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Abstract
In this work, by applying the minimum residual technique to the block-diagonal and anti-
block-diagonal splitting (BAS) iteration scheme, an iteration method named minimum
residual BAS (MRBAS) is proposed to solve a two-by-two block system of nonlinear equa-
tions arising from the reformulation of the system of absolute value equations (AVEs). The
theoretical analysis shows that theMRBAS iterationmethod is convergent under suitable con-
ditions. Numerical results demonstrate the feasibility and the effectiveness of the MRBAS
iteration method.

Keywords Absolute value equations (AVEs) · Block-diagonal and anti-block-diagonal
splitting (BAS) · Minimum residual · Minimum residual BAS (MRBAS) iteration ·
Convergence analysis

Mathematics Subject Classification 65H10 · 65F10

1 Introduction

Consider the generalized system of absolute value equations (GAVEs) of the form

Ax + B|x | = b, (1)

where A, B ∈ R
n×n and b ∈ R

n are given and |x | = (|x1| , |x2| , · · · , |xn |)T ∈ R
n denotes

the componentwise absolute value of the unknown vector x ∈ R
n . The GAVE (1) was

formally introduced by Rohn [29] and further investigated in [8, 19, 25]. Moreover, the
GAVE (1) is a special case of the system of weakly nonlinear equations, the latter has been
studied extensively and deeply early in [1, 2, 6, 27]. When we choose B being the negative
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identity matrix, i.e., B = −I , the GAVE is reduced to the system of absolute value equations
(AVE) of the form

Ax − |x | = b. (2)

The existence and uniqueness of the solution of (2) were discussed in Refs. [25, 29]. In the
following, we suppose that the solution of (2) is existent and unique.

It is well known that the AVE (2) can be derived from the linear complementarity problem
(LCP) [3, 9, 10, 25], which has broad applications in many areas of scientific computing
and engineering applications such as linear programming, quadratic programming, bimatrix
games, quasi-complementarity problems, and so on [12, 22, 25, 29, 35]. Owing to the exis-
tence of the nonlinear and non-differentiable term |x |, the AVE (2) is an NP hard problem.
If |x | does not exist, the AVE (2) is reduced to a system of linear equations, which can be
solved by direct or iterative methods; see [7].

In the past two decades, the AVE (2) has attracted increasing interest from various
researchers due to its simple and special structure. Many iteration methods, such as the
successive linearization method [22], the sign accord method [30], the hybrid method [24],
the optimization method [28], and so on, are employed to approximate the solution of the
AVE (2). In 2009, stimulated by the idea of the Newtonmethod,Mangasarian [23] introduced
the subgradient for the non-differentiable term |x | and presented a generalized Newton (GN)
iteration method of the form

(A − D(x (k)))x (k+1) = b,

where D(x) = diag(sgn(x)), x ∈ R
n , sgn(x) denotes a vector which components equal to

−1, 0, or 1 depending on whether the corresponding component of the vector x is negative,
zero, or positive. Thereafter, some scholars establishedmore efficient iterationmethods based
on the GN iteration, for example, the generalized Traubs method [15], the modified GN
method [20], and the relaxed GN method [11]. However, these iteration methods require
expensive computing costs in actual computations because the coefficient matrix changes
with the iteration steps. In 2014, Rohn et al. [31] proposed a more practical Picard iteration
method to solve the AVE (2). That is

Ax (k+1) = |x (k)| + b, k = 0, 1, 2, · · · . (3)

Compared with the GN methods, the coefficient matrix of the Picard iteration scheme (3)
is no longer changed with the iteration steps. Hence, the computing cost in each step of the
Picard iteration is cheaper than those of the GN methods. More Picard iteration methods
used for solving the AVE can be seen in Refs. [13, 26, 32]. In addition, one of the important
sources of the problem (2) is the modulus-based fixed-point reformulation introduced and
analyzed in [3]. The iteration scheme in (3) and most of the schemes mentioned in the part
around are special cases of the methods in [2].

