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Abstract
In this paper, we propose a new class of discontinuous Galerkin (DG) methods for solving
1D conservation laws on unfitted meshes. The standard DG method is used in the interior
cells. For the small cut elements around the boundaries, we directly design approximation
polynomials based on inverse Lax-Wendroff (ILW) principles for the inflow boundary con-
ditions and introduce the post-processing to preserve the local conservation properties of the
DG method. The theoretical analysis shows that our proposed methods have the same sta-
bility and numerical accuracy as the standard DG method in the inner region. An additional
nonlinear limiter is designed to prevent spurious oscillations if a shock is near the boundary.
Numerical results indicate that our methods achieve optimal numerical accuracy for smooth
problems and do not introduce additional oscillations in discontinuous problems.
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1 Introduction

Many practical problems in computational fluid dynamics can be described by hyperbolic
conservation laws on complex geometries. To avoid the difficulty in generating high-quality
meshes in many problems, such as complex domains or moving interface problems, using
unfitted meshes is a common approach. In this framework, the computational mesh is com-
posed of the embedded Cartesian cells within the domain internally, and irregular “cut” cells
are produced by the boundary interacting with each regular grid cell. Since the boundary of
the computational area does not coincide with the physical boundary, boundary conditions
on the computational domain must be carefully treated to obtain an optimal convergence rate.
On the other hand, the irregular cut cells on the domain boundary may be arbitrarily small.
It will bring the so-called “small-cell” problem, leading to a severe time step restriction for
time-dependent problems. In this paper, we develop a high-order discontinuous Galerkin
(DG) method for 1D hyperbolic conservation laws on unfitted meshes. In particular, a novel
boundary treatment would be carefully designed to overcome the “small-cell” problem.

The DGmethod is a class of finite-element methods choosing a set of discontinuous basis
functions. The DG method was first introduced by Reed and Hill [26]. Significant break-
throughs were gained by the so-called RKDG methods for solving hyperbolic conservation
laws [5–9], in which the DG discretization is only used for the spatial variables, and the
time discretization is achieved by the Runge-Kutta methods. DG methods offer numerous
advantages compared to classical finite element methods and have found wide applications in
various fields. For more details on DG, we refer to [28]. The DGmethods on unfitted meshes
have been addressed in the literature, and the small-cell problem can be avoided in distinct
ways, such as the implicit time stepping [1], the cell merging or the cell agglomeration [24,
25, 27], the stabilization with ghost penalty [2, 11, 12, 14, 15, 30, 31], the state redistribu-
tion [13], and the shifted boundary method [29]. In this paper, we are going to give a novel
boundary treatment based on the inverse Lax-Wendroff (ILW) principle for the DG method.

The ILW method was developed to give values of ghost points for high-order finite-
difference methods on a Cartesian mesh. The first work for hyperbolic conservation law
equations was introduced by Tan and Shu [32] and applied to inviscid compressible flu-
ids. Given the inflow boundary conditions, they transformed the normal derivative into the
time derivative and the tangential derivative via using the partial differential equation (PDE)
repeatedly. Then, values at the ghost points near the boundary were obtained by a Taylor
expansion with these normal derivatives. To avoid the heavy algebra of the ILW procedure
for nonlinear systems, especially in the high-dimensional cases, the simplified ILW (SILW)
method was proposed in Ref. [34], in which high-order derivatives are constructed by extrap-
olation directly. In Ref. [23], Lu et al. proposed an ILW method to deal with problems with
changing wind direction on the boundary. The numerical fluxes near the boundary were
suitably modified so that strict conservation of the total mass was achieved in Ref. [10]. In
addition, the ILW method has been subsequently applied to various other time-dependent
problems, including the advection equations and viscous compressible fluids [22], hyperbolic
systems with source terms [36], and moving boundary problems [4, 20, 21, 33]. The linear
stability of (S)ILW methods was studied in Refs. [16–19].

Owing to the advantages, including the ability to achieve arbitrary orders of accuracy and
efficiently avoid the small-cell problem, extensive and in-depth research has been conducted
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on the ILWmethod within the context of finite-difference schemes. In this paper, we want to
incorporate the ILW boundary treatment with DGmethods, which could be beneficial for DG
methods on unfitted meshes and complex boundary problems. As an initial step and a proof
of concept, in this paper, we restrict our attention to 1D hyperbolic conservation laws on an
unfitted mesh. The standard DGmethod would be used on the interior elements. Meanwhile,
we treat these small boundary elements as special virtual elements and apply the principles of
the (S)ILW treatment to design the numerical boundary conditions. This approach completely
mitigates the issue of small time steps, ensuring that our method maintains the same explicit
time step as the standard DG method. Moreover, we find that the boundary treatment will
break the local conservative property on those virtual elements, leading to a significant impact
on the magnitude of errors. An additional post-processing technique is proposed to preserve
the local conservation. In the presence of shocks propagating from the inflow boundary, we
develop an extra nonlinear limiter to prevent oscillations and maintain accuracy.

The rest of the paper is organized as follows. In Sect. 2,we develop the high-order boundary
treatment based on (S)ILW principles for both scalar problems and linear systems. Theo-
retical analysis, including the stability analysis and error estimates, is presented in Sect. 3.
Numerical examples are presented in Sect. 4 to demonstrate the effectiveness of our approach.
Concluding remarks are given in Sect. 5.

2 (S)ILWMethod for 1D Conservation Laws

Westart our discussionwith the 1D scalar hyperbolic conservation lawon the physical domain
Ω = [a, b],

⎧
⎪⎨

⎪⎩

ut + f (u)x = 0, x ∈ (a, b), t > 0,

u(x, 0) = u0(x), x ∈ [a, b],
u(a, t) = g(t), t > 0.

(1)

We assume that f ′(u(a, t)) � σ > 0 and f ′(u(b, t)) � 0 for t > 0. Under this assumption,
the left boundary x = a is an inflow boundary where a Dirichlet boundary condition is
imposed, and the right boundary x = b is an outflow boundary where no boundary condition
is needed.

Here, we assume the domain is partitioned by the uniform mesh (see Fig. 1)

a + δ1 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= b − δ2

with the uniformmesh size h = (b−a−δ1−δ2)/N , N ∈ N. Note that the physical boundary
is allowed to be not coinciding with grid points, and the distance δ1,2 can be any non-negative
number between 0 and h. Let I j = [x j− 1

2
, x j+ 1

2
] denote an element with the length of h,

j = 1, · · · , N , and Ω̃ = [x 1
2
, xN+ 1

2
] = ∪N

i=1 I j is called the computational domain, in which
the numerical solutions are computed via the standard DG method. The non-overlapping cut
cells between Ω and Ω̃ are denoted by Ĩ0 = [a, x 1

2
] and ĨN+1 = [xN+ 1

2
, b].

Let Pk(I j ) be the space of polynomials of degree at most k � 0 on I j , and the DG
finite-element space is defined as

V k
h = {v : v|I j ∈ Pk(I j ), j = 1, · · · , N }. (2)
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Fig. 1 Domain decomposition

The semi-discrete DG method for solving (1) is defined as follows: find the unique function
uh(·, t) ∈ V k

h such that for all test functions vh ∈ V k
h and all 1 � j � N , we have

∫

I j
(uh)tvhdx −

∫

I j
f (uh)(vh)xdx + f̂ j+ 1

2
vh

(

x−
j+ 1

2

)

− f̂ j− 1
2
vh

(

x+
j− 1

2

)

= 0. (3)

Here,w

(

x−
j+ 1

2
, t

)

andw

(

x+
j+ 1

2
, t

)

are the left and right limits of the discontinuous solution

w(x, t) at the interface x j+ 1
2
, respectively. f̂ j+ 1

2
= f̂

(

uh

(

x−
j+ 1

2
, t

)

, uh

(

x+
j+ 1

2
, t

))

( j =
1, 2, · · · , N−1) is themonotone numerical flux as in the standardDGmethod,which satisfies
the following conditions:

• it is consistent with the flux f (u), i.e., f̂ (u, u) = f (u);
• it is at least locally Lipschitz continuous with respect to both arguments;
• it is a nondecreasing function of its first argument, and a nonincreasing function of its

second argument.

