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Abstract
Higher order finite difference Weighted Essentially Non-Oscillatory (FD-WENO) schemes 
for conservation laws are extremely popular because, for multidimensional problems, they 
offer high order accuracy at a fraction of the cost of finite volume WENO or DG schemes. 
Such schemes come in two formulations. The very popular classical FD-WENO method 
(Shu and Osher J Comput Phys 83: 32–78, 1989) relies on two reconstruction steps applied 
to two split fluxes. However, the method cannot accommodate different types of Riemann 
solvers and cannot preserve free stream boundary conditions on curvilinear meshes. This 
limits its utility. The alternative FD-WENO (AFD-WENO) method can overcome these 
deficiencies, however, much less work has been done on this method. The reasons are 
three-fold. First, it is difficult for the casual reader to understand the intricate logic that 
requires higher order derivatives of the fluxes to be evaluated at zone boundaries. The ana-
lytical methods for deriving the update equation for AFD-WENO schemes are somewhat 
recondite. To overcome that difficulty, we provide an easily accessible script that is based 
on a computer algebra system in Appendix A of this paper. Second, the method relies on 
interpolation rather than reconstruction, and WENO interpolation formulae have not been 
documented in the literature as thoroughly as WENO reconstruction formulae. In this 
paper, we explicitly provide all necessary WENO interpolation formulae that are needed 
for implementing the AFD-WENO up to the ninth order. The third reason is that the AFD-
WENO requires higher order derivatives of the fluxes to be available at zone boundaries. 
Since those derivatives are usually obtained by finite differencing the zone-centered fluxes, 
they become susceptible to a Gibbs phenomenon when the solution is non-smooth. The 
inclusion of those fluxes is also crucially important for preserving the order property when 
the solution is smooth. This has limited the utility of the AFD-WENO in the past even 
though the method per se has many desirable features. Some efforts to mitigate the effect 
of finite differencing of the fluxes have been tried, but so far they have been done on a 
case by case basis for the PDE being considered. In this paper we find a general-purpose 
strategy that is based on a different type of the  WENO interpolation. This new WENO 
interpolation takes the first derivatives of the fluxes at zone centers as its inputs and returns 
the requisite non-linearly hybridized higher order derivatives of flux-like terms at the zone 
boundaries as its output. With these three advances, we find that the AFD-WENO becomes 
a robust and general-purpose solution strategy for large classes of conservation laws. It 
allows any Riemann solver to be used. The AFD-WENO has a computational complexity 
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that is entirely comparable to the classical FD-WENO, because it relies on two interpola-
tion steps which cost the same as the two reconstruction steps in the classical FD-WENO. 
We apply the method to several stringent test problems drawn from Euler flow, relativistic 
hydrodynamics (RHD), and ten-moment equations. The method meets its design accuracy 
for smooth flow and can handle stringent problems in one and multiple dimensions.

Keywords Hyperbolic PDEs · Numerical schemes · Conservation laws · Finite difference 
Weighted Essentially Non-Oscillatory (FD-WENO)

Mathematics Subject Classification 65M06 · 65M22 · 65N06 · 35Q35 · 76T10 · 76M20

1 Introduction

Essentially Non-Oscillatory (ENO) methods for the high order accurate numerical simula-
tion of conservation laws in a finite volume setting were invented in the pioneering work 
of Harten et al. [28]. Shu and Osher [55, 56] soon followed up on this work by introducing 
finite difference ENO methods. The finite difference versions of higher order schemes are 
much more computationally efficient compared to their finite volume counterparts. Early 
ENO schemes suffered from the deficiency that certain problems could cause very rapid 
switching of the stencil, resulting in a loss of accuracy. Weighted ENO (WENO) schemes 
were invented to overcome this deficiency (Liu et al. [43], Jiang and Shu [31]). The meth-
ods were extended to the seventh, ninth, and eleventh orders by Balsara and Shu [12] and 
much later to the seventeenth order by Gerolymos et al. [26]. Some of the early deficiencies 
of WENO schemes stemmed from a loss of accuracy at critical points, and a way out of 
this problem was presented in Henrick et al. [30], Borges et al. [17], and Castro et al. [20]. 
A finite difference WENO (FD-WENO) formulation that applies to systems with non-con-
servative products has recently been formulated by Balsara et al. [6]. For a comprehensive 
review of WENO schemes, see Shu [53, 54].

The original papers by Shu and Osher [55, 56] contained not one but rather two styles 
of thinking about finite difference ENO/WENO schemes. One of those styles of thinking, 
in Shu and Osher [56], has become extremely popular. It consists of splitting the local Lax-
Friedrichs (LLF) flux into two parts—a left-going part and a right-going part. The two 
parts were suitably upwinded via an appropriate choice of stencils. Using a trick stem-
ming from the fundamental theorem of integral calculus (later referred to as the Shu-Osher 
Lemma), it was shown that a one-dimensional finite volume reconstruction from the point 
values of the upwinded fluxes would yield a high order finite difference scheme. This then 
allowed the usage of the same one-dimensional finite volume reconstruction subroutine 
to approximate multi-dimensional conservation laws dimension by dimension in the high 
order conservative finite difference schemes. We refer to this algorithm as the classical 
FD-WENO algorithm. This algorithm has become highly popular to the point where most 
papers that cite Shu and Osher [55, 56] do so because of this algorithm. However, there 
was another algorithm that was developed first in Shu and Osher [55]. For a very long time, 
almost nobody paid attention to that algorithm. A paper by Merriman [46] made some 
headway in understanding that algorithm. We refer to that algorithm as the alternative for-
mulation of the FD-WENO (AFD-WENO) in this paper, following the terminology first 
used in Jiang et al. [32]. Subsequent interest in the AFD-WENO has emerged sporadically 
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(Jiang et  al. [32, 33], Zheng et  al. [61], Gao et  al. [25]) but it is becoming clearer that 
the AFD-WENO represents a strong alternative algorithm to the classical FD-WENO algo-
rithm. Furthermore, the AFD-WENO has many strong points relative to the classical FD-
WENO. In the next paragraph we explain the reasons why this is so.

One of the reasons for AFD-WENO’s slower acceptance is that it is difficult for the 
casual reader to understand the intricate logic that requires higher order derivatives of 
the fluxes to be evaluated at zone boundaries. The analytical methods that give rise to the 
AFD-WENO update equation are difficult to understand. Because our first goal is to make 
the method more accessible, we provide a script based on a computer algebra system in 
Appendix A of this paper which shows that the AFD-WENO update equation can be easily 
derived with modern computational tools.

Classical FD-WENO relies on the availability of a smooth flux. But this restricts it to 
an LLF Riemann solver or a variant of a Roe-type Riemann solver. This restriction is fun-
damentally a consequence of the flux reconstruction. In recent years we have seen many 
different Riemann solvers emerge which have special attributes that make them very useful 
in various application areas. Those Riemann solvers do not fit well into the strictures of the 
classical FD-WENO. The AFD-WENO algorithm is free of such strictures—any type of 
Riemann solver can be invoked in a pointwise fashion at the zone boundaries. This makes 
a well-designed AFD-WENO very broadly applicable to many application areas. Classical 
FD-WENO also does not take well to preserving the free stream condition on curvilinear 
meshes; whereas AFD-WENO can indeed take well to curvilinear meshes (Jiang et al. [32, 
33]). In the discussions that are contained in this paper we document other potential advan-
tages of AFD-WENO.

For all its advantages, AFD-WENO has also proven to be a little harder to work with, 
perhaps because it is not as well-developed as the classical FD-WENO. To begin with, it 
relies on the WENO interpolation rather than the WENO reconstruction. Since the latter 
is much better known than the former, the widespread acceptance of the AFD-WENO has 
suffered. There is a further reason for its hitherto for lack of acceptance. It stems from the 
fact that one has to evaluate higher order derivatives of the flux at the zone boundaries if 
one wants to use the AFD-WENO. These higher derivatives of the flux can cause spurious 
oscillations when the solution is non-smooth on the mesh. There has been very little work 
to control these oscillations and the few efforts that have been made are very specific to the 
PDE being considered (Zheng et al. [61], Gao et al. [25]). As a result, it has not been pos-
sible to develop AFD-WENO schemes as a general-purpose tool for numerically solving 
large classes of hyperbolic conservation laws. The second goal of this paper is to overcome 
this limitation by showing that our well-designed AFD-WENO scheme is indeed a gen-
eral-purpose solver for conservation laws. Consequently, as part of our numerical results, 
we will show that the same AFD-WENO algorithm can be applied very generally to large 
classes of hyperbolic conservation laws.

All the AFD-WENO schemes are based on interpolation. It is therefore worthwhile to 
make a distinction between reconstruction and interpolation. Reconstruction is used in all 
finite volume schemes and also in many popular FD-WENO reconstruction schemes where 
the fluxes are reconstructed. It consists of starting with the zone averages in a given stencil 
and obtaining therefrom the high degree polynomial whose integration over each of the 
zones of the stencil matches the original zone averages. Interpolation is used less often 
in the numerical solution of conservation laws, however, it is the approach that will be 
used in this paper. It consists of starting with the point values at each of the zone cent-
ers of a stencil and obtaining therefrom the high degree polynomial that matches those 
point values. Therefore, the two words, reconstruction and interpolation, carry different 
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connotations. When applied to the same stencil, reconstruction and interpolation produce 
polynomials with the same degree. However, the underlying polynomial coefficients that 
are produced by invoking reconstruction or interpolation on a given stencil can indeed be 
different. Standard WENO concepts like linear weights, smoothness indicators, normalized 
non-linear weights, etc. are often the same for reconstruction and interpolation; so there is 
indeed a beneficial transference of knowledge between them. The WENO reconstruction, 
especially as it relates to the FD-WENO, has been amply documented in the literature start-
ing from Jiang and Shu [31], Balsara and Shu [12], and continuing through Balsara et al. 
[8], where it was presented in its most polished form. It turns out that the WENO interpola-
tion, as it relates to the AFD-WENO, has not been thoroughly documented in the literature. 
This may be one reason why the method has not been widely embraced by practitioners. 
The third goal of this paper is to thoroughly document the different WENO interpolation 
methods that are useful in the AFD-WENO. To facilitate easy adoption of the AFD-WENO 
by the greater community, some of the sections of this paper have been designed so that 
they constitute a one-stop-shop for WENO interpolation formulae.

The paper is divided into the following sections. In Sect. 2, we quickly present the AFD-
WENO formulation and identify the advances in WENO interpolation that are needed to 
turn the AFD-WENO into a general-purpose algorithm. In Sect. 3, we document some of 
the WENO interpolation algorithms as they apply to zone centered variables. In Sect. 4, we 
document new types of WENO interpolation algorithms that are indeed invoked at zone 
boundaries. Section 5 gives pointwise implementation-related details. Section 6 presents an 
accuracy analysis for a variety of hyperbolic conservation laws. Section 7 presents results 
involving various hyperbolic conservation laws in one dimension. Section 8 does the same 
in multiple dimensions. Section 9 draws some conclusions.

2  An AFD‑WENO Algorithm—Description of Philosophy 
and Formulation

This section is split into two sub-sections. The first sub-section clearly describes the phi-
losophy behind the AFD-WENO algorithm and should be useful to any reader. The second 
sub-section documents a class of AFD-WENO schemes up to the ninth order where the 
Gibbs phenomenon is suppressed via a redesigned WENO algorithm.

2.1  AFD‑WENO Scheme Design Philosophy

We now describe the philosophy behind the AFD-WENO scheme. We focus on the solu-
tion of a one-dimensional PDE system given by

Let us establish some notations. Please see Fig. 1. It shows a small sub-section of the mesh 
function in a few adjacent zones. The zones are labeled by “ i − 1, i, i + 1 ”, etc. and their zone 
centers are denoted by “ xi−1, xi, xi+1 ”, etc. The zone boundaries of each zone “i” are denoted 
by “ xi−1∕2 ” and “ xi+1∕2 ” with Δx = xi+1∕2 − xi−1∕2 being a constant because we have assumed 
a uniform mesh. The associated mesh functions are specified in pointwise fashion at the zone 
centers and are labeled by “ �i−1,�i,�i+1 ”, etc. Here “U” is a vector of primal variables for 
the hyperbolic PDE that we are considering. For the moment we consider a one-dimensional 

(1)�t� + �x� = 0.
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mesh, but because this is a finite difference scheme, the method can be extended dimension-
by-dimension to multiple dimensions. Using any WENO interpolation strategy, as applied to 
the point values of the mesh function, we can obtain a suitably high order interpolation within 
each zone. (In the next two sections we will provide a lot of detail on the WENO interpola-
tion.) The interpolation within zone “i” gives us interpolated �̂−

i+1∕2
 and �̂+

i−1∕2
 at the right and 

left boundaries of the zone being considered, see Fig. 1. We will use a caret to denote such 
interpolated variables. Note that �̂−

i+1∕2
 is available at the left-hand side of the zone boundary 

xi+1∕2 and �̂+
i−1∕2

 is available at the right-hand side of the zone boundary xi−1∕2 . Similarly, 
using our WENO interpolation within the zone “i + 1”, we obtain �̂−

i+3∕2
 and �̂+

i+1∕2
 at the right 

and left boundaries of that zone. Note that �̂+
i+1∕2

 is available at the right-hand side of the zone 
boundary xi+1∕2 . Likewise, using our WENO interpolation within the zone “i − 1”, we obtain 
�̂−

i−1∕2
 and �̂+

i−3∕2
 at the right and left boundaries of that zone. Consequently, �̂−

i−1∕2
 is availa-

ble at the left-hand side of the zone boundary xi−1∕2 . We assume that a Riemann solver with 
left and right states given by �̂−

i+1∕2
 and �̂+

i+1∕2
 is applied at zone boundary xi+1∕2 and it yields 

a resolved state �∗
i+1∕2

 that overlies the zone boundary, as seen in Fig. 1. The resolved state, as 
well as the structure of the Riemann fan, can be used to obtain a resolved flux given by 
�∗

(
�̂−

i+1∕2
, �̂+

i+1∕2

)
 . Likewise, we assume that a Riemann solver with left and right states 

given by �̂−
i−1∕2

 and �̂+
i−1∕2

 is applied at the zone boundary xi−1∕2 and it produces a resolved 

flux within the Riemann fan given by �∗
(
�̂−

i−1∕2
, �̂+

i−1∕2

)
 . Since we are hoping to produce a 

very light-weight scheme, we assume that the Riemann solver will be something very simple 
like HLL, or HLLI, or HLLC, or LLF with a single resolved state within the Riemann fan. 
One of the advantages of the AFD-WENO algorithm is that it is agnostic to the type of the 
Riemann solver that is used. This has the result that one may even choose a Riemann solver 
that maintains stationary linearly degenerate fields on the mesh, if the application would bene-
fit from it. Similarly, if the application would benefit from a positivity preserving Riemann 

5/2 2 3/2 1 1/2 1/2 1 3/2 2
5/2

Fig. 1  Part of the mesh around zone “i”. The mesh functions are collocated at the zone centers, as shown 
by the thick dots. The zone boundaries are shown by the vertical lines. The figure also shows the stencils 
associated with the zone “i” for the third and fifth order pointwise WENO-AO interpolation strategies. We 
have three smaller third order stencils and a large fifth order stencil. For the third order WENO-AO, only 
the three smaller stencils are used, whereas the larger stencil is also used for the fifth order WENO-AO. The 
interpolated variables at the zone boundaries are shown with a caret. The variables with a superscript star 
are resolved states obtained by the pointwise application of a Riemann solver at the zone boundaries
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solver, then such a Riemann solver can also be used. The upshot is that by being agnostic to 
the kind of the Riemann solver that is used, the AFD-WENO algorithm gives the user consid-
erably greater flexibility compared to the classical FD-WENO algorithm (which has in the 
past only been formulated in its LLF and RF variants). This completes our description of 
Fig. 1. The Riemann solver that we will use in this entire work will be the HLLI Riemann 
solver (and its LLFI variant) from Dumbser and Balsara [24] where the philosophy of such 
Riemann solvers is explained. In Sect.  5 of Balsara et  al. [6] we also abstract results from 
Dumbser and Balsara [24] in a notation that is more suited for the WENO with Adaptive 
Order (WENO-AO) interpolation shown in Fig. 1. We illustrate Fig. 1 within the context of 
the WENO-AO interpolation (Balsara et al. [8]); however, any form of the WENO interpola-
tion would suffice for the purposes of the discussion in this section.

Let us now assume that we have a high order pointwise WENO interpolation strategy 
which gives us high order interpolation polynomials within each zone. Say too that at each 
zone boundary xi+1∕2 we can use these interpolation polynomials to obtain �̂−

i+1∕2
 and 

�̂+
i+1∕2

 . Say also that we invoke the Riemann solver at each zone boundary to obtain 

�∗
(
�̂−

i+1∕2
, �̂+

i+1∕2

)
 . Say we naively assert a discrete in space but continuous in time update 

in the zone “i” of the form

Even if the interpolation has been a very high order pointwise WENO interpolation, Eq. (2) 
will only yield an FD-WENO scheme that is at best second order accurate! The reason is that 
the finite difference on the right-hand side of Eq. (2) only yields a second order accurate rep-
resentation of the flux gradient �x� that is evaluated at the zone center. In other words, the two 
individual fluxes in Eq. (2), when evaluated at the zone boundaries, will indeed be pointwise 
high order accurate up to the accuracy of the interpolation. However, their finite differenc-
ing in the right-hand side of Eq. (2) will only yield a second order accurate finite difference 
approximation at the zone center! For readers who are more attuned to finite volume schemes, 
this might seem like a counter-intuitive claim; but it is nevertheless valid.

Let us illustrate the somewhat counter-intuitive claim made above with a simple exam-
ple. For our simple example, we focus only on the task of achieving third order accuracy. We 
assume for the purposes of this paragraph that we are dealing with scalar fluxes that are as 
smooth and differentiable as we desire. At the zone center, taken at x = 0 , we can make a Tay-
lor series expansion for the flux as

In the above equation all the terms of the Taylor series, f0 , 
(
�xf

)
0
 , 
(
�2
x
f
)
0
 , 
(
�3
x
f
)
0
 are all 

evaluated at x = 0 . We can evaluate Eq. (1) and its higher derivatives at x = ±Δx∕2 to get

(2)𝜕t�i = −
1

Δx

(
�∗

(
�̂−

i+1∕2
, �̂+

i+1∕2

)
− �∗

(
�̂−

i−1∕2
, �̂+

i−1∕2

))
.

