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Abstract
We propose, in this paper, the preconditioned accelerated generalized successive overrelax-
ation (PAGSOR) iteration method for efficiently solving the large complex symmetric linear
systems. To solve the nonlinear systemswhose Jacobianmatrices are complex and symmetric,
treating the PAGSORmethod as internal iteration, we construct amodifiedNewton-PAGSOR
(MN-PAGSOR) method to provide an effective approach for solving a wide range of prob-
lems in various scientific and engineering fields. Based on the Hölder continuous condition
we present the theoretical framework of the modified method, demonstrate its local conver-
gence properties, and provide numerical experiments to validate its effectiveness in solving
a class of nonlinear systems.

Keywords Preconditioned accelerated generalized successive overrelaxation (PAGSOR) ·
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Newton-PAGSOR (MN-PAGSOR) method · Local convergence
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1 Introduction

Let us consider the solution of a complex nonlinear systems of equations,

F(u) = 0, (1)

where F :D ⊂ C
n → C

n is a continuously differentiable nonlinear mapping defined on
an open convex subset of the complex linear space C

n , and F = (F1, · · · , Fn)T, Fj =
Fj (u), j = 1, · · · , n, u = (u1, · · · , un)T. And the Jacobian matrix F ′(x) is large sized,
sparse, and complex symmetric. This class of nonlinear systems of equations has widespread
applications in various fields, such as quantum mechanics [31], fluid mechanics [24, 25, 41],
structural mechanics [1, 27], chemical reaction [32, 38], nonlinear wave [47], mechanical
engineering [27], and so on. Assuming that the complex symmetric Jacobian matrix F ′(u)
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has the following form:
F ′(u) = W (u) + iT (u), (2)

whereW (u) and T (u) are real symmetric and positive semi-definitematrices, and i = √−1 is
the imaginary unit. The effective classical method to solve the nonlinear system of equations
(1) is the Newton method [22, 36, 44] with the specific format:

uk+1 = uk + sk, F ′(uk)sk = −F(uk), k = 0, 1, · · · . (3)

With a good choice of the initial guess u0 for the exact solution u∗ of the equation (1), the
Newton method possesses quadratic convergence speed. However, it becomes challenging
to solve exactly the Newton equation F ′(u)s = −F(u), especially when the dimension n is
large.

To address this issue and raise the efficiency, on one hand, the inexact Newton method
[21] was proposed and widely studied. The specific format of the inexact Newton method is
as follows:

‖F(uk) + F ′(uk)sk‖ � ηk‖F(uk)‖, k = 0, 1, · · · , (4)

note that the parameter ηk ∈ [0, 1) here is the forcing term which is used to control the level
of accuracy and F ′(uk) represents the Jacobian matrix of the operator F(u) evaluated at the
iterate uk . On the other hand, to expedite the solving process of the Newton method, the
modified Newton method was presented and studied in [20], which is formulated as follows:{

vk = uk − F ′(uk)−1F(uk),
uk+1 = vk − F ′(uk)−1F(vk), k = 0, 1, 2, · · · .

(5)

The theoretical and numerical analysis shows evidently that the modified Newton method
(5) has achieved significant improvements. Compared with the Newton method, it requires
only one additional evaluation F per step. However, the modified Newton method has at
least R-order three of convergence. Over the years, inner-outer methods have attracted lots
of attention for nonlinear systems due to their superior numerical performance, see [12, 18,
28, 34, 50, 53] and references therein. Therefore, for the nonlinear system (1), building on
the efficient performance of the modified Newton method as an outer iteration, we need to
search for more suitable inner methods for different forms of nonlinear problems to further
improve effectiveness. To make the solver faster, we focus on finding efficient inner iterative
methods to solve the following linear system.

Actually, we consider the linear system of equations

Au = b, A ∈ C
n×n, u, b ∈ C

n, (6)

where A is a complex matrix with A = W + iT , and W , T ∈ R
n×n are real symmetric

matrices,W being positive definite, and T being positive semi-definite. It is known that (6) is
a special case of the generalized saddle-point problem [16, 17] which has broad applications,
for instance, in the finite element discretization of constrained optimization problems for
elliptic partial differential equations, or distributed control problems [2, 42, 43].

The methods for solving block two-by-two structured real linear equations have garnered
significant attention from scholars. Among them, several kinds of preconditioned Krylov
subspace methods [19, 45] have shown remarkable performance in handling large sparse
matrices, effectively utilizing their structural characteristics to accelerate the solution pro-
cess. Since 2003, the Hermitian and skew-Hermitian splitting (HSS) methods introduced by
Bai et al. [9] have gained considerable attention for their effectiveness in solving large linear
systems with non-Hermitian positive definite matrices. Researchers have devoted efforts to
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studying and refining the HSS-based methods [6, 8, 11, 55], drawn by their elegant formula-
tion and reliable convergence properties. To circumvent the need for complex linear system
computations, Bai et al. designed the modified HSS (MHSS) iteration method [3] to tackle
the solution of equation (6) without resorting to complex linear system computations. Subse-
quently, massive improved methods have been proposed both in terms of HSS-version, such
as the preconditioned MHSS (PMHSS) method [4] and the double-parameter generalized
PMHSS (DGPMHSS) [33], etc., and in terms of SOR-version. However, as for the improved
methods in terms of SOR-version, the original idea, and analysis of the generalized successive
overrelaxation (GSOR) method were presented early in, 2005 [13] for solving augmented
linear systems. Further generalizations and developments were extended by applying the
GSOR method to address large sparse generalized saddle-point problems, as exemplified by
the Uzawa method [14], and the GSOR-type (SOR-acceleration for HSS) methods were also
established in [10]. Nearly 10 years later, certain straightforward applications of the GSOR
methods and their accelerations as well as preconditioning were also researched in [23, 29,
46]. Especially inspired also by the preconditioning technique, Huang et al. introduced the
preconditioned AGSOR (PAGSOR) method [30] whose aim is to decrease the optimal con-
vergence factor of the AGSOR method and to enhance its convergence efficiency. All the
above studies lead us to provide excellent inner iteration methods by developing two vari-
ants of the GSOR method, namely the accelerated GSOR (AGSOR) and the preconditioned
GSOR (PGSOR) for linear systems.

As for nonlinear systems (1), bymaking use of theHSS-version iteration as the inner solver
for the inexact Newton or modified Newton method, researchers have contributed a lot of
excellent algorithms. See, for example, papers [12, 15, 28, 35, 48, 49, 53, 54] and references
therein. In recent years the modified Newton-DGPMHSS (MN-DGPMHSS) method [18]
and the modified Newton-DSS (MN-DSS) method [52] were also proposed to improve the
algorithms. (Note that “D” for the two methods here represents “double” or “double-step”.
Do not confuse it with the “D” standing for “deteriorated” used in the initial study related
to the HSS-type iteration methods [37]. Abbreviations always have limitations!) Due to the
advantages of easy programming, efficient computing, and saving storage for SOR-version
iteration and its variants, the modified Newton-GSOR (MN-GSOR)method and themodified
Newton-AGSOR (MN-AGSOR) method were introduced [39, 40]. The local convergence
properties of these methods were performed under a Hölder condition. The efficiency of their
numerical results can be compared with those of the MN-DPMHSS and MN-MPPMHSS
methods. In 2021, the modified Newton-PGSOR (MN-PGSOR) method was proposed to
solve (1) with block two-by-two complex symmetric Jacobian matrices. It can get a similar
conclusion while applying on a 2-torsion free block upper triangular matrix algebra [26]. All
these methods have made progress in the study of solving a nonlinear system of equations.

To improve the computational efficiency and expand the range of problems when the
Jacobian matrix is symmetric indefinite, we consider the possibility of applying the modified
Newton method to solve a nonlinear system of equations while utilizing the preconditioned
accelerated successive overrelaxation (PAGSOR) method to solve the Newton equations.
Thus, we construct the modified Newton-PAGSOR (MN-PAGSOR) method to solve equa-
tions (1). Under proper conditions, the local convergence theorem is provided. Then, we
use numerical results to show the feasibility and effectiveness of the method compared with
several existing algorithms.