In particular, the Lax-Friedrichs flux is one of the most commonly used monotone fluxes:

f̂ LF(u−, u+) = 1

2

(
f (u−) + f (u+) − α(u+ − u−)

)
, α = max

u
| f ′(u)|. (4)

The semi-discrete DG scheme (3) can be rewritten as the first-order ordinary differen-
tial equation (ODE) system ut = L(u), where the operator L(u) arises from the spatial
discretization. The third-order TVD Runge-Kutta method is used for the time discretization:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(1) = un + �tL(un),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL(u(1)),

un+1 = 1

3
un + 2

3
u(1) + 2

3
�tL(u(2)).

(5)

It has been demonstrated in Ref. [7] that to ensure the stability of the RKDGmethod with Pk

elements for problems with periodic boundary conditions, the time step �t must satisfy the
condition �t � 1

2k+1
h
α
. For the hyperbolic problem (1) with Dirichlet boundary conditions,

Ref. [3] indicates that the following match of time is necessary to maintain the third-order
accuracy of (5):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un ∼ g(tn),

u(1) ∼ g(tn) + �tg′(tn),

u(2) ∼ g(tn) + �t

2
g′(tn) + (�t)2

4
g′′(tn).

(6)

Note that the RKDG scheme can also be used to compute numerical solutions on two small
cells Ĩ0 and ĨN+1. However, the time step �t would then be restricted to be proportional to
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min(δ1, δ2) to ensure the stability, which is referred to as the cut-cell problem. In this paper,
we will employ the idea of the ILW method to construct values on Ĩ0 and ĨN+1 through the
boundary treatment, and further define the numerical fluxes f̂1/2 and f̂N+1/2. Through this
approach, the scheme can employ the time step as the standard DGmethod, meaning that �t
is only proportional to h and independent of δ1,2.

2.1 (S)ILW Boundary Treatment at the Inflow Boundary

In this section, we focus on the inflow boundary x = a and the cell Ĩ0 = [a, a + δ1]. A
high-order ILW method is designed to construct a polynomial p(x, t) ∈ Pk( Ĩ0). After that,

we can set the numerical flux: f̂ 1
2

= f̂

(

p
(
x 1
2
, t
)

, uh

(

x+
1
2
, t

))

.

Contrary to the idea of calculating the time derivatives with the space derivatives in the
Lax-Wendroff scheme, the ILW method uses the differential equation to calculate space
derivatives with time derivatives. Thus, we can obtain the spatial derivatives on the boundary
x = a by employing the PDE and boundary conditions repeatedly. For example,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(0)
x u|x=a =g(t),

∂(1)
x u|x=a = g′

l(t)

− f ′(gl(t))
,

∂(2)
x u|x=a = f ′(gl(t))g′′

l (t) − 2 f ′′(gl(t))g′
l(t)

2

f ′(gl(t))3
,

...

(7)

Then, we can obtain the polynomial p(x, t) with degree at most k by setting

∂(m)
x p|x=a = ∂(m)

x u|x=a, m = 0, 1, · · · , k.

In practice, the polynomial p(x, t) can be written in the form of the Taylor expansion:

p(x, t) =
k∑

m=0

1

m! (x − a)m∂(m)
x u|x=a . (8)

This method can achieve arbitrary high-order accuracy. However, the formula may be
very complicated for high-order spatial derivatives. To avoid the very heavy algebra of the
abovemethod, we employ the idea of an SILWmethod in which information from the interior
interval would be used.

Denote the cell average of uh on I j by

ū j = 1

h

∫

I j
uh(x)dx

and the cell averages of derivatives by

(ūx ) j = 1

h

∫

I j
(uh)x (x)dx, (ūxx ) j = 1

h

∫

I j
(uh)xx (x)dx .

Then, we can construct the polynomial p(x) of degree k � 1 with information on the
boundary x = a and on the first element I1. Strategies for Pk , k � 3, are listed in Table 1.
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Table 1 Strategies which can be used in (S)ILW

Strategy Information on the boundary Information from I1

k = 0 ILW u(a, t)

k = 1 ILW u(a, t), ux (a, t)

SILW-1 u(a, t) ū1
k = 2 ILW u(a, t), ux (a, t), uxx (a, t)

SILW-1 u(a, t), ux (a, t) ū1
SILW-2 u(a, t) ū1, (ūx )1

k = 3 ILW u(a, t), ux (a, t), uxx (a, t), uxxx (a, t)

SILW-1 u(a, t), ux (a, t), uxx (a, t) ū1
SILW-2 u(a, t), ux (a, t) ū1, (ūx )1

For example, SILW-1 means the unique polynomial p(x) ∈ Pk( Ĩ0) which satisfies

∂(m)
x p|x=a = ∂(m)

x u|x=a, m = 0, 1, · · · , k − 1, (9a)
∫

I1
p(x, t)dx = hū1, (9b)

and SILW-2 gives the constraint equations
⎧
⎪⎨

⎪⎩

∂(m)
x p|x=a = ∂(m)

x u|x=a, m = 0, 1, · · · , k − 2,
∫

I1
p(x, t)dx = hū1,

∫

I1
px (x, t)dx = h(ūx )1.

(10)

Remark 1 To construct a polynomial p(x, t) ∈ Pk , we can select k + 1 constraints from two
sets of information (boundary information and information from the first element I1) to form
a system of constraint equations. It is crucial to note that the selection of constraints should
not be arbitrary. In our experiment, constraints from each set are progressively added from
lower order to higher order.

Remark 2 Obviously, the less boundary information ∂
(m)
x u|x=a is used, the more efficient

the scheme is. However, it is essential to avoid utilizing too few constraints provided by the
boundary information. For example, considering k = 3, if we employ three constraints from
I1 and only take u(a, t) on boundary, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(a, t) = u|x=a,
∫

I1
p(x, t)dx = hū1,

∫

I1
px (x, t)dx = h(ūx )1,

∫

I1
pxx (x, t)dx = h(ūxx )1,

the constraint equations will lead to singularity and no solution exists when δ approaches
0. In addition, selecting too little boundary information will directly affect the stability of
the scheme. The theoretical analysis of the SILW method for high-order finite-difference
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(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3

Fig. 2 Errors of the test example (11) with different δ/h. “no-cv” represents that no conservation post-
processing has been applied

schemes was given in Refs. [16–19]. We will discuss the stability and accuracy of the SILW
boundary treatment for the DG method in this paper later.

Numerical results show that the schemes can always achieve the (k+1)th order accuracy.
However, the magnitude of error is closely related to the parameter δ1/h. For example, we
use the RKDG method with Pk bases, k = 0, 1, 2, 3, to solve the following equation:

⎧
⎪⎨

⎪⎩

ut + ux = 0, 0 < x < 2π, t > 0,

u(x, 0) = − sin(x), 0 < x < 2π,

u(0, t) = sin(t).

(11)

This example has the exact solution u(x, t) = sin(t − x). We divide the domain with N =
80, δ2 = 0, and varying δ = δ1 ∈ [0, h). Since the numerical flux ûi+1/2 = uh |−i+1/2,
i = 1, · · · , N , no additional processing is required for the outflow boundary x = b. The
proposed (S)ILW method is used for the inflow boundary condition. The L2 errors on the
computational domain Ω̃ at the final time T = 3 are plotted in Fig. 2, showing that the error
increases significantly when δ/h approaches 1 with k � 1.

We find that this phenomenon is caused by the loss of conservation of the reconstructed
polynomials p(x, t) ∈ Pk( Ĩ0). To overcome this disadvantage, we propose a post-processing
based on the local conservation in the following subsection.
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2.2 Post-Processing Based on Local Conservation

One significant advantage of the DG method is that it can ensure the local conservation
properties: taking the test function vh = 1 in the classic DG scheme (3), we have

∫

I j
(uh)tdx + f̂ j+ 1

2
− f̂ j− 1

2
= 0, j = 1, · · · , N . (12)

This tells us the local conservative of the DG scheme. Note that p(x, t) ∈ Pk( Ĩ0) is con-
structed via the (S)ILW method, and the local conservative property fails on this cut cell,

d

dt

∫ a+δ1

a
p(x, t)dx + f̂ 1

2
− f (g(t)) �= 0, (13)

where f̂ 1
2

= f̂

(

p(a + δ1, t), uh

(

x+
1
2

))

.