Recently, by equivalently reformulating the AVE (2) as a block two-by-two nonlinear
equation, Ke and Ma [18] proposed an SOR-like iteration method for solving the AVE (2).
Hereafter, other iteration methods used for solving the equivalent block two-by-two form of
the AVE (2) are also established, for example, the fixed point (FP) iteration method [17, 38],
the block-diagonal and anti-block-diagonal splitting (BAS) iteration method [21], and so on.
The BAS is closely related to the Hermitian and skew-Hermitian splitting (HSS) [5] and the
modifiedHSS (MHSS) [4]. In this work, to further improve the efficiency of the BAS iteration
method, a new iteration method is proposed by introducing a dynamic control parameter for
the BAS iteration scheme. Since the control parameter is determined byminimizing the resid-
ual norm, the new iteration method is named as the minimum residual BAS (abbreviated as
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MRBAS) iteration. This acceleration idea comes from the minimum residual HSS (MRHSS)
iteration method used for solving non-Hermitian positive definite linear systems [36]. Other
similar and important acceleration techniques, such as the minimum residual smoothing, can
be found in Refs. [14, 34].

The remainder part of this paper is organized as follows. In Sect. 2, we define the MRBAS
iteration method by introducing a control parameter for the BAS iteration scheme. In Sect. 3,
the convergence of the MRBAS iteration method for solving the system of absolute value
equations (2) is carefully discussed under suitable restrictions. In Sect. 4, numerical exper-
iments are employed to verify the feasibility and effectiveness of the MRBAS iteration
method. Finally, in Sect. 5, we give a brief conclusion for this paper.

2 TheMRBAS IterationMethod

In this section, by introducing a control parameter for the BAS iteration scheme, theMRBAS
iteration method is proposed to solve the AVE (2).

Let y = |x |. Then, the AVE (2) can be rewritten as{
Ax − y = b,

−|x | + y = 0,

which is equivalent to

Āz =
[

A −I
−D̂ I

] [
x
y

]
=

[
b
0

]
= b̄, (4)

where D̂ = D(x) = diag(sgn(x)), x ∈ R
n . The coefficient matrix Ā can be split into the

sum of a block-diagonal matrix and an anti-block-diagonal matrix, i.e.,

Ā =
[

A −I
−D̂ I

]
=

[
A 0
0 I

]
+

[
0 −I

−D̂ 0

]
.

It is easy to see that matrix Ā yields

Ā =
[

α I + A 0
0 α I + I

]
−

[
α I I
D̂ α I

]
, (5)

where α is a given positive constant such that α I + A is nonsigular.
Based on the BAS, the BAS iteration method used for solving nonlinear equation (4) can

be defined as follows.

Method 1 (TheBAS iterationmethod) [21]Letα be a given positive constant such thatα I+A
is nonsigular. Given the initial vector x (0) ∈ R

n and y(0) = |x (0)|. For k = 0, 1, 2, · · · , until
the iteration sequence

{
(x (k), y(k))

}+∞
k=0 is convergent, calculate{

x (k+1) = (α I + A)−1(αx (k) + y(k) + b),

y(k+1) = 1
1+α

(D̂x (k) + αy(k)),

or [
α I + A 0

0 α I + I

] [
x (k+1)

y(k+1)

]
=

[
α I I
D̂ α I

] [
x (k)

y(k)

]
+

[
b
0

]
. (6)

Numerical results in Ref. [21] show that the BAS iteration method is feasible and robust.
To further improve the efficiency of the BAS method, we will drive a modified version of the
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BAS iteration method in the following. Firstly, denote

M =
[

A 0
0 I

]
, N =

[
0 I
D̂ 0

]
, z =

[
x
y

]
, b̄ =

[
b
0

]
.