The article is organized as follows. In Sect. 2, we introduce the MN-PAGSOR method for
handling (1) while elaborating on the properties of local convergence in Sect. 3. To substanti-
ate its practicality and efficiency, Sect. 4 presents compelling numerical results that validate
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the effectiveness of the MN-PAGSOR method. Finally, in Sect. 5, a succinct conclusion is
provided, summarizing the key findings and contributions of this article.

2 TheModified Newton-PAGSOR (MN-PAGSOR) Method

Consider the following complex linear system:

Au = b, A ∈ C
n×n, u, b ∈ C

n . (7)

The complex symmetric linear system is structured in the following form:

Au = (W + iT )(x + iy) = (p + iq) = b, (8)

where i = √−1 is the imaginary unit, W , T ∈ R
n×n are real, symmetric, and positive semi-

definite matrices, and x, y, p, q ∈ R
n are real vectors. To avoid complex number operations,

we can derive the equivalent real equations in the two-by-two form:(
W −T
T W

)(
x
y

)
=

(
p
q

)
. (9)

2.1 The PAGSOR IterationMethod

Multiplying (9) to its left by the matrix

Zω =
(

ωI I
−I ωI

)
, ω > 0, (10)

we obtain (
ωW + T W − ωT
ωT − W ωW + T

)(
x
y

)
=

(
ωp + q
ωq − p

)
:= b̃. (11)

Denote W̃ = ωW + T , T̃ = ωT − W , p̃ = ωp + q , q̃ = ωq − p, and

Ã =
(
W̃ −T̃
T̃ W̃

)
.

Then, (9) can be rewritten as

Ãu :=
(
W̃ −T̃
T̃ W̃

)(
x
y

)
=

(
p̃
q̃

)
.

Note that the coefficient matrix Ã can be naturally split into

Ã =
(
W̃ O
O W̃

)
−

(
O O

−T̃ O

)
−

(
O T̃
O O

)
:= D̃ − L̃ − Ũ ,

where the notation O is used to denote the zero matrix.
By [30], the PAGSOR method for Ãu = b̃ is established as follows.
The definition of W̃ , T̃ , p̃, q̃ are the same as those in (11), where α, β are two real

parameters and ω > 0.
Furthermore, the iterative method (12) can be equivalently rewritten as follows:(

xk+1

yk+1

)
= Qω(α, β)

(
xk
yk

)
+ Gω(α, β)

(
p̃
q̃

)
,
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Algorithm 1 The PAGSOR method

1: Given an initial guess u0 ∈ (xT0 , yT0 )T ∈ C
2n .

2: For k = 0, 1, · · · , until uk = (xTk , yTk )T converges, compute

{
W̃ xk+1 = (1 − α)W̃ xk + αT̃ yk + α p̃,
W̃ yk+1 = −β T̃ xk+1 + (1 − β)W̃ yk + βq̃.

(12)

or
(
xk+1

yk+1

)
= Qω(α, β)k+1

(
x0
y0

)
+

k∑
j=0

Qω(α, β) j Gω(α, β)

(
p̃
q̃

)
, k = 0, 1, · · · , (13)

where

Qω(α, β) =
(

W̃ O
β T̃ W̃

)−1 (
(1 − α)W̃ αT̃

O (1 − β)W̃

)
, (14)

Gω(α, β) =
(

W̃ O
β T̃ W̃

)−1 (
α I O
O β I

)
. (15)

Obviously, the matrix Qω(α, β) is referred to as the iteration matrix of the PAGSORmethod.
Now, let us consider another decomposition of matrix Ã,

Ã = Bω(α, β) − Cω(α, β) (16)

with

Bω(α, β) =
(

α I O
O β I

)−1 (
W̃ O
β T̃ W̃

)
=

(
1
α
I O

O 1
β
I

)(
W̃ O
β T̃ W̃

)
, (17)

Cω(α, β) =
(

1
α
I O

O 1
β
I

)(
(1 − α)W̃ αT̃

O (1 − β)W̃

)
. (18)

Evidently, we get

Qω(α, β) = Bω(α, β)−1 Cω(α, β), Gω(α, β) = Bω(α, β)−1. (19)

Specifically, the AGSOR method, as outlined in [23], represents a particular form of the
PAGSOR iterative method when ω = 1.

2.2 TheModified Newton-PAGSORMethod

For convenience, we introduce the following notation:

û =
(
Re(u)

Im(u)

)
,

where Re(u) and Im(u) represent the real and imaginary parts of any complex vector or
matrix u, respectively. Naturally, F(u) has the form F(u) = P(u) + iQ(u), where P(u) =
Re(F(u)), Q(u) = Im(F(u)). We assume that the Jacobian matrix F ′(u) can be expressed
in the form

F ′(u) = W (u) + iT (u),
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whereW (u) = Re(F ′(u)) ∈ R
n×n , T (u) = Im(F ′(u)) ∈ R

n×n are real symmetric matrices,
with W (u) being positive definite and T (u) positive semi-definite.

Our MN-PAGSOR iteration method is developed to solve the complex nonlinear system,
with which the PAGSOR method applied to solve the following Newton equations:

{
A(uk)dk = −H(uk), uk+ 1

2
= uk + dk,

A(uk)hk = −H(uk+ 1
2
), uk+1 = uk+ 1

2
+ hk, k = 0, 1, 2, · · · ,

(20)

where

A(u) =
(
W (u) −T (u)

T (u) W (u)

)
,

and

H(u) =
(
P(u)

Q(u)

)
. (21)

Hence, we can use the following expression for the MN-PAGSOR method:

Ãuk =
(
W̃ (uk) −T̃ (uk)
T̃ (uk) W̃ (uk)

)(
xk
yk

)
=

(
P̃(uk)
Q̃(uk)

)
= H̃(uk) (22)

with W̃ (uk) = ωW (uk) + T (uk), T̃ (uk) = ωT (uk) − W (uk), uk = xk + iyk , P̃(uk) =
ωP(uk) + Q(uk), Q̃(uk) = ωQ(uk) − P(uk).

Same as (16), (17), and (18), we need to simplify (22) and provide an approximate method
to generate the next iterate, say, namely uk+1,

Bω(α, β)

(
xk+1

yk+1

)
= Cω(α, β)

(
xk
yk

)
+

(
P̃(uk)
Q̃(uk)

)
. (23)

Thus, we can construct the MN-PAGSOR method. The algorithm process is as follows.
According to (13) and (20), the calculating leads the expressions for dk,lk , hk,mk ,

dk,lk = −
lk−1∑
j=0

Qω(α, β, uk)
j Gω(α, β, uk)H̃(uk),

hk,mk = −
mk−1∑
j=0

Qω(α, β, uk)
j Gω(α, β, uk)H̃(uk+ 1

2
),

which are in the formula mentioned above and

Qω(α, β, u) =
(

W̃ (u) O
β T̃ (u) W̃ (u)

)−1 (
(1 − α)W̃ (u) αT̃ (u)

O (1 − β)W̃ (u)

)
,

Gω(α, β, u) =
(

W̃ (u) O
β T̃ (u) W̃ (u)

)−1 (
α I O
O β I

)
.

Therefore, the MN-PAGSOR method can be expressed as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uk+ 1

2
= uk −

lk−1∑
j=0

Qω(α, β, uk) j Gω(α, β, uk)H̃(uk),

uk+1 = uk+ 1
2

−
mk−1∑
j=0

Qω(α, β, uk) j Gω(α, β, uk)H̃(uk+ 1
2
), k = 0, 1, · · · .