In the following, we introduce the post-processing based on the local conservation for
k � 1. We primarily focus on the treatment of inflow boundaries. The treatment of outflow
boundaries will be addressed in the next subsection. For the inflow boundary, the numerical
flux f̂ 1

2
would be modified via the conservation

f̂ c1
2

� f (g(t)) − d

dt

∫ a+δ1

a
p(x, t)dx . (14)

If p(x, t) ∈ Pk is obtained by the ILW method (8), then

f̂ c1
2

= f (g(t)) −
∫ a+δ1

a
∂t p(x, t)dx

= f (g(t)) −
k∑

m=0

∫ a+δ1

a

1

m! (x − a)m∂t∂
(m)
x u|x=adx

= f (g(t)) −
k∑

m=0

δm+1
1

(m + 1)!∂t∂
(m)
x u|x=a

= f (g(t)) +
k∑

m=0

δ1
m+1

(m + 1)!∂
(m+1)
x f (u)|x=a .

(15)

Here, we define the notation �k
s [w](x) to represent the kth order Taylor polynomial ofw(x)

�k
s [w](x) =

k∑

m=0

1

m! (x − s)m∂(m)
x w|x=s . (16)

Notice that the right-hand side of (15) is precisely the Taylor expansion of f (u),

f̂ c1
2

= �k+1
a [ f (u)](a + δ1) ≈ f (u(a + δ1, t)).

This indicates that we actually use the Taylor expansion of the function f (u) at the physical
boundary to approximate the numerical flux at the computational boundary, which provides
another perspective on the validity of the ILW method.

If p(x, t) is obtained by the SILW method, the interior value would be used, whose time
derivatives could be given via the DG scheme on I1. In particular, we can directly set vh = 1
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to get the time derivative of the cell average

d

dt
ū1 = 1

h

(

f̂ c1
2

− f̂ 3
2

)

. (17)

Higher order information can be obtained by taking a special test function in the DG scheme.
But the specific expression is dependent on the choice of DG basis functions and the degree
k. For instance, let φi denote the i th orthogonal Legendre polynomials basis function in I1,

d

dt
(ūx )1 =

⎧
⎪⎪⎨

⎪⎪⎩

12
h3

∫

I1
f (uh)dx − 6

h2

(

f̂ c1
2

+ f̂ 3
2

)

, k = 1, 2,

12
h3

∫

I1
f (uh)dx + 14

h2

∫

I1
f (uh(x, t))φ

′
3(x) dx − 20

h2

(

f̂ c1
2

+ f̂ 3
2

)

, k = 3.

(18)

Plugging them in the conservation form (14), we can get an algebraic equation of f̂ c1/2. The
numerical flux can be obtained by solving this equation.

Here, we give the details of the SILW-1 method as an example. Utilizing (9a), we know
that p(x, t) ∈ Pk has the form

p(x, t) =
k−1∑

m=0

1

m! (x − a)m∂(m)
x u(a, t) + R(t)(x − a)k

=�k−1
a [u](x, t) + R(t)(x − a)k .

(19)

Plugging in (9b), we can have

R(t) = k + 1

(a + δ1 + h)k+1 − (a + δ1)k+1

(

hū1 −
∫

I1
�k−1

a [u](x, t) dx
)

. (20)

Utilizing the expression (14) and (19)–(20), we can obtain the algebraic equations regarding
the numerical flux,

f̂ c1
2

= f (g(t)) − d

dt

∫ a+δ1

a

(
�k−1

a [u](x, t) + R(t)(x − a)k
)
dx

= f (g(t)) −
∫ a+δ1

a
∂t�

k−1
a [u](x, t) dx −

δk+1
1

(

f̂ c1
2

− f̂ 3
2

− d
dt

∫

I1
πk−1
a [u](x, t) dx

)

(a + δ1 + h)k+1 − (a + δ1)k+1 .

(21)

Solve the above equation,

f̂ c1
2

=
k∑

m=0

[
∂

(m)
x f (u(a, t))

m!

]

δm1 + δk+1
1

(δ1 + h)k+1

{

f̂ 3
2

−
k∑

m=0

[
∂

(m)
x f (u(a, t))

m!

]

(δ1 + h)m

}

=�k
a[ f (u)](a + δ1) + δk+1

1

(δ1 + h)k+1

{
f̂ 3
2

− πk
a[ f (u)](a + δ1 + h)

}
. (22)

The spatial derivatives at x = a can be conversed to the mixed derivatives using the PDE,

∂(m)
x f (u(a, t)) = −∂(m−1)

x ∂t u(a, t).

After that, all terms including time derivatives can be obtained via the ILW procedure (7).
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(a) k = 1 (b) k = 2

(c) k = 3

Fig. 3 Errors of the test example (11) with different δ/h. “no-cv” represents that no conservation post-
processing has been applied

To illustrate the corrective impact of the post-processing on the numerical flux, we provide
Fig. 3 as a comparison to Fig. 2. We can observe that after post-processing, the magnitude of
the error no longer exhibits significant variations as δ/h approaches 1.

2.3 Nonlinear Limiter for ShockWaves

Until this point, the numerical flux is designed with the assumption that u(x) is smooth
enough. Significantly, the shock wave propagating from the inflow boundary will lead to
numerical oscillations and disrupt the stability of the scheme. Therefore, a nonlinear limiter
is required to prevent oscillations and ensure the stability in the presence of strong dis-
continuities in Ĩ0. Numerical experiments demonstrate that the first-order numerical flux
f̂ 1
2

= f (g(t)) (this is the numerical flux of k = 0 without the conservative modification)
always has a good performance in avoiding spurious oscillations. Thus, we design an extra
limiting procedure as follows: to switch the high-order numerical flux f̂ c1

2
to a first-order

flux f (g(t)) when encountering such situations, while retaining the high-order accuracy in
smooth regions.

We use the following notations to present the variations in Ĩ0 and I1:

�1 =
∣
∣
∣
∣ f (u(a, t)) − f̂ c1

2

∣
∣
∣
∣ ,

�2 =
∣
∣
∣
∣ f

(

uh(x
+
1
2
, t

))

− f
(
uh

(
x 1

2
+ δ

)∣
∣
∣ .
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Next, we define a discontinuous index θ ∈ [0, 1] as follows:

θ = η

((
�1 − �2

�1 + ε

)4
)

, (23)

where η(x) = 1
2 (1+ tanh(20(x −1/2)) and ε is a small number used to avoid the division by

zero. We choose ε = 10−16 in practice. Finally, f̂ 1
2
will be modified as a convex combination

of f̂ c1
2
and f (g(t)),

f̂ mod
1
2

= (1 − θ) f̂ c1
2

+ θ f (g(t)). (24)

Such modification will lead to the following effects.

(i) If f (u) is smooth, both �1 and �2 are about | fx (u(x 1
2
, t))|δ + O(δ2). Thus, θ =

η(O(δ4)) = O(δ4) approaches 0 and f̂ mod
1
2

= f̂ c1
2
+O(δ4). Furthermore, the modifica-

tion (24) can maintain the original order of accuracy for k � 3.
(ii) If a shock comes from the boundary, �1 = O(1). Consequently, θ ≈ η(1) and

f̂ mod
1
2

would degenerate to f (g(t)), which could avoid the numerical oscillation around

boundary.

It is remarkable that both f̂ c1
2
and f (g(t)) give the result that the magnitude of the error

does not depend on δ/h significantly. This leads to the fact that the flux f̂ mod
1
2

has the same

property.

2.4 Boundary Treatment at the Outflow Boundary

In this subsection, we are concerned about the treatment of outflow boundaries. Based on the
characteristics of the conservation law, information on the downwind side should not affect
the interior of the computational domain. Hence, for 1D scalar equations, we can directly
compute the numerical flux using values on the interior side of the boundary f̂N+1/2 =
f (uh(x

−
N+1/2), t), without considering the information at the physical boundary x = b.

However, when solving systems of equations, inflow and outflow boundary conditions
are often mixed at the boundary. The numbers of inflow boundary conditions and outflow
boundary conditions depend on how many eigenvalues of the Jacobian at the boundary
are positive and negative, respectively. Different components of the solution may interact
at the physical boundary through boundary conditions. Therefore, it is necessary to obtain
information about these outflow components at the physical boundary.