(3)�(x) = f0 + x
(
�xf

)
0
+

x2

2

(
�2
x
f
)
0
+

x3

6

(
�3
x
f
)
0
+⋯ .

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�(x)�x=±Δx∕2 = f0 ±
Δx

2

�
�xf

�
0
+

Δx2

8

�
�2
x
f
�
0
±

Δx3

48

�
�3
x
f
�
0
+⋯ ;

�x�(x)
��x=±Δx∕2 =

�
�xf

�
0
±

Δx

2

�
�2
x
f
�
0
+

Δx2

8

�
�3
x
f
�
0
±⋯ ;

�2
x
�(x)

���x=±Δx∕2 =
�
�2
x
f
�
0
±

Δx

2

�
�3
x
f
�
0
+⋯ .
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By finite differencing the point values of the fluxes at x = ±Δx∕2 we can now easily see 
that

The above expression makes it easy to see that the presence of Δx2
(
�3
x
f
)
0

/
24 prevents 

Eq. (5) from being a third order accurate expression. The way out of this conundrum is also 
easy to see. Say we take our numerical fluxes at x = ±Δx∕2 to be

By finite differencing the numerical fluxes from the above equation we can now easily 
see that

In other words, with the correction term in Eq. (6), the numerical flux becomes fourth 
order accurate in a pointwise finite difference sense! The concept in the present paragraph 
was presented without much detail in Shu and Osher [55], causing Merriman [46] to write 
a paper explaining such nuances of the AFD-WENO scheme. In Appendix A we provide 
a script based on a computer algebra system that explains how the math from the previous 
paragraph can be extended to the fifth order. The logic of the script can be extended to all 
higher orders.

If we circle back to Eq. (6) we see that the leading term should come from a suitable 
Riemann solver and be capable of entropy enforcement. In previous works (Jiang et al. [32, 
33]) the second derivative term in Eq. (6) was obtained by a suitably high order accurate 
finite difference approximation of the second derivative of the pointwise, zone-centered 
fluxes. Now realize that, since we are using a finite difference approximation for the second 
derivative, it can introduce spurious oscillations into the scheme if the solution is non-
smooth on the mesh. Designing an automatic strategy that switches off the higher order 
terms when the solution is non-smooth is not easy. In the past, different switches had to 
be tailor-made for different PDEs (Zheng et al. [61]). While positivity-based switches can 
be used for the Euler equations to accomplish a suppression of spurious oscillations (Gao 
et al. [25]), such switches have not even been designed for other more complicated PDEs. 
Furthermore, for certain classes of PDEs that do not have a scalar pressure, it may prove 
very difficult or impossible to design such switches. These considerations have limited 
the broad-based adoption of AFD-WENO schemes. It is the fundamental reason why the 
AFD-WENO has not gained much traction in the literature. In this paper we realize that 
a different type of the WENO interpolation strategy can be designed and applied at zone 
boundaries which can naturally be used to control the spurious oscillations when the solu-
tion is non-smooth. It is our hope that this invention helps in the widespread adoption of 
AFD-WENO schemes.

2.2  AFD‑WENO Formulated up to Ninth Order of Accuracy

We are now ready to describe the AFD-WENO fluxes at various orders in the ensuing 
paragraphs. At each order, we will obtain a numerical flux at each zone boundary which 

(5)1

Δx

[
�(x)|x=Δx∕2 − �(x)|x=−Δx∕2

]
=
(
�xf

)
0
+

Δx2

24

(
�3
x
f
)
0
.

(6)�num
x=±Δx∕2

=
[
�(x)|x=±Δx∕2

]
−

Δx2

24

[
�2
x
�(x)

|||x=±Δx∕2
]
.

(7)
1

Δx

(
�num
x=Δx∕2

− �num
x=−Δx∕2

)
=
(
�xf

)
0
+ O

(
Δx4

)
.



 Communications on Applied Mathematics and Computation

1 3

will consist of the resolved flux from the Riemann solver plus a correction stemming 
from the previously developed insight. Denoting the numerical flux at xi+1∕2 by �num

i+1∕2
 , 

the discrete in space but continuous in time update takes the simple form

Because this is a finite difference scheme, the multidimensional extension is just 
done dimension-by-dimension.

At the third order, the AFD-WENO scheme has a numerical flux given by

At the fifth order, the AFD-WENO scheme has a numerical flux given by

At the seventh order, the AFD-WENO scheme has a numerical flux given by

At the ninth order, the AFD-WENO scheme has a numerical flux given by

Now notice that all the higher order derivatives of the flux in Eqs. (9)–(12) involve 
even derivatives of the flux evaluated at the zone boundaries. It is certainly technically 
possible to design a WENO interpolation that takes as its input the fluxes evaluated at 
the zone centers and returns as its output the even derivatives of the fluxes at the zone 
boundaries. However, it would lead to smaller stencils if one could pre-compute some 
of the derivatives so as to reduce the order of the derivatives at the zone boundaries. To 
that end, we can realize that

Since the characteristic matrix “A” can easily be evaluated at zone centers, and �x� 
can be evaluated at the zone centers as a byproduct of the WENO interpolation, it is 
easy to evaluate 

(
��x�

)
 at zone centers. These can be incorporated into Eqs. (9)–(12). 

The result is a discrete in space but continuous in time update that can be written as

(8)�t�i = −
1

Δx

(
�num
i+1∕2

− �num
i−1∕2

)
.

(9)�num
i+1∕2

= �∗
(
�̂−

i+1∕2
, �̂+

i+1∕2

)
−
{

1

24
(Δx)2

[
𝜕2
x
�
]
i+1∕2

}
.

(10)�num
i+1∕2

= �∗
(
�̂−

i+1∕2
, �̂+

i+1∕2

)
−
{

1

24
(Δx)2

[
𝜕2
x
�
]
i+1∕2

−
7

5 760
(Δx)4

[
𝜕4
x
�
]
i+1∕2

}
.

(11)�num
i+1∕2

= �∗
�
�̂−

i+1∕2
, �̂+

i+1∕2

�
−

⎧⎪⎨⎪⎩

1

24
(Δx)2

�
𝜕2
x
�
�
i+1∕2

−
7

5 760
(Δx)4

�
𝜕4
x
�
�
i+1∕2

+
31

967 680
(Δx)6

�
𝜕6
x
�
�
i+1∕2

⎫⎪⎬⎪⎭
.

(12)

�num
i+1∕2

= �∗
�
�̂−

i+1∕2
, �̂+

i+1∕2

�
−

⎧⎪⎨⎪⎩

1

24
(Δx)2

�
𝜕2
x
�
�
i+1∕2

−
7

5 760
(Δx)4

�
𝜕4
x
�
�
i+1∕2

+
31

967 680
(Δx)6

�
𝜕6
x
�
�
i+1∕2

−
127

154 828 800
(Δx)8

�
𝜕8
x
�
�
i+1∕2

⎫⎪⎬⎪⎭
.

(13)

�x� = ��x�; �2
x
� = �x

(
��x�

)
; �4

x
� = �3

x

(
��x�

)
; and so on with � ≡

��

��
.
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Notice that Eq.  (14) is still in conservation form and therefore it should be able to 
capture shock locations accurately. The black terms in the above equation yield a third 
order scheme. In that case, the derivatives of 

(
��x�

)
 have to be evaluated at the zone 

boundaries with a WENO scheme that is at least second order accurate. If the red terms 
are also included, in addition to the black terms, the scheme becomes fifth order accu-
rate. In that case, all the derivatives of 

(
��x�

)
 have to be evaluated at the zone bounda-

ries with a WENO scheme that is at least fourth order accurate. If the blue terms are 
also included, in addition to the black and red terms, we get a seventh order scheme. In 
that case, all the derivatives of 

(
��x�

)
 have to be evaluated at the zone boundaries with 

a WENO scheme that is at least sixth order accurate. If the magenta terms are included, 
in addition to the black, red, and blue terms, we get a ninth order scheme. In that case, 
all the derivatives of 

(
��x�

)
 have to be evaluated at the zone boundaries with a WENO 

scheme that is at least eighth order accurate. Such WENO schemes are documented in 
Sect. 4. Notice, therefore, that our strategy of first using the original WENO interpolant 
to obtain 

(
��x�

)
 at zone centers allows us to decrease the order of the WENO interpola-

tion that is needed at zone boundaries, and that can be a useful cost savings.
We finish this section by enumerating some observations about the uses of this new 

class of schemes. We obviously cannot develop and demonstrate all the uses of the 
AFD-WENO schemes in this one paper, but our observations can serve as a signpost for 
future work.

 (i) Certain problems can have extreme physics. In such circumstances it is valuable to 
make physics-based shock detectors (see Balsara [3–5]). Such discontinuity indica-
tors could be directly responsive to the presence of very strong shocks, in which case 
the higher order finite differencing of the 

(
��x�

)
-dependent terms in Eq. (14) can 

be strongly suppressed in the vicinity of very strong shocks.
 (ii) Unlike classical FD-WENO schemes, a smooth flux like the LLF flux is not needed; 

even monotone fluxes can be used in an AFD-WENO scheme (see Jiang et al. [32, 
33]). The ADF-WENO schemes presented here can be used with any Riemann solver, 
including positivity preserving ones. Proofs of positivity preservation usually rely 
on hybridizing a lower order scheme which is provably positivity preserving with a 
higher order scheme that may not be provably positivity preserving. The current 
schemes all reveal that there is a clear split in the numerical flux between the part 
�∗

(
�̂−

i+1∕2
, �̂+

i+1∕2

)
 which comes from the Riemann solver and the part that comes 

from the higher order derivatives of the fluxes. This could have advantages in 
advancing proofs for positivity preservation for FD-WENO schemes.

. (14)
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 (iii) It is possible to design Riemann solvers that preserve stationary linearly degenerate 
discontinuities. Schemes that can preserve stationary linearly degenerate disconti-
nuities have clear uses in certain circumstances, like well-balancing in the presence 
of gravitational forces (Käppeli and Mishra [35], Berberich et al. [13], Grosheintz-
Laval and Käppeli [27], Käppeli [34]). When a stationary contact discontinuity is 
present, the discontinuity indicators will all become zero so that we have 
�num
i+1∕2

→ �∗
(
�̂−

i+1∕2
, �̂+

i+1∕2

)
 . It is, therefore, easy to see that if the underlying Rie-

mann solver preserves stationary contact discontinuities, the entire scheme will do 
the same.

 (iv) The AFD-WENO scheme is especially adept at preserving the free stream condition 
on curvilinear meshes, as shown by Jiang et al. [32, 33]. These ideas should be very 
useful in extending the present methods to curvilinear meshes.

 (v) If analytical procedures are used, there are limits to the kinds of curvilinear meshes 
that can be accessed by an AFD-WENO scheme, as shown by Merriman [46]. Scripts 
like the one in Appendix A could be used to extend the range of curvilinear meshes 
that can be handled by AFD-WENO schemes.

 (vi) In Balsara et al. [6] we have presented high order FD-WENO schemes that can 
handle hyperbolic PDE systems with non-conservative products. However, the solu-
tion vector in many such systems has some flux conservative components and some 
components that are non-conservative. The present AFD-WENO will be extended 
to yield AFD-WENO approaches that are flux conservative when they need to be 
conservative and yet handle non-conservative products. This will be a very novel 
contribution that dramatically extends the applicability of AFD-WENO-based meth-
odologies, and it will be developed in a subsequent paper that is fully dedicated to 
systems with non-conservative products.

 (vii) The AFD-WENO requires one WENO-based interpolation of the zone-centered vari-
ables. It also requires another WENO interpolation at the zone boundaries. While 
FD-WENO schemes are inherently designed to have low computational complexity, 
the expensive part of the algorithm is in the WENO reconstruction/interpolation. 
The classical FD-WENO also involves two reconstruction steps applied to the left-
going and right-going fluxes. Consequently, it is fair to say that AFD-WENO and 
FD-WENO have similar computational complexities. Therefore, the selling point of a 
well-designed AFD-WENO algorithm relative to its classical FD-WENO counterpart 
is that it offers greater flexibility at the same computational cost.

This completes a broad-based formulation and discussion of the AFD-WENO schemes. 
In the next two sections we will document details of the WENO-based interpolation that 
enable us to obtain efficient implementation of AFD-WENO schemes.

3  WENO‑AO Interpolation at Several Orders for AFD‑WENO Schemes

WENO-AO (Balsara et  al. [8], hereafter BGS16, Arbogast et  al. [2], Kumar and Chan-
drashekar [36, 37], Balsara et al. [7], Boscheri and Balsara [18]) is a multiresolution strat-
egy for carrying out WENO reconstruction just like WENO-ZQ (Zhu and Qiu [62]) and 
subsequent multiresolution WENO by Zhu and Shu [63]. The above authors realized that 
one can make a non-linear hybridization between a large, centered, very high accuracy 
stencil (or stencils) and a lower order WENO scheme that is, nevertheless, very stable. This 
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yields a class of adaptive order WENO schemes, which we call WENO-AO (for Adaptive 
Order). The large, centered, higher order WENO stencil(s) give the reconstruction strategy 
its high order accuracy when a smooth solution is present on that large stencil. The lower 
order WENO scheme is meant to stabilize the method when the larger, higher order stencil 
has a non-smooth solution on it. The lower order scheme can be a third order CWENO 
scheme (Levy et al. [40], Cravero and Semplice [22], Semplice et al. [51]) which uses three 
piecewise quadratic polynomials (BGS16). CWENO makes a good lower order scheme 
because it is very robust and can, nevertheless, capture extrema. The lower order scheme 
can also be comprised of two piecewise linear polynomials (Zhu and Qiu [62]). One can 
even make allowance for the lowest order scheme to go all the way down to first order 
accuracy (Zhu and Shu [63]) when all stencils have a non-smooth solution. All the intui-
tive insights for WENO-AO reconstruction described in this paragraph will also go over for 
WENO-AO interpolation described in the rest of this section.

In this section we provide sufficient background on pointwise WENO-AO interpolation. 
Please note that pointwise WENO-AO interpolation seeks to match the pointwise zone-
centered values. This is quite different from the classical WENO reconstruction which 
seeks to match zone averages. This section is intended to make this paper self-contained 
so that anyone can implement the schemes that we will describe in this paper. The insights 
developed here are crucial to the formulation of the interpolated WENO-AO scheme that 
is described in subsequent sections. In BGS16 tremendous detail was provided on efficient 
WENO reconstruction when Legendre polynomials were used for the reconstruction pro-
cess. In that paper we also show that our use of Legendre polynomials gives us the very 
desirable advantage that the smoothness indicators at all orders can be written compactly 
as the sum of perfect squares. Here we will only restrict ourselves to the WENO-AO inter-
polation techniques that are relevant to this particular paper. We use Legendre polynomi-
als that span the interval 

[
−1∕2, 1∕2

]
 . (In Balsara et al. [10, 11] we showed that it is very 

favorable to cast WENO interpolation and reconstruction in terms of Legendre polynomi-
als.) They are given by

We let “r” denote the order of accuracy of the interpolation; for example, an interpola-
tion that is only based on L0(x) = 1 , L1(x) = x , and L2(x) = x2 − 1∕12 corresponds to 
r = 3 . Our use of Legendre polynomials for the interpolation ensures that our smoothness 
indicators can still be expressed as the sum of perfect squares. For the rest of this section 
we assume that we are dealing with a uniform mesh with zones that are mapped to the unit 
interval 

[
−1∕2, 1∕2

]
 . Because we are describing a finite difference scheme, we assume that 

the zone-centered variables are collocated pointwise at the zone centers, please see Fig. 1.
With these preliminaries in place, we describe the interpolation strategies for WENO-

AO(3), WENO-AO(5,3), WENO-AO(7,3), WENO-AO(7,5,3), and WENO-AO(9,3) schemes 

(15)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L0(x) = 1; L1(x) = x ; L2(x) = x2 −
1

12
; L3(x) = x3 −

3

20
x;

L4(x) = x4 −
3

14
x2 +

3

560
; L5(x) = x5 −

5

18
x3 +

5

336
x;

L6(x) = x6 −
15

44
x4 +

5

176
x2 −

5

14 784
;

L7(x) = x7 −
21

52
x5 +

105

2 288
x3 −

35

27 456
x;

L8(x) = x8 −
7

15
x6 +

7

104
x4 −

7

2 288
x2 +

7

329 472
.
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in Sects. 3.1–3.5, respectively. The reader who wants corresponding narrative for WENO 
reconstruction may consult BGS16.

3.1  WENO‑AO(3) Interpolation

We will draw upon the r = 3 CWENO as our lowest order scheme because it is robust, inex-
pensive, and can capture extrema. We focus on the interpolation problem in a zone labeled 
by a subscript “0”. Consider the neighboring zone-centered variables 

{
u−2, u−1, u0, u1, u2

}
 . 