(24)
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Algorithm 2 The modified Newton-PAGSOR (MN-PAGSOR) method
1: Given an initial guess u0 ∈ D, positive constants α, β, tol with ω > 0, and two positive constant sequences

{lk }∞k=0, {mk }∞k=0.
2: For k = 0, 1, · · · , until ‖H(uk )‖ � tol‖H(u0)‖ do

2.1. Set dk,0 := (xTk,0, y
T
k,0)

T, where xTk,0 = yTk,0 = 0.
2.2. For l = 0, 1, · · · , lk − 1, apply PAGSOR to the first equation of (20),

{
W̃ (uk )xk,l+1 = (1 − α)W̃ (uk )xk,l + αT̃ (uk )yk,l − α P̃(uk ),
W̃ (uk )yk,l+1 = −β T̃ (uk )xk,l+1 + (1 − β)W̃ (uk )yk,l − β Q̃(uk ),

and obtain dk,lk = (xTk,lk
, yTk,lk

)T such that

‖H̃(uk ) + Ã(uk )dk,lk ‖ � σk‖H̃(uk )‖, σk ∈ [0, 1).
2.3. Set u

k+ 1
2

= uk + dk,lk .

2.4. Compute H̃(u
k+ 1

2
).

2.5. Set hk,0 := (xTk,0, y
T
k,0)

T, where xTk,0 = yTk,0 = 0.
2.6. For m = 0, 1, · · · ,mk − 1, apply PAGSOR to the second equation of (20),

{
W̃ (uk )xk,m+1 = (1 − α)W̃ (uk )xk,m + αT̃ (uk )yk,m − α P̃(uk ),
W̃ (uk )yk,m+1 = −β T̃ (uk )xk,m+1 + (1 − β)W̃ (uk )yk,m − β Q̃(uk ),

and obtain hk,mk = (xTk,mk
, yTk,mk

)T such that

∥∥∥∥H̃(u
k+ 1

2
) + Ã(uk )hk,mk

∥∥∥∥ � σ̃k‖H̃
(
u
k+ 1

2

)‖, σ̃k ∈ [0, 1).

2.7. Set uk+1 = u
k+ 1

2
+ hk,mk .

3: End for.

Here, the matrix is split into

Ã(u) = Bω(α, β, u) − Cω(α, β, u) (25)

with

Bω(α, β, u) =
(

1
α
I O

O 1
β
I

)(
W̃ (u) O
β T̃ (u) W̃ (u)

)
,

Cω(α, β) =
(

1
α
I O

O 1
β
I

)(
(1 − α)W̃ (u) αT̃ (u)

O (1 − β)W̃ (u)

)
.

Since these matrices have the following relationship with the iterative matrix Qω(α, β, u):

Qω(α, β, u) = Bω(α, β, u)−1 Cω(α, β, u), Gω(α, β, u) = Bω(α, β, u)−1,

Ã(u)−1 = (I − Qω(α, β, u))−1Gω(α, β, u), (26)

we obtain finally an equivalent form of the MN-PAGSOR method,
{
uk+ 1

2
= uk − (I − Qω(α, β, uk)lk ) Ã(uk)−1 H̃(uk),

uk+1 = uk+ 1
2

− (I − Qω(α, β, uk)mk ) Ã(uk)−1 H̃(uk+ 1
2
), k = 0, 1, · · · .

(27)
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3 Local Convergence of MN-PAGSORMethod

In this section, we derive the local convergence of theMN-PAGSORmethod, i.e., the iterates
uk generated by the MN-PAGSOR method converge to u∗ for any sufficiently good initial
guess u0. Our analysis is based on the Hölder condition, which is weaker than the Lipschitz
one.

Definition 1 A mapping F : D ⊆ C
n → C

n is nonlinear, if there exists a linear operator
A ∈ L(Rn,Rn) that satisfies

lim
t→0

1

t
‖F(u + th) − F(u) − t Ah‖ = 0

for any h ∈ C
n , then F is Gateaux differentiable (or G-differentiable) at an interior point

u ∈ D. Additionally, for an open set D0 ⊂ D, if the mapping F :D ⊆ C
n → C

n is G-
differentiable at every point in D0, it is said to be G-differentiable on the open set D0.

Lemma 1 (Perturbation Lemma [36]) Let A,C ∈ C
n×n , and assume that A is nonsingular

satisfying ‖A−1‖ � p. If ‖A − C‖ � q and pq < 1, then B is also nonsingular and

‖B−1‖ � p

1 − pq
.

We further require that F :D ⊂ C
n → C

n is G-differentiable on an open neighborhood
D0 ⊂ D centered on u∗ ∈ Dwith F(u∗) = 0, and that the Jacobianmatrix F ′(u) is continuous
and symmetric. Let N(u∗, r) denote an open ball centered at u∗ with radius r . We find that
the perturbation lemma plays a crucial role in the proofs of Lemma 2 and Theorem 1.

Assumption 1 For all u ∈ N(u∗, r) ⊂ D0, the following conditions are established.

(A1) (The bounded condition) There exist positive constants δ and γ such that

max {‖W (u∗)‖, ‖T (u∗)‖} � δ, ‖A(u∗)−1‖ � γ.

(A2) (The Hölder condition) There exist nonnegative constants Kw and Kt such that

‖W (u) − W (u∗)‖ � Kw‖u − u∗‖p,

‖T (u) − T (u∗)‖ � Kt‖u − u∗‖p

with the exponential p ∈ (0, 1].

Lemma 2 Under Assumption 1, if r ∈ (0, ( 1
γ K )

1
p ), then A(u)−1 exists for u ∈ N(u∗, r).

Besides, the following inequalities hold with K : = Kt + Kw for all u, y ∈ N(u∗, r) ⊂ D0:

(i) ‖A(u) − A(u∗)‖ � K‖u − u∗‖p,

(ii) ‖A(u)−1‖ � γ
1−γ K‖u−u∗‖p ,

(iii) ‖H(y)‖ � K
p+1‖y − u∗‖p+1 + 2δ‖y − u∗‖,

(iv) ‖y−u∗ − A(u)−1H(y)‖ � γ
1−γ K‖u−u∗‖p

(
K
p+1‖y − u∗‖p + K‖u − u∗‖p

)
‖y−u∗‖.

Proof (i) The Hölder condition directly implies

‖A(u) − A(u∗)‖
=

∥∥∥∥
(
W (u) − W (u∗) T (u∗) − T (u)

T (u) − T (u∗) W (u) − W (u∗)

)∥∥∥∥
123
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�
∥∥∥∥
(
W (u) − W (u∗) O

O W (u) − W (u∗)

)∥∥∥∥ +
∥∥∥∥
(

O T (u∗) − T (u)

T (u) − T (u∗) O

)∥∥∥∥
= ‖W (u) − W (u∗)‖ + ‖T (u) − T (u∗)‖
� Kw‖u − u∗‖p + Kt‖u − u∗‖p = K‖u − u∗‖p.

(ii) Making use of this inequality

‖A(u∗)−1(A(u∗) − A(u))‖ � ‖A(u∗)−1‖‖A(u∗) − A(u)‖ � γ K‖u − u∗‖p < 1,

and the perturbation lemma, we know that A(u)−1 exists and satisfies

‖A(u)−1‖ � ‖A(u∗)−1‖
1 − ‖A(u∗)−1(A(u∗) − A(u))‖ � γ

1 − γ K‖u − u∗‖p
.

(iii) Furthermore, the known bounded condition leads to

‖A(u∗)‖ �
∥∥∥∥
(
W (u∗) O
O W (u∗)

)∥∥∥∥ +
∥∥∥∥
(

O −T (u∗)
T (u∗) O

)∥∥∥∥
= ‖W (u∗)‖ + ‖T (u∗)‖ � 2δ,

and

H(y) = H(y) − H(u∗) − A(u∗)(y − u∗) + A(u∗)(y − u∗)

=
∫ 1

0
(A(u∗ + t(y − u∗)) − A(u∗))dt(y − u∗) + A(u∗)(y − u∗).

Consequently, we find

‖H(y)‖ �
∥∥∥
∫ 1

0
(A(u∗ + t(y − u∗)) − A(u∗))dt(y − u∗)

∥∥∥ + ‖A(u∗)(y − u∗)‖

� K

p + 1
‖y − u∗‖p+1 + 2δ‖y − u∗‖.

