◻

Proof of Proposition 3 It is clear that the quasi choice rule C̃hr defined in (3) satisfies 
the condition (1) for substitutability (as well as consistency and acceptance). Thus, in 
the following, we will show that C̃hr indeed satisfies C̃hr(w) ∈ arg max⪰r

{x|x ≤ w} 
for each w. Let w� = C̃hr(w) . Assume by contradiction that w� ∉ arg max⪰r

{x|x ≤ w} 
and consider an arbitrary w�� ∈ arg max⪰r

{x|x ≤ w} . Then, we have w′′ ≻r w
′ , so 

there exists i such that �j(w��) = �j(w
�) for every j < i and 𝜂i(w��) > 𝜂i(w

�) . Consider 
the following cases.

1. S u p p o s e  
∑

j 𝜂j(w
��) >

∑
j 𝜂j(w

�)  .  F i r s t ,  n o t e  t h a t ∑
j 𝜂j(w

��) +
∑

h q̄h =
∑

h w
��
h
≤ qr  because w�� ∈ arg max⪰r

{x|x ≤ w} . Thus ∑
h w

�
h
=
∑

j 𝜂j(w
�) +

∑
h q̄h <

∑
j 𝜂j(w

��) +
∑

h q̄h ≤ qr . Moreover, the assumption 
implies that there exists a hospital h such that w�

h
< w��

h
≤ min{qh,wh} . These 

properties contradict the construction of C̃hr.
2. Suppose 

∑
j 𝜂j(w

��) <
∑

j 𝜂j(w
�) . First note that 

∑
j 𝜂j(w

�) +
∑

h q̄h =
∑

h w
�
h
≤ qr by 

construction of C̃hr . Thus, 
∑

h w
��
h
=
∑

j 𝜂j(w
��) +

∑
h q̄h <

∑
j 𝜂j(w

�) +
∑

h q̄h ≤ qr . 

32 Aygün and Sönmez (2012) point out that a condition called path-independence (Fleiner 2003) or irrel-
evance of rejected contracts (Aygün and Sönmez 2012) is needed for these conclusions. Aygün and Sön-
mez (2012) show that the substitutes condition and the law of aggregate demand imply this condition. 
Since the choice rules in our context satisfy the substitutes condition and the law of aggregate demand, 
the conclusions go through.
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Moreover, the assumption implies that there exists a hospital h such that 
w��
h
< w�

h
≤ min{qh,wh} . Then, w′′′ defined by w���

h
= w��

h
+ 1 and w���

h�
= w��

h�
 for 

all h′ ≠ h satisfies w′′′ ≤ w and w′′′ ≻r w
′′ , contradicting the assumption that 

w�� ∈ arg max⪰r
{x|x ≤ w}.

3. Suppose that 
∑

j �j(w
��) =

∑
j �j(w

�) . Then, there exists some k such that 
𝜂k(w

��) < 𝜂k(w
�) . Let l = min{k|𝜂k(w��) < 𝜂k(w

�)} be the smallest of such indi-
ces. Then, since l > i , we have 𝜂i(w�) < 𝜂i(w

��) ≤ 𝜂l(w
��) < 𝜂l(w

�) . Thus, it should 
be the case that �i(w�) + 2 ≤ �l(w

�) . By the construction of C̃hr , this inequality 
holds only if w�

h
= min{qh,wh} , where h is an arbitrarily chosen hospital such 

that w�
h
− q̄h = 𝜂i(w

�) . Now, it should be the case that w��
h
= min{qh,wh} as well, 

because otherwise w�� ∉ arg max⪰r
{x|x ≤ w}.33 Thus w�

h
= w��

h
 . Now consider the 

modified vectors of both w′ and w′′ that delete the entries corresponding to h. All 
the properties described above hold for these new vectors. Proceeding induc-
tively, we obtain w�

h
= w��

h
 for all h, that is, w� = w�� . This is a contradiction to the 

assumption that w� ∉ arg max⪰r
{x|x ≤ w} and w�� ∈ arg max⪰r

{x|x ≤ w}.