A third order interpolation over the zone labeled “0” can be carried out by using the left-
biased r = 3 stencil Sr3

1
 , the centered r = 3 stencil Sr3

2
 , and the right-biased r = 3 stencil Sr3

3
 

that rely on the variables 
{
u−2, u−1, u0

}
 , 
{
u−1, u0, u1

}
 , and 

{
u0, u1, u2

}
 , respectively. These 

stencils are shown as the magenta, green, and blue stencils in Fig. 1. At each of the zone 
centers we want the pointwise WENO interpolation to match the pointwise values at the 
zone centers. In other words, please note that this is not the traditional WENO reconstruc-
tion that is used in Jiang and Shu [31] or Balsara et  al. [8]! In this paper we label our 
stencils with a superscript that denotes the rth order of the polynomial. The subscripts 1, 2, 
3 will denote the three stencils under consideration. The third order polynomial resulting 
from the WENO interpolation also carries the same subscripting convention. The ith inter-
polated polynomial Pr3

i
(x) corresponding to stencil Sr3

i
 is then expressed as

The left-biased r = 3 stencil Sr3
1

 gives

The centered r = 3 stencil Sr3
2

 gives

The right-biased r = 3 stencil Sr3
3

 gives

Please compare Eqs. (17)–(19) in this paper to Eqs. (3.3)–(3.5) in BGS16 to appreciate 
the differences between interpolation and reconstruction. Such pointwise WENO interpola-
tions have been explored at lower orders in Sebastian and Shu [50], Carlini et al. [19], and 
Shu [53] and in what follows we give many higher order extensions. The smoothness indi-
cator for each of the three stencils is unchanged and can then be written in a very compact 
form which is a sum of two squares as

In designing a WENO-AO scheme at third order, which can graciously degrade to 
second or even first order at discontinuities, we wish to make a non-linearly hybridized 

(16)Pr3
i
(x) = upt + uxL1(x) + ux2L2(x).

(17)

{
upt = (25u0 − 2u−1 + u−2)∕24; ux = (3u0 − 4u−1 + u−2)∕2;

ux2 = (u0 − 2u−1 + u−2)∕2.

(18)upt = (22u0 + u−1 + u1)∕24; ux = (u1 − u−1)∕2; ux2 = (−2u0 + u−1 + u1)∕2.

(19)

{
upt = (25u0 − 2u1 + u2)∕24; ux = (−3u0 + 4u1 − u2)∕2;

ux2 = (u0 − 2u1 + u2)∕2.

(20)�r3 =
(
ux
)2

+
13

3

(
ux2

)2
.
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interpolation using stencils Sr3
1

 , Sr3
2

 , and Sr3
3

 . The r = 3 WENO-AO interpolation is described 
by one parameter �Lo ∈ (0, 1) . The linear weights for the stencils Sr3

1
 , Sr3

2
 , and Sr3

3
 are given 

by

Notice that for the linear weights we have �r3
1
+ �r3

2
+ �r3

3
= 1 . Typically, we set 

�Lo ∈ [0.8, 0.95] . We see that when the central stencil Sr3
2

 is smooth we want most of our inter-
polation to come from the central stencil because it is the most stable choice when the solu-
tion is smooth. However, when a suitable comparison of the smoothness indicators shows that 
the central stencil is non-smooth, we want most (or all) of our interpolation to be weighted 
towards either the left-biased stencil or the right-biased stencil depending on which one of the 
two is the smoothest one.

To avoid loss of accuracy at critical points (Borges et al. [17]) we use the smoothness indi-
cators to define

where �r3
1

 , �r3
2

 , and �r3
3

 are the smoothness indicators for the three third order stencils. Here 
�r3
2

 comes from the centered third order stencil. The unnormalized non-linear weights are 
given by

The normalization of the non-linear weights is given by

The non-linearly hybridized third order accurate WENO-AO interpolation is given by

3.2  WENO‑AO(5,3) Interpolation

Recall that WENO-AO(5,3) from BGS16 consists of a non-linear hybridization between a large, 
centered, fifth order stencil denoted by Sr5

3
 that relies on the variables 

{
u−2, u−1, u0, u1, u2

}
 and 

the three smaller stencils described above. The three smaller stencils are still shown as the 
magenta, green, and blue stencils in Fig. 1; whereas the larger stencil is shown as the red stencil 
in Fig. 1. The fifth order accurate polynomial is given by

where the coefficients of the above polynomial are given by

(21)�r3
1

=
(
1 − �Lo

)
∕2; �r3

2
= �Lo; �r3

3
=
(
1 − �Lo

)
∕2.

(22)� =
1

2

(|||�
r3
2
− �r3

1

||| +
|||�

r3
2
− �r3

3

|||
)
,

(23)

⎧⎪⎨⎪⎩

wr3
1
= �r3

1

�
1 + �2

��
�r3
1
+ �

�2�
; wr3

2
= �r3

2

�
1 + �2

��
�r3
2
+ �

�2�
;

wr3
3
= �r3

3

�
1 + �2

��
�r3
3
+ �

�2�
.

(24)
w
r3

1
= wr3

1

/(
wr3
1
+ wr3

2
+ wr3

3

)
; w

r3

2
= wr3

2

/(
wr3
1
+ wr3

2
+ wr3

3

)
; w

r3

3
= wr3

3

/(
wr3
1
+ wr3

2
+ wr3

3

)
.

(25)PAO(3)(x) =w
r3

1
Pr3
1
(x) + w

r3

2
Pr3
2
(x) + w

r3

3
Pr3
3
(x) .

(26)Pr5
3
(x) = upt + uxL1(x) + ux2L2(x) + ux3L3(x) + ux4 L4(x),
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Please compare Eq.  (27) in this paper to Eq.  (3.15) in BGS16 to appreciate the differ-
ences between interpolation and reconstruction. The corresponding smoothness indicator is 
unchanged and it is given by

Our task is to eventually make a non-linear hybridization between the larger stencil Sr5
3

 and 
the smaller stencils Sr3

1
 , Sr3

2
 , and Sr3

3
 . The method is described by two parameters �Hi ∈ (0, 1) , 

and �Lo ∈ (0, 1) . The linear weights for the centered r = 5 stencil Sr5
3

 and the three r = 3 sten-
cils Sr3

1
 , Sr3

2
 , and Sr3

3
 are given by

Notice that for the linear weights we have �r5
3
+ �r3

1
+ �r3

2
+ �r3

3
= 1 . Typically, we set 

�Hi ∈ [0.8, 0.95] and �Lo ∈ [0.8, 0.95] . These numbers themselves give us a glimpse of what 
is afoot. When a suitable comparison of the smoothness indicators shows that the large cen-
tral stencil Sr5

3
 is smooth, we want most (or all) of our interpolation to come from the large 

central stencil. However, when a suitable comparison of the smoothness indicators shows 
that the large central stencil is non-smooth, we want most (or all) of our interpolation to be 
weighted towards a very stable, third order accurate, extrema-preserving r = 3 CWENO-type 
interpolation.

We now describe the process of obtaining the non-linearly hybridized weights. To avoid 
loss of accuracy at critical points (Borges et  al. [17]) we use the smoothness indicators to 
define

where �r5
3

 is the smoothness indicator for the large centered fifth order stencil and �r3
1

 , 
�r3
2

 , and �r3
3

 are the smoothness indicators for the three smaller third order stencils. Here 
�r3
2

 comes from the centered third order stencil. The unnormalized non-linear weights are 
given by

The normalization of the non-linear weights is given by

(27)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

upt = (5 178 u0 + 308 u−1 − 17u−2 + 308 u1 − 17u2)∕5 760,

ux = (−154 u−1 + 17 u−2 + 154 u1 − 17 u2)∕240,

ux2 = (−402 u0 + 212 u−1 − 11 u−2 + 212 u1 − 11 u2)∕336,

ux3 = (2u−1 − u−2 − 2u1 + u2)∕12,

ux4 = (6u0 − 4 u−1 + u−2 − 4u1 + u2)∕24.

(28)�r5
3

=

(
ux +

ux3

102

)
+

13

3

(
ux2 +

123

455
ux4

)2

+
781

20

(
ux3

)2
+

1 421 461

2 275

(
ux4

)2
.

(29)
�r5
3

= �Hi; �r3
1

=
(
1 − �Hi

)(
1 − �Lo

)
∕2; �r3

2
=
(
1 − �Hi

)
�Lo; �r3

3
=
(
1 − �Hi

)(
1 − �Lo

)
∕2.

(30)� =
1

3

(|||�
r5
3
− �r3

1

||| +
|||�

r5
3
− �r3

2

||| +
|||�

r5
3
− �r3

3

|||
)
,

(31)

⎧⎪⎨⎪⎩

wr5
3
= �r5

3

�
1 + �2

��
�r5
3
+ �

�2�
; wr3

1
= �r3

1

�
1 + �2

��
�r3
1
+ �

�2�
;

wr3
2
= �r3

2

�
1 + �2

��
�r3
2
+ �

�2�
; wr3

3
= �r3

3

�
1 + �2

��
�r3
3
+ �

�2�
.
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We denote the interpolated polynomial for WENO-AO(5,3) as PAO(5,3)(x) . Our task 
in this paragraph is to describe the construction of the order-preserving, non-linearly 
hybridized, fifth order polynomial PAO(5,3)(x) . The non-linear weights should be com-
bined in such a way that when all the smoothness indicators seem to have almost similar 
values then only the higher order scheme is obtained. From Eqs. (31) and (32) real-
ize that when the four smoothness measures associated with these four stencils have 
closely similar values, we have wr5

3
→ �r5

3
 , wr3

1
→ �r3

1
 , wr3

2
→ �r3

2
 , and wr3

3
→ �r3

3
 . We then 

require that when the limits specified by the previous sentence are attained, we have 
PAO(5,3)(x) → Pr5

3
(x) . This is achieved by the following definition:

In the limit where the larger stencil has a non-smooth solution but the smaller 
stencils have smooth solutions, we have wr5

3
≪ w

r3

1
 or wr5

3
≪ w

r3

2
 or wr5

3
≪ w

r3

3
 and 

also wr3

1
→ �r3

1
 , wr3

2
→ �r3

2
 , and wr3

3
→ �r3

3
 . This ensures that the smoothest of the r = 3 

CWENO-type stencils will be sought out by the interpolation polynomial. Notice that 
the non-linear hybridization that we sought at the beginning of this paragraph has been 
found via Eq. (33). This completes our description of PAO(5,3)(x).

3.3  WENO‑AO(7,3) Interpolation

This sub-section is a small variation on the previous one. Recall that WENO-AO(7,3) 
from BGS16 consists of a non-linear hybridization between a large, centered, seventh 
order stencil denoted by Sr7

4
 that relies on the variables 

{
u−3, u−2, u−1, u0, u1, u2, u3

}
 and 

the three smaller CWENO-type stencils. The seventh order accurate polynomial is given 
by

The large central stencil gives

(32)

{
w
r5

3
= wr5

3

/(
wr5
3
+ wr3

1
+ wr3

2
+ wr3

3

)
; w

r3

1
= wr3

1

/(
wr5
3
+ wr3

1
+ wr3

2
+ wr3

3

)
;

w
r3

2
= wr3

2

/(
wr5
3
+ wr3

1
+ wr3

2
+ wr3

3

)
; w

r3

3
= wr3

3

/(
wr5
3
+ wr3

1
+ wr3

2
+ wr3

3

)
.

(33)
PAO(5,3)(x)=

w
r5

3

�r5
3

(
Pr5
3
(x) − �r3

1
Pr3
1
(x) − �r3

2
Pr3
2
(x) − �r3

3
Pr3
3
(x)

)

+ w
r3

1
Pr3
1
(x) + w

r3

2
Pr3
2
(x) + w

r3

3
Pr3
3
(x).

(34)
Pr7
4
(x) = upt + ux L1(x) + ux2 L2(x) + ux3 L3(x) + ux4 L4(x) + ux5 L5(x) + ux6 L6(x).

(35)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

upt = (862 564u0 + 57 249u−1 − 5 058 u−2 + 367 u−3 + 57 249u1 − 5 058u2 + 367u3)∕967 680;

ux = (−9 083u−1 + 3 372u−2 − 367u−3 + 19 083u1 − 3 372u2 + 367u3)∕26 880;

ux2 = (−34 380u0 + 18 625u−1 − 1 546u−2 + 111u−3 + 18 625u1 − 1 546 u2 + 111 u3)∕26 880 ;

ux3 = (229u−1 − 140u−2 + 17 u−3 − 229 u1 + 140 u2 − 17 u3)∕864;

ux4 = (2 404u0 − 1 671 u−1 + 510 u−2 − 41 u−3 − 1 671 u1 + 510 u2 − 41 u3)∕6 336;

ux5 = (−5u−1 + 4u−2 − u−3 + 5u1 − 4u2 + u3)∕240 ;

ux6 = (−20u0 + 15u−1 − 6u−2 + u−3 + 15u1 − 6u2 + u3)∕720.
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Please compare Eq. (35) in this paper to Eq. (3.26) in BGS16 to appreciate the differ-
ences between interpolation and reconstruction. The corresponding smoothness indica-
tor is unchanged and is given by

The linear weights are analogous to Eq. (29), and are given by replacing the superscript 
“r5” in Eq. (29) with “r7”. We define “τ” analogously to Eq. (30), but we replace the super-
script “r5” with “r7”. The unnormalized non-linear weights are given by Eq. (31) with a 
replacement of the superscript “r5” with “r7”. The normalization of the non-linear weights 
is given by Eq. (32) with a replacement of the superscript “r5” with “r7”. The interpolated 
polynomial PAO(7,3)(x) is then given by an expression that is very analogous to Eq. (33)

This completes our description of PAO(7,3)(x).

3.4  WENO‑AO(7,5,3) Interpolation

Notice that WENO-AO(7,3) from BGS16 produces an abrupt transition from the seventh 
to third order. Because FD-WENO schemes have odd orders of accuracy, we would like to 
have a scheme that produces a smoother transition from the seventh to fifth order and then 
from the fifth to third order. WENO-AO(7,5,3) was designed in BGS16 to rectify that fact. 
Arbogast et al. [2] and Kumar and Chandrashekar [37] suggested a slightly better arrange-
ment of the linear weights than the original BGS16, but the intent is the same. Here we 
describe the WENO-AO(7,5,3) interpolation. Notice that it will use the large size, seventh 
order stencil described in Eqs. (34)–(36) but it will also use the intermediate sized, fifth 
order stencil described in Eqs. (26)–(28). In addition, it will of course use the small third 
order stencils in Eqs. (17)–(19).

The linear weights are given by

with �Hi ∈ [0.8, 0.95] , �Avg ∈ [0.85, 0.95] , and �Lo ∈ [0.85, 0.95] being the usual choices. 
Notice that for the linear weights we have, �r7

4
+ �r5

3
+ �r3

1
+ �r3

2
+ �r3

3
= 1 . To avoid loss of 

accuracy at critical points we use

(36)

�r7
4

=
(
ux +

ux3

10
+

ux5

126

)2

+
13

3

(
ux2 +

123

455
ux4 +

85

2 002
ux6

)2

+
781

20

(
ux3 +

26 045

49 203
ux5

)2

+
1 421 461

2 275

(
ux4 +

81 596 225

93 816 426
ux6

)2

+
21 520 059 541

1 377 684

(
ux5

)2
+

15 510 384 942 580 921

27 582 029 244

(
ux6

)2
.

(37)
PAO(7,3)(x) =

w̄r7
4

𝛾r7
4

(
Pr7
4
(x) − 𝛾r3

1
Pr3
1
(x) − 𝛾r3

2
Pr3
2
(x) − 𝛾r3

3
Pr3
3
(x)

)

+ w̄r3
1
Pr3
1
(x) + w̄r3

2
Pr3
2
(x) + w̄r3

3
Pr3
3
(x).

(38)

⎧⎪⎨⎪⎩

�r7
4

= �Hi; �r5
3

=
�
1 − �Hi

�
�Avg;

�r3
1

=
�
1 − �Hi

��
1 − �Avg

��
1 − �Lo

�
∕2; �r3

2
=
�
1 − �Hi

��
1 − �Avg

�
�Lo;

�r3
3

=
�
1 − �Hi

��
1 − �Avg

��
1 − �Lo

�
∕2
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where �r7
4

 is the smoothness indicator for the large centered seventh order stencil, �r5
3

 is the 
smoothness indicator for the somewhat smaller centered fifth order stencil and �r3

1
 , �r3

2
 , and 

�r3
3

 are the smoothness indicators for the three smaller third order stencils. Here �r3
2

 comes 
from the centered third order stencil. The unnormalized non-linear weights are

The normalization of the non-linear weights is given by

We finally get the non-linearly hybridized interpolation polynomial PAO(7,5,3)(x) as

This completes our description of PAO(7,5,3)(x).

3.5  WENO‑AO(9,3) Interpolation

A WENO-AO(9,5,3) system can be just as easily created from the style of thinking pre-
sented in this and in the previous sub-section. Therefore, we just document WENO-
AO(9,3) here. The ninth order accurate polynomial is given by

The large central stencil gives

(39)� =
1

4

(|||�
r7
4
− �r5

3

||| +
|||�

r7
4
− �r3

1

||| +
|||�

r7
4
− �r3

2

||| +
|||�
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4
− �r3

3

|||
)
,

(40)

⎧
⎪⎨⎪⎩
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3
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3
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; w
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(41)
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PAO(7,5,3)(x) =

w
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3
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3
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(43)
Pr9
5
(x) = upt + uxL1(x) + ux2L2(x) + ux3L3(x) + ux4L4(x) + ux5L5(x)

+ ux6L6(x) + ux7L7(x) + ux8L8(x).
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The corresponding smoothness indicator is given by

The linear weights are analogous to Eq. (29), and are given by replacing the superscript 
“r5” in Eq. (29) with “r9”. We define “τ” analogously to Eq. (30), but we replace the super-
script “r5” with “r9”. The unnormalized non-linear weights are given by Eq. (31) with a 
replacement of the superscript “r5” with “r9”. The normalization of the non-linear weights 

(44)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

upt = (412 080 590 u0 + 29 039 624 u−1 − 3 207 892 u−2 + 399 032 u−3

− 27 859 u−4 + 29 039 624 u1 − 3 207 892 u2 + 399 032u3 − 27 859 u4)∕464 486 400;

ux = (−7 259 906 u−1 + 1 603 946 u−2 − 299 274 u−3 + 27 859 u−4

+ 7 259 906 u1 − 1 603 946 u2 + 299 274 u3 − 27 859 u4)∕9 676 800;

ux2 = (−28 194 190 u0 + 15 523 184 u−1 − 1 610 524 u−2 + 198 224 u−3

− 13 789 u−4 + 15 523 184 u1 − 1 610 524 u2

+ 198 224 u3 − 13 789 u4)∕21 288 960;

ux3 = (747 682 u−1 − 512 722 u−2 + 106 218 u−3 − 10 223 u−4 − 747 682 u1

+ 512 722 u2 − 106 218 u3 + 10 223 u4)∕2 280 960;

ux4 = (3 007 170 u0 − 2 143 448 u−1 + 733 204 u−2 − 100 584 u−3 + 7 243 u−4

− 2 143 448 u1 + 733 204 u2 − 100 584 u3 + 7 243 u4) ∕ 6 589 440 ;

ux5 = (−2 974 u−1 + 2 662 u−2 − 918 u−3 + 101 u−4

+ 2 974 u1 − 2 662 u2 + 918 u3 − 101 u4)∕74 880;

ux6 = (−4 430 u0 + 3 424 u−1 − 1 532 u−2 + 352 u−3 − 29 u−4

+ 3 424 u1 − 1 532 u2 + 352 u3 − 29 u4)∕86 400;

ux7 = (14 u−1 − 14 u−2 + 6 u−3 − u−4 − 14 u1

+ 14 u2 − 6 u3 + u4)∕10 080 ;

ux8 = (70 u0 − 56 u−1 + 28 u−2 − 8 u−3 + u−4 − 56 u1

+ 28 u2 − 8 u3 + u4)∕40 320.