(iv) Due to the following facts:

y − u∗ − A(u)−1H(y)

= −A(u)−1
(
H(y) − H(u∗) − A(u∗)(y − u∗)

)
+ A(u)−1

(
A(u) − A(u∗)

)
(y − u∗)

= −A(u)−1
∫ 1

0

(
A(u∗ + t(y − u∗)) − A(u∗)

)
dt(y − u∗)

+ A(u)−1
(
A(u) − A(u∗)

)
(y − u∗),

we have finally,

‖y − u∗ − Aλ(u)−1H(y)‖

� ‖ − A(u)−1
∫ 1

0

(
A(u∗ + t(y − u∗)) − A(u∗)

)
dt(y − u∗)‖

+ ‖A(u)−1
(
A(u) − A(u∗)

)
(y − u∗)‖

� ‖A(u)−1‖
(∫ 1

0
‖(A(u∗ + t(y − u∗)) − A(u∗)‖dt + ‖(A(u) − A(u∗)‖

)
‖y − u∗‖
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� γ

1 − γ K‖u − u∗‖p

(
K

p + 1
‖y − u∗‖p + K‖u − u∗‖p

)
‖y − u∗‖.

The proof of Lemma 2 is completed.

Theorem 1 Under the assumptions of Lemma 2, denote 
 = min {α, β} and � =
max {|1 − α|, |1 − β|}, suppose r ∈ (0, r0), define r0 := min {r1, r2, r3}, where

r1 =
(

(1 + ω2)


2γ (1 + ω)[(ω + β)Kw + (βω + 1)Kt ]
) 1

p

,

r2 =
⎛
⎝ τθ(1 + ω2)


2γ (1 + ω)
(
[(�ω + 1) + (1 + τθ)(ω + β)]Kw + [(αω + �) + (1 + τθ)(βω + 1)]Kt

)
⎞
⎠

1
p

,

r3 =
(
1 − 2δγ [(τ + 1)θ ]ν∗

4Kγ

) 1
p

with ν∗ = min {l∗,m∗} , l∗ = lim infk→∞ lk, m∗ = lim infk→∞ mk , and the quantity ν∗
satisfies

ν∗ > −
⌊

ln(2δγ )

ln((τ + 1)θ)

⌋
,

where the symbol �·� is used to denote the smallest integer no less than the corresponding
real number τ ∈ (0, 1−θ

θ
) a predetermined positive constant and

θ ≡ θ(α, β, u∗) = ‖Q(α, β, u∗)‖ < 1

with α, β satisfying 0 < αβ < α+1 < αβ
1−ρ(W̃ (u∗)−1 T̃ (u∗))

2 +2. Then, for any u ∈ N(u∗, r)
and any sequences {lk}∞k=0, {mk}∞k=0 of positive integers, the iteration sequence {uk}∞k=0
generated by theMN-PAGSORmethod iswell-defined,andhence converges to u∗. In addition,
the following inequality holds:

lim sup
k→∞

‖uk − u∗‖ 1
k � g(r p0 ; ν∗)2,

where, when z ∈ (0, r) and ι > ν∗, then

g(z p, ι) = γ

1 − γ Kzp
(
3Kzp + 2δ[(τ + 1)θ ]ι) ,

‖Qω(α, β, u)‖ � (τ + 1)θ < 1.

Proof First of all, by making use of the inverse matrix

Z−1
ω =

(
ωI I
−I ωI

)−1

=
(

ω
1+ω2 I − 1

1+ω2 I
1

1+ω2 I
ω

1+ω2 I

)
,

we have

‖ Ã(u∗)−1‖ = ‖(ZA(u∗))−1‖ � ‖A(u∗)‖−1‖Z‖−1

� γ

∥∥∥∥
(

ω
1+ω2 I − 1

1+ω2 I
1

1+ω2 I
ω

1+ω2 I

)∥∥∥∥
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� γ
(∥∥∥∥

(
ω

1+ω2 I O
O ω

1+ω2 I

)∥∥∥∥ +
∥∥∥∥
(

O − 1
1+ω2 I

1
1+ω2 I O

)∥∥∥∥
)

� γ

(
ω

1 + ω2 + 1

1 + ω2

)
= γ

1 + ω

1 + ω2 .

Based on (26) and the inequality ‖Qω(α, β, u∗)‖ � ϑ(α, β, u∗) < 1 [30], the boundedness
condition implies

‖Bω(α, β, u∗)−1‖ = ‖(I − Qω(α, β, u∗)) Ã(u∗)−1‖
� ‖I − Qω(α, β, u∗)‖‖ Ã(u∗)−1‖
� (1 + ‖Qω(α, β, u∗)‖)‖ Ã(u∗)−1‖ � 2γ

1 + ω

1 + ω2 .

From the Hölder condition, we obtain

‖W̃ (u) − W̃ (u∗)‖ = ‖ωW (u) + T (u) − ωW (u∗) − T (u∗)‖
� ω‖W (u) − W (u∗)‖ + ‖T (u) − T (u∗)‖
� ωKw‖u − u∗‖p + Kt‖u − u∗‖p,

‖T̃ (u) − T̃ (u∗)‖ = ‖ωT (u) − W (u) − ωT (u∗) + W (u∗)‖
� ω‖T (u) − T (u∗)‖ + ‖W (u) − W (u∗)‖
� ωKt‖u − u∗‖p + Kw‖u − u∗‖p.

Furthermore, according to Assumptions (A2), two estimates are produced as follows:

‖Bω(α, β, u) − Bω(α, β, u∗)‖

=
∥∥∥∥
(

1
α
I O

O 1
β
I

)(
W̃ (u) O
β T̃ (u) W̃ (u)

)
−

(
1
α
I O

O 1
β
I

)(
W̃ (u∗) O
β T̃ (u∗) W̃ (u∗)

)∥∥∥∥

�
∥∥∥∥
(

1
α
I O

O 1
β
I

)∥∥∥∥
∥∥∥∥
(

W̃ (u) − W̃ (u∗) O
β(T̃ (u) − T̃ (u∗)) W̃ (u) − W̃ (u∗)

)∥∥∥∥

�
∥∥∥∥
(

1
α
I O

O 1
β
I

)∥∥∥∥
[∥∥∥∥

(
W̃ (u) − W̃ (u∗) O

O W̃ (u) − W̃ (u∗)

)∥∥∥∥ +
∥∥∥∥
(

O O
β(T̃ (u) − T̃ (u∗)) O

)∥∥∥∥
]

� max

{
1

α
,
1

β

} [‖W̃ (u) − W̃ (u∗)‖ + β‖T̃ (u) − T̃ (u∗)‖
]

� 1




(
ωKw‖u − u∗‖p + Kt‖u − u∗‖p + βωKt‖u − u∗‖p + βKw‖u − u∗‖p)

=
(

ω + β



Kw + βω + 1



Kt

)
‖u − u∗‖p,

‖Cω(α, β, u) − Cω(α, β, u∗)‖

=
∥∥∥∥
(

1
α
I O

O 1
β
I

)(
(1 − α)W̃ (u) αT̃ (u)

O (1 − β)W̃ (u)

)
−

(
1
α
I O

O 1
β
I

)(
(1 − α)W̃ (u∗) αT̃ (u∗)

O (1 − β)W̃ (u∗)

)∥∥∥∥

�
∥∥∥∥
(

1
α
I O

O 1
β
I

)∥∥∥∥
[∥∥∥∥

(
(1 − α)(W̃ (u) − W̃ (u∗)) O

O (1 − β)(W̃ (u) − W̃ (u∗))

)∥∥∥∥
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+
∥∥∥∥
(
O α(T̃ (u) − T̃ (u∗))
O O

)∥∥∥∥
]

� max

{
1

α
,
1

β

} [
max {|1 − α|, |1 − β|} ‖W̃ (u) − W̃ (u∗)‖ + α‖T̃ (u) − T̃ (u∗)‖

]

� 1




(
�ωKw‖u − u∗‖p + �Kt‖u − u∗‖p + αωKt‖u − u∗‖p + Kw‖u − u∗‖p)

=
(

�ω + 1



Kw + αω + �



Kt

)
‖u − u∗‖p .