Let us consider the treatment of the outflow boundary x = b. First, we take p(x, t) as the
direct extension of the polynomial uh on IN to the virtual cell ĨN+1 = [xN+ 1

2
, b]:

p(x, t) = uh |IN (x), x ∈ ĨN+1.

Meanwhile, we still have f̂N+1/2 = f (uh(x
−
N+1/2), t). However, we face the problem of

violating conservation properties once again,

d

dt

∫ b

x
N+ 1

2

p(x, t)dx + f (p(b, t)) − f̂N+ 1
2

�= 0. (25)
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In order to preserve the conservation on the cell ĨN+1, we modify the point value at x = b
by adding a constant p∗(b, t) = p(b, t) + C ,

d

dt

∫ b

x
N+ 1

2

p(x, t)dx + f (p∗(b, t)) − f̂N+ 1
2

= 0. (26)

Ultimately, we obtain the information at the outflow physical boundary through the following
expressions:

uh |x=b = p∗(c, t), ∂(m)
x uh |x=b = ∂(m)

x p(x, t)|x=b, m = 1, · · · , k. (27)

2.5 The (S)ILW Scheme for Linear Systems

Since a linear system can be decoupled into a group of independent scalar equations after
characteristic decomposition, we could do the boundary treatment on each component of the
characteristic variable. Hence, the designed (S)ILW methods can work on linear systems as
well.

Consider the following system on the physical domain Ω = [a, b]:
{
Ut + F(U)x = 0, x ∈ (a, b), t > 0,

U(x, 0) = U0(x), x ∈ [a, b], (28)

where F(U) = AU and A ∈ R
n×n is a constant matrix. This system is hyperbolic meaning

the matrix A is diagonalizable with real eigenvalues. For problems involving systems of
equations, the required boundary conditions at the boundaries are determined by the sign of
eigenvalues. Assume the eigenvalues of A have the property

λ1 � · · · λn1 � 0 < λn1+1 � · · · � λn,

then

A = P−1
(

�(L)

�(R)

)

P, P ∈ R
n×n,�(L) ∈ R

n1×n1 ,�(R) ∈ R
n2×n2 , n = n1 + n2.

with �(L) = diag(λ1, · · · , λn1) and �(R) = diag(λn1+1, · · · , λn). In this case, we require
n2 boundary conditions at the left boundary x = a and n1 conditions at the right boundary
x = b.

As an example, we are concerned with the left boundary x = a imposed with n2 Dirichlet
boundary conditions,

U =
(
U(1)

U(2)

)

, U(1)(a, t) = G(t) ∈ R
n2 , ∀t > 0.

Denoted V as the characteristic variables V = PU = (V(L),V(R))T, where V(L) ∈ R
n1 and

V(R) ∈ R
n2 are variables moving to the left and right, respectively. The proposed (S)ILW

boundary treatment for scalar problems will be applied on each component of V directly.
Particularly, Dirichlet boundary conditions are imposed on conservative variables U rather
than the characteristic variables V. Hence, V(L) and V(R) will change information at x = a,
and they should be handled simultaneously.

To be more specific, the (S)ILW boundary treatment for systems is given as follows. Here,
we use the superscript ∗ to present values located at x = a to ease the notation.
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(i) First, we consider the outgoing characteristic components V(L). The algorithm intro-
duced in Sect. 2.4 should be applied on each component vi , i = 1, · · · , n1. Then, we
obtain the values and spatial derivatives at x = a,

V(L),∗,V(L),∗
x ,V(L),∗

xx , · · · .

Moreover, by utilizing the Lax-Wendroff procedure on each vi with the equation (vi )t +
λi (vi )x = 0, we can also obtain time derivatives at the boundary

V(L),∗
t ,V(L),∗

t t , · · · .

(ii) Through the following system of equations:

P(1)
(
V(L),∗
V(R),∗

)

= U(1),∗ = G(t), (29)

where P(1) is a matrix formed by the first n2 rows of the matrix P, we can get the values
of the inflow variable by solving the above system. Similarly, we can obtain higher
order time derivatives from the system as well:

P(1)
(

∂mt V(L),∗
∂mt V(R),∗

)

= ∂mt U(1),∗ = G(m)(t).

(iii) We construct numerical fluxes for each inflow component, which is the same as those
for the scalar equations.

We would like to remark that this method can provide the desired high-order accuracy.
However, numerical experiments indicate that the errors grow as δ/h increases. Based on the
results of scalar problems, we suspect that this should be caused by the outflow boundary
treatment, even though the errorsmayhavebeen reduced to a certain extent by the conservative
modification. Further improvement of the outflow boundary treatment will be considered in
the future.

We would want to point out that the proposed methods can also be extended to nonlinear
systems.However, the algorithmbecomesmore complicated, especially for the SILWmethod
with the conservative modification. Since the numerical fluxes are generally not one-sided
fluxes, outflow variables and inflow variables are coupledmore tightly. To do the conservative
modification on the outgoing variables, the numerical flux F̂1/2 is needed, which also depends
on the inflow values on Ĩ . Hence, solving a complex nonlinear system appears necessary. To
address this problem, we have to design a new conservative modification, which is left as
future work.

3 Theoretical Analysis

In this section, the theoretical analysis, including the stability analysis and error estimates,
will be provided for the 1D linear initial-boundary value problem,

⎧
⎪⎨

⎪⎩

ut + ux = 0, x ∈ (a, b), t > 0,

u(x, 0) = u0(x), x ∈ [a, b],
u(a, t) = g(t), t � 0.

(30)

In this case, the left boundary x = a is always an inflow boundary and the right boundary
x = b is an outflow boundary. Here, we only need to consider the effect of treatment of the
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inflow boundary. Again the domain is divided by the following uniform mesh with the mesh
size h = x j+1/2 − x j−1/2 for j = 1, · · · , N , and δ ∈ [0, h]:

a + δ = x 1
2

< x 3
2

< · · · < xN+ 1
2

= b.

For simplicity, we assume a = 0 and the prescribed condition g(t) = 0.
In the following, DG schemes with Pk bases are considered, k = 1, 2, 3. The sim-

ple upwind numerical flux is used for the interior elements, i.e., û j+1/2 = uh |−j+1/2,
j = 1, · · · , N . The flux û1/2 can be obtained by the proposed SILW strategies with or
without the conservative modification. First, we will prove the linear stability of all these
schemes for both semi-discrete and fully discrete cases. This can be achieved via the eigen-
value spectrum visualization [35]. Specially, the energy stability analysis and error estimates
for SILW-1 with the conservative modification will be discussed in Sects. 3.2 and 3.3.

3.1 Eigenvalue SpectrumVisualization

In this subsection, we present the stability analysis by visualizing the eigenspectrum of the
discretized operators. For the kth order schemes, we set k + 1 equally spaced points in I j ,

x̂ (i)
j = x j + 2i − k

2(k + 1)
h, i = 0, · · · , k.

After picking a local Lagrange basis, the standard semi-discrete DG scheme (3) for the linear
advection equation with upwind flux in inner cells can be written as

dU j

dt
= 1

h
(AU j−1 + BU j ), j = 2, · · · , N , (31)

whereU j is a vector of length k+1 containing the coefficients of the solutionuh corresponding

to the local basis inside I j , which also represents the values of uh at the nodes {x̂ (i)
j }ki=0. A

and B are (k + 1) × (k + 1) constant matrices.
On the other hand, the numerical flux û 1

2
can be presented with uh in I1, and the boundary

information (which is always 0) and the DG semi-discrete scheme (3) on I1 can be sorted as
follows:

dU1

dt
= 1

h
CU1.

Here, C is a (k + 1) × (k + 1) constant matrix.
Finally, the semi-discrete scheme yields a linear system expressed in a matrix-vector form

as

dU
dt

= 1

h
QU, (32)

where U is the vector representing the values of the solution at all nodes {x̂ (i)
j , j =

1, · · · , N , i = 0, · · · , k},

U = ((U1)
T, (U2)

T, · · · , (UN )T)T,
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and

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C
A B

A B
. . .