The above cases complete the proof.   ◻

2. 2 Proofs for Sect. 4.3

The following result, which applies not only to matching with contract models 
defined over the set of contracts D × H but also to those defined over general envi-
ronments, proves useful.

Lemma 1 Consider a model of matching with contracts. Fix the set of doctors and 
regions as well as doctor preferences. Assume that choice rules Ch ∶= (Chr)r∈R 
and Ch� ∶= (Ch�

r
)r∈R satisfy Ch�

r
(X�) ⊆ Chr(X

�) for every subset of contracts X′ and 
region r. Then, the following two statements hold:

1. Each doctor weakly prefers the outcome of the cumulative offer process with 
respect to Ch to the result with respect to Ch′ . Hence, each doctor weakly prefers 
the doctor-optimal stable allocation under Ch to the doctor-optimal stable alloca-
tion under Ch′.

2. The set of contracts that have been offered up to and including the terminal step of 
the cumulative offer process under Ch is a subset of the corresponding set under Ch′.

Proof Let Yd and Y ′
d
 be the contracts allocated to d by the cumulative offer processes 

under Ch and Ch′ , respectively. Also, let C(t) be the set of contracts that have been 

33 The proof that w�� ∉ arg max⪰r
{x|x ≤ w} if w��

h
< min{qh,wh} is as follows. Sup-

pose that w��
h
< min{qh,wh} . Consider w′′′ defined by w���

h
= w��

h
+ 1 , w���

h�
= w��

h�
− 1 for some 

h′ such that w��
h�
− q̄h� = 𝜂i(w

��) , and w���
h��

= w��
h��

 for all h�� ∈ Hr ⧵ {h, h
�} . Then, we have 

w���
h
− q̄h = w��

h
− q̄h + 1 ≤ w�

h
− q̄h < w��

h�
− q̄h� , where the weak inequality follows because 

w��
h
< min{qh,wh} = w�

h
 . The strict inequality implies that w�

h
− q̄h ≤ w��

h�
− 1 − q̄h� = w���

h�
− q̄h� . Hence, 

w���
h
− q̄h ≤ w���

h�
− q̄h� , which implies w′′′ ≻r w

′′.
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offered up to and including step t of the cumulative offer process under Ch, and C�(t) 
be the corresponding set for the cumulative offer process under Ch′ . Let T and T ′ be 
the terminal steps for the cumulative offer processes under Ch and Ch′ , respectively. 
We first prove Part 2 of the lemma, and then show Part 1.

Part 2: Suppose the contrary, i.e., that C(T) ⊈ C�(T �) . Then, there exists a step t′ 
such that C(t) ⊆ C�(T �) for all t < t′ and C(t�) ⊈ C�(T �) holds. That is, t′ is the first 
step such that an application not made in the cumulative offer process under Ch′ is 
made in the cumulative offer process under Ch. Let x be the contract that d offers 
in this step under Ch. Notice that Y ′

d
≻d x . This implies that Y ′

d
≠ ∅ and that Y ′

d
 is 

rejected by r′ in some steps of the cumulative offer process under Ch, where r′ is the 
region associated with Y ′

d
 . Let the first of such steps be t′′ . Since in the cumulative 

offer process doctors make offers in order of their preferences, Y ′
d
≻d x implies that 

t′′ < t′ , which in turn implies C(t��) ⊆ C�(T �) by the definition of t′.
Now, we show that the set of contracts accepted by r′ at step t′′ of the cumulative 

offer process under Ch is a superset of the set of contracts accepted by r′ from the 
application pool C(t��) (which is a subset of C�(T �) ) at step T ′ of the cumulative offer 
process under Ch′ . To see this, note that if the same application pool C�(T �) is given, 
the set of contracts accepted by r′ in the cumulative offer process under Ch is weakly 
larger than that under Ch′ by the assumption that Ch�

r
(X�) ⊆ Chr(X

�) for all X′ ⊆ X 
and r ∈ R . Since Ch is substitutable, subtracting applications in C�(T �) ⧵ C(t��) does 
not shrink the set of contracts accepted by r′ within C(t��) at step t′′ of the cumulative 
offer process under Ch, which establishes our claim.