If r satisfies

2γ
1 + ω

1 + ω2

[(
ω + β



Kw + βω + 1



Kt

)
‖u − u∗‖p

]
< 1,

then, by Lemma 1, we can further obtain

‖Bω(α, β, u)−1‖ = ‖Bω(α, β, u∗)−1‖
1 − ‖Bω(α, β, u∗)−1‖‖Bω(α, β, u∗) − Bω(α, β, u)‖

�
2γ 1+ω

1+ω2

1 − 2γ 1+ω
1+ω2

[(
ω+β



Kw + βω+1



Kt

)
‖u − u∗‖p

]

= 2γ (1 + ω)

1 + ω2 − 2γ (1 + ω)
[(

ω+β



Kw + βω+1



Kt

)
‖u − u∗‖p

] .

Since r < r1, the following inequality holds:

‖u − u∗‖p <
(1 + ω2)


2γ (1 + ω) [(ω + β) Kw + (βω + 1) Kt ]
.

Therefore,

‖Qω(α, β, u) − Qω(α, β, u∗)‖
= ‖Bω(α, β, u)−1(Cω(α, β, u) − Cω(α, β, u∗))

+ (Bω(α, β, u)−1 − Bω(α, β, u∗)−1)Cω(α, β, u∗)‖
� ‖Bω(α, β, u)−1‖

·
(
‖Cω(α, β, u) − Cω(α, β, u∗)‖ + ‖Bω(α, β, u) − Bω(α, β, u∗)‖‖Qω(α, β, u∗)‖

)

�
2γ 1+ω

1+ω2

[(
�ω+1



Kw + �+αω



Kt

) ‖u − u∗‖p +
(

ω+β



Kw + βω+1



Kt

)
‖u − u∗‖p

]

1 − 2γ 1+ω
1+ω2

[(
ω+β



Kw + βω+1



Kt

)
‖u − u∗‖p

]

=
2γ 1+ω

1+ω2

(
(�+1)ω+β+1



Kw + (α+β)ω+�+1



Kt

)
‖u − u∗‖p

1 − 2γ 1+ω
1+ω2

[(
ω+β



Kw + βω+1



Kt

)
‖u − u∗‖p

] .

Moreover, to establish the inequality ‖Qω(α, β, u) − Qω(α, β, u∗)‖ � τθ , the following
inequality holds:

2γ 1+ω
1+ω2

(
(�+1)ω+β+1



Kw + (α+β)ω+�+1



Kt

)
‖u − u∗‖p

1 − 2γ 1+ω
1+ω2

[(
ω+β



Kw + βω+1



Kt

)
‖u − u∗‖p

] � τθ,
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so it follows that

‖u − u∗‖p

� τθ(1 + ω2)(1 + ω)−1


2γ [(�ω + 1) + (1 + τθ)(ω + β)] Kw + [(αω + �) + (1 + τθ)(βω + 1)] Kt
.

Thus, when r < min {r1, r2}, for any u ∈ N(u∗, r), we have

‖Qω(α, β, u)‖ � ‖Qω(α, β, u)−Qω(α, β, u∗)‖+‖Qω(α, β, u∗)‖ � τθ+θ = (τ+1)θ < 1.

Next, the error of the iterative sequence{uk}∞k=0 generated by the MN-PAGSOR method can
be estimated using (27) and Lemma 2, yielding

‖uk+ 1
2

− u∗‖ = ‖uk − u∗ − (I − Qω(α, β, uk)
lk )A(uk)

−1H(uk)‖
� ‖uk − u∗ − A(uk)

−1H(uk)‖ + ‖Qω(α, β, uk)
lk‖‖A(uk)

−1H(uk)‖
� γ

1 − γ K‖uk − u∗‖p

( K

p + 1
‖uk − u∗‖p+1 + K‖uk − u∗‖p+1

)

+ γ [(τ + 1)θ ]lk
1 − γ K‖uk − u∗‖p

(
K

p + 1
‖uk − u∗‖p+1 + 2δ‖uk − u∗‖

)

� γ K (p + 2)

(p + 1)(1 − γ K‖uk − u∗‖p)
‖uk − u∗‖p+1

+ γ [(τ + 1)θ ]lk
1 − γ K‖uk − u∗‖p

( K

p + 1
‖uk − u∗‖p+1 + 2δ‖uk − u∗‖

)

� γ K (p + 2) + γ K [(τ + 1)θ ]lk
(p + 1)(1 − γ K‖uk − u∗‖p)

‖uk − u∗‖p+1

+ 2δγ [(τ + 1)θ ]lk
1 − γ K‖uk − u∗‖p

‖uk − u∗‖

= γ

1 − γ K‖uk − u∗‖p

·
{
K (p + 2 + [(τ + 1)θ ]lk )

p + 1
‖uk − u∗‖p + 2δ[(τ + 1)θ ]lk

}
‖uk − u∗‖

:= g(‖uk − u∗‖p, lk)‖uk − u∗‖ < ‖uk − u∗‖.
Here, we use the notation

g(z p, ι) = γ

1 − γ Kzp
{3Kzp + 2δ[(τ + 1)θ ]ι}.

Considering the assumption that

γ {3Kr p0 + 2δ[(τ + 1)θ ]ν∗ } < 1 − γ Kr p0 ,

which is equivalent to

r0 <

{
1 − 2δγ [(τ + 1)θ ]ν∗

4Kγ

} 1
p := r3.

From the fact that uk ∈ N(u∗, r), we can conclude that the following inequality holds:

g(‖uk − u∗‖p, lk) � γ

1 − γ Kr p0

{
3Kr p0 + 2δ[(τ + 1)θ ]ν∗

}
= g(r p0 , ν∗) < 1.
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Therefore, when r < r3
‖uk+ 1

2
− u∗‖ < ‖uk − u∗‖.

Similarly,

‖uk+1 − u∗‖
=

∥∥∥uk+ 1
2

− u∗ − (I − Qω(α, β, uk)
mk )A(uk)

−1H(uk+ 1
2
)

∥∥∥
�

∥∥∥uk+ 1
2

− u∗ − A(uk)
−1H

(
uk+ 1

2

)
‖ + ‖A(uk)

−1H(uk+ 1
2
)

∥∥∥
� γ

1 − γ K‖uk − u∗‖p

( K

p + 1
‖uk+ 1

2
− u∗‖p+1 + K‖uk − u∗‖p

)
‖uk+ 1

2
− u∗‖

+ [(τ + 1)θ ]mkγ

1 − γ K‖uk − u∗‖p

(
K

p + 1
‖uk+ 1

2
− u∗‖p+1 + 2δ‖uk+ 1

2
− u∗‖

)

� γ K

1 − γ K‖uk − u∗‖P

{
1 + [(τ + 1)θ ]mk

p + 1
‖uk+ 1

2
− u∗‖p+1

}

+ γ

1 − γ K‖uk − u∗‖P

{
K‖uk − u∗‖p + 2δ[(τ + 1)θ ]mk

}
‖uk+ 1

2
− u∗‖

� γ g(‖uk − u∗‖p, lk)

1 − γ K‖uk − u∗‖p
‖uk − u∗‖

{g(‖uk − u∗‖p, lk)p(1 + [(τ + 1)θ ]mk ) + p + 1

p + 1

· K‖uk − u∗‖p + 2δ[(τ + 1)θ ]mk
}

� γ g(‖uk − u∗‖p, lk)

1 − γ K‖uk − u∗‖p
‖uk − u∗‖

{
[(2g(‖uk − u∗‖p, lk)

p + 1)]K‖uk − u∗‖p

+ 2δ[(τ + 1)θ ]mk
}

� γ g(‖uk − u∗‖p, lk)

1 − γ K‖uk − u∗‖p

{
3K‖uk − u∗‖p + 2δ[(τ + 1)θ ]mk

}
‖uk − u∗‖

� g(‖uk − u∗‖p, lk)g(‖uk − u∗‖p,mk)‖uk − u∗‖
< g(r p0 , ν∗)2‖uk − u∗‖ < ‖uk − u∗‖.