Then, the splitting (5) becomes Ā = (α I + M)−(α I + N ). Hence, the BAS iteration scheme
(6) can be rewritten as

(α I + M)z(k+1) = (α I + N )z(k) + b̄,

or, equivalently,
(α I + M)z(k+1) = (α I + M)z(k) + b̄ − Āz(k). (7)

Multiplying (α I + M)−1 on both sides of (7) from left gives

z(k+1) = z(k) + (α I + M)−1(b̄ − Āz(k)). (8)

Denote r (k) = b̄ − Āz(k) and δ(k) = (α I + M)−1r (k), the BAS iteration scheme (8) can be
rewritten as

z(k+1) = z(k) + δ(k), (9)

where δ(k) can be viewed as the search direction from z(k) to z(k+1). The step size equals
‖δ(k)‖, where ‖ · ‖ denotes the 2-norm of a given vector.

To further improve the efficiency of theBAS iteration scheme (9),we introduce a parameter
ωk to control the step size, and hope that the step size in each iteration step is optimal. This
leads to a relaxed iteration scheme of the form

z(k+1) = z(k) + ωkδ
(k). (10)

In the immediately following, we try to determine the optimal value of ωk .
Note that r (k) = b̄ − Āz(k), δ(k) = (α I + M)−1r (k), and denote S = Ā(α I + M)−1, the

residual form of the iteration scheme (10) can be easily derived. That is

r (k+1) = r (k) − ωk Sr (k). (11)

In the following, we determine the value of ωk by minimizing the residual norm ‖r (k+1)‖.
The simple calculation gives

‖r (k+1)‖2 = ‖r (k)‖2 − 2ωk(r
(k), Sr (k)) + ω 2

k ‖Sr (k)‖2.
Hence, ‖r (k+1)‖2 can be viewed as a quadratic function ofωk . Its minimum value is achieved
at

ωk = (r (k), Sr (k))

‖Sr (k)‖2 . (12)

Owing to S = Ā(α I + M)−1 and δ(k) = (α I + M)−1r (k), the parameter ωk can be
equivalently rewritten as

ωk = (r (k), Ā(α I + M)−1r (k))

‖ Ā(α I + M)−1r (k)‖2 = (r (k), Āδ(k))

‖ Āδ(k)‖2 .

Therefore, the MRBAS iteration method can be defined as follows.

Method 2 (The MRBAS iteration method) Let α be a positive parameter such that α I + A

is nonsingular. Given an initial vector x (0) ∈ R
n , define z(0) = {

(x (0))T, |x (0)|T}T
. For

k = 0, 1, 2, · · · , until the iteration sequence
{
z(k)

}
converges, compute

z(k+1) = z(k) + ωkδ
(k),
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where

ωk = (r (k), Āδ(k))∥∥ Āδ(k)
∥∥2 , δ(k) = (α I + M)−1r (k), r (k) = b̄ − Āz(k).

Remark 1 TheMRBAS iterationmethod is reduced to the BAS iterationmethod if we choose
ωk = 1.

3 The Convergence Property of theMRBAS IterationMethod

In order to derive the convergence property of the MRBAS iteration method used for solving
the AVE (2), we first give several useful lemmas.

Lemma 1 [33] For any matrix A ∈ R
n×n , B ∈ R

n×n , the following results hold:

• ‖A‖ � 0, where “=” holds if and only if A = O;
• if k is a scalar, then ‖k A‖ = |k| ‖A‖;
• ‖A + B‖ � ‖A‖ + ‖B‖;
• ‖AB‖ � ‖A‖ ‖B‖.

Lemma 2 [16] For any matrix A = (ai j ) ∈ R
n×n and B = (bi j ) ∈ R

n×n , if O � A � B,
then ‖A‖p � ‖B‖p , where ‖·‖p stands for the p-norm of a matrix, A � B means ai j � bi j

for i, j = 1, 2, · · · , n.

Lemma 3 [37] Both roots of the real quadratic equation x2 − ax + b = 0 are less than one
in modulus if and only if |b| < 1 and |a| < 1 + b.

With the help of the above three lemmas, the convergence property of theMRBAS iteration
method can be derived in the following.