. . .

A B

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (33)

This system contains the chosen inner scheme as well as the inflow boundary treatments.
We apply the normal mode analysis to (32) to get the eigenvalue problem. Assuming a

solution of the form u(x, t) = est u0(x) and s̃ = hs, the semi-discrete scheme (32) yields

s̃ U = QU,

with s̃ being the eigenvalue. The semi-discretization provided with the considered boundary
conditions is stable if the whole eigenvalue spectrum of the coefficient matrixQ lies in the left
half-plane, i.e., Re(s̃) � 0. Note that eigenvalues ofQ (33) are composed of the eigenvalues
of B and C, denoted by κB and κC , respectively. It is easy to verify that κB satisfies the
condition. Therefore, we only need to focus on κC in the following.

For example, considering the semi-discrete DG scheme with P1 basis and SILW-1 bound-
ary treatment, û 1

2
and the coefficient matrix C have the forms as follows:

û 1
2

= 2δ

2δ + h
ū1, C = 1

4

(−7 −3
11 −9

)

+ 2δ

2δ + h

( 5
4

5
4− 1

4 − 1
4

)

. (34)

Denote μ = δ
h ∈ [0, 1). We can analytically calculate the eigenvalues of C,

κC
1,2 = −3μ + 2 ± √

9μ2 − 2

2μ + 1
.

It can be verified that Re(κC
1,2) < 0 for allμ ∈ [0, 1), indicating that the semi-discrete scheme

is stable. Moreover, if we construct û 1
2
with the conservative modification, i.e., ûc1

2
,

ûc1
2

= δ2

(δ + h)2
û 3

2
= δ2

(δ + h)2
u−

3
2
, C = 1

4

(−7 −3
11 −9

)

+ δ2

(δ + h)2

(− 5
4

15
4

1
4 − 3

4

)

. (35)

In this case, we have the eigenvalues of C as

κC
1,2 = −(3μ2 + 4μ + 2 ± √

9μ4 + 12μ3 − 2μ2 − 8μ − 2)

(μ + 1)2
,

and Re(κC
1,2) < 0 also holds for all μ ∈ [0, 1).

For the semi-discrete scheme with k = 2, 3, the results are displayed in Fig. 4 due to the
complexity of analytic eigenvalue expressions. We plot the maximum of Re(κc) for different
δ/h. It is observed that these semi-discrete schemes are stable since the real parts of the
eigenvalues are all negative.

We can also prove the stability of the full-discrete scheme with the third-order RK time
discretization (5). The full-discrete scheme yields a linear system expressed in amatrix-vector
form as

Un+1 = g(Q)Un, (36)
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(a) k = 2 (b) k = 3

Fig. 4 Stability analysis of semi-discreteDGschemes: themaximumofRe (κC ) for differentμ = δ/h ∈ [0, 1].
no-cv here represents that no conservation post-processing has been applied

where g(X) is a matrix function

g(X) = I + λX + 1

2! (λX)2 + 1

3! (λX)3,

and λ = �t
h = 1

2k+1 is the CFL number. The full-discrete scheme is stable if the whole
eigenvalue spectrum of g(Q) is containedwithin the unit disk, i.e., ρ(g(Q)) � 1. It is obvious
that the eigenvalues of g(Q) are composed of the eigenvalues of g(B) and g(C). Similarly,
we only need to focus on the part corresponding to the boundaries, i.e., the eigenvalues of
g(C).

For k = 1, 2, 3, we plot the ρ(g(C)) for different δ/h in Fig. 5. The results indicate that
the full-discrete schemes are stable when an appropriate time discretization is employed.

3.2 Energy Stability

In this subsection, we establish the energy stability of the semi-discrete DG scheme with the
SILW-1 boundary treatment.

Proposition 1 For the linear equation (30) with the homogeneous inflow boundary condi-
tions, if we employ the upwind numerical flux internally and conservative SILW-1 flux near
the inflow boundary, the corresponding semi-discrete DG scheme (3) with k � 1 is energy
stable

d

dt
Eh(t) � 0 (37)

with the discrete energy defined as

Eh(t) =
(

1 − 1

22k+2

)−1 ∫

I1
(uh)

2dx +
∫ xN+1/2

x3/2
(uh)

2dx . (38)

Proof Let vh = uh and use the upwind numerical flux in (3), we have

0 =
∫

I j
(uh)t uh dx −

∫

I j
uh(uh)xdx + u−

j+ 1
2
u−
j+ 1

2
− u−

j− 1
2
u+
j− 1

2

=
∫

I j

1

2

d

dt
(uh)

2 dx − 1

2

(

u−
j+ 1

2

)2

+ 1

2

(

u+
j− 1

2

)2

+
(

u−
j+ 1

2

)2

− u−
j− 1

2
u+
j− 1

2
.
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(a) k = 1 (b) k = 2

(c) k = 3

Fig. 5 Stability analysis of fully discrete DG schemes: ρ(g(C)) for different μ = δ/h ∈ [0, 1]. no-cv here
represents that no conservation post-processing has been applied

Summing over j � 2, we can obtain that

N∑

j=2

∫

I j

1

2

d

dt
(uh)

2 dx � −1

2

(

u−
N+ 1

2

)2

+ 1

2

(

u−
3
2

)2

� 1

2

(

u−
3
2

)2

.

Combining the homogeneous boundary condition g(t) = 0, the conservative SILW-1
fluxes (22) for general k � 1 are in the same form,

ûc1
2

= δk+1

(δ + h)k+1 û 3
2

= δk+1

(δ + h)k+1 u
−
3
2
. (39)

Taking vh = uh in the first item I1, we have
∫

I1

1

2

d

dt
(uh)

2 dx = −1

2

(

u−
3
2

)2

− 1

2

(

u+
1
2

)2

+ δk+1

(δ + h)k+1 u
−
3
2
u+

1
2

� −1

2

(

u−
3
2

)2

+ 1

2

(
δk+1

(δ + h)k+1

)2 (

u−
3
2

)2

.

Using weighted summation over all cells with a constant W =
(
1 − 1

22k+2

)−1
, we can get

d

dt
Eh(t) =W

∫

I1

d

dt
(uh)

2 dx +
N∑

j=2

∫

I j

d

dt
(uh)

2 dx
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�W

[(
δk+1

(δ + h)k+1

)2

− 1

](

u−
3
2

)2

+
(

u−
3
2

)2

=
[

W

(
δk+1

(δ + h)k+1

)2

− W + 1

](

u−
3
2

)2

� 0.

Hence, the energy stability is proved.

When employing the ILW boundary treatment for the linear function with homogeneous
Dirichlet boundary conditions, the numerical flux û1/2 = 0. In this case, the energy stability
can be easily proven in the same way.

Proposition 2 For the linear equation (30)with the homogeneous inflow boundary condition,
if we use the upwind numerical flux internally and the ILW flux at the inflow boundary, the
corresponding semi-discrete DG scheme (3) with k � 0 is stable in the L2 norm

d

dt
‖uh(·, t)‖22,Ω̃ � 0. (40)

Remark 3 Unfortunately, those conclusions cannot be directly extended to nonlinear equa-
tions. For linear equations, f̂1/2u

+
1/2 can be bounded by the expression consisting of

point values (u+
1/2)

2 and (u−
3/2)

2, and further be canceled by those terms generated from
∫

I1
f (u)uxdx . However, for nonlinear problems,

∫

I j
f (u)uxdx and f̂ j+1/2u

±
j+1/2 have dif-

ferent forms.Moreover, the terms derived from the boundary treatment aremore complex and
could not be canceled or merged with the inner schemes, making the analysis inapplicable.

3.3 Error Estimate

In this section, we will establish the error estimates of the semi-discrete scheme for the linear
advection equation with the conservative SILW-1 flux.

Suppose that u(x) is sufficiently smooth, we have the Taylor formula with the Peano form
of the remainder

u
(
x 1
2
, t
)

= �k
0[u](δ) + ∂

(k+1)
x u(0, t)

(k + 1)! δk+1 + O(hk+2),

u
(
x 3

2
, t
)

= �k
0[u](δ + h) + ∂

(k+1)
x u(0, t)

(k + 1)! (δ + h)k+1 + O(hk+2).