That is

‖uk+1 − u∗‖ < ‖uk − u∗‖.
For arbitrary u0 ∈ N(u∗, r) ⊂ D0, the following inequality holds:

0 � · · · < ‖uk+1 − u∗‖ < ‖uk − u∗‖ < · · · < ‖u0 − u∗‖ < r .

Consequently, the iterative sequence {uk}∞k=0 is well-posed and converges to u∗. Additionally,
from ‖uk+1−u∗‖ < g(r p0 , ν∗)2‖uk −u∗‖, it follows that ‖uk −u∗‖ < g(r p0 , ν∗)2k‖u0−u∗‖,
the following inequality is correct:

‖uk − u∗‖ 1
k < g(r p0 , ν∗)2‖u0 − u∗‖ 1

k ,

as k → ∞, lim supk→∞‖uk − u∗‖ 1
k � g(r p0 , ν∗)2.
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Table 2 Numerical results of the modified Newton methods for σ = 0.1, ρ = 1

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 7.800 9E−11 0.120 584 5 50

MN-GSOR 2.675 8E−12 0.098 382 5 38

MN-AGSOR 1.420 6E−11 0.078 997 5 30

MN-PAGSOR 5.562 1E−11 0.046 000 3 11

40 MN-DGPMHSS 8.147 5E−11 0.195 103 5 50

MN-GSOR 1.577 0E−11 0.164 509 5 38

MN-AGSOR 1.491 3E−11 0.155 867 5 30

MN-PAGSOR 2.580 8E−11 0.077 629 3 10

50 MN-DGPMHSS 7.362 4E−11 0.335 193 5 50

MN-GSOR 1.743 3E−11 0.289 515 5 38

MN-AGSOR 3.989 1E−11 0.284 656 5 30

MN-PAGSOR 1.131 8E−11 0.154 249 3 11

100 MN-DGPMHSS 1.775 6E−11 4.202 227 5 51

MN-GSOR 2.176 7E−11 3.628 505 5 38

MN-AGSOR 2.998 9E−11 3.430 989 5 30

MN-PAGSOR 1.528 8E−11 1.945 217 3 11

Table 3 Numerical results of the modified Newton methods for σ = 0.2, ρ = 1

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 1.902 6E−11 0.121 887 7 56

MN-GSOR 1.977 0E−11 0.108 956 7 40

MN-AGSOR 5.970 4E−11 0.106 965 6 36

MN-PAGSOR 6.249 6E−11 0.055 428 4 15

40 MN-DGPMHSS 4.838 2E−11 0.227 057 7 56

MN-GSOR 2.332 6E−11 0.195 556 7 43

MN-AGSOR 9.831 7E−12 0.183 247 6 35

MN-PAGSOR 5.995 7E−11 0.076 687 4 15

50 MN-DGPMHSS 5.031 5E−11 0.412 128 7 56

MN-GSOR 2.592 1E−11 0.351 044 7 40

MN-AGSOR 5.265 4E−11 0.289 406 6 36

MN-PAGSOR 2.385 1E−11 0.166 705 4 15

100 MN-DGPMHSS 2.741 2E−11 5.373 081 7 56

MN-GSOR 3.268 3E−11 4.735 138 7 40

MN-AGSOR 4.228 7E−11 4.263 990 6 36

MN-PAGSOR 5.530 6E−11 2.826 609 4 15
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Table 4 Numerical results of the modified Newton methods for σ = 0.4, ρ = 1

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 5.114 1E−11 0.120 345 10 40

MN-GSOR 1.928 1E−11 0.118 700 9 35

MN-AGSOR 3.879 7E−11 0.095 492 8 30

MN-PAGSOR 1.369 9E−11 0.065 757 5 10

40 MN-DGPMHSS 1.155 7E−11 0.303 169 11 40

MN-GSOR 4.171 2E−11 0.241 678 10 39

MN-AGSOR 6.204 0E−12 0.195 496 8 30

MN-PAGSOR 4.746 6E−11 0.081 093 5 10

50 MN-DGPMHSS 1.802 1E−11 0.500 210 11 44

MN-GSOR 4.615 2E−11 0.474 547 10 39

MN-AGSOR 3.342 0E−11 0.353 337 8 30

MN-PAGSOR 3.249 2E−11 0.208 084 5 10

100 MN-DGPMHSS 1.204 8E−11 7.079 849 11 39

MN-GSOR 3.040 6E−11 6.072 706 9 35

MN-AGSOR 1.147 6E−11 5.293 261 8 30

MN-PAGSOR 1.704 0E−11 3.073 592 5 10

Table 5 Numerical results of the modified Newton methods for σ = 0.1, ρ = 10

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 2.031 4E−11 0.100 946 5 50

MN-GSOR 1.134 9E−11 0.085 217 5 38

MN-AGSOR 4.993 6E−11 0.077 970 5 30

MN-PAGSOR 5.510 9E−11 0.044 893 3 11

40 MN-DGPMHSS 1.489 7E−11 0.203 865 5 55

MN-GSOR 1.418 1E−11 0.176 482 5 38

MN-AGSOR 4.185 1E−11 0.156 505 5 30

MN-PAGSOR 6.346 7E−11 0.084 406 3 11

50 MN-DGPMHSS 1.075 7E−11 0.340 376 5 50

MN-GSOR 1.574 0E−11 0.304 275 5 47

MN-AGSOR 5.913 6E−11 0.262 748 5 30

MN-PAGSOR 4.696 9E−11 0.148 914 3 11

100 MN-DGPMHSS 1.614 2E−11 4.259 832 5 52

MN-GSOR 3.724 0E−12 3.705 591 5 47

MN-AGSOR 3.043 5E−11 3.692 982 5 30

MN-PAGSOR 6.016 5E−11 2.057 005 3 11
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Table 6 Numerical results of the modified Newton methods for σ = 0.2, ρ = 10

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 4.365 4E−11 0.118 764 7 56

MN-GSOR 1.656 4E−11 0.109 521 7 40

MN-AGSOR 2.157 2E−12 0.090 571 6 34

MN-PAGSOR 4.917 8E−11 0.052 512 4 15

40 MN-DGPMHSS 6.474 6E−11 0.227 317 7 56

MN-GSOR 2.092 0E−11 0.200 483 7 40

MN-AGSOR 2.170 2E−11 0.177 334 6 36

MN-PAGSOR 5.065 4E−11 0.098 589 4 15

50 MN-DGPMHSS 1.964 4E−11 0.422 523 7 56

MN-GSOR 7.892 2E−12 0.370 530 7 45

MN-AGSOR 2.334 2E−11 0.306 032 6 36

MN-PAGSOR 4.896 8E−11 0.188 928 4 15

100 MN-DGPMHSS 2.742 1E−11 5.427 040 7 56

MN-GSOR 6.309 9E−12 5.280 223 7 40

MN-AGSOR 1.581 4E−11 4.196 347 6 36

MN-PAGSOR 4.722 5E−11 2.579 745 4 15

Table 7 Numerical results of the modified Newton methods for σ = 0.4, ρ = 10

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 1.002 0E−11 0.113 105 10 35