Theorem 1 Let A ∈ R
n×n , b ∈ R

n , α be a positive constant such that α I + A ∈ R
n×n is a

nonsingular matrix. Denote η = ‖(α I + A)−1‖. Then, we have

‖r (k+1)‖ � ‖L‖ · ‖r (k)‖, (13)

where

L =
(

αη 1
α+1

η α
α+1

)
.

Moreover, it follows that ‖L‖ < 1 if and only if the parameter α satisfies (α + 1)η < 1.
That means if the condition (α + 1)η < 1 holds, the iteration sequence

{
z(k)

}
generated by

the MRBAS iteration method converges to the exact solution of the AVE (4) for the initial

vector z(0) = {
(x (0))T, |x (0)|T}T

with x (0) being any vector in R
n.

Proof Taking the 2-norm on both sides of (11) gives

‖r (k+1)‖ = ‖r (k) − ωk Sr (k)‖ = ‖ (I − ωk S) r (k)‖.
From the derivation of the MRBAS iteration method in Sect. 2, the parameter ωk defined

by (12) is the minimum point of the residual norm ‖r (k+1)‖, which means

‖r (k+1)‖ = ‖(I − ωk S)r (k)‖ = min
ω∈R ‖(I − ωS)r (k)‖ � ‖(I − S)r (k)‖. (14)
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Note that S = Ā(α I + M)−1, the matrix I − S can be rewritten as

I − S = (α I + N )(α I + M)−1 =
(

α(α I + A)−1 1
α+1 I

D̂(α I + A)−1 α
α+1 I

)
.

Denote r̃ (k+1) = (I − S)r (k). If we write r (k) as r (k) = ((r (k)
x )T, (r (k)

y )T)T with r (k)
x , r (k)

y ∈
R

n , then the components of r̃ (k+1) = ((r̃ (k+1)
x )T, (r̃ (k+1)

y )T)T yield

r̃ (k+1)
x = α(α I + A)−1r (k)

x + 1

α + 1
r (k)

y , r̃ (k+1)
y = D̂(α I + A)−1r (k)

x + α

α + 1
r (k)

y .

Using Lemma 1 and noticing that η = ‖(α I + A)−1‖ and ‖D̂‖ � 1, the 2-norms of r̃ (k+1)
x

and r̃ (k+1)
y , respectively, satisfy

‖r̃ (k+1)
x ‖ � αη‖r (k)

x ‖ + 1

α + 1
‖r (k)

y ‖ (15)

and
‖r̃ (k+1)

y ‖ � η‖r (k)
x ‖ + α

α + 1
‖r (k)

y ‖. (16)

The inequalities (15) and (16) can be written as the following matrix-vector form:

R̃(k+1) � L · R(k), (17)

where

R̃(k+1) =
(

‖r̃ (k+1)
x ‖

‖r̃ (k+1)
y ‖

)
, L =

(
αη 1

α+1
η α

α+1

)
, R(k) =

(
‖r (k)

x ‖
‖r (k)

y ‖

)
.

Taking the 2-norm on both sides of (17) and applying Lemmas 1 and 2, we get

‖R̃(k+1)‖ � ‖L · R(k)‖ � ‖L‖ · ‖R(k)‖. (18)

Note that ‖r̃ (k+1)‖=
√

‖r̃ (k+1)
x ‖2+‖r̃ (k+1)

y ‖2=‖R̃(k+1)‖ and ‖r (k)‖=
√

‖r (k)
x ‖2+‖r (k)

y ‖2 =
‖R(k)‖, the inequality (18) is equivalent to

‖r̃ (k+1)‖ � ‖L‖ · ‖r (k)‖. (19)

From the definition of r̃ (k+1), i.e., r̃ (k+1) = (I − S)r (k), we can derive from (14) that
‖r (k+1)‖ � ‖r̃ (k+1)‖. Thus, using (19), we finally obtain the inequality (13).