However, this contradicts our earlier conclusion that Y ′
d
 is rejected by r′ at step t′′ 

of the cumulative offer process under Ch while she is allocated Y ′
d
 in the cumulative 

offer process under Ch′ . Hence, we conclude that C(T) ⊆ C�(T �).
Part 1: Now, since in the cumulative offer process each doctor d make offers of 

contracts in order of her preferences, Yd is ∅ or the worst contract for d in the set of 
contracts associated with d in C(T). Similarly, for each doctor d, Y ′

d
 is ∅ or the worst 

contract for d in the set of contracts associated with d in C�(T �) . If Yd ≠ ∅ , this and 
C(T) ⊆ C�(T �) imply that Yd ⪰d Y

�
d
 . If Yd = � , d has applied to all acceptable con-

tracts in the cumulative offer process under Ch. Thus, C(T) ⊆ C�(T �) implies that 
she has applied to all acceptable contracts in the algorithm under Ch′ , too. Let x′ 
be the worst acceptable contract in X for d, and r be a region associated with x′ . At 
this point, we already know that Y ′

d
 is either x′ or ∅ , and we will show that Y �

d
= � in 

what follows. Again, C(T) ⊆ C�(T �) implies that all applications associated with r in 
C(T) are in C�(T �) . In particular, d’s application to x′ is in C�(T �) . Since Ch is sub-
stitutable, subtracting applications in C�(T �) ⧵ C(T) does not shrink the set of doc-
tors accepted by r within C(T) at step T of the deferred acceptance, so d not being 
accepted by r from C(T) at step T of the cumulative offer process under Ch implies 
that she is not accepted by r from C�(T �) in step T ′ of the process under Ch′ either. 
But since we have shown that d’s offer of contract x′ to r is in C�(T �) , this implies 
that in the cumulative offer process under Ch′ , x′ is rejected by r. Because x′ is the 
worst acceptable contract for d and d’s applications that are made in order of her 
preferences, we conclude that Y �

d
= � , thus in particular Yd ⪰d Y

�
d
.

This shows that each doctor d ∈ D weakly prefers a contract allocated by the 
cumulative offer process under Ch to the one under Ch′.
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Since the outcome of the cumulative offer process is the doctor-optimal stable 
allocation, the preceding proof has also shown that the doctor-optimal stable alloca-
tion under Ch is weakly more preferred to the doctor-optimal stable allocation under 
Ch′ .   ◻

Lemma 1 is a generalization of a number of existing results. Gale and Sotomayor 
(1985a, b) establish comparative statics results in one-to-one and many-to-one 
matching with respect to the extension of an agent’s list of her acceptable partners 
or an addition of an agent to the market, and Crawford (1991) generalizes the results 
to many-to-many matching. Konishi and Ünver (2006) consider many-to-one match-
ing and obtain a comparative statics result with respect to the changes of hospital 
capacities.34 All these changes are special cases of changes in the choice rules, so 
these results are corollaries of Lemma 1.

Lemma 1 may be of independent interest as the most general comparative statics 
result known to date. In addition, the lemma implies various results that are directly 
relevant to the current study of regional caps, such as Propositions 4, 5, 6, and 7 in 
the main text.

Proof of Proposition 4 Part 1: Let ChF = (ChF
r
)r∈R be the choice rule associated with 

the flexible deferred acceptance as defined earlier, that is, for each region r ∈ R and 
subset of contracts X� ⊆ X = D × H , the chosen set of contracts ChF

r
(X�) is defined 

by

where C̃hr corresponds to a Rawlsian regional preference of region r and 
w(X�) = (wh(X

�))h∈Hr
 is the vector such that wh(X

�) = |{(d, h) ∈ X�|d ≻h �}| (this is 
a special case of the choice rule (4)).

Moreover, consider choice rules ChD = (ChD
r
)r∈R and ChJ = (ChJ

r
)r∈R such that, 

for each X′ and r,

Clearly, both ChD and ChJ satisfy the substitute condition and the law of aggre-
gate demand. Moreover, the matchings corresponding to the results of the cumu-
lative offer processes under ChD and ChJ are identical to the results of the 

ChF
r
(X�) =

⋃
h∈Hr

{
(d, h) ∈ X� |||

||{d� ∈ D(d�, h) ∈ X�, d�⪰hd}
|| ≤ (C̃hr(w(X

�)))h

}
.