Note that the explicit expression of the conservative SILW-1 flux (22) for the linear equa-
tion (30) degenerates to

ûc1
2

= �k
0[u](δ) + δk+1

(δ + h)k+1

(

u−
3
2

− �k
0[u](δ + h)

)

. (41)
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Hence,

ûc1
2

=
[

u
(
x 1
2
, t
)

− ∂
(k+1)
x u(0, t)

(k + 1)! δk+1 + O(hk+2)

]

+ δk+1

(δ + h)k+1

[

u−
3
2

− u
(
x 3
2
, t
)

+ ∂
(k+1)
x u(0, t)

(k + 1)! (δ + h)k+1 + O(hk+2)

]

= u
(
x 1
2
, t
)

− δk+1

(δ + h)k+1

(

u
(
x 3

2
, t
)

− u−
3
2

)

+ O(hk+2).

(42)

Next, we introduce the Gauss-Radau projection P− and L2 projection P into V k
h . For a

given function w, the projection P−w ∈ Vh satisfies
⎧
⎪⎪⎨

⎪⎪⎩

∫

I j
(P−w(x) − w(x))vh(x) dx = 0, ∀vh ∈ Pk−1(I j ),

P−w(x−
j+ 1

2
) = w

(

x−
j+ 1

2

)

.

(43)

And the projection Pw ∈ Vh satisfies
∫

I j
(Pw(x) − w(x))vh(x) dx = 0, ∀vh ∈ Pk(I j ). (44)

Moreover, the projection P∗, which can be P− or P , has the properties

‖u − P∗u‖∞,I j � Chk+1|u|∞,k+1,I j , (45)

‖u − P∗u‖2,I j � Chk+
3
2 |u|∞,k+1,I j (46)

for any u ∈ Ck+1(I j ). Here, C > 0 is some constant that is independent of h = |I j | and u.
Proposition 3 Consider the linear equation (30) with the homogeneous Dirichlet boundary
condition. Suppose the exact solution u is smooth. We consider the semi-discrete DG scheme
(3) with the upwind numerical flux internally and the conservative SILW-1 flux at the inflow
boundary, then the numerical solution uh satisfies the following error estimate:

||u − uh ||2,Ω̃ � Chk+1, (47)

where C > 0 depends on u and its derivatives but is independent of h and δ.

Proof We decompose the error into two parts

u − uh = η + ξ, η = u − P−u, ξ = P−u − uh .

Note that the scheme (3) in the cell I j , j � 2, is the same as the standard DGmethod. Hence,
we can get the following inequality from the error estimate of the standard DG method [28]:

1

2

N∑

j=2

d

dt

∫

I j
ξ2 dx � −

N∑

j=2

ηtξ dx − 1

2

(

ξ−
N+ 1

2

)2

+ 1

2

(

ξ−
3
2

)2

. (48)

Next, we focus on the special treatment for the inflow boundary cell I1. For any vh ∈ Vh ,
∫

I1
(uh)tvh dx −

∫

I1
uh(vh)x dx + (uh)

−
3
2
vh

(

x−
3
2

)

− ûc1
2
vh

(

x+
1
2

)

= 0,
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∫

I1
utvh dx −

∫

I1
u(vh)x dx + u(x 3

2
, t)vh

(

x−
3
2

)

− u
(
x 1
2
, t
)

vh

(

x+
1
2

)

= 0.

Subtracting these two equations, we obtain the error equation
∫

I1
(u − uh)tvh dx −

∫

I1
(u − uh)(vh)x dx

+
(

u
(
x 3
2
, t
)

− (uh)
−
3
2

)

vh

(

x−
3
2

)

−
(

u
(
x 1
2
, t
)

− ûc1
2

)

vh

(

x+
1
2

)

= 0, ∀vh ∈ Vh .

Specially, take vh = ξ ∈ Vh ,

0 =
∫

I1
(η + ξ)tξ dx −

∫

I1
(η + ξ)ξx dx +

(

η−
3
2

+ ξ−
3
2

)

ξ−
3
2

−
(

u
(
x 1
2
, t
)

− ûc1
2

)

ξ+
1
2

=
∫

I1
ηtξ dx +

∫

I1
ξtξ dx − 1

2

(

ξ−
3
2

)2

+ 1

2

(

ξ+
1
2

)2

+
(

ξ−
3
2

)2

−
(

u
(
x 1
2
, t
)

− ûc1
2

)

ξ+
1
2
.

Employing the equivalent formula of ûc1
2
(42), we have

u(x 1
2
, t) − ûc1

2
= δk+1

(δ + h)k+1

[

u
(
x 3

2
, t
)

− uh

(

x−
3
2

)]

+ β(u, δ, h)

= δk+1

(δ + h)k+1 ξ−
3
2

+ β(u, δ, h),

where |β(u, δ, h)| � Chk+2. Therefore,
∫

I1
ξtξ dx = −

∫

I1
ηtξ dx − 1

2

(

ξ−
3
2

)2

− 1

2

(

ξ+
1
2

)2

+
[

δk+1

(δ + h)k+1 ξ−
3
2

+ β(u, δ, h)

]

ξ+
1
2

� −
∫

I1
ηtξ dx − 1

2

(

ξ−
3
2

)2

+ 1

2

[
δk+1

(δ + h)k+1 ξ−
3
2

+ β(u, δ, h)

]2

. (49)

We now take α = δk+1

(δ+h)k+1 <
( 1
2

)k+1
< 1. Since

−1

2

(

ξ−
3
2

)2

+ 1

2

(

αξ−
3
2

+ β

)2

� α2 − 1

2

(

ξ−
3
2

)2

+ 1 − α2

2

(

ξ−
3
2

)2

+ α2β2

2(1 − α2)
+ 1

2
β2

�Ch2k+4,

we can obtain that
∫

I1
ξtξ dx � −

∫

I1
ηtξ dx − 1

2

(

ξ−
3
2

)2

+ 1

2

[

αξ−
3
2

+ β(u, δ, h)

]2

� −
∫

I1
ηtξ dx + Ch2k+4

� 1

2

∫

I1
(ηt )

2 dx + 1

2

∫

I1
ξ2 dx + Ch2k+4

� 1

2

∫

I1
ξ2 dx + Ch2k+3.

The last inequality holds when u is smooth enough. If we take the initial value uh = Pu
where P is a standard L2 projection, we can get the following estimate using Gronwall’s
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inequality:
∫

I1
ξ(x, t)2 dx � et

∫

I1
ξ(x, 0)2 dx + et

∫ τ

0
e−τCh2k+3 dτ � C(1 + et )h2k+3. (50)

According to the inverse inequality, there exists a constant C related to u and t such that
∣
∣
∣
∣ξ

−
3
2

∣
∣
∣
∣ � ‖ξ‖∞,I1 � Ch− 1

2 ‖ξ‖2,I1 � Chk+1. (51)

Plugging (51) into (49), we can obtain
∫

I1
ξtξ dx � −

∫

I1
ηtξ dx − 1

2

(

ξ−
3
2

)2

+ 1

2

[

α(δ, h)ξ−
3
2

+ β(u, δ, h)

]2

� −
∫

I1
ηtξ dx − 1

2

(

ξ−
3
2

)2

+ Ch2k+2.

(52)

Now, we combine the estimates (48) and (52), and have

1

2

N∑

j=1

d

dt

∫

I j
ξ2 dx � −

N∑

j=1

∫

I j
ηtξ dx − 1

2

(

ξ−
N+ 1

2

)2

+ Ch2k+2

� 1

2

N∑

j=1

∫

I j
ξ2 dx + Ch2k+2.