In the following, we derive the convergence condition of the MRBAS iteration method.
Due to

LTL =
(

αη η
1

α+1
α

α+1

)
·
(

αη 1
α+1

η α
α+1

)
=

(
(α2 + 1)η2 2αη

α+1
2αη
α+1

α2+1
(α+1)2

)
,

we have

tr(LTL) = (α2 + 1)

(
η2 + 1

(α + 1)2

)
,

and

det(LTL) = (α − 1)2η2.
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Let λ be any eigenvalue of the matrix LTL . Then, it yields the following real quadratic
equation:

λ2 − (α2 + 1)

(
η2 + 1

(α + 1)2

)
λ + (α − 1)2η2 = 0.

From Lemma 3, it follows that ‖L‖ < 1 if and only if

(α − 1)2η2 < 1 (20)

and

(α2 + 1)

(
η2 + 1

(α + 1)2

)
− (α−1)2η2 − 1 < 0. (21)

After simple calculation, the condition (21) can be simplified as

(α + 1)η < 1. (22)

The condition (20) is equivalent to

max{(1 − α)η, (α − 1)η} < 1. (23)

In as much as α, η > 0, the left-hand-side of (23) is less than that of (22), i.e., max{(1 −
α)η, (α−1)η} < (α+1)η. This means that once (22) is true, then (23) is also true. Therefore,
we can conclude that ‖L‖ < 1 if and only if the parameter α satisfies (22).

Using the inequality (13) successively, we conclude

‖r (k)‖ � ‖L‖ · ‖r (k−1)‖ � ‖L‖2 · ‖r (k−2)‖ � · · · � ‖L‖k · ‖r (0)‖.
Due to ‖L‖ < 1, it follows that lim

k→∞ ‖r (k)‖ = 0, which implies the iteration sequence
{
z(k)

}
is convergent to the exact solution of the AVE (4) if α satisfies (α + 1)η < 1.

4 Numerical Experiments

In this section, we use two examples to verify the feasibility and effectiveness of theMRBAS
iteration method for solving the AVE (2).

The numerical results including numbers of iteration steps (denoted as IT) and elapsed
CPU times (in seconds, denoted as CPU) of the MRBAS iteration method are compared
with those of the BAS [21], the SOR-like [18], and the FP [17] iteration methods. The
iteration parameters α involved in these iteration methods are selected as the experimentally
found optimal ones, which lead to the least number of iteration steps. If the optimal iteration
parameters form an interval, then we select the optimal parameter as the one that belongs to
this interval and leads to the least CPU time. The optimal iteration parameter determined in
such a manner is denoted as αexp.

In the computations, we choose the initial vectors to be zero vector, i.e., x (0) = 0. All
iterations are stopped when the number of iteration steps exceeds 500, or RES � 10−6,
where RES denotes the relative residual error of the form

RES =‖Ax (k) − |x (k)| − b‖
‖b‖ .

In addition, all the computations are implemented in MATLAB [version 9.12.0.1884302
(R2022a)] on a personal computer with 1.6 GHZ central processing unit [Intel(R) Core(TM)
i5-8250U] and 8.0 GB memory.
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Table 1 The numerical results of the tested iteration methods with experimentally found optimal parameter
values for Example 1

n 602 702 802 902 1002

MRBAS IT 2 2 2 2 2

CPU 0.002 0 0.002 7 0.003 6 0.004 5 0.005 7

αexp 0.002 3 0.001 9 0.001 7 0.001 8 0.001 6

BAS IT 21 21 21 21 21

CPU 0.593 3 0.998 8 1.669 3 2.639 8 3.976 3

αexp 0.022 7 0.022 8 0.022 5 0.022 1 0.022 3

SOR-like IT 11 11 11 11 11

CPU 0.357 5 0.642 3 1.133 1 1.846 5 2.727 0

αexp 1.001 8 0.990 5 0.986 7 0.998 1 0.989 5

FP IT 11 11 11 11 11

CPU 0.372 1 0.647 2 1.147 9 1.821 1 2.772 3

αexp 0.982 3 0.982 2 0.982 9 0.988 5 0.970 7

Example 1 Let the coefficient matrix A in (2) be

A = tridiag(−1, 4,−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −1
0 0 0 · · · −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n .