(45)
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+
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is given by Eq. (32) with a replacement of the superscript “r5” with “r9”. The interpolated 
polynomial PAO(9,3)(x) is then given by

This completes our description of PAO(9,3)(x) , and it also completes this section. Analo-
gously to the PAO(7,5,3)(x) in Eq. (42), we can also construct PAO(9,5,3)(x) in order to obtain a 
scheme that graciously relinquishes order of accuracy as the solution loses smoothness.

4  A New Type of WENO‑AO Interpolation that is Applicable to Zone 
Boundaries

In the course of designing AFD-WENO algorithms we will need strategies for obtaining 
high order derivatives of the 

(
��x�

)
 variable at the zone boundaries. The FD-WENO 

algorithm uses zone-centered point values of the conserved variables, and the same 
interpolant can be used to obtain �x� at the zone centers. The characteristic matrix “A” 
can be obtained at the zone centers by making a pointwise evaluation. The term 

(
��x�

)
 

can, therefore, be evaluated at the zone centers using these point values of the solu-
tion vector and its derivative at the zone center. These zone-centered values of 

(
��x�

)
 

serve as inputs for a new type of WENO interpolation that we describe in this section. 
This new type of WENO interpolation takes those zone-centered values of 

(
��x�

)
 as 

inputs and provides non-linearly hybridized higher order derivatives of 
(
��x�

)
 at the 

zone boundaries as its outputs. This is shown in Fig. 2. The ensuing sub-sections show 
how this is done for AFD-WENO schemes of increasing order of accuracy.

(46)
PAO(9,3)(x) =

w̄r9
5

𝛾r9
5

(
Pr9
5
(x) − 𝛾r3

1
Pr3
1
(x) − 𝛾r3

2
Pr3
2
(x) − 𝛾r3

3
Pr3
3
(x)

)

+w̄r3
1
Pr3
1
(x) + w̄r3

2
Pr3
2
(x) + w̄r3

3
Pr3
3
(x).

5/2 2
3/2 1 1/2 1/2 1 3/2 2 5/2 3

7/2

Fig. 2  Part of the mesh around zone boundary “i + 1/2”. The products of characteristic matrices with the 
gradients are evaluated pointwise at the zone centers, as shown by the thick dots. The zone boundaries are 
shown by the vertical lines. The figure also shows the stencils associated with the zone boundary “i + 1/2” 
for the third and fifth order AFD-WENO schemes. We have two smaller third order stencils and a large 
fourth order stencil. The large stencil is, therefore, capable of providing the first and third derivatives when 
the smoothness in the solution warrants it. For the third order AFD-WENO, only the two smaller stencils 
are used, whereas the larger stencil is also used for the fifth order AFD-WENO. The first and third deriva-
tives of the product of the characteristic matrix with the gradient are shown at the zone boundary of inter-
est. Only the first derivatives are needed at the third order, but third derivatives are also needed at the fifth 
order
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4.1  Third Order WENO‑AO Interpolation of Higher Order Derivatives at Zone 
Boundaries

We focus on the third order WENO-AO interpolation problem at a zone boundary labeled 
by a subscript “1/2”. Let the origin be centered at this zone boundary. From Eq. (14) we 
see that we will need a first derivative of 

(
��x�

)
 at each zone boundary. Consider the sym-

metrically placed neighboring zone-centered 
(
��x�

)
 variables which we denote in the 

formulae that follow by 
{
f−1, f0, f1, f2

}
 . A third order interpolation at the zone boundary 

labeled “1/2” can be carried out by using the left-biased Sr3
1

 stencil and the right-biased Sr3
2

 
stencil that rely on the variables 

{
f−1, f0, f1

}
 and 

{
f0, f1, f2

}
 , respectively. These are shown 

by the magenta and blue stencils in Fig. 2 and we denote them as Sr3
zb;1

 and Sr3
zb;2

 , respec-
tively. Please also see Fig. 2 for the indexing convention. At each of the zone centers we 
want the pointwise WENO interpolation to match the pointwise values of 

(
��x�

)
 at the 

zone centers. The ith interpolated polynomial Pr3
zb;i

(x) corresponding to the stencil Sr3
zb;i

 is 
then expressed as

The left-biased r = 3 stencil Sr3
zb;1

 gives

The right-biased r = 3 stencil Sr3
zb;2

 gives

The form of the smoothness indicators is unchanged, and we denote the two smoothness 
indicators for the two stencils as �r3

1
 and �r3

2
 . The stencils can be given equal linear weights 

and non-linearly combined as follows:

The non-linear weights are normalized as

The non-linearly hybridized third order accurate WENO interpolation of 
(
��x�

)
 at the 

zone boundary is given by

It is worth noting that Eq. (52) will be used in a third order scheme only for the purpose 
of obtaining a first derivative of 

(
��x�

)
 at the zone boundary of interest. By examining 

Eqs. (48) and (49) it is easy to intuit that if the two stencils have first derivatives of the 
same sign, then the interpolation in Eq. (52) biases us towards the stencil with the smaller 
first derivative. If the two stencils have first derivatives with opposite signs, then they will 
try to cancel one another and the first derivative with the smaller value will be favored. 
From this discussion we get the essential insight that our novel WENO-AO interpolation 
is naturally stabilizing and can itself act like a discontinuity indicator for choosing first 
derivatives of the zone-centered 

(
��x�

)
 variable at the zone boundaries.

(47)Pr3
zb;i

(x) = fpt + fx L1(x) + fx2 L2(x) .

(48)fpt = (8 f0 − f−1 + 5 f1)∕12; fx = f1 − f0; fx2 = ( f1 − 2 f0 + f−1)∕2.

(49)fpt = (8 f1 − f2 + 5 f0)∕12; fx = f1 − f0; fx2 = ( f2 − 2 f1 + f0)∕2.
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1
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1
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2
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(
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/(
�r3
2
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(x) .
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4.2  Fourth Order WENO‑AO Interpolation of Higher Order Derivatives at Zone 
Boundaries

Realize from Fig. 2 and Eq. (14) that a fifth order AFD-WENO scheme will need to obtain 
first and third derivatives of 

(
��x�

)
 at the zone boundaries. The smallest stencil which is sym-

metrical around zone boundary “i + 1/2” and contains third derivatives is the large fourth order 
stencil shown in Fig. 2; we call it stencil Sr4

zb;c
 . We focus on the fourth order WENO-AO inter-

polation problem in a zone boundary labeled by a subscript “1/2”. Let the origin be centered 
at this zone boundary. Consider the symmetrically placed neighboring zone-centered flux vari-
ables 

{
f−1, f0, f1, f2

}
 . The small left-biased stencil, the small right-biased stencil, and the large 

centered stencil are shown by the magenta, blue, and red stencils, respectively in Fig. 2, and 
we denote them by Sr3

zb;1
 , Sr3

zb;2
 , and Sr4

zb;c
 . The smaller stencils were described in the previous 

sub-section. A non-linear hybridization at the zone boundary labeled “1/2” can be carried out 
by using the small left-biased Sr3

1
 stencil, the small right-biased Sr3

2
 stencil, and the large cen-

tered Sr4
zb;c

 stencil that rely on the variables 
{
f−1, f0, f1

}
 , 
{
f0, f1, f2

}
 , and 

{
f−1, f0, f1, f2

}
 , respec-

tively. The interpolated polynomial Pr4
zb;c

(x) that corresponds to Sr4
zb;c

 is given by

where we obtain

The corresponding smoothness indicator can be obtained from BGS16 and we denote 
it by �r4

c
 . The three stencils that we are considering can be non-linearly combined as

The normalization of the non-linear weights is given by

The non-linearly hybridized fourth order accurate WENO interpolation of the fluxes at 
the zone boundary is given by

It is now easy to see that when 
(
w
r4

c

/
�r4
c

)
→ 1 , the first and third derivatives of the 

above polynomial will be obtained exclusively from the fourth order polynomial Pr4
c
(x) . As 

a result, they will be evaluated with the desired level of accuracy. When 
(
w
r4

c

/
�r4
c

)
→ 0 , 

the third derivative will be zero and the first derivative will also be of lower order of 

(53)Pr4
zb;c

(x) = fpt + fx L1(x) + fx2 L2(x) + fx3 L3(x),

(54)

⎧⎪⎪⎨⎪⎪⎩

fpt = (13 f0 − f−1 + 13 f1 − f2)∕24;

fx = (−63 f0+f−1 + 63 f1 − f2)∕60;

fx2 = (−f0 + f−1 − f1 + f2)∕4;

fx3 = (3 f0 − f−1 − 3 f1 + f2)∕6.

(55)
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accuracy since it will be obtained exclusively from wr3

1
Pr3
1
(x) + w

r3

2
Pr3
2
(x) . When even the 

first derivatives from the two smaller stencils have opposite signs, the evaluation of the first 
derivative will be even further suppressed. Therefore, just as in the previous sub-section, 
we see here that our novel WENO-AO interpolation at zone boundaries is naturally stabi-
lizing and can itself act like a discontinuity indicator for choosing first and third derivatives 
of the zone-centered 

(
��x�

)
 variable at the zone boundaries.

4.3  Sixth Order WENO‑AO Interpolation of Higher Order Derivatives at Zone 
Boundaries

Realize from Eq. (14) that a seventh order AFD-WENO scheme will need to obtain the first, 
third, and fifth derivatives of 

(
��x�

)
 at the zone boundaries. The smallest stencil which is 

symmetrical around zone boundary “i + 1/2” and contains fifth derivatives is a large sixth 
order stencil; let us denote this as Sr6

zb;c
 . We focus on the sixth order WENO-AO interpola-

tion problem in a zone boundary labeled by a subscript “1/2”. Let the origin be centered 
at this zone boundary. Consider the symmetrically placed neighboring zone-centered vari-
ables 

{
f−2, f−1, f0, f1, f2, f3

}
 . Realize, first off, that if all the points are used, this will result in 

a sixth order accurate interpolation. As before, we will non-linearly hybridize between the 
small left-biased Sr3

1
 stencil, the small right-biased Sr3

2
 stencil, and the large centered Sr6

zb;c
 

stencil that rely on the variables 
{
f−1, f0, f1

}
 , 
{
f0, f1, f2

}
 , and 

{
f−2, f−1, f0, f1, f2, f3

}
 , respec-

tively. The smaller stencils were described in the previous sub-section. The interpolated 
polynomial Pr6

zb;c
(x) that corresponds to the Sr6

zb;c
 stencil is given by

where we obtain

The corresponding smoothness indicator can be obtained from BGS16 and we denote it 
by �r6

c
 . The three stencils that we are considering can be non-linearly combined in a fashion 

that is analogous to Eq. (55) where we replace the superscript “r4” with “r6”. The normali-
zation of the non-linear weights is given by an equation that is analogous to Eq. (56) with 
the superscript “r4” replaced with “r6”. The non-linearly hybridized sixth order accurate 
WENO interpolation of the fluxes at the zone boundary is given by

(58)Pr6
zb;c

(x) = fpt + fx L1(x) + fx2 L2(x) + fx3 L3(x) + fx4 L4(x) + fx5 L5(x),

(59)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fpt = (802 f0 − 93 f−1 + 11 f−2 + 802 f1 − 93 f2 + 11 f3)∕1 440;

fx = (−1 794 f0 + 43 f−1 − 3 f−2 + 1 794 f1 − 43 f2 + 3 f3)∕1 680;

fx2 = (−29 f0 + 33 f−1 − 4.0 f−2 − 29 f1 + 33 f2 − 4 f3)∕84;

fx3 = (37 f0 − 14 f−1 + f−2 − 37 f1 + 14 f2 − f3)∕54;

fx4 = (2 f0 − 3 f−1 + f−2 + 2 f1 − 3 f2 + f3)∕48;

fx5 = (−10 f0 + 5 f−1 − f−2 + 10 f1 − 5 f2 + f3)∕120.

(60)P
AO(6,3)

zb
(x) =

w
r6

c

�r6
c

(
Pr6
c
(x) − �r3

1
Pr3
1
(x) − �r3

2
Pr3
2
(x)

)
+w

r3

1
Pr3
1
(x) + w

r3

2
Pr3
2
(x) .
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It is now easy to see that when 
(
w
r6

c

/
�r6
c

)
→ 1 , the first, third, and fifth derivatives of 

the above polynomial will be obtained exclusively from the sixth order polynomial Pr6
c
(x) . 

As a result, they will be very accurate. When 
(
w
r6

c

/
�r6
c

)
→ 0 , the third and fifth deriva-

tives will be zero and the first derivative will also be of lower order of accuracy since it will 
be obtained exclusively from wr3

1
Pr3
1
(x) + w

r3

2
Pr3
2
(x) . When even the first derivatives from 

the two smaller stencils have opposite signs, the evaluation of the first derivative will be 
even further suppressed. Therefore, just as in the previous sub-sections, we see here that 
our novel WENO-AO interpolation at zone boundaries is naturally stabilizing and can 
itself act like a discontinuity indicator for choosing the first, third, and fifth derivatives of 
the zone-centered 

(
��x�

)
 variable at the zone boundaries.

4.4  Eighth Order WENO‑AO Interpolation of Higher Order Derivatives at Zone 
Boundaries

Realize from Eq.  (14) that a ninth order AFD-WENO scheme will need to obtain the first, 
third, fifth, and seventh derivatives of 

(
��x�

)
 at the zone boundaries. We would like to use 

this section to demonstrate that it is possible to design a multiresolution method at zone 
boundaries. We focus on the eighth order WENO-AO interpolation problem in a zone bound-
ary labeled by a subscript “1/2”. Let the origin be centered at this zone boundary. Consider the 
symmetrically placed neighboring zone-centered flux variables 

{
f−3, f−2, f−1, f0, f1, f2, f3, f4

}
 ; 

let us denote this as Sr8
zb;c

 . Realize, first off, that if all the points are used, this will result in an 
eighth order interpolation. An eighth order interpolation at the zone boundary labeled “1/2” 
can be carried out by using the small left-biased Sr3

1
 stencil, the small right-biased Sr3

2
 stencil, 

the sixth order centered Sr6
zb;c

 stencil, and the eighth order centered Sr8
zb;c

 stencil that rely on 
the variables 

{
f−1, f0, f1

}
 , 
{
f0, f1, f2

}
 , 
{
f−2, f−1, f0, f1, f2, f3

}
 , and 

{
f−3, f−2, f−1, f0, f1, f2, f3, f4

}
 , 

respectively. The coefficients for the Sr3
1

 stencil, the Sr3
2

 stencil, and the Sr6
zb;c

 stencil have already 
been given in Eqs. (48), (49), and (59), respectively. The interpolated polynomial Pr8

zb;c
(x) that 

corresponds to the Sr8
zb;c

 stencil is given by

where we obtain

The corresponding smoothness indicator can be obtained from BGS16 and we denote it 
by �r8

c
 . The four stencils that we are considering can be non-linearly combined as

(61)
Pr8
zb;c

(x) = fpt + fx L1(x) + fx2 L2(x) + fx3 L3(x) + fx4 L4(x) + fx5 L5(x) + fx6 L6(x) + fx7 L7(x),

(62)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fpt = (68 323 f0 − 9 531 f−1 + 1 879 f−2 − 191 f−3 + 68 323 f1 − 9 531 f2 + 1 879 f3 − 191 f4)∕120 960;

fx = (−325 685 f0 + 9 399 f−1 − 1 093 f−2 + 79 f−3 + 325 685 f1 − 9 399 f2 + 1 093 f3 − 79 f4)∕302 400;

fx2 = (−2 655 f0 + 3 243 f−1 − 655 f−2 + 67 f−3 − 2 655 f1 + 3 243 f2 − 655 f3 + 67 f4)∕6 720;

fx3 = (111 365 f0 − 45 171 f−1 + 5 377 f−2 − 391 f−3 − 111 365 f1 + 45 171 f2 − 5 377 f3 + 391 f4)∕142 560;

fx4 = (449 f0 − 729 f−1 + 317 f−2 − 37 f−3 + 449 f1 − 729 f2 + 317 f3 − 37 f4)∕6 336;

fx5 = (−2 645 f0 + 1 431 f−1 − 373 f−2 + 31 f−3 + 2 645 f1 − 1 431 f2 + 373 f3 − 31 f4)∕18 720;

fx6 = (−5 f0 + 9 f−1 − 5 f−2 + f−3 − 5 f1 + 9 f2 − 5 f3 + f4)∕1 440;

fx7 = (35 f0 − 21 f−1 + 7 f−2 − f−3 − 35 f1 + 21 f2 − 7 f3 + f4)∕5 040.
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The normalization of the non-linear weights is given by

The non-linearly hybridized eighth order accurate WENO interpolation of the fluxes at 
the zone boundary is given by

We see once again that our novel WENO-AO interpolation at zone boundaries is natu-
rally stabilizing and can itself act like a discontinuity indicator for choosing first, third, 
fifth, and seventh derivatives of the zone-centered 

(
��x�

)
 variable at the zone bounda-

ries. Moreover, because of the inclusion of Pr6
c
(x) in Eq. (65), our WENO method can gra-

ciously degrade the order of accuracy of the derivatives that are used.