(53)

Using Gronwall’s inequality, we can obtain
N∑

j=1

∫

I j
ξ(x, t)2 dx � et

N∑

j=1

∫

I j
ξ(x, 0)2 dx +

∫ t

0
et−τCh2k+2 dτ. (54)

Noting that for the initial value,
N∑

j=1

‖ξ(·, 0)‖22,I j =
N∑

j=1

‖P−u − Pu‖22,I j �2
N∑

j=1

(
‖u − P−u‖22,I j +‖u−Pu‖22,I j

)
� Ch2k+2,

(55)

we can get the L2 estimate of ξ

‖ξ(x, t)‖2
2,Ω̃

=
N∑

j=1

∫

I j
ξ(x, t)2 dx � C(1 + et )h2k+2, (56)

which gives us the final conclusion

‖u(x, t) − uh(x, t)‖22,Ω̃ � 2
(‖ξ(x, t)‖22 + ‖η(x, t)‖22

)
� C(1 + et )h2k+2. (57)

4 Numerical Examples

In this section, we present some numerical examples to demonstrate the performance of our
proposed scheme. For the scalar case, both linear and nonlinear equations are considered.
We also employ this method to solve linear systems.

In all our computations, we test the DG method with V k
h (k = 1, 2, 3) coupling with the

conservative SILW-k boundary treatment. Without special declaration, the domain is divided
uniformly with a cut element sized δ at the left boundary. And we choose two extreme values
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δ/h = 0.01, 0.99, to show their influence on the numerical performance. The third-order
Runge-Kutta method (5) is used for the time discretization with the time step �t = λh for

k � 2 and �t = λh
k+1
3 for k = 3. The CFL number λ = 1

(2k+1)α is the same as that used in
the standard RKDG method.

4.1 Accuracy Test for the Linear Scalar Equation

In this example, we consider the initial-boundary value problem of the linear advection
equation

⎧
⎪⎨

⎪⎩

ut + ux = 0, x ∈ (0, 2π), t > 0,

u(x, 0) = − sin(x), x ∈ [0, 2π],
u(0, t) = sin(t), t > 0.

(58)

The exact solution is u(x, t) = sin(t − x). In this case, the left boundary x = 0 is an inflow
boundary all the time and the right boundary x = 2π is an outflow boundary. Errors are
calculated on the computational domain Ω̃ . The L2 errors and L∞ errors at time t = 3 are
shown in Table 2. We can see that for all cases, the schemes are stable and can achieve the
optimal (k+1)th order. Moreover, with the help of the conservative modification, errors with
different δ have no significant difference.

4.2 Linear Scalar Equation with Non-smooth Boundary

Next, we consider the linear problem with non-smooth inflow boundary data:
⎧
⎪⎨

⎪⎩

ut + ux = 0, x ∈ (0, 1), t > 0,

u(x, 0) = 0, x ∈ [0, 1],
u(0, t) = g(t), t > 0,

(59)

where

g(t) =
{
1, t � 0.5,

0, t > 0.5.

We can see that discontinuities enter the computational domain from the inflow boundary.
To control oscillations, the TVD limiter is applied on the interior cells and the modification
mentioned in Sect. 2.3 is used on f̂ 1

2
. Numerical results with SILW-1 and SILW-2 are shown

in Figs. 6 and 7, respectively, demonstrating that our algorithm does not introduce additional
numerical oscillations when handling strong discontinuities near cut cells.

4.3 Nonlinear Burgers’ Equation

In this example, we apply the scheme to Burgers’ equation:
⎧
⎪⎪⎨

⎪⎪⎩

ut +
(
u2
2

)

x
= 0, x ∈ (−π,π), t > 0,

u(x, 0) = 1 + 2 sin(x), x ∈ [−π,π],
u(−π, t) = g(t), t > 0.

(60)
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Table 2 Example in Sect. 4.1: numerical errors and orders of the linear equation at t = 3

N δ = 0.01h δ = 0.99h

L2 error Order L∞ error Order L2 error Order L∞ error Order

P1 SILW-1

20 1.08E−02 – 1.41E−02 – 1.10E−02 – 1.29E−02 –

40 2.67E−03 2.01 3.61E−03 1.96 2.64E−03 2.06 3.46E−03 1.90

80 6.66E−04 2.00 9.14E−04 1.98 6.57E−04 2.01 8.93E−04 1.95

160 1.66E−04 2.00 2.30E−04 1.99 1.65E−04 1.99 2.27E−04 1.98

P2 SILW-1

20 2.71E−04 – 4.00E−04 – 4.96E−04 – 5.53E−04 –

40 3.39E−05 3.00 5.04E−05 2.99 4.28E−05 3.54 5.48E−05 3.33

80 4.24E−06 3.00 6.36E−06 2.98 4.43E−06 3.27 6.31E−06 3.12

160 5.31E−07 3.00 7.94E−07 3.00 5.26E−07 3.07 7.80E−07 3.02

P2 SILW-2

20 2.71E−04 – 4.00E−04 – 6.15E−04 – 5.62E−04 –

40 3.39E−05 3.00 5.04E−05 2.99 5.15E−05 3.58 5.59E−05 3.33

80 4.24E−06 3.00 6.36E−06 2.98 4.95E−06 3.38 6.41E−06 3.12

160 5.31E−07 3.00 7.94E−07 3.00 5.54E−07 3.16 7.90E−07 3.02

P3 SILW-1

20 7.16E−06 – 1.08E−05 – 2.49E−05 – 2.06E−05 –

40 4.49E−07 4.00 6.76E−07 4.00 9.74E−07 4.68 8.52E−07 4.60

80 2.81E−08 4.00 4.24E−08 4.00 4.08E−08 4.58 4.17E−08 4.35

160 1.76E−09 4.00 2.65E−09 4.00 2.02E−09 4.33 2.59E−09 4.01

P3 SILW-2

20 7.16E−06 – 1.08E−05 – 2.62E−05 – 2.38E−05 –

40 4.49E−07 4.00 6.76E−07 4.00 9.88E−07 4.73 9.44E−07 4.66

80 2.81E−08 4.00 4.24E−08 4.00 3.93E−08 4.65 4.11E−08 4.52

160 1.76E−09 4.00 2.65E−09 4.00 1.90E−09 4.37 2.59E−09 3.99

We take the boundary condition g(t) = w(−π, t), where w(x, t) is the exact solution of the
initial value problem on (−π,π) with periodic boundary conditions and can be obtained by
Newton’s method. For all time, the left boundary x = − π is an inflow boundary and the
right boundary x = π is an outflow boundary. To verify the performance of the nonlinear
limiter on the boundary treatment, we always use the modified numerical flux (24) in this
example.

When t = 0.3, the exact solution is still smooth. Errors are shown in Table 3. It is observed
that the scheme can always achieve the optimal (k + 1)th order accuracy and the ratio δ/h
does not effect themagnitude of errors significantly, demonstrating the limiters do not destroy
the accuracy of smooth solutions.

At t = 0.5, a shock is fully developed in the interior of the computational domain.
Moreover, a shock enters the inflow boundary at t = 2π and moves to x = 0 at t = 3π. In
order to capture the shock and avoid numerical oscillations, the TVD limiter is applied on
the interior cells. Figures8 and 9 indicate that the shock is well captured by our method.
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(a) δ = 0.01h, k = 1, SILW-1 (b) δ = 0.99h, k = 1, SILW-1

(c) δ = 0.01h, k = 2, SILW-1 (d) δ = 0.99h, k = 2, SILW-1

(e) δ = 0.01h, k = 3, SILW-1 (f) δ = 0.99h, k = 3, SILW-1

Fig. 6 Example in Sect. 4.2: numerical solutions for the linear equation with the non-smooth boundary
condition at t = 0.75. the SILW-1 boundary treatment is used. Left: δ = 0.01h; right: δ = 0.99h

4.4 Linear System

Finally, we consider the linear system,

(
u
v

)

t
+
( −1

−c2

)(
u
v

)

x
= 0, x ∈ (0, 2π), t > 0. (61)
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(a) δ = 0.01h, k = 2, SILW-2 (b) δ = 0.99h, k = 2, SILW-2

(c) δ = 0.01h, k = 3, SILW-2 (d) δ = 0.99h, k = 3, SILW-2

Fig. 7 Example in Sect. 4.2: numerical solutions for the linear equation with the non-smooth boundary
condition at t = 0.75. The SILW-2 boundary treatment is used. Left: δ = 0.01h; right: δ = 0.99h

We fix the coefficient c = 1.5 and choose the corresponding initial value to match the exact
solution

{
u(x, t) = cos(x + ct),

v(x, t) = c cos(x + ct).

Since the eigenvalues of the coefficient matrix are ±c, one boundary condition is needed at
each boundary. Here, we take the boundary condition

u(0, t) = cos(ct), u(2π, t) = cos(ct).