The vector b is chosen as b = Ax∗ − |x∗|, where x∗ = (1,−2, 1,−2, · · · )T ∈ R
n is the

exact solution.

The MRBAS together with the BAS, the SOR-like, and the FP iteration methods is used
to approximate the solution of this problem. In Table 1, the experimentally found optimal
parameter values, denoted by αexp, of all the tested iteration methods are listed for different
problem sizes n. Using these optimal parameter values, the numerical results of the four iter-
ation methods used for solving (2) with different problem sizes, i.e., n = 602, 702, 802, 902,
and 1002, are also listed in Table 1.

From the numerical results, we can see that all the tested iteration methods with respective
optimal parameters are convergent for different problem sizes n. Among the four iteration
methods, the MRBAS method is the most efficient one as it costs the least iteration steps and
CPU times, compared with the BAS, the SOR-like, and the FP iteration methods.

Example 2 [39] Consider the AVE in (2) with

A = tridiag(−0.5I , T ,−1.5I ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T −1.5I 0 · · · 0 0
−0.5I T −1.5I · · · 0 0

0 −0.5I T · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · S −1.5I
0 0 0 · · · −0.5I T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n
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Table 2 The numerical results of the tested iteration methods with experimentally found optimal parameter
values for Example 2

n 602 702 802 902 1002

MRBAS IT 2 2 2 2 2

CPU 0.022 8 0.030 7 0.039 1 0.055 1 0.069 2

αexp 0.002 6 0.002 7 0.002 9 0.002 8 0.001 6

BAS IT 15 15 15 15 15

CPU 0.598 4 0.966 6 1.479 0 2.259 9 3.321 8

αexp 0.049 4 0.043 5 0.045 2 0.043 2 0.046 2

SOR-like IT 8 8 8 8 8

CPU 0.352 1 0.597 2 0.970 4 1.516 1 2.219 2

αexp 0.994 2 0.999 3 0.998 4 0.998 2 0.996 9

FP IT 8 8 8 8 8

CPU 0.355 5 0.598 6 0.992 9 1.553 8 2.233 8

αexp 0.997 1 0.989 8 0.987 3 0.985 2 0.987 9

and

T = tridiag(−0.5, 8,−1.5) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

8 −1.5 0 · · · 0 0
−0.5 8 −1.5 · · · 0 0
0 −0.5 8 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 8 −1.5
0 0 0 · · · −0.5 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m×m .

The vector b is chosen as b = Ax∗ − |x∗|, where x∗ = (1,−2, 1,−2, · · · )T ∈ R
n is the

exact solution with n = m2.

Similar to Example 1, the experimentally found optimal parameter values αexp, the num-
bers of iteration steps and the elapsed CPU times of the four iteration methods, i.e., the
MRBAS, BAS, SOR-like, and FP, used for solving Example 2 are listed in Table 2. Numerical
results show that the MRBAS method always performs better than the BAS, the SOR-like,
and the FP iteration methods for all the tested cases. Moreover, the numbers of iteration
steps costed by the MRBAS, the BAS, the SOR-like, and the FP iteration methods are all
n-independent.

Therefore, we can conclude that the MRBAS iteration method proposed in this work is
robust and efficient for the tested problems.

5 Conclusion

In this work, based on the BAS iteration scheme, we propose an accelerated non-stationary
iterationmethod named theMRBAS iteration to solve the system of AVEs. This new iteration
method is convergent under suitable conditions. Numerical results show that the proposed
MRBAS iteration method is robust and efficient for the two examples. However, we use the
experimentally found optimal values of parameter α in the implementation of the MRBAS
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iteration method. How to obtain an easily calculated and efficient parameter value is still an
open problem, which may be considered in the future.
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