4.5  Multiresolution WENO Interpolation of Higher Order Derivatives at Zone 
Boundaries

In this paper we have described WENO-AO interpolation. However, all the formulae devel-
oped here can be seamlessly used also for Multiresolution WENO interpolation. When 
interpolating to zone boundaries, the smallest stencil is a piecewise linear stencil that is 
formed from 

{
f0, f1

}
 . Equations (53) and (54) then provide us with a fourth order strategy 

for interpolating to zone boundaries. Equations (58) and (59) then provide us with a sixth 
order strategy for interpolating to zone boundaries. Equations (61) and (62) then provide us 
with an eighth order strategy for interpolating to zone boundaries. The non-linear hybridi-
zation between stencils is the same as in Zhu and Shu [63].

5  Pointwise Implementation of Our AFD‑WENO Scheme 
for Conservation Laws

Now that the above discussions are understood, we provide a pointwise implementation 
of our AFD-WENO scheme for treating non-linear hyperbolic PDEs that can be written in 
the form of conservation laws. We realize that the update equation, i.e., Eq. (14), has a lot 
of terms. The optimal sequence of steps given below is designed so that at the end of each 
step we catalogue the parts of Eq. (14) that are in hand so that we can finally assemble the 

(63)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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c

= �Hi; �r6
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�
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�
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1
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��
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��
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�����
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1

��� +
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2

���
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;

w
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c

�
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��
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; w
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c
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c

�
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��
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1
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1

�
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��
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+ �
�2�

; w
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2
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�
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��
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+ �
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.

(64)

{
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r6

c
= wr6

c

/(
wr8
c
+ wr6

c
+ wr3

1
+ wr3

2

)
;
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1
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(65)
P
AO(8,6,3)
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(x) =

w̄r8
c

𝛾r8
c

(
Pr8
c
(x) − 𝛾r6

c
Pr6
c
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1
Pr3
1
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2
(x)

)
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1
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1
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2
Pr3
2
(x).
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entire equation. The pointwise implementation of our AFD-WENO scheme into a numeri-
cal code goes according to the following steps.

(i) We start with the mesh function as shown in Fig. 1. This means that at each zone center 
xi we have a pointwise value for the conserved variable �i . AFD-WENO schemes are 
always implemented in dimension-by-dimension fashion, so we only describe one of 
the dimensional updates here.

(ii) From the conserved variables in each zone, obtain the primitive variables. Use them 
both to obtain the normalized right and left eigenvectors in the conserved variables.

(iii) As shown in Fig. 1, we use the WENO-AO algorithm from Sect. 3. That section 
includes all closed form expressions that are needed for the WENO interpolation in 
one dimension. This consists of making a non-linear hybridization between a large high 
order accurate stencil and smaller lower order accurate stencils. We use WENO-AO or 
multiresolution WENO interpolation in characteristic variables. As a result, the neigh-
boring zones around zone “i” are projected into the characteristic space of zone “i”. 
The extent of these neighboring zones depends on the desired order of the scheme. The 
fifth order case is explicitly shown in Fig. 1. (Expanding the large stencil by one zone 
on either side adds two further orders of accuracy.) Once the variables in the neighbor-
ing zones around zone “i” are projected into the characteristic space of zone “i”, 
WENO-AO interpolation is carried out in the characteristic space. Projecting the inter-
polation characteristic variables back into the space of right eigenvectors gives us high 
order accurate �̂−

i+1∕2
 and �̂+

i−1∕2
 within each zone “i”, as shown in Fig. 1. Also evaluate (

��x�
)
 at the zone centers. Since this step involves projecting all the zones in all the 

stencils of interest into the characteristic space of each zone “i” using eigenvectors, it 
is one of the two computationally expensive steps of the algorithm. By the end of this 
step we should have �̂−

i+1∕2
 and �̂+

i+1∕2
 at each zone boundary and 

(
��x�

)
i
 at each zone 

center.
(iv) At each zone boundary xi+1∕2 , use the left and right states �̂−

i+1∕2
 and �̂+

i+1∕2
 to obtain 

the left-most and right-most going speeds of the Riemann fan; these are denoted by 
SL;i+1∕2 and SR;i+1∕2 . Please note that at this point in the game we are not yet seeking 
the resolved state within the Riemann fan; that will come later.

(v) Now, at each zone boundary xi+1∕2 , we hand in the speeds SL;i+1∕2 and SR;i+1∕2 as well 
as the states �̂−

i+1∕2
 and �̂+

i+1∕2
 to the Riemann solver. This gives us the resolved state 

�∗
i+1∕2

 and the resolved flux �∗
HLLI;i+1∕2

 at each zone boundary. Please use the formulae 
in Sect. 3 of Balsara et al. (2023) if the HLLI Riemann solver is being used. By the end 
of this step we should have �∗

i+1∕2
 and �∗

HLLI;i+1∕2
 at each zone boundary.

(vi) If one wants to make a characteristic projection of the 
(
��x�

)
 variables, we can do that 

using �∗
i+1∕2

 . This could be useful in the next step. Therefore, we find the matrices of 
right and left eigenvectors corresponding to the resolved state �∗

i+1∕2
 at each zone 

boundary “i + 1/2”. Please notice that if the HLLI Riemann solver is used, then we will 
naturally be constructing the left and right eigenvectors; so it is worthwhile to derive 
the maximum use from those eigenvectors.

(vii) Use the boundary-centered WENO-AO interpolation results from Sect. 4 and Fig. 2 to 
interpolate the zone-centered 

(
��x�

)
 variables and their higher derivatives to the zone 

boundaries. (While it is physically meaningful and advantageous to project the zone-
centered 

(
��x�

)
 variables in the eigenspace of the resolved state �∗

i+1∕2
 at each zone 

boundary “i + 1/2”, one may also choose to make a component by component WENO-
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AO interpolation of the same variables. In our experience, this less expensive option 
works just as well as characteristic projection.) This gives us suitably high order deriv-
atives of the 

(
��x�

)
 variables at each zone boundary. Since this step involves project-

ing all the zones in all the stencils of interest into the characteristic space of each zone 
boundary “i + 1/2” using eigenvectors, it is the second of the two computationally 
expensive steps of the algorithm. By the end of this step we should have higher order 
derivatives like 

[
�x
(
��x�

)]
i+1∕2

 , 
[
�3
x

(
��x�

)]
i+1∕2

 , 
[
�5
x

(
��x�

)]
i+1∕2

 , and 
[
�7
x

(
��x�

)]
i+1∕2

 
(as needed) at each of the zone boundaries.

(viii) Now realize from the previous steps that we have acquired all the terms that will con-
tribute to Eq. (14). That gives us one spatially higher order update stage of a multistage 
RK update strategy.

(ix) The above points have only shown one stage of the scheme. It can be coupled with an 
SSP-RK update strategy, say from Shu and Osher [55] or Spiteri and Ruuth [58, 59], 
to achieve higher order in time.

(x) Some of the PDEs also have stiff source terms; these are usually relaxation terms that 
enable the system to relax to several useful physical limits. The AFD-WENO method 
makes it very simple to treat stiff source terms because the source terms are treated 
pointwise and are collocated at the exact same location as the primal variables. For 
this reason, when stiff source terms are present, we recommend using the Runge-Kutta 
IMEX methods from Pareschi and Russo [49]; see also Kupka et al. [38].

Notice that Steps (iii) and (viii) in our AFD-WENO algorithm are indeed the compu-
tationally expensive parts of the algorithm because they involve characteristic projections 
over large stencils. However, please compare this to the reconstruction of the left-going and 
right-going LLF fluxes in classical FD-WENO. That too counts as two steps where we have 
to make characteristic projections over large stencils. Therefore, the AFD-WENO that is 
presented here has the same computational complexity as classical FD-WENO! Of course, 
the AFD-WENO presented here can be used with different types of Riemann solvers and 
also on curvilinear meshes, thus adding to its versatility. If multiresolution WENO inter-
polation is used instead of WENO-AO interpolation, there is a slight increase in computa-
tional complexity because many more stencils have to be constructed. But the stencil width 
is the same for both interpolation strategies, so the increase in cost is not substantial. This 
completes our pointwise implementation-oriented description of our AFD-WENO scheme.

6  Accuracy Analysis

In this section, we present several two-dimensional accuracy analyses for the Euler flow, 
relativistic hydrodynamics (RHD), and the ten-moment equations for rarefied gases.

For the time-update, we use a third order accurate SSP-RK scheme from Shu and Osher 
[55], and a fourth order scheme from Spiteri and Ruuth [58, 59]. The base level grid for 
all of these accuracy tests was run with a CFL of 0.4. For the spatially third order accurate 
scheme we use the third order SSP-RK scheme, and for the fifth and seventh order accurate 
schemes we use the fourth order time stepping. Consequently, for the fifth and seventh 
order schemes we reduce the time-step size as the mesh was refined so that the temporal 
error remain dominated by the spatial error. When a spatially fifth order scheme is used 
with a temporally fourth order accurate time-stepping strategy, then every doubling of the 
mesh requires a reduction in the time-step that goes as Δt →Δt (1/2)5/4. Similarly, when a 
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spatially seventh order scheme is used with a temporally fourth order time-stepping strat-
egy, then every doubling of the mesh requires a reduction in the time-step that goes as Δt 
→Δt (1/2)7/4.

6.1  Two‑Dimensional Vortex Problem for Euler Flow

In this sub-section, we consider a two-dimensional hydrodynamic vortex. The vortex propa-
gates on a square mesh along with being advected in the diagonal direction. The detailed 
set-up of the problem was given in Pao and Salas [48] and Balsara and Shu [12]. To mini-
mize the effect of small jumps in the velocity field at the periodic boundaries we double 
the computational domain and stopping time for the seventh and ninth order schemes. The 
accuracy results for the density variable are presented in Table 1. In the first half of Table 1 
we present the accuracy results when a WENO-AO limiting process is used, where we see 
that the third through ninth order schemes reach their design accuracies very well. In the 
second half of the table we show the accuracy results when a Multiresolution WENO limit-
ing process is used. We see that the two forms of non-linear limiting produce comparable 
accuracies.

6.2  Two‑Dimensional Vortex Problem for Relativistic Hydrodynamics Flow

In this sub-section, we consider the two-dimensional RHD equations from [1, 14]. For an 
ideal fluid, the system can be written in a conservation form for the mass density D , the 
momentum density � = (Mx,My) , and the total energy density E:

The primitive quantities � , � = (vx, vy) , and p are the proper mass density, the fluid 
velocity vector, and the isotropic gas pressure, respectively. The expressions for the con-
served quantities are given by

Here, � is the specific heat constant, h = 1 +
�

�−1

p

�
 is the special enthalpy, and 

� =
1√

1−v2
x
−v2

y

 is the Lorentz factor. The speed of light is assumed to be unity. The complete 

set of right-eigenvectors can be found in [14], and the set of left-eigenvectors can be 
obtained by analytically inverting the right-eigenvector matrix.

In this sub-section we perform the accuracy study for the above system. In 2016, Balsara and 
Kim [9] constructed an isentropic vortex problem for the Relativistic Magneto-Hydrodynamics 
(RMHD) system. For the construction of the initial solution, an ordinary differential equation 
needed to be integrated numerically. For the RHD system, the analytic solution of the isentropic 
vortex problem with the explicit expression was derived in [41]. For the Cartesian coordinates, 
the vortex problem has been used to study the accuracy of the high-order accurate entropy sta-
ble schemes in [23] where the authors have given the explicit expressions in great detail in their 
Sect. 4.2, therefore we do not describe them here and use the same set up. In Table 2 we show 

�

�t

⎛⎜⎜⎜⎜⎝

D

Mx

My

E

⎞⎟⎟⎟⎟⎠
+

�

�x

⎛⎜⎜⎜⎜⎝

Dvx

Mxvx + p

Myvx

Mx

⎞⎟⎟⎟⎟⎠
+

�

�y

⎛
⎜⎜⎜⎜⎜⎝

Dvy

Mxvy

Myvy + p

My

⎞
⎟⎟⎟⎟⎟⎠

= 0.

D = ��, Mx = �h� 2vx, My = �h� 2vy, and E = �h� 2 − p.
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Table 1  The accuracy analysis 
of the two-dimensional 
hydrodynamic vortex problem

The density variable is shown. WENO-AO results are shown for 
orders 3, 5, 7, and 9. We also show Multiresolution WENO results for 
orders 3, 5, 7, and 9. The lowest order scheme in the multiresolution 
formulation was a piecewise linear scheme with MCβ limiter

L1 error L1 accuracy L∞ error L∞ accuracy

Order 3 WENO-AO
  642 1.016 90E−03 1.652 04E−02
  1282 1.552 93E−04 2.71 2.381 88E−03 2.79
  2562 2.002 34E−05 2.96 3.109 46E−04 2.94
  5122 2.504 49E−06 3.00 3.901 21E−05 2.99

Order 5 WENO-AO
  642 7.689 39E−05 8.964 71E−04
  1282 2.446 09E−06 4.97 4.417 80E−05 4.34
  2562 7.348 58E−08 5.06 1.850 43E−06 4.58
  5122 2.809 11E−09 4.71 9.584 92E−08 4.27

Order 7 WENO-AO
  642 1.572 82E−04 2.186 73E−02
  1282 4.079 55E−06 5.27 4.223 66E−04 5.69
  2562 4.309 90E−08 6.56 5.098 31E−06 6.37
  5122 3.542 77E−10 6.93 4.055 77E−08 6.97

Order 9 WENO-AO
  642 7.644 17E−05 6.601 20E−03
  1282 8.474 53E−07 6.50 1.474 63E−04 5.48
  2562 2.392 72E−09 8.47 2.451 57E−07 9.23
  3842 6.954 33E−11 8.73 6.936 02E−09 8.79

Order 3 Multires WENO
  642 2.076 35E−03 3.675 84E−02
  1282 2.632 48E−04 2.98 6.677 37E−03 2.46
  2562 3.309 07E−05 2.99 1.120 47E−03 2.58
  5122 5.581 11E−06 2.57 2.294 57E−04 2.29

Order 5 Multires WENO
  642 8.919 42E−05 1.599 98E−03
  1282 3.240 49E−06 4.78 6.669 14E−05 4.58
  2562 1.028 16E−07 4.98 2.535 90E−06 4.72
  5122 2.554 32E−09 5.33 4.777 09E−08 5.73

Order 7 Multires WENO
  642 1.751 04E−04 2.149 62E−02
  1282 4.387 06E−06 5.32 4.250 91E−04 5.66
  2562 4.310 78E−08 6.67 5.097 90E−06 6.38
  5122 3.543 49E−10 6.93 4.054 99E−08 6.97

Order 9 Multires WENO
  642 6.504 61E−05 5.981 46E−03
  1282 8.474 65E−07 6.26 1.474 77E−04 5.34
  2562 2.392 74E−09 8.47 2.451 57E−07 9.23
  3842 6.963 44E−11 8.72 6.936 27E−09 8.79
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the accuracy analysis for the density variable. In the first half of Table 2, WENO-AO results are 
shown for orders 3, 5, 7, and 9, and in the lower half of Table 2 Multiresolution WENO results 
are shown. As previously, we double the computational domain and stopping time for the sev-
enth and ninth order schemes to minimize the effect of small jumps in the velocity field at the 
periodic boundaries. We observe that both the schemes are able to reach the design accuracy.

6.3  Two‑Dimensional Sinusoidal Problem for Ten‑Moment Rarefied Gas Flow

In this sub-section, we consider the two-dimensional ten-moment Gaussian closure model (for 
the homogeneous case) which was described thoroughly in [16, 45]. The system is given by

�

�t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

�vx

�vy

Exx

Exy

Eyy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
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x
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�v3
x
+ 3vxpxx

�v2
x
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�vxv
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y
+ vxpyy + 2vypxy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
�

�y

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�vy

�vxvy + pxy

�v2
y
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�vyv
2

x
+ vypxx + 2vxpxy

�v2
y
vx + 2vypxy + vxpyy

�v3
y
+ 3vypyy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, , 

where � is the fluid density, � = (vx, vy) is the fluid velocity vector, � = (pxx, pxy, pyy) is the 
symmetric pressure tension, and � = (Exx,Exy,Eyy) is the symmetric energy tensor. The 
energy tensor is obtained using the ideal equation of state

� = 𝜌�⊗ � + �.
The complete set of right-eigenvectors can be found in [52], and the set of left-eigenvectors 
can be obtained by inverting the right-eigenvector matrix.

To perform the accuracy study for the ten-moment model, we consider the two-dimensional 
sinusoidal problem, which is an extension of the one-dimensional sinusoidal problem presented 
in [16]; see their Sect. 5.1. The computational domain is given by [−5, 5] with the periodic 
boundary conditions. The exact solution in terms of the primitive variables is given by

We run the simulation till time t = 0.5 and compute the L1 and L∞ errors for the density 
variable in Table 3. In the first half of Table 3, we show the accuracy results obtained using 
the WENO-AO scheme. In the lower half of Table 3, Multiresolution WENO results are 
shown. We observe that both the schemes are able to reach the design accuracies for all the 
orders.

7  One‑Dimensional Test Problems

In this section, we focus on one-dimensional test problems. In Sect. 7.1 we present one-
dimensional problems for the Euler flow, in Sect.  7.2 we present one-dimensional test 
problems for the RHD flow, and in Sect. 7.3 we consider one-dimensional Riemann prob-
lems for the ten-moment model. For all the simulations presented in this section we used a 
CFL of 0.8 with a third order SSP-RK time-stepping scheme.