The computational errors of all components, as shown in Table 4, indicate that our method
still maintains the optimal convergence rate. However, in comparison to the scalar case, the
impact of the ratio δ/h is shown, leading to different magnitudes of errors. This is due to the
outflow boundary treatment for the system. Even though the conservative modification has
reduced the influence of the ratio δ/h, errors of the outflow variable are transmitted into the
inflow variable through the boundary treatment, and further affect the internal solutions.
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Table 3 Example in Sect. 4.3: numerical errors and orders of Burgers’ equation at t = 0.3

N δ = 0.01h δ = 0.99h

L2 error Order L∞ error Order L2 error Order L∞ error Order

k = 1, SILW-1

40 9.89E−03 – 2.54E−02 – 1.55E−02 – 6.04E−02 –

80 2.61E−03 1.92 7.27E−03 1.81 2.97E−03 2.39 1.12E−02 2.43

160 6.82E−04 1.93 1.94E−03 1.91 6.90E−04 2.10 2.43E−03 2.21

320 1.77E−04 1.95 5.03E−04 1.95 1.75E−04 1.98 5.63E−04 2.11

640 4.53E−05 1.96 1.28E−04 1.97 4.50E−05 1.96 1.36E−04 2.05

k = 2, SILW-1

40 5.66E−04 – 2.59E−03 – 1.69E−03 – 1.06E−02 –

80 7.77E−05 2.87 4.13E−04 2.65 1.39E−04 3.61 5.99E−04 4.15

160 1.01E−05 2.95 5.63E−05 2.87 1.25E−05 3.47 4.78E−05 3.65

320 1.28E−06 2.98 7.34E−06 2.94 1.35E−06 3.21 7.00E−06 2.77

640 1.60E−07 2.99 9.41E−07 2.96 1.62E−07 3.06 9.23E−07 2.92

k = 2, SILW-2

40 5.66E−04 – 2.59E−03 – 1.35E−03 – 4.63E−03 –

80 7.77E−05 2.87 4.13E−04 2.65 1.21E−04 3.48 6.13E−04 2.92

160 1.01E−05 2.95 5.63E−05 2.87 1.29E−05 3.23 6.43E−05 3.25

320 1.28E−06 2.98 7.34E−06 2.94 1.39E−06 3.22 7.77E−06 3.05

640 1.60E−07 2.99 9.41E−07 2.96 1.64E−07 3.08 9.62E−07 3.01

k = 3, SILW-1

40 3.85E−05 – 1.11E−04 – 4.54E−04 – 1.65E−03 –

80 2.48E−06 3.95 1.12E−05 3.30 1.12E−05 5.34 4.46E−05 5.21

160 1.65E−07 3.91 7.85E−07 3.84 3.58E−07 4.96 1.75E−06 4.67

320 1.08E−08 3.93 5.23E−08 3.91 1.45E−08 4.63 7.74E−08 4.50

640 7.01E−10 3.95 3.37E−09 3.95 7.53E−10 4.27 3.94E−09 4.30

k = 3, SILW-2

40 3.85E−05 – 1.11E−04 – 5.64E−04 – 2.20E−03 –

80 2.48E−06 3.95 1.12E−05 3.30 1.36E−05 5.38 4.91E−05 5.48

160 1.65E−07 3.91 7.85E−07 3.84 3.93E−07 5.11 1.42E−06 5.11

320 1.08E−08 3.93 5.23E−08 3.91 1.54E−08 4.67 5.44E−08 4.71

640 7.01E−10 3.95 3.37E−09 3.95 8.32E−10 4.21 3.14E−09 4.11
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(a) δ = 0.01h, k = 1, SILW-1 (b) δ = 0.99h, k = 1, SILW-1

(c) δ = 0.01h, k = 2, SILW-1 (d) δ = 0.99h, k = 2, SILW-1

(e) δ = 0.01h, k = 3, SILW-1 (f) δ = 0.99h, k = 3, SILW-1

Fig. 8 Example in Sect. 4.2: numerical solutions for Burgers’ equation at t = 3π, with the SILW-1 boundary
treatment. Left: δ = 0.01h; right: δ = 0.99h
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(a) δ = 0.01h, P 2 SILW-2 (b) δ = 0.99h, P 2 SILW-2

(c) δ = 0.01h, P 3 SILW-2 (d) δ = 0.99h, P 3 SILW-2

Fig. 9 Example in Sect. 4.2: numerical solutions for Burgers’ equation at t = 3π, with the SILW-2 boundary
treatment. Left: δ = 0.01h; right: δ = 0.99h

5 Conclusion

In this paper, we design high-order DG methods to solve hyperbolic conservation laws on
unfitted meshes. The standard RKDG method is employed on the interior cells. On the
small cut cells near physical boundaries, we apply the idea of the ILW method to construct
approximation polynomials. Moreover, the post-processing is given in order to preserve the
local conservation properties of the DG solution. The eigenvalue spectrum visualization
method is used to analyze the stability of the boundary treatment for both the semi-discrete
and fully discrete cases. The energy stability and error analysis are given for a specific
boundary treatment. Numerical results demonstrate that our methods can achieve the optimal
convergence rate and completely avoid the typical issue of small time steps. In addition, an
extra nonlinear limiter is provided to prevent oscillations if a shock is close to the boundary.
Numerical examples illustrate that our method has the capacity to treat shocks going through
the boundaries.

We note that the treatment for the outflow boundary can give high-order accuracy. How-
ever, the ratio δ/h has a significant impact on the magnitude of errors, and the same is true for
systems. We would like to improve this algorithm in the future. Moreover, boundary treat-
ments for nonlinear systems and high-dimensional problems are subject to future research.
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Table 4 Example in Sect. 4.4: numerical errors and orders of the linear system at t = 4

N δ = 0.01h δ = 0.99h

L2 error Order L∞ error Order L2 error Order L∞ error Order

P1 SILW-1

40 4.95E−03 – 5.28E−03 – 1.12E−02 – 1.07E−02 –

80 1.21E−03 2.03 1.35E−03 1.97 1.79E−03 2.65 1.95E−03 2.45

160 3.00E−04 2.01 3.42E−04 1.98 3.46E−04 2.37 4.65E−04 2.07

320 7.50E−05 2.00 8.61E−05 1.99 7.82E−05 2.14 1.10E−04 2.08

P2 SILW-1

40 6.50E−05 – 7.44E−05 – 8.00E−04 – 4.15E−04 –

80 8.12E−06 3.00 9.33E−06 2.99 5.44E−05 3.88 2.92E−05 3.83

160 1.02E−06 3.00 1.17E−06 3.00 3.72E−06 3.87 2.13E−06 3.78

320 1.27E−07 3.00 1.46E−07 3.00 2.72E−07 3.77 1.70E−07 3.65

P2 SILW-2

40 6.50E−05 – 7.44E−05 – 5.30E−04 – 2.84E−04 –

80 8.12E−06 3.00 9.33E−06 2.99 3.69E−05 3.84 2.07E−05 3.78

160 1.02E−06 3.00 1.17E−06 3.00 2.64E−06 3.81 1.60E−06 3.69

320 1.27E−07 3.00 1.46E−07 3.00 2.10E−07 3.65 1.38E−07 3.54

P3 SILW-1

40 1.48E−06 – 1.90E−06 – 3.93E−04 – 9.72E−04 –

80 9.31E−08 3.99 1.20E−07 3.98 1.85E−05 4.41 5.92E−05 4.04

160 5.82E−09 4.00 7.55E−09 4.00 8.18E−07 4.50 3.48E−06 4.09

320 3.65E−10 4.00 4.73E−10 4.00 3.54E−08 4.53 2.04E−07 4.09

P3 SILW-2

40 1.48E−06 – 1.90E−06 – 5.46E−05 – 9.45E−05 –

80 9.31E−08 3.99 1.20E−07 3.98 2.20E−06 4.64 5.47E−06 4.11

160 5.82E−09 4.00 7.55E−09 4.00 8.98E−08 4.61 3.30E−07 4.05

320 3.65E−10 4.00 4.73E−10 4.00 3.74E−09 4.58 1.98E−08 4.06
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