MN-GSOR 7.306 0E−11 0.105 737 9 35

MN-AGSOR 7.239 4E−11 0.096 697 8 31

MN-PAGSOR 1.273 4E−11 0.062 436 5 10

40 MN-DGPMHSS 1.700 8E−11 0.262 789 11 40

MN-GSOR 3.748 0E−11 0.251 012 10 39

MN-AGSOR 2.886 1E−11 0.222 843 8 31

MN-PAGSOR 4.128 5E−11 0.121 071 5 10

50 MN-DGPMHSS 3.770 9E−11 0.474 582 11 44

MN-GSOR 4.290 6E−11 0.429 339 10 39

MN-AGSOR 3.130 3E−11 0.386 290 8 31

MN-PAGSOR 3.144 8E−11 0.192 462 5 10

100 MN-DGPMHSS 5.766 1E−11 7.940 930 12 44

MN-GSOR 1.160 2E−11 6.687 529 10 39

MN-AGSOR 3.300 4E−11 4.554 565 7 27

MN-PAGSOR 1.242 3E−11 3.077 437 5 10
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Table 8 Numerical results of the modified Newton methods for σ = 0.1, ρ = 200

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 2.470 6E−11 0.102 227 5 50

MN-GSOR 1.469 4E−11 0.085 781 5 38

MN-AGSOR 3.134 9E−11 0.076 307 5 30

MN-PAGSOR 9.764 0E−11 0.044 492 3 11

40 MN-DGPMHSS 1.594 9E−11 0.210 889 5 58

MN-GSOR 1.097 6E−11 0.166 603 5 38

MN-AGSOR 3.655 6E−11 0.129 767 5 30

MN-PAGSOR 3.484 3E−11 0.082 394 3 11

50 MN-DGPMHSS 6.714 1E−11 0.333 962 5 50

MN-GSOR 1.912 2E−12 0.305 178 5 45

MN-AGSOR 7.607 4E−12 0.279 037 5 30

MN-PAGSOR 3.905 6E−11 0.142 852 3 11

100 MN-DGPMHSS 1.813 2E−11 4.234 100 5 55

MN-GSOR 1.420 8E−11 3.841 254 5 38

MN-AGSOR 1.387 9E−11 3.597 929 5 30

MN-PAGSOR 3.542 4E−11 2.204 937 3 11

Table 9 Numerical results of the modified Newton methods for σ = 0.2, ρ = 200

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 8.423 9E−11 0.124 350 7 56

MN-GSOR 1.952 8E−11 0.100 784 6 33

MN-AGSOR 6.076 2E−12 0.088 052 6 34

MN-PAGSOR 5.773 4E−11 0.062 059 4 15

40 MN-DGPMHSS 3.888 6E−12 0.233 740 7 56

MN-GSOR 4.214 4E−11 0.188 127 6 44

MN-AGSOR 1.382 3E−11 0.182 406 6 36

MN-PAGSOR 5.943 8E−11 0.082 677 4 15

50 MN-DGPMHSS 1.309 7E−11 0.433 615 7 62

MN-GSOR 8.763 1E−11 0.384 466 6 44

MN-AGSOR 2.005 5E−11 0.309 260 6 36

MN-PAGSOR 4.974 1E−11 0.193 905 4 15

100 MN-DGPMHSS 4.802 2E−12 6.409 312 8 80

MN-GSOR 3.996 6E−12 5.785 244 8 46

MN-AGSOR 3.181 2E−11 4.295 026 6 36

MN-PAGSOR 5.774 0E−11 2.592 212 4 16
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Table 10 Numerical results of the modified Newton methods for σ = 0.4, ρ = 200

N Method Error CPU time /s Outer IT Inner IT

30 MN-DGPMHSS 3.214 9E−11 0.137 166 11 44

MN-GSOR 4.001 6E−11 0.117 106 8 30

MN-AGSOR 3.619 3E−11 0.095 203 7 27

MN-PAGSOR 4.195 4E−12 0.065 514 5 10

40 MN-DGPMHSS 7.011 2E−11 0.275 775 11 43

MN-GSOR 2.792 3E−11 0.251 744 10 39

MN-AGSOR 1.969 7E−11 0.190 349 7 27

MN-PAGSOR 1.474 6E−11 0.098 116 5 10

50 MN-DGPMHSS 5.224 3E−11 0.537 783 12 48

MN-GSOR 5.518 3E−11 0.443 670 10 39

MN-AGSOR 2.708 3E−11 0.319 982 7 27

MN-PAGSOR 8.732 5E−12 0.204 236 5 10

100 MN-DGPMHSS 2.957 0E−11 6.796 726 10 54

MN-GSOR 3.757 2E−11 6.374 288 10 39

MN-AGSOR 4.639 7E−11 4.707 271 7 27

MN-PAGSOR 9.818 5E−11 2.469 681 4 8

4 Numerical Results

In this section, we list two frequently encountered complex nonlinear systems and compute
their numerical solutions by using the respective methods. The experimental results are then
compared to verify the effectiveness and feasibility of our approach. The known methods we
have experimented with are MN-GSOR, MN-DGPMHSS, and MN-AGSORmethods which
utilize the modified Newton method as the external iteration and GSOR, DGPMHSS, and
AGSOR as the internal iterations. To ensure the reliability of the results, we have compared
not only the CPU time consumption of the algorithms, but also their inner and outer iteration
steps. The optimal parameters of each method and detailed information on computational
results are listed below for comparison. In the tables below, the error estimation is denoted as
Error, CPU time in seconds is referred to as CPU time (s), outer iteration steps are indicated
as Outer IT, and inner iteration steps as Inner IT. The numerical experiments demonstrate
that our method outperforms the MN-GSOR, MN-DGPMHSS, and MN-AGSOR methods.
All experiments are implemented on MATLAB [version 9.12.0.2039608 (R2022a)] and run
on a personal computer with a configuration of 8-core Central Processing Unit [Apple M2]
and 16.00 GB memory.

Example 1 Consider the following nonlinear equations:⎧⎨
⎩
ut − (α1 + iβ1)(uxx + uyy) + ρu = −(α2 + iβ2)u

4
3 , in (0, 1] × �,

u(0, x, y) = u0(x, y), in �,

u(t, x, y) = 0, on (0, 1] × ∂�,

where � = (0, 1) × (0, 1), and ∂� is its boundary. The coefficients α1 = α2 = 1, β1 =
β2 = 0.5, and ρ is a positive constant used to control the reaction term. By discretizing the
above problem on equidistant grids 
t = h = 1

N+1 (N is a given positive constant), at each
temporal step of the implicit scheme, we should consider a system of nonlinear equations (1)
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Table 12 Numerical results of the modified Newton methods for σ = 0.1, ρ = 10

N Method Error CPU time /s Outer IT Inner IT

120 MN-DGPMHSS 9.192 2E−11 13.917 641 5 80

MN-GSOR 7.118 3E−12 11.710 870 5 34

MN-AGSOR 1.081 8E−12 11.689 832 5 39

MN-PAGSOR 3.843 5E−11 7.320 436 3 9

130 MN-DGPMHSS 1.864 6E−11 22.443 281 5 90

MN-GSOR 1.409 9E−12 20.923 777 5 44

MN-AGSOR 1.751 4E−12 20.444 629 5 39

MN-PAGSOR 8.551 4E−11 11.899 742 3 9

Table 13 Numerical results of the modified Newton methods for σ = 0.2, ρ = 10

N Method Error CPU time /s Outer IT Inner IT

120 MN-DGPMHSS 5.692 9E−12 18.841 101 8 96

MN-GSOR 2.398 2E−11 15.144 429 6 29

MN-AGSOR 5.205 9E−11 14.257 997 6 59

MN-PAGSOR 4.554 3E−12 9.007 631 5 10

130 MN-DGPMHSS 5.382 2E−11 30.562 848 7 98

MN-GSOR 3.753 5E−11 25.115 404 6 30

MN-AGSOR 1.332 9E−11 24.472 399 6 36

MN-PAGSOR 1.607 7E−11 19.219 866 5 10

Table 14 Numerical results of the modified Newton methods for σ = 0.4, ρ = 10

N Method Error CPU time /s Outer IT Inner IT

120 MN-DGPMHSS 5.823 5E−11 25.716 952 12 72

MN-GSOR 7.066 5E−11 22.386 256 9 29

MN-AGSOR 6.010 1E−11 22.235 619 9 36

MN-PAGSOR 2.038 1E−12 10.040 248 5 10

130 MN-DGPMHSS 7.765 0E−11 43.451 126 11 66

MN-GSOR 1.150 0E−11 39.995 351 10 24

MN-AGSOR 4.246 7E−11 39.378 616 10 40

MN-PAGSOR 1.607 7E−11 19.532 667 5 10

of the form
F(u) = Mu + (α2 + iβ2)h
t�(u) = 0,

where

M = h(1 + ρ
t)In + (α1 + iβ1)

t

h
(AN ⊗ IN + IN ⊗ AN ),

�(u) =
(
u

4
3
1 , u

4
3
2 , · · · , u

4
3
n

)T

,
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Table 15 Numerical results of the modified Newton methods for σ = 0.1, ρ = 200