ChD
r
(X�) =

⋃

h∈Hr

{
(d, h) ∈ X� |||

||{d� ∈ D|(d�, h) ∈ X�, d� ⪰h d}
|| ≤ qh

}
,

ChJ
r
(X�) =

⋃

h∈Hr

{
(d, h) ∈ X� |||

||{d� ∈ D|(d�, h) ∈ X�, d� ⪰h d}
|| ≤ q̄h

}
.

34 See also Kelso and Crawford (1982) who derive comparative statics results in a matching model with 
wages, and Hafalir et al. (2013) and Ehlers et al. (2014) who study comparative statics in the context of 
diversity in school choice. Echenique and Yenmez (2015) and Chambers and Yenmez (2017) indepen-
dently obtain similar results to ours in a framework based on choice functions as primitives.
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deferred acceptance algorithm and the JRMP mechanism, respectively. Because 
min{q̄h,wh} ≤ (C̃hr(w(X

�)))h ≤ qh for all h ∈ Hr and X′ , by inspection of the above 
definitions of the choice rules we obtain ChJ

r
(X�) ⊆ ChF

r
(X�) ⊆ ChD

r
(X�) for all X′ 

and r. Thus, the desired conclusion follows by Part 1 of Lemma 1.
Part 2: This is a direct corollary of Part 1 and the fact that none of the algorithms 

considered here matches a doctor to an unacceptable hospital.   ◻

Proof of Proposition 5 Let Ch = (Chr)r∈R and Ch�

= (Ch
�

r
)r∈R be the choice rules 

associated with the flexible deferred acceptance mechanisms (as defined in the proof 
of Proposition 4) with respect to (qr)r∈R and (q�

r
)r∈R , respectively.

Part 1: Because q′
r
≤ qr for each r ∈ R , the definition of these choice rules implies 

Ch�
r
(X�) ⊆ Chr(X

�) for all X′ and r. Hence, the desired conclusion follows by Part 1 
of Lemma 1.

Part 2: Since Ch�
r
(X�) ⊆ Chr(X

�) for all X′ and r as mentioned in the proof of 
Part 1, Part 2 of Lemma 1 implies that C(T) ⊆ C�(T �) , where C, T, C′ , and T ′ are 
as defined in Part 2 of the lemma. Note that the sets of contracts allocated to hospi-
tals in r at the conclusions of the cumulative offer processes under Ch and Ch′ are 
given as r’s choice from contracts associated with r in C(T) and C�(T �) , respectively. 
Because the choice rules satisfy the law of aggregate demand and the set-inclusion 
relationship C(T) ⊆ C�(T �) holds, for any r such that qr = q�

r
 , the number of doctors 

matched in r under a matching produced by the flexible deferred acceptance mecha-
nism under regional caps (q�

r
)r∈R is weakly larger than that in the matching under 

(qr)r∈R , completing the proof.   ◻

Proof of Proposition 6 Let Ch = (Chr)r∈R and Ch�

= (Ch
�

r
)r∈R be the choice rules 

associated with the JRMP mechanisms (as defined in the proof of Proposition  4) 
with respect to (q̄h)h∈H and (q̄�

h
)h∈H , respectively.

Part 1: Because q̄′
h
≤ q̄h for each h ∈ H , the definition of these choice rules 

implies Ch�
r
(X�) ⊆ Chr(X

�) for all X′ and r. Hence, the desired conclusion follows by 
Part 1 of Lemma 1.