�(x, y, t) = 2 + sin(2π(x + y − t)), vx(x, y, 0) = vy(x, y, 0) = 1,

pxx(x, y, 0) = pyy(x, y, 0) = 1, pxy(x, y, 0) = 0.
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Table 2  The accuracy analysis 
of the two-dimensional vortex 
problem for the RHD flow

The density variable is shown. WENO-AO results are shown for 
orders 3, 5, 7, and 9. We also show Multiresolution WENO results for 
orders 3, 5, 7, and 9. The lowest order scheme in the multiresolution 
formulation was a piecewise linear scheme with MCβ limiter

L1 error L1 accuracy L∞ error L∞ accuracy

Order 3 WENO-AO
  642 2.234 75E−03 4.535 75E−02
  1282 3.700 04E−04 2.59 9.307 84E−03 2.28
  2562 4.829 11E−05 2.94 1.122 57E−03 3.05
  5122 6.053 48E−06 3.00 1.430 72E−04 2.97

Order 5 WENO-AO
  642 2.675 73E−04 1.267 73E−02
  1282 1.012 98E−05 4.72 6.846 25E−04 4.21
  2562 2.939 89E−07 5.11 2.725 98E−05 4.65
  5122 1.244 62E−08 4.56 8.761 69E−07 4.96

Order 7 WENO-AO
  642 7.612 64E−04 4.281 87E−02
  1282 2.365 64E−05 5.01 7.123 49E−03 2.59
  2562 2.931 16E−07 6.33 1.743 32E−04 5.35
  5122 2.461 74E−09 6.90 1.545 70E−06 6.82

Order 9 WENO-AO
  642 9.210 05E−04 5.891 38E−02
  1282 7.825 77E−06 6.88 3.607 29E−03 4.03
  2562 2.498 43E−08 8.29 1.653 46E−05 7.77
  3842 7.053 66E−10 8.80 5.044 67E−07 8.61

Order 3 Multires WENO
  642 4.516 67E−03 1.214 97E−01
  1282 8.259 31E−04 2.45 2.600 12E−02 2.22
  2562 1.308 74E−04 2.66 6.560 14E−03 1.99
  5122 2.146 74E−05 2.61 1.603 35E−03 2.03

Order 5 Multires WENO
  642 2.529 14E−04 1.001 31E−02
  1282 1.249 74E−05 4.34 7.961 19E−04 3.65
  2562 4.063 84E−07 4.94 3.424 72E−05 4.54
  5122 1.273  05E−08 5.00 9.165 03E−07 5.22

Order 7 Multires WENO
  642 8.994 24E−04 4.206 44E−02
  1282 2.453 18E−05 5.20 7.121 11E−03 2.56
  2562 2.932 95E−07 6.39 1.742 95E−04 5.35
  5122 2.461 75E−09 6.90 1.545 70E−06 6.82

Order 9 Multires WENO
  642 9.099 33E−04 7.711 62E−02
  1282 7.826 67E−06 6.86 3.607 35E−03 4.42
  2562 2.498 42E−08 8.29 1.653 46E−05 7.77
  3842 7.053 72E−10 8.80 5.044 66E−07 8.61
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Table 3  The accuracy analysis of 
the two-dimensional sinusoidal 
problem for the ten-moment 
rarefied gas flow

The density variable is shown. WENO-AO results are shown for 
orders 3, 5, 7, and 9. We also show Multiresolution WENO results for 
orders 3, 5, 7, and 9. The lowest order scheme in the multiresolution 
formulation was a piecewise linear scheme with MCβ limiter

L1 error L1 accuracy L∞ error L∞ accuracy

Order 3 WENO-AO
  162 3.628 82E−02 6.098 02E−02
  322 4.519 88E−03 3.01 8.124 45E−03 2.91
  642 5.514 24E−04 3.04 1.023 94E−03 2.99
  1282 6.793 46E−05 3.02 1.278 81E−04 3.00

Order 5 WENO-AO
  162 1.082 75E−03 1.839 73E−03
  322 3.250 56E−05 5.06 5.859 70E−05 4.97
  642 9.888 80E−07 5.04 1.834 99E−06 5.00
  1282 3.046 81E−08 5.02 5.734 62E−08 5.00

Order 7 WENO-AO
  162 3.725 38E−05 5.911 97E−05
  322 2.690 54E−07 7.11 4.645 25E−07 6.99
  642 2.016 48E−09 7.06 3.669 99E−09 6.98
  1282 1.653 98E−11 6.93 2.779 80E−11 7.04

Order 9 WENO-AO
  162 5.837 91E−06 9.298 04E−06
  322 2.490 09E−09 11.20 4.178 83E−09 11.12
  642 4.936 70E−12 8.98 7.915 67E−12 9.04

Order 3 Multires WENO
  162 7.155 32E−02 2.060 01E−01
  322 2.032 70E−02 1.82 6.916 85E−02 1.57
  642 4.390 41E−03 2.21 2.301 04E−02 1.59
  1282 8.743 62E−04 2.33 7.669 48E−03 1.59

Order 5 Multires WENO
  162 6.290 43E−03 1.833 63E−02
  322 1.085 91E−03 2.53 4.458 98E−03 2.04
  642 2.918 93E−05 5.22 1.946 05E−04 4.52
  1282 1.514 36E−06 4.27 2.604 44E−05 2.90

Order 7 Multires WENO
  162 7.891 42E−05 1.916 19E−04
  322 2.729 52E−07 8.18 1.011 14E−06 7.57
  642 3.254 57E−09 6.39 1.957 42E−08 5.69
  1282 1.653 74E−11 7.62 3.846 52E−11 8.99

Order 9 Multires WENO
  162 5.840 72E−06 9.276 01E−06
  322 2.490 74E−09 11.20 4.130 97E−09 11.13
  642 4.936 81E−12 8.98 7.892 35E−12 9.03
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7.1  One‑Dimensional Test Problems for Euler Flow

We present three one-dimensional test cases for the Euler flow. The initial states, value of 
the specific heat constant (�) , and final times (tend) for these three test problems are given 
in Table 4. All the test problems from Table 4 have the computational domain [−0.5, 0.5].

Test 1 is the Sod’s shock-tube problem from [57], whose solution consists of a right 
going shock and contact discontinuity, and a left going rarefaction wave. The resulting 
density, velocity, and pressure profiles obtained from the fifth order scheme are shown in 
Fig. 3. The exact solution is shown in solid lines. We observe that the numerical results for 
Test 1 match with the exact solution precisely. The seventh and ninth order schemes also 
perform well on this problem and are not shown here. Next, we consider the Lax shock-
tube problem described in [39]. The initial states for this problem are given by Test 2 in 
Table 4. Figure 4 shows the density, velocity, and pressure profiles obtained from the sev-
enth order scheme. The exact solution is denoted by the solid lines. The obtained result in 
Fig. 4 shows that the scheme is able to capture the rarefaction, contact discontinuity, and 
shocks efficiently. The fifth and ninth order schemes also perform well on this problem and 
are not shown here.

Next, we show that the method performs well for a stringent problem where the initial-
ized profile consists of two strong shocks. The initial states for the problem are given by 
Test 3 in Table  4 and the complete description of the problem was given in Woodward 
and Colella [60]. The computational domain that spans [−0.5, 0.5] , which has been parti-
tioned into 1 000 zones, is considered. To simulate this test case, the flattening algorithm 
introduced in [5] was employed. Figure 5 shows the density, velocity, and pressure profiles 
obtained from the ninth order scheme. A reference solution was computed using a third 
order AFD-WENO scheme on a 4 000 zone mesh and is shown with the solid lines in 
Fig. 5. The obtained result shows the precise coincidence of all the profiles with the refer-
ence solution. The fifth and seventh order schemes also perform well on this problem and 
are not shown here.

7.2  One‑Dimensional Test Problems for the RHD Equations

In this sub-section, we present seven one-dimensional test cases for the RHD equations. 
The system has been described in Sect. 6.2. The initial states, value of the specific heat 
constant (�) , and final times (tend) for these seven test problems are given in Table 5. All the 
test problems from Table 5 have the computational domain [−0.5, 0.5] . Tests 1–4 in Table 5 
were described in [44, 47]. Tests 5–7 were given in [23].

The first five (Tests 1–5) problems in Table 5 are the Riemann problems for which 
the exact solution is computed using the exact Riemann solver given in [44]. The exact 
solution is denoted by solid lines. Figure 6 shows the density, velocity, and pressure 
profiles for Test 1 obtained from the fifth order scheme, and we observe that the results 
are relatively close to the exact solution and resolve both rarefaction and the contact 
for the density variable. The seventh and ninth order schemes also perform well on this 
problem and are not shown here. The exact solution for Test 2 consists of a left-moving 
rarefaction wave, a contact discontinuity, and a right-moving shock wave in the den-
sity variable. The test problem is run using the fifth order scheme. Figure  7 shows 
that the obtained results have efficiently captured the shock, the rarefaction wave, and 
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the contact discontinuity in the density variable with a good agreement with the exact 
solution. The seventh and ninth order schemes also perform well on this problem and 
are not shown here. The exact solution for Test 3 contains a narrow shock in the den-
sity variable which is difficult to capture. In Fig. 8, we obtain results for Test 3 from 
the seventh order scheme and observe that the scheme is able to capture the narrow 
shock. However, the resolution of the simulation can be increased to obtain an even 
closer resemblance with the exact solution. The fifth and ninth order schemes also 

Table 4  The left and right initial states, specific heat constant (�) , and final times (tend) of the three test 
problems for the Euler flow

x � vx vy p � tend

Test 1 (Sod-shock) x < 0 1 0 0 1 1.4 0.2
x > 0 0.125 0 0 0.1

Test 2 (Lax-shock) x < 0 0.445 0.698 0 3.528 1.4 0.13
x > 0 0.5 0 0 0.571

Test 3 (blast wave) x < −0.4 1 0 0 1 000 1.4 0.038
−0.4 < x < 0.4 1 0 0 0.01
x > 0.4 1 0 0 100

Fig. 3  Euler flow: Sod shock-tube problem. Panels a, b, and c show the density, velocity, and pressure pro-
files, respectively, at time t = 0.2 obtained using the fifth order LLF-based AFD-WENO scheme with 200 
zones. Solid lines denote the exact solution. The seventh and ninth order schemes also perform well on this 
problem and are not shown here

Fig. 4  Euler flow: Lax shock-tube problem. Panels a, b, and c show the density, velocity, and pressure pro-
files, respectively, at time t = 0.13 obtained using the seventh order LLF-based AFD-WENO scheme with 
200 zones. Solid lines denote the exact solution. The fifth and ninth order schemes also perform well on this 
problem and are not shown here
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Fig. 5  Euler flow: blast wave interaction problem. Panels a, b, and c show the density, velocity, and pres-
sure profiles, respectively, at time t = 0.038 obtained using the LLF-based ninth order AFD-WENO scheme 
with 1 000 zones. Solid lines denote the reference solution. The fifth and seventh order schemes also per-
form well on this problem and are not shown here

Table 5  The left and right initial states, specific heat constant (�) , and final times (tend) of the three test 
problems for the RHD equations

x � vx vy p � tend

Test 1 x < 0 1 −0.6 0 10 5

3

0.4

x > 0 10 0.5 0 20
Test 2 x < 0 10.0 0 0 40/3 5

3

0.4

x > 0 1 0 0 10–6

Test 3 x < 0 1 0 0 103 5

3

0.4

x > 0 1 0 0 10–2

Test 4 x < 0 1 0.9 0 1 4

3

0.4

x > 0 1 0 0 10
Test 5 x < 0 1 −0.7 0 20 5

3

0.4
x > 0 1 0.7 0 20

Test 6 x < −0.4 1.0 0.0 0.0 1 000.0 1.4 0.43
−0.4 < x < 0.4 1.0 0.0 0.0 0.01
x > 0.4 1.0 0.0 0.0 100.0

Test 7 x < 0 5 0 0 50 5

3

0.35
x > 0 2 + 0.3 sin(50x) 0 0 5

Fig. 6  RHD flow: Test 1 (Riemann problem). Panels a, b, and c show the density, velocity, and pressure 
profiles, respectively, at time t = 0.4 obtained using the fifth order LLF-based AFD-WENO scheme with 
200 zones. Solid lines denote the exact solution. The seventh and ninth order schemes also perform well on 
this problem and are not shown here
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perform well on this problem and are not shown here. In Fig. 9, we show results for 
Test 4 obtained from the seventh order scheme and observe that the obtained profile for 
the density variable has captured the slowly left-moving shock wave, the contact dis-
continuity, and a fast right-moving shock wave, and the solution is in good agreement 
with the exact solution. To avoid small oscillations in the obtained results (oscillations 
as seen in [23]) for this test case, we have utilized the flattening algorithm described 
in [9]. The fifth and ninth order schemes also perform well on this problem and are 
not shown here. In Fig. 10, we show results for Test 5 obtained from the ninth order 
scheme. The simulation for this test case was performed utilizing the flattening algo-
rithm presented in [9]. We observe a similar undershoot in the density variable as in 
[23] (also see [42]). The obtained density result captured the left-moving rarefaction 
wave and the right-moving rarefaction wave with a good agreement with the exact 
solution. The fifth and seventh order schemes also perform well on this problem and 
are not shown here.    

Next, we consider the relativistic blast wave problem which is denoted by Test 6 in 
Table 5. Given the extreme nature of the test case and the need to accurately capture the 
waves, a grid with 4 000 zones is used. Similar to the blast wave problem in Euler flows, 
we employ the flattening algorithm presented in [9] to simulate this particular test case. 
The zoomed solutions within the interval [0, 0.03] , obtained using the ninth order scheme, 
are shown in Fig. 11. We also plot the reference solution using solid lines, which has been 

Fig. 7  RHD flow: Test 2 (Riemann problem). Panels a, b, and c show the density, velocity, and pressure 
profiles, respectively, at time t = 0.4 obtained using the fifth order LLF-based AFD-WENO scheme with 
200 zones. Solid lines denote the exact solution. The seventh and ninth order schemes also perform well on 
this problem and are not shown here

Fig. 8  RHD flow: Test 3 (Riemann problem). Panels a, b, and c show the density, velocity, and pressure 
profiles, respectively, at time t = 0.4 obtained using the seventh order LLF-based AFD-WENO scheme with 
400 zones. Solid lines denote the exact solution. The fifth and ninth order schemes also perform well on this 
problem and are not shown here
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obtained using the third order scheme with 15 000 zones. We see a clear resemblance 
between the obtained result and the reference solution. The fifth and seventh order schemes 
also perform well on this problem and are not shown here.

Next, we present results for Test 7 of Table 5. This problem is used to test the capa-
bilities of shock-capturing schemes to accurately capture and resolve the small-scale flow 
features. The exact solution contains sinusoidal density profile with both shocks and rar-
efaction waves. In Fig.  12, we plot the density, velocity, and pressure profiles obtained 
from the seventh order scheme with 400 zones. We also plot the reference solution in solid 
black lines obtained using the third order scheme with 4 000 zones. We see that the result 
in Fig. 12 closely matches the reference solution. The fifth and ninth order schemes also 
perform well on this problem and are not shown here. We re-run the simulation at 140 
zones using the third, fifth, seventh, and ninth order schemes and plot the density profiles 
in Fig. 13. We observe that, at such a low resolution, the third order result is much more 
diffusive in capturing the sinusoidal profile comparatively to the fifth, seventh, and ninth 
order results. This highlights the value of higher order schemes.

7.3  One‑Dimensional Test Problems for the Ten‑Moment Rarefied Gas Flow Model

In this sub-section, we present three one-dimensional Riemann problems for the ten-
moment rarefied gas flow. The system has been described in Sect. 6.3. The initial states and 

Fig. 9  RHD flow: Test 4 (Riemann problem). Panels a, b, and c show the density, velocity, and pressure 
profiles, respectively, at time t = 0.4 obtained using the seventh order LLF-based AFD-WENO scheme with 
200 zones. Solid lines denote the exact solution. The fifth and ninth order schemes also perform well on this 
problem and are not shown here

Fig. 10  RHD flow: Test 5 (Riemann problem). Panels a, b, and c show the density, velocity, and pressure 
profiles, respectively, at time t = 0.4 obtained using the ninth order LLF-based AFD-WENO scheme with 
200 zones. Solid lines denote the exact solution. The fifth and seventh order schemes also perform well on 
this problem and are not shown here
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final times (tend) for these three test problems are specified in Table 6. A description of the 
considered Riemann problems was given in [52] (also see [16]).

Test 1 is the Sod’s shock-tube Riemann problem for ten-moment, whose solu-
tion contains a shock, contact wave, and rarefaction wave. The resulting density, 

Fig. 11  RHD flow: Test 6 (blast wave interaction problem). Panels a, b, and c show the magnified image 
of the density, velocity, and pressure profiles, respectively, at time t = 0.43 obtained using the ninth order 
LLF-based AFD-WENO scheme with 4 000 zones. Solid lines denote the reference solution. The fifth and 
seventh order schemes also perform well on this problem and are not shown here

Fig. 12  RHD flow: Test 7 (density perturbation problem). Panels a, b, and c show the density, velocity, and 
pressure profiles, respectively, at time t = 0.35 obtained using the seventh order LLF-based AFD-WENO 
scheme with 400 zones. The converged solution was obtained on a mesh with 4 000 zones and a third order 
scheme. Solid lines denote the reference solution

Fig. 13  RHD flow: Test 7 (density perturbation problem). Panel a shows the density profile at time t = 0.35 
obtained using the third, fifth, seventh, and ninth order LLF-based AFD-WENO schemes with 140 zones. 
Panel b shows zoomed image of Panel a. Solid black line denotes the reference solution
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x-velocity, y-velocity, and pressure tensor profiles obtained from the fifth order scheme 
are shown in Fig. 14. The exact solution is shown in solid lines. We observe a close 
match between the numerical result and the exact solution. The seventh and ninth order 
schemes also perform well on this problem and are not shown here. Next, we consider 
the two-shock wave problem. The initial states for this problem are given by Test 2 in 
Table 6. Figure 15 shows the density, x-velocity, y-velocity, and pressure tensor pro-
files obtained from the seventh order scheme. The exact solution is denoted by the 
solid lines. We see that the scheme is able to capture the two opposite moving shock 
waves. Similar to Euler’s case in [42], we also see an undershoot at the center of the 
domain for the density and an overshoot for the pressure component pyy . The fifth and 
ninth order schemes also perform well on this problem and are not shown here. Test 3 
in Table 6 is known as the two-rarefaction waves problem. The exact solution of this 
Riemann problem contains two rarefaction waves. The results for the density, x-veloc-
ity, y-velocity, and pressure tensor variables obtained from the ninth order scheme are 
shown in Fig.  16. We observe a good match between the numerical and exact solu-
tions. The fifth and seventh order schemes also perform well on this problem and are 
not shown here.