N Method Error CPU time /s Outer IT Inner IT

120 MN-DGPMHSS 2.981 8E−11 13.163 033 5 80

MN-GSOR 3.182 7E−12 12.657 697 5 34

MN-AGSOR 7.954 6E−13 11.231 970 5 40

MN-PAGSOR 1.874 4E−11 7.775 676 3 11

130 MN-DGPMHSS 7.271 6E−11 22.075 086 5 90

MN-GSOR 3.675 4E−12 20.795 815 5 44

MN-AGSOR 2.621 3E−12 20.284 470 5 38

MN-PAGSOR 7.244 0E−11 12.453 950 3 10

Table 16 Numerical results of the modified Newton methods for σ = 0.2, ρ = 200

N Method Error CPU time /s Outer IT Inner IT

120 MN-DGPMHSS 3.969 7E−11 17.731 372 7 98

MN-GSOR 3.106 8E−12 14.671 533 6 28

MN-AGSOR 2.558 6E−11 13.716 425 6 47

MN-PAGSOR 2.968 1E−11 9.845 576 4 9

130 MN-DGPMHSS 4.502 1E−12 33.451 363 8 96

MN-GSOR 9.060 3E−11 25.122 212 6 27

MN-AGSOR 2.123 1E−11 24.255 072 6 47

MN-PAGSOR 2.846 9E−11 16.227 290 4 9

Table 17 Numerical results of the modified Newton methods for σ = 0.4, ρ = 200

N Method Error CPU time /s Outer IT Inner IT

120 MN-DGPMHSS 1.670 0E−11 28.345 480 13 78

MN-GSOR 4.142 6E−11 24.110 517 10 24

MN-AGSOR 6.177 0E−11 24.006 785 11 59

MN-PAGSOR 1.321 2E−11 12.279 764 5 10

130 MN-DGPMHSS 7.124 3E−11 45.747 911 11 88

MN-GSOR 4.175 5E−11 36.676 261 9 26

MN-AGSOR 1.949 8E−11 39.796 555 10 59

MN-PAGSOR 1.353 2E−11 19.451 493 5 10

and AN is a tridiagonal matrix of the following form:

AN = tridiag(−1, 2,−1) ∈ R
N×N .

Here, the vector u = (u1, u2, · · · , un)T, n = N 2, and ⊗ represents the Kronecker product.

We choose u0 = 1 to start the numerical computation and use the following stopping criterion
for the outer iteration:

‖H(uk)‖2
‖H(u0)‖2 � 10−10.
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To control the accuracy of the inner iteration, both σk and σ̃k are set to be σ . As a result, we
need the following inequalities:

‖H̃(uk) + Ã(uk)dk,lk‖
‖H̃(uk)‖

� σ,

∥∥∥∥H̃
(
uk+ 1

2

)
+ Ã(uk)hk,mk

∥∥∥∥∥∥∥∥H̃
(
uk+ 1

2

) ∥∥∥∥
� σ.

In Table 1, we have listed the optimal parameter α for the MN-GSOR method, (α, β) for
MN-DGPMHSS and MN-AGSOR methods, and (α, β, ω) for the MN-PAGSOR method.
These optimal parameters obtained from each of the methods in the numerical experiments
listed here are used to compare their performance. As for a one-parameter method, there
is conducted theoretical analysis for the optimal parameter; see, for example, [6, 7, 9] and
references therein. But for any kind of multi-parameter method, there is either theoretical
analysis for optimal parameters which is too complicated to be available, or actually no such
theoretical analysis. So, we directly use numerical experimentation to determine the choice
of optimal parameters. Furthermore, the numerical results show us that, as the size of the
nonlinear system problem increases, the optimal parameters of the MN-PAGSOR method
remain relatively stable.

In our numerical experiments, the size of the discretization N , the control parameter ρ,
and the inner tolerance σ are chosen unified as: N = 30, 40, 50, 100, ρ = 1, 10, 200, and
σ = 0.1, 0.2, 0.4.

In Tables 2–10, the four methods MN-GSOR, MN-DGPMHSS, MN-AGSOR, and MN-
PAGSOR are compared for efficiency. Our numerical results in these tables demonstrate
that the proposed MN-PAGSOR method has a smaller computation time than that of the
other three methods. Additionally, the MN-PAGSOR method requires fewer inner and outer
iteration steps. It can also be observed that the iteration steps of the MN-PAGSOR method
remain relatively stable as the problem size increases. In other words, the MN-PAGSOR
method converges more quickly compared to other methods. It is an effective improvement
and one gets a promising approach.

Example 2 Consider the following two-dimensional complex nonlinear convection-diffusion
equation:

{−(α1 + iβ1)(uxx + uyy) + ρu = −(α2 + iβ2)ueu, (x, y) in �,

u(x, y) = 0, (x, y) on ∂�,

where � = (0, 1)× (0, 1), and ∂� is its boundary. The coefficients α1 = 1, α2 = −1, β1 =
β2 = 0.5, and ρ is a positive constant used to control the reaction term. By discretizing above
problem on equidistant grids h = 1

N+1 (N is a given positive constant), we should consider
a system of nonlinear equations (1) of the form

F(u) = Mu + (α2 + iβ2)h
2φ(u) = 0,

where

M = ρh2 In + (α1 + iβ1)(AN ⊗ IN + IN ⊗ AN ),

φ(u) = (u1e
u1 , u2e

u2 , . . . , une
un )T
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with the vector u = (u1, u2, · · · , un)T, n = N 2. The symbols AN , N , and ⊗ are consistent
with Example 1.

Table 11 lists the optimal parameters for the four methods we mentioned before.
In our numerical experiments, the size of the discretization N , the control parameter ρ,

and the inner tolerance σ are chosen unified as: N = 120, 130, ρ = 10, 200, and σ =
0.1, 0.2, 0.4.

In Tables 12–17, the four methods MN-GSOR, MN-DGPMHSS, MN-AGSOR, and
MN-PAGSOR are compared for efficiency. We observe that our MN-PAGSOR method con-
sistently outperforms the MN-GSOR, MN-DGPMHSS, and MN-AGSOR methods in terms
of inner iteration steps, outer iteration steps, and CPU time under the same problem size.
This highlights the superior performance of our proposed MN-PAGSOR algorithm in solv-
ing a class of complex nonlinear systems with complex symmetric Jacobians. Furthermore,
the numerical results indicate that the iteration steps of the MN-PAGSOR method remain
relatively stable as the problem size varies, demonstrating its robust stability. These findings
reinforce the effectiveness and promising potential of the MN-PAGSOR method.

5 Conclusion

In this study, we propose the modified Newton-PAGSOR method for a class of large sparse
systems of nonlinear equations with complex symmetric Jacobian matrices. Additionally,
we investigate the local convergence of the MN-PAGSOR method under the Hölder conti-
nuity conditions. Numerical results demonstrate the feasibility and effectiveness of the new
method, showing that MN-PAGSOR outperforms other methods in terms of computational
time and number of iterations. Moreover, our numerical experiments reveal that the optimal
parameters selected for MN-PAGSOR are more stable compared to other methods. However,
further research is still needed to investigate the semi-local convergence analysis and optimal
selection of multiple parameters, which remains an interesting problem for future study.
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