Part 2: Since Ch�
r
(X�) ⊆ Chr(X

�) for all X′ and r as mentioned in the proof of 
Part 1, Part 2 of Lemma 1 implies that C(T) ⊆ C�(T �) , where C, T, C′ , and T ′ are 
as defined in Part  2 of Lemma 1. Note that the matchings for h at the conclusions 
of the cumulative offer processes under Ch and Ch′ are given as h’s most preferred 
acceptable doctors up to q̄h = q̄�

h
 from contracts associated with h in C(T) and 

C�(T �) , respectively. Thus, the set-inclusion relationship C(T) ⊆ C�(T �) implies both 
the statements of Part 2.   ◻

Proof of Proposition 7 Part 1: First, by Part 2 of Lemma 1 and the proof of Propo-
sition 4, the set of contracts that have been offered up to and including the termi-
nal step under the deferred acceptance mechanism is a subset of the one under the 
flexible deferred acceptance mechanism. Second, by the construction of the flexible 
deferred acceptance algorithm, and the assumption that hospital h’s target capacity 
is not filled, under the flexible deferred acceptance mechanism h is matched to every 
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doctor who is acceptable to h and who applied to h in some step of the algorithm. 
These two facts imply the conclusion.

Part 2: First, by Part 2 of Lemma 1 and the proof of Proposition 4, the set of con-
tracts that have been offered up to and including the terminal step under the deferred 
acceptance mechanism is a subset of the one under the flexible deferred acceptance 
mechanism. Second, by the construction of the flexible deferred acceptance algo-
rithm, and the assumption that region r’s regional cap is not filled, under the flexible 
deferred acceptance mechanism any hospital h in region r is matched to every doctor 
who is acceptable and who is among the most preferred qh doctors who applied to h 
in some step of the algorithm. These two facts imply the conclusion.   ◻

Appendix 3: Further statistics on heterogeneity of capacities

Across prefectures in Japan, the mean and the median of the ratios of the maximum 
and the minimum hospital capacities are 20.98 and 19, respectively (see Fig. 3). The 
mean and the median of the Gini coefficients across prefectures are both 0.48, show-
ing that the heterogeneity of hospital capacities is quite significant.35 Capacities dif-
fer substantially in the school choice context as well; see Table 1 that reports data 
from Boston Public Schools (2013). The ratios of the maximum and the minimum 
of school capacities range from 1.80 to 16.19 with the median of 5.28, and all the 
Gini coefficients are no less than 0.10.

Appendix 4: Allocating target capacities

A problem related to, but distinct from, our discussion in Sect. 4.2 is how to allocate 
target capacities among hospitals in a region, within the simple, Rawlsian frame-
work of Kamada and Kojima (2015). We will not try to provide a final answer to the 
normative question of how to do so for several reasons. First, there may be different 
ways to specify the quasi choice rule even given the same target capacity profile, as 
we have seen in this section, and in fact there may be reasonable quasi choice rules 
that do not even presuppose the existence of target capacities. Second, even if we fix 
a quasi choice rule, the relation between target capacities and the desirability of the 
resulting outcome is ambiguous. An example in Kamada and Kojima (2015) shows 
that the effect on hospital welfare is ambiguous.36

Despite these reservations, hospitals may still find having higher targets intui-
tively appealing in practice, so the problem seems to be practically important. 

35 The data are taken from Japan Residency Matching Program (2013).
36 Example 9 in Kamada and Kojima (2015) shows that the effect on hospital welfare is ambiguous. In 
fact, Example 15 in Kamada and Kojima (2015) shows that the same conclusion holds even if hospitals 
or doctors have homogeneous preferences, which are strong restrictions that often lead to strong conclu-
sions in matching.
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Motivated by this observation, we present several methods to allocate target capaci-
ties that seem to be reasonable.

To do so, our starting point is to point out that the problem of allocating target 
capacities is similar to the celebrated “bankruptcy problem” (see Thomson (2003)). 
This is a useful association in the sense that, in the bankruptcy problem, there are 
known analyses (e.g., axiomatic characterizations) of various allocation rules, which 
can be utilized to judge which rule is appropriate for a given application.