Table 6  The left and right initial 
states and final times (tend) of the 
three test problems for the ten-
moment rarefied gas equations

x � vx vy pxx pxy pyy tend

Test 1 x < 0 1 0 0 2 0.05 0.6 0.125
x > 0 0.125 0 0 0.2 0.1 0.2

Test 2 x < 0 1 1 1 1 0 1 0.125
x > 0 1 −1 −1 1 0 1

Test 3 x < 0 2 −0.5 −0.5 1.5 0.5 1.5 0.15
x > 0 1 1 1 1 0 1

Fig. 14  Ten-moment rarefied gas flow: Test 1 (Riemann problem). Panels a, b, and c show the density, 
x-velocity, and y-velocity, respectively; and panels d, e, and f show the xx-, xy-, and yy-components of 
the pressure tensor, respectively, at time t = 0.125 obtained using the fifth order LLF-based AFD-WENO 
scheme with 200 zones. Solid lines denote the exact solution. The seventh and ninth order schemes also 
perform well on this problem and are not shown here
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8  Multi‑dimensional Test Problems

In this section, we focus on several two-dimensional test problems. We wish to demon-
strate that the presented scheme works well for multi-dimensional stringent problems. 
In Sect.  8.1, we present multi-dimensional problems for the Euler flow; in Sect.  8.1, 
we present multi-dimensional test problems for the RHD flow, and in Sect.  8.3, we 
consider a multi-dimensional problem for the ten-moment model. We used a CFL of 
0.4 with a third order SSP-RK time-stepping scheme for all the simulations presented 
in this section.

8.1  Multi‑dimensional Test Problems for Euler Flow

In this sub-section, we present two multi-dimensional problems for the Euler flow. The 
first test problem is the forward facing step problem. This problem was first introduced 
by Woodward and Colella [60]. We simulate the problem on a computational domain that 
spans [0, 3] × [0, 1] . At the left boundary of the domain, an ideal gas flows in at a speed 
of Mach 3 with a density of 1.4, a pressure of 1, and a ratio of specific heat of 1.4. At the 
upper corner, a forward-facing step is set up at the position (0.6, 0.2) . At the left and right 
boundaries, we use outflow boundary conditions. At the top and bottom boundaries, we 
apply the reflective boundary conditions, and that includes all parts of the forward-facing 
step. At the step corner, the singularity has been treated in the same manner as in Wood-
ward and Colella [60]. The problem was run to a final time of 0.4 on a 1 440 × 480 zone 
mesh. We use the flattening algorithm presented in [5] to simulate this particular test case. 
Figure 17 shows the obtained result for the density variable at a final time of 0.4 using the 
fifth order accurate HLL-based AFD WENO scheme. The panel shows the sharp profiles 

Fig. 15  Ten-moment rarefied gas flow: Test 2 (Riemann problem). Panels a, b, and c show the density, 
x-velocity, and y-velocity, respectively; and panels d, e, and f show the xx-, xy-, and yy-components of the 
pressure tensor, respectively, at time t = 0.125 obtained using the seventh order LLF-based AFD-WENO 
scheme with 200 zones. Solid lines denote the exact solution. The fifth and ninth order schemes also per-
form well on this problem and are not shown here
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and a pronounced roll-up of the vortex sheet can be seen. The seventh and ninth order 
schemes also perform well on this problem; therefore, they are not shown here.

Next, we consider the Double Mach Reflection (DMR) problem from Woodward and Colella 
[60] for the Euler flow. We use the same setup here. The problem simulates the multi-dimen-
sional similarity solution that develops when an angled wedge is placed in a supersonic flow. 
Here we consider a domain that spans [0, 4] × [0, 1] . A Mach 10 shock, positioned at an angle 
of 60° to the bottom boundary, is initialized at the boundary point x = 1∕6 . For the value of 
x < 1∕6 , the post-shock conditions are used at the boundary, which matches the pre-wedge 
states. For values of x > 1∕6 , the reflective boundary condition is used, which exactly matches 
the windward face of the wedge. The upper boundary is modified consistently with the motion 
of the oblique shock. At the left edge, we use the inflow boundary conditions. At the right edge, 
we use the outflow boundary conditions. The un-shocked region is initialized with a density of 
1.4, a pressure of 1, and a ratio of specific heat of 1.4. The problem was run to a final time of 
0.2 on a 1 920 × 480 zone mesh. We use the flattening algorithm presented in [5] to simulate 
this particular test case. Figure 18 shows the plot for the density variable obtained from the sev-
enth order accurate HLL-based AFD WENO scheme. It is customary to only image the partial 
domain [0, 3] × [0, 1] . We also supply a small panel that shows a zoomed-up region around the 
Mach stem. We observe that the scheme is able to capture the instabilities (Fig. 18b) that develop 
around the Mach stem. This shows the significance of higher-order schemes. The fifth and ninth 
order schemes also perform well on this problem and therefore, they are not shown here.

8.2  Multi‑dimensional Test Problems for the RHD Equations

In this sub-section, we present multiple two-dimensional test problems for the relativistic 
flows. In Table 7, we consider three two-dimensional Riemann problems from [23]. All the 
test problems from Table  7 have the computational domain [−0.5, 0.5] × [−0.5, 0.5] . We 

Fig. 16  Ten-moment rarefied gas flow: Test 3 (Riemann problem). Panels a, b, and c show the density, 
x-velocity, and y-velocity, respectively; and panels d, e, and f show the xx-, xy-, and yy-components of 
the pressure tensor, respectively, at time t = 0.15 obtained using the ninth order LLF-based AFD-WENO 
scheme with 200 zones. Solid lines denote the exact solution. The fifth and seventh order schemes also per-
form well on this problem and are not shown here
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simulate the first problem (2DRP-1) from Table 7 using the fifth order accurate LLF-based 
AFD-WENO scheme on a mesh of 200 × 200 zones. For this problem, Fig. 19 shows the 
25 equally spaced contours for the density and pressure logarithms. We observe that the 
four initial vortex sheets mutually interact with each other, resulting in the formation of a 
spiral pattern characterized by the reduced rest-mass density near the center of the compu-
tational domain. The obtained results are precise and closely resemble the results reported 
in [23]. The seventh and ninth order schemes also perform well on this problem and there-
fore, they are not shown here. Next, we run the second problem (2DRP-2) from Table 7 
using the seventh order accurate LLF-based AFD-WENO scheme on a mesh of 200 × 200 
zones. For this problem, Fig. 20 shows the 25 equally spaced contours for the density and 
pressure logarithms. The solution is characterized by the interactions of planar rarefaction 
waves, leading to the formation of two symmetrical shock waves, and the results depicted 
in Fig. 20 demonstrate that the scheme successfully captures these intricate structures. The 
fifth and ninth order schemes also perform well on this problem and therefore, they are not 
shown here. Next, we simulate the last problem (2DRP-3) from Table 7 using the ninth 
order accurate LLF-based AFD-WENO scheme on a mesh of 200 × 200 zones. For this 
problem, Fig. 21 shows the 25 equally spaced contours for the density and pressure loga-
rithms. In this particular test case, the initial membranes experience breakdown, leading to 
the appearance of two contact discontinuities along the left and bottom boundaries of the 
domain, and at the top-right boundary, the system evolves, giving rise to the formation of 
two curved front shocks. The results in Fig. 21 demonstrate that the chosen scheme effec-
tively captures these complex structures. The fifth and seventh order schemes also perform 
well on this problem and therefore, they are not shown here.

Next, we consider the shock-bubble interaction problem from [29]. In [15], authors have 
simulated the same problem in a discontinuous Galerkin framework. In this test, a shock 
wave moving to the left interacts with a bubble and generates several interesting wave pat-
terns. The initial states for the shock and bubbles are given in Table 8. We consider two 
types of bubbles centered at (215, 0) with a radius of 25 units. The first bubble from Table 8 
is denoted by SB-1 and the second bubble is denoted by SB-2. The computational domain 
is given by [0, 325] × [−45, 45] . At the top and bottom boundaries ( y = ±45 ), we use the 
reflective boundary conditions. At the left and right boundaries ( x = 0 and x = 325 ) we use 
the Dirichlet boundary conditions with the boundary values given by the respective initial 
left and right shock states specified in Table 8.

Fig. 17  Euler flow: forward facing step problem. Panel shows the density contours using the fifth order 
accurate HLLI-based AFD-WENO scheme with 1 440 × 480 zones. Thirty contours were fit between a 
range of 0.1 and 6.62. The seventh and ninth order schemes also perform well on this problem and are not 
shown here
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For the first shock-bubble problem (SB-1), we simulate the problem till the final 
time t = 450 and present the obtained results for the density variable in Fig. 22. Results 
shown in Fig. 22a are obtained using the third order scheme, results shown in Fig. 22b 
are obtained using the fifth order scheme, results shown in Fig.  22c are obtained 
using the seventh order scheme, and Fig. 22d contains the results obtained using the 

Fig. 18  Euler flow: double Mach reflection problem. a The density contours using the seventh order accu-
rate HLLI-based AFD-WENO scheme with 1 920 × 480 zones. b The detailed view of the density profile. 
Twenty contours were fit between a range of 1.0 and 20.5. The fifth and ninth order schemes also perform 
well on this problem and are not shown here

Table 7  The initial states, specific heat constant (�) , and final times (tend) of the three multi-dimensional 
Riemann problems for the RHD equations

x, y � vx vy p � tend

2DRP-1 x > 0, y > 0 0.5 0.5 −0.5 5 5

3

0.4

x < 0, y > 0 1 0.5 0.5 5
x < 0, y < 0 3 −0.5 0.5 5
x > 0, y < 0 1.5 −0.5 −0.5 5

2DRP-2 x > 0, y > 0 1 0 0 1 5

3

0.4

x < 0, y > 0 0.577 1 −0.352 9 0 0.4
x < 0, y < 0 1 −0.352 9 −0.352 9 1
x > 0, y < 0 0.577 1 0 −0.352 9 0.4

2DRP-3 x > 0, y > 0 0.035 145 216 1 0 0 0.162 931  056 5 5

3

0.4

x < 0, y > 0 0.1 0.7 0 1
x < 0, y < 0 0.5 0 0 1
x > 0, y < 0 0.1 0 0.7 1
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ninth order AFD-WENO scheme. We observe that all the employed schemes exhibit 
good precision in capturing the small-scale wave structures. Notably, the higher-order 
schemes demonstrate a greater level of detail in representing these wave structures, 
hence showing the value of higher-order schemes.

The setup for the second shock-bubble problem (SB-2) is very similar to the previ-
ous one, except that the inside states of the bubble are now heavier. This means that 
there is more mass inside the bubble compared to bubble-1. The final time for this 
problem is given by t = 500 . Figures 23a–d show the density profiles obtained using 
the third, fifth, seventh, and ninth order accurate AFD-WENO schemes, respectively. 
Once again, we observe that all the schemes effectively capture the discontinuities and 
wave structures with remarkable precision. As previously, higher-order schemes yield 
more accurate results, highlighting their superior performance.

Fig. 19  RHD flow: 2DRP-1 (two-dimensional Riemann problem-1). a The density logarithm and b the 
pressure logarithm at time t = 0.4 obtained using the fifth order LLF-based AFD-WENO scheme with 
200 × 200 zones. Twenty-five contours were fit in between the range of minimum and maximum values. The 
fifth and ninth order schemes also perform well on this problem and are not shown here

Fig. 20  RHD flow: 2DRP-2 (two-dimensional Riemann problem-2). a The density logarithm and b shows 
the pressure logarithm at time t = 0.4 obtained using the seventh order LLF-based AFD-WENO scheme 
with 200 × 200 zones. Twenty-five contours were fit in between the range of minimum and maximum val-
ues. The fifth and ninth order schemes also perform well on this problem and are not shown here
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8.3  Multi‑dimensional Test Problems for the Ten‑Moment Rarefied Gas Flow Model

In this sub-section, we present a two-dimensional test problem from [45] (also see 
[16]) for the ten-moment rarefied gas flow model. The initial states for this test con-
tain low-density and low-pressure zones. The computational domain for this test is 
[−2, 2] × [−2, 2] . We use outflow boundary conditions at all the boundaries. The initial 
profiles are given by

We simulate the problem using the seventh-order accurate LLF-based AFD-WENO 
scheme on a mesh of 200 × 200 zones. The final time is given by t = 0.05 . We use the 
flattening algorithm (with � = 1 ) described in Appendix B to simulate this particular test 
case. Figure 24 contains the obtained results. Profile in Fig. 24a shows the density variable, 
Fig. 24b corresponds to the pxx-component of the pressure tensor, Fig. 24c corresponds to 
the pxy-component of the pressure tensor, and Fig. 24d corresponds to the pyy-component 
of the pressure tensor. We observe a good resemblance between the obtained result and the 
reported results in [16, 45]. The fifth and ninth order schemes also perform well on this 
problem and therefore, they are not shown here.

� = 1, pxx = pyy = 2, pxy = 0, (vx, vy) = 8(x∕r, y∕r), where r =
√
x2 + y2.

Fig. 21  RHD flow: 2DRP-3 (two-dimensional Riemann problem-3). a The density logarithm and b the 
pressure logarithm at time t = 0.4 obtained using the ninth order LLF-based AFD-WENO scheme with 
200 × 200 zones. Twenty-five contours were fit in between the range of minimum and maximum values. The 
fifth and seventh order schemes also perform well on this problem and are not shown here

Table 8  The initial states of the shock and the two bubbles for the two-dimensional shock-bubble interac-
tion problem for RHD equations. The specific heat constant (�) and final times (tend) for both bubbles are 
also specified in this table

x, y � vx vy p � tend

Shock x < 265 1 0 0 0.05
x > 265 1.865 225 080 63 −0.196 781 107 37 0 0.15

Bubble-1 (SB-1) (x − 215)2 + y
2
< 252 0.135 8 0 0 0.05 5

3

450

Bubble-2 (SB-2) (x − 215)2 + y
2
< 252 3.153 8 0 0 0.05 5

3

500
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Fig. 22  a RHD flow: SB-1 (Shock-Bubble interaction-1). Panel shows the density profile at time t = 450 
obtained using the third order LLF-based AFD-WENO scheme with 650 × 180 zones. b RHD flow: SB-1 
(Shock-Bubble interaction-1). Panel shows the density profile at time t = 450 obtained using the fifth order 
LLF-based AFD-WENO scheme with 650 × 180 zones. c RHD flow: SB-1 (Shock-Bubble interaction-1). 
Panel shows the density profile at time t = 450 obtained using the seventh order LLF-based AFD-WENO 
scheme with 650 × 180 zones. d RHD flow: SB-1 (Shock-Bubble interaction-1). Panel shows the density 
profile at time t = 450 obtained using the ninth order LLF-based AFD-WENO scheme with 650 × 180 zones
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Fig. 23  a RHD flow: SB-2 (Shock-Bubble interaction-2). Panel shows the density profile at time t = 500 
obtained using the third order LLF-based AFD-WENO scheme with 650 × 180 zones. b RHD flow: SB-2 
(Shock-Bubble interaction-2). Panel shows the density profile at time t = 500 obtained using the fifth order 
LLF-based AFD-WENO scheme with 650 × 180 zones. c RHD flow: SB-2 (Shock-Bubble interaction-2). 
Panel shows the density profile at time t = 500 obtained using the seventh order LLF-based AFD-WENO 
scheme with 650 × 180 zones. d RHD flow: SB-2 (Shock-Bubble interaction-2). Panel shows the density 
profile at time t = 500 obtained using the ninth order LLF-based AFD-WENO scheme with 650 × 180 zones
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9  Conclusions

In this paper we have striven to make the AFD-WENO as easily accessible and general-
purpose as classical FD-WENO. A well-developed AFD-WENO offers many extremely 
desirable advantages over classical FD-WENO. First, it can work with any type of Rie-
mann solver and different fields of study may have their own special Riemann solver 
that they find beneficial. Such flexibility is not available in the FD-WENO, whereas it is 
indeed available in AFD-WENO formulations. For instance, some Riemann solvers are 
better at positivity preservation, which can help with stringent problems. Other Riemann 
solvers are better at preserving stationary contact discontinuities, which can help with 
well-balancing. Yet other Riemann solvers might be better at handling non-conservative 
products, which could be useful in applications where the governing equation simply 
cannot be written in conservation form. This flexibility of invoking the Riemann solver 
at pointwise locations can also be exploited to ensure that the final scheme respects 
the preservation of free stream conditions on curvilinear meshes. On such curvilinear 
meshes, the flux reconstruction of classical FD-WENO methods becomes a liability and 
this enables AFD-WENO methods to come to the fore. For all the very good reasons 
mentioned above, the overarching motivation of this paper was to derive an AFD-WENO 
formulation that is absolutely general-purpose and easily accessible with all requisite 

Fig. 24  Ten-moment rarefied gas flow: two-dimensional near vacuum test problem. a The density, b the pxx 
component, c the pxy component, and d the pyy component at time t = 0.05 obtained using the seventh order 
LLF-based AFD-WENO scheme with 200 zones. The fifth and ninth order schemes also perform well on 
this problem and are not shown here
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formulae available in one place, i.e., within this paper. The AFD-WENO formulation 
that we have obtained has a computational complexity that is comparable to classical 
FD-WENO. This has the happy consequence that there are only up-sides, and no down-
sides to switch from classical FD-WENO to the AFD-WENO presented here.

To achieve the broad goal of developing AFD-WENO into a general purpose algorithm 
for conservation laws, three major barriers had to be overcome. Overcoming these barriers, 
therefore, provides the three major goals of this paper, which are addressed in each of the 
next three paragraphs.