To make this association, recall that in the standard bankruptcy problem, there 
is a divisible asset and agents whose claims sum up to (weakly) more than the 
amount of the available asset. Our problem is a discrete analogue of the bank-
ruptcy problem. The regional cap qr is an asset, hospitals in region r are agents, 
and physical capacity qh is the claim of hospital h. Just as in the bankruptcy prob-
lem, the sum of the physical capacities may exceed the available regional cap, so 
the target capacity profile (q̄h)h∈Hr

 needs to be decided subject to the constraint ∑
h∈Hr

q̄h ≤ qr.
This association suggests adaptations of well-known solutions in the bank-

ruptcy problem to our problem, with the modification due to the fact that both 
the asset and the claims are discrete in our problem. The following are a few 

Fig. 3  The ratios of the maximum and the minimum hospital capacities across prefectures

Table 1  Heterogeneity in size by school category

Category Maximum Minimum Max/min Gini coefficient

Early learning center 234 109 2.15 0.10
Elementary school 871 165 5.28 0.25
Exam school 2323 1291 1.80 0.13
High school 1457 90 16.19 0.32
Kindergarten–eight 960 132 7.27 0.27
Middle school 760 288 2.64 0.15
Special/alternative education 297 25 11.88 0.31
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examples (in the following, we assume 
∑

h∈Hr
qh ≥ qr ; otherwise set q̄h = qh for 

all h).

1. “Constrained Equal Awards Rule”: This solution allocates the targets as equally 
as possible except that, for any hospital, it does not allocate a target larger than 
the capacity. This rule is called the constrained equal awards rule in the litera-
ture on the bankruptcy problem. In our context, this solution should be modi-
fied because all the targets need to be integers. Formally, a constrained equal 
awards rule in our context can be defined as follows: (a) Find � that satisfies ∑

h∈Hr
min{�, qh} = qr . (b) For each h ∈ Hr , if 𝜆 > qh , then set q̄h = qh . Other-

wise, set q̄h to be either ⌊�⌋ (the largest integer no larger than � ) or ⌊�⌋ + 1 , subject 
to the constraint that 

∑
h∈Hr

q̄h = qr . The rule to decide which hospital receives ⌊�⌋ 
or ⌊�⌋ + 1 is arbitrary: For any decision rule, the resulting target profiles satisfy 
conditions assumed in Kamada and Kojima (2015). The decision can also use 
randomization, which may help achieve ex ante fairness.

2. “Constrained Equal Losses Rule”: This solution allocates the targets in such a way 
that it equates losses (that is, differences between the capacities and the targets) as 
much as possible, except that none of the allocated targets can be strictly smaller 
than zero. This rule is called the constrained equal losses rule in the literature on 
the bankruptcy problem. As in the case of the constrained equal awards rule, this 
solution should be modified because all the targets need to be integers. Formally, 
a constrained equal losses rule in our context can be defined as follows: (a) Find � 
that satisfies 

∑
h∈Hr

max{qh − �, 0} = qr . (b) For each h ∈ Hr , if qh − 𝜆 < 0 , then 
set q̄h = 0 . Otherwise, set q̄h to be either qh − ⌊�⌋ or qh − ⌊�⌋ − 1 , subject to the 
constraint that 

∑
h∈Hr

q̄h = qr . As in the constrained equal awards rule, the rule 
to decide which hospital receives qh − ⌊�⌋ or qh − ⌊�⌋ − 1 is arbitrary: For any 
decision rule, the resulting target profiles satisfy conditions assumed in Kamada 
and Kojima (2015). The decision can also use randomization, which may help 
achieve ex ante fairness.

3. “Proportional Rule”: This solution allocates the targets in a manner that is as 
proportional as possible to the hospitals’ capacities. This rule is called the pro-
portional rule in the literature on the bankruptcy problem. As in the case of the 
previous rules, this solution should be modified because all the targets need to be 
integers. Formally, a proportional rule in our context can be defined as follows: 
(a) Find � that satisfies 

∑
h∈Hr

�qh = qr . (b) For each h ∈ Hr , set q̄h be either ⌊�qh⌋ 
or ⌊�qh⌋ + 1 , subject to the constraint that 

∑
h∈Hr

q̄h = qr . As in the previous cases, 
the rule to decide which a hospital receives ⌊�qh⌋ or ⌊�qh⌋ + 1 is arbitrary: For any 
decision rule, the resulting target profiles satisfy conditions assumed in Kamada 
and Kojima (2015). The decision can also use randomization, which may help 
achieve ex ante fairness.

  The proportional rule seems to be fairly appealing in practice. This rule is used 
in Japanese residency match and Chinese graduate school admission, for example.
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