One of the reasons why AFD-WENO has not seen much uptake in the community stems 
from the fact that it is quite difficult to understand the scheme. Indeed, the update equation 
for AFD-WENO entails many higher derivatives of the fluxes at zone boundaries, and it is 
difficult to understand where these derivatives come from. In this work, Sect. 2 demystifies 
the derivation of the AFD-WENO update equation by working out the special case of third 
order AFD-WENO in great detail. In the associated Appendix A, we also provide a script 
based on a computer algebra system that shows how the fifth order scheme can be obtained 
as a natural outcome of applying the script. Higher order AFD-WENO schemes can also be 
naturally derived by extending the script. Therefore, in Sect. 2 we achieve the first goal of 
this paper which is to make AFD-WENO very accessible to the greater community.

AFD-WENO also relies on interpolation rather than the more familiar WENO recon-
struction. In reconstruction, the volume-averaged entities are reconstructed up to the 
desired accuracy via a suitable polynomial basis. The same polynomial basis is also used 
in AFD-WENO. However, now we require that the interpolating polynomial should match 
the point values in the zones that make up the interpolating stencil. Section 3 provides all 
the explicit formulae for doing this up to the ninth order. In that sense, the second goal of 
this paper is to serve as a one-stop-shop for all the interpolation formulae that are needed in 
AFD-WENO up to the ninth order.

The structure of the AFD-WENO update is such that it relies on the evaluation of the 
higher derivatives of the fluxes at zone boundaries. When the solution is smooth, these 
derivatives contribute to higher order accuracy. When the solution is non-smooth, these 
higher derivatives can be a source of spurious oscillations. In the past, this was one of 
the major stumbling blocks in the development of AFD-WENO schemes. Some solu-
tions that are specific to the PDE at hand have been developed for controlling these higher 
order derivatives. In this paper a general-purpose method is developed which relies on a 
novel WENO interpolation that takes the derivatives of the fluxes at the zone centers as its 
inputs and returns non-linearly hybridized higher order derivatives of the flux terms at zone 
boundaries as its output. In the spirit of serving as a one-stop-shop for all the interpolation 
formulae that are needed in AFD-WENO, our third goal is to document all those interpola-
tion formulae up to the eighth order. This is done in Sect. 4 and it is sufficient to yield an 
AFD-WENO scheme that has up to the ninth order of accuracy. Since our method is based 
on the alternative formulation of WENO finite difference as in [32, 33], it can be adapted 
to maintain free-stream exactly on curvilinear meshes as in [33], which is left for our future 
work.

A pointwise description of the ADF-WENO algorithm that simplifies its implementa-
tion is presented in Sect. 5. The accuracy analysis is presented in Sect. 6. One-dimensional 
tests are presented in Sect.  7. Multidimensional tests are presented in Sect.  8. In future 
work we will extend our methods to include hyperbolic PDEs which are completely gen-
eral in that they may have flux form or non-conservative products.
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Appendix A Mathematica Script for the Derivation of a Fifth Order 
AFD‑WENO Scheme

We present the Mathematica script for understanding the formulae in Shu and Osher [55]. 
The script is extensible to all orders.
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Appendix B Flattener Function for the Ten‑Moment Rarefied Gas Flow 
Model

The flattening algorithm is employed in simulations to identify regions of strong shocks 
within the computational domain. The algorithm aims to improve the simulation accu-
racy by reducing numerical artifacts near discontinuities. The flattener functions rely on 
comparing the divergence of the velocity field to a characteristic speed associated with 
the specific problem being solved. For the Euler flows, such functions have been previ-
ously defined by Colella and Woodward [21] and Balsara [5]. For the Relativistic Magneto-
hydrodynamics equations, a flattener has been presented in Balsara and Kim [9]. Along 
the same lines, we give a flattener function for the ten-moment model. The method begins 
by calculating the divergence of the velocity, (∇ ⋅ �)i,j , and sound-like speed cs;i,j (some 
approximation of the characteristic speed), within a specific zone (i, j) . In the two-dimen-
sional cartesian mesh, the quantities are defined by

cs;i,j =

√
Pi,j

�i,j
, where Pi,j =

√
pxx;i,jpyy;i,j − p2

xy;i,j
.

To detect a shock, the undivided divergence of the velocity within a zone must be 
compared to the minimum sound-like speed in the zone (i, j) and its immediate neigh-
bors. The minimum sound-like speed from all the neighbors is obtained as follows:

(∇ ⋅ �)i,j =
vx;i+1,j − vx;i−1,j

Δx
+

vy;i,j+1 − vy;i,j−1

Δy
,
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In each zone with an extent of Δx and Δy , the flattener function is defined as

The parameter � is set to 0.3, which has been found to work well across different orders and 
problem types. The flattener function does not modify the reconstruction when the flow is 
smooth or consists of rarefactions, and in that case, �i,j = 0. However, the flattener function 
gradually increases from �i,j = 0 to �i,j = 1 when strong shocks are present.

The inclusion of pressure variation in the flattener algorithm allows for a more compre-
hensive stabilization of the flow simulation. It ensures that not only the zones already influ-
enced by shocks but also the zones on edge receive appropriate flattening treatment. This 
improvement helps maintain numerical stability and accuracy throughout the simulation, 
particularly in regions where shocks are forming or propagating. In the x-direction, the flat-
tener can be extended to the neighboring cell if the following conditions are satisfied:

In situations involving multi-dimensional problems, the above strategy can be applied to 
each of the principal directions of the mesh.
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�i,j = min

[
1,max

[
0,

|(∇ ⋅ �)i,j| max(Δx,Δy)

�cmin-nbr
s;i,j

− 1

]]
.

if
((
𝜂i,j > 0

)
and

(
𝜂i+1,j = 0

)
and

(
Pi,j > Pi+1,j

))
, then 𝜂i+1,j = 𝜂i,j;

if
((
𝜂i,j > 0

)
and

(
𝜂i−1,j = 0

)
and

(
Pi,j > Pi−1,j

))
, then 𝜂i−1,j = 𝜂i,j.



 Communications on Applied Mathematics and Computation

1 3

References

 1. Anile, A.M.: Relativistic Fluids and Magneto-Fluids: with Applications in Astrophysics and Plasma 
Physics. Cambridge University Press, Cambridge (1989)

 2. Arbogast, T., Huang, C.-S., Zhao, X.: Accuracy of WENO and adaptive order WENO reconstructions 
for solving conservation laws. SIAM J. Numer. Anal. 56(3), 1818–1847 (2018)

 3. Balsara, D.S.: Total variation diminishing algorithm for adiabatic and isothermal magnetohydrody-
namics. Astrophys. J. Suppl. 116, 133–153 (1998)

 4. Balsara, D.S.: Second order accurate schemes for magnetohydrodynamics with divergence-free recon-
struction. Astrophys. J. Suppl. 151(1), 149–184 (2004)

 5. Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamics and magne-
tohydrodynamics. J. Comput. Phys. 231, 7504–7517 (2012)

 6. Balsara, D.S., Bhoriya, D., Shu, C.-W., Kumar, H.: Efficient finite difference WENO scheme for hyper-
bolic systems with non-conservative products. Commun. Appl. Math. Comput. (2023). https:// doi. org/ 
10. 1007/ s42967- 023- 00275-9

 7. Balsara, D.S., Garain, S., Florinski, V., Boscheri, W.: An efficient class of WENO schemes with adap-
tive order for unstructured meshes. J. Comput. Phys. 404, 109062 (2020)

 8. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. 
Comput. Phys. 326, 780–804 (2016)

 9. Balsara, D.S., Kim, J.: A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO 
predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys. 312, 357–384 (2016)

 10. Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.-D.: Efficient, high-accuracy ADER-WENO schemes 
for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228, 2480 (2009)

 11. Balsara, D.S., Samantaray, S., Subramanian, S.: Efficient WENO-based prolongation strategies for 
divergence-preserving vector fields. Commun. Appl. Math. Comput. 5(1), 428–484 (2022)

 12. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted non-oscillatory schemes with increas-
ingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

 13. Berberich, J.P., Käppeli, R., Chandrashekar, P., Klingenberg, C.: High order discretely well-balanced 
methods for arbitrary hydrostatic atmospheres. Commun. Comput. Phys. 30(3), 666–708 (2021)

 14. Bhoriya, D., Kumar, H.: Entropy-stable schemes for relativistic hydrodynamics equations. Z. Angew. 
Math. Phys. 71, 1–29 (2020)

 15. Biswas, B., Kumar, H., Bhoriya, D.: Entropy stable discontinuous Galerkin schemes for the special 
relativistic hydrodynamics equations. Comput. Math. Appl. 112, 55–75 (2022)

 16. Biswas, B., Kumar, H., Yadav, A.: Entropy stable discontinuous Galerkin methods for ten-moment 
Gaussian closure equations. J. Comput. Phys. 431, 110148 (2021)

 17. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory 
scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3101–3211 (2008)

 18. Boscheri, W., Balsara, D.S.: High order direct arbitrary-Lagrangian-Eulerian (ALE) P
N
P
M

 schemes on 
unstructured meshes. J. Comput. Phys. 398, 108899 (2019)

 19. Carlini, E., Ferretti, R., Russo, G.: A weighted essentially nonoscillatory, large time-step scheme for 
Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27, 1071–1091 (2005)

 20. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes 
for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

 21. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. 
Comput. Phys. 54(1), 174–201 (1984)

 22. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on 
nonuniform meshes. J. Sci. Comput. 67(3), 1219–1246 (2016)

 23. Duan, J.M., Tang, H.Z.: High-order accurate entropy stable finite difference schemes for one- and two-
dimensional special relativistic hydrodynamics. Adv. Appl. Math. Mech. 12(1), 1–29 (2019)

 24. Dumbser, M., Balsara, D.S.: A new efficient formulation of the HLLEM Riemann solver for general 
conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304, 275–319 (2016)

 25. Gao, Z., Fang, L.-L., Wang, B.-S., Wang, Y., Don, W.S.: Seventh and ninth orders characteristic-wise 
alternative WENO finite difference schemes for hyperbolic conservation laws. Comput. Fluids 202, 
104519 (2020)

 26. Gerolymos, G.A., Sénéchal, D., Vallet, I.: Very high order WENO schemes. J. Comput. Phys. 228, 
8481–8524 (2009)

 27. Grosheintz-Laval, L., Käppeli, R.: Well-balanced finite volume schemes for nearly steady adiabatic 
flows. J. Comput. Phys. 423, 109805 (2020)

 28. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscilla-
tory schemes III. J. Comput. Phys. 71, 231–303 (1987)

https://doi.org/10.1007/s42967-023-00275-9
https://doi.org/10.1007/s42967-023-00275-9


Communications on Applied Mathematics and Computation 

1 3

 29. He, P., Tang, H.: An adaptive moving mesh method for two-dimensional relativistic hydrodynam-
ics. Commun. Comput. Phys. 11(1), 114–146 (2012)

 30. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: 
achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2006)

 31. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 
126, 202–228 (1996)

 32. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference ENO schemes 
with Lax-Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–
A1160 (2013)

 33. Jiang, Y., Shu, C.-W., Zhang, M.: Free-stream preserving finite-difference schemes on curvilinear 
meshes. Methods Appl. Anal. 21(1), 001–030 (2014)

 34. Käppeli, R.: Well-balanced methods for computational astrophysics. Living Rev. Comput. Astro-
phys. 8(2), 1–88 (2022)

 35. Käppeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. J. Com-
put. Phys. 259, 199–219 (2014)

 36. Kumar, R., Chandrashekar, P.: Simple smoothness indicator and multi-level adaptive order WENO 
scheme for hyperbolic conservation laws. J. Comput. Phys. 375, 1059–1090 (2018)

 37. Kumar, R., Chandrashekar, P.: Efficient seventh order WENO schemes of adaptive order for hyper-
bolic conservation laws. Comput. Fluids 190, 49–76 (2019)

 38. Kupka, F., Happenhofer, N., Higueras, I., Koch, O.: Total-variation-diminishing implicit-explicit 
Runge-Kutta methods for the simulation of double-diffusive convection in astrophysics. J. Comput. 
Phys. 231, 3561–3586 (2012)

 39. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. 
Commun. Pure Appl. Math. 7(1), 159–193 (1954)

 40. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conserva-
tion laws. SIAM J. Sci. Comput. 22, 656–672 (2000)

 41. Ling, D., Duan, J.M., Tang, H.Z.: Physical-constraints-preserving Lagrangian finite volume 
schemes for one- and two-dimensional special relativistic hydrodynamics. J. Comput. Phys. 396, 
507–543 (2019)

 42. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for 
the Euler equations. SIAM J. Sci. Comput. 25(3), 995–1017 (2003)

 43. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 
115, 200–212 (1994)

 44. Martí, M.J., Müller, E.: Numerical hydrodynamics in special relativity. Living Rev. Relat. 6(1), 7 
(2003)

 45. Meena, A.K., Kumar, H., Chandrashekar, P.: Positivity-preserving high-order discontinuous Galer-
kin schemes for ten-moment Gaussian closure equations. J. Comput. Phys. 339, 370–395 (2017)

 46. Merriman, B.: Understanding the Shu-Osher conservative finite difference form. J. Sci. Comput. 
19(1/2/3), 309 (2003)

 47. Mignone, A., Bodo, G.: An HLLC Riemann solver for relativistic flows I. Hydrodynamics. Mon. 
Notices R. Astron. Soc. 364(1), 126–136 (2005)

 48. Pao, S.P., Salas, M.D.: A numerical study of two-dimensional shock-vortex interaction. In: 14th 
Fluid and Plasma Dynamics Conference, AIAA 81-1205 (1981)

 49. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic sys-
tems with relaxation. J. Sci. Comput. 25, 129 (2005)

 50. Sebastian, K., Shu, C.-W.: Multidomain WENO finite difference method with interpolation at sub-
domain interfaces. J. Sci. Comput. 19, 405–438 (2003)

 51. Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on 
third-order compact WENO reconstruction. J. Sci. Comput. 66(2), 692–724 (2016)

 52. Sen, C., Kumar, H.: Entropy stable schemes for ten-moment Gaussian closure equations. J. Sci. 
Comput. 75(2), 1128–1155 (2018)

 53. Shu, C.-W.: High order weighted essentially non-oscillatory schemes for convection dominated 
problems. SIAM Rev. 51, 82–126 (2009)

 54. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta 
Numer. 29, 701–762 (2020)

 55. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing 
schemes. J. Comput. Phys. 77, 439–471 (1988)

 56. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing 
schemes II. J. Comput. Phys. 83, 32–78 (1989)



 Communications on Applied Mathematics and Computation

1 3

 57. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conserva-
tion laws. J. Comput. Phys. 27(1), 1–31 (1978)

 58. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time-stepping 
schemes. SIAM J. Numer. Anal. 40, 469–491 (2002)

 59. Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving 
Runge-Kutta methods. Math. Comput. Simul. 62, 125–135 (2003)

 60. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. 
J. Comput. Phys. 54, 115–173 (1984)

 61. Zheng, F., Shu, C.-W., Qiu, J.: A high order conservative finite difference scheme for compressible 
two-medium flows. J. Comput. Phys. 445, 110597 (2021)

 62. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation 
laws. J. Comput. Phys. 318, 110–121 (2016)

 63. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of 
accuracy. J. Comput. Phys. 375, 659–683 (2018)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

Authors and Affiliations

Dinshaw S. Balsara1,2 · Deepak Bhoriya1 · Chi‑Wang Shu3 · Harish Kumar4

 * Dinshaw S. Balsara 
 dbalsara@nd.edu

1 Physics Department, University of Notre Dame, Notre Dame, IN, USA
2 ACMS Department, University of Notre Dame, Notre Dame, IN, USA
3 Division of Applied Mathematics, Brown University, Providence, RI, USA
4 Department of Mathematics, Indian Institute of Technology, Delhi, India


	Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Conservation Laws
	Abstract
	1 Introduction
	2 An AFD-WENO Algorithm—Description of Philosophy and Formulation
	2.1 AFD-WENO Scheme Design Philosophy
	2.2 AFD-WENO Formulated up to Ninth Order of Accuracy

	3 WENO-AO Interpolation at Several Orders for AFD-WENO Schemes
	3.1 WENO-AO(3) Interpolation
	3.2 WENO-AO(5,3) Interpolation
	3.3 WENO-AO(7,3) Interpolation
	3.4 WENO-AO(7,5,3) Interpolation
	3.5 WENO-AO(9,3) Interpolation

	4 A New Type of WENO-AO Interpolation that is Applicable to Zone Boundaries
	4.1 Third Order WENO-AO Interpolation of Higher Order Derivatives at Zone Boundaries
	4.2 Fourth Order WENO-AO Interpolation of Higher Order Derivatives at Zone Boundaries
	4.3 Sixth Order WENO-AO Interpolation of Higher Order Derivatives at Zone Boundaries
	4.4 Eighth Order WENO-AO Interpolation of Higher Order Derivatives at Zone Boundaries
	4.5 Multiresolution WENO Interpolation of Higher Order Derivatives at Zone Boundaries

	5 Pointwise Implementation of Our AFD-WENO Scheme for Conservation Laws
	6 Accuracy Analysis
	6.1 Two-Dimensional Vortex Problem for Euler Flow
	6.2 Two-Dimensional Vortex Problem for Relativistic Hydrodynamics Flow
	6.3 Two-Dimensional Sinusoidal Problem for Ten-Moment Rarefied Gas Flow

	7 One-Dimensional Test Problems
	7.1 One-Dimensional Test Problems for Euler Flow
	7.2 One-Dimensional Test Problems for the RHD Equations
	7.3 One-Dimensional Test Problems for the Ten-Moment Rarefied Gas Flow Model

	8 Multi-dimensional Test Problems
	8.1 Multi-dimensional Test Problems for Euler Flow
	8.2 Multi-dimensional Test Problems for the RHD Equations
	8.3 Multi-dimensional Test Problems for the Ten-Moment Rarefied Gas Flow Model

	9 Conclusions
	Appendix A Mathematica Script for the Derivation of a Fifth Order AFD-WENO Scheme
	Appendix B Flattener Function for the Ten-Moment Rarefied Gas Flow Model
	Acknowledgements 
	References


