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Abstract
The continuous P

3
 and discontinuous P

2
 finite element pair is stable on subquadrilateral tri-

angular meshes for solving 2D stationary Stokes equations. By putting two diagonal lines 
into every quadrilateral of a quadrilateral mesh, we get a subquadrilateral triangular mesh. 
Such a velocity solution is divergence-free point wise and viscosity robust in the sense 
the solution and the error are independent of the viscosity. Numerical examples show an 
advantage of such a method over the Taylor-Hood P

3
-P

2
 method, where the latter deterio-

rates when the viscosity becomes small.

Keywords Divergence-free · Stokes equations · Finite element · Triangular mesh · 
Quadrilateral mesh
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1 Introduction

We solve a model Stokes problem,

where 𝜇 > 0 is the viscosity and � is bounded polygonal domain in 2D. The weak form is: 
find (u, p) ∈ H1

0
(�) × L2

0
(�) such that

−�Δu + ∇p = f in �,

u = 0 on ��,

(1)(�∇u,∇v) − (p, div v) = (f, v), ∀v ∈ H1
0
(�),
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A natural finite element method for the Stokes equations would be the Pk-Pk−1 element on 
triangular and tetrahedral grids which approximates the velocity in an H1-subspace Vh of 
continuous Pk functions (referred as C0-Pk ), and approximates the pressure in an L2-sub-
space Ph of discontinuous Pk−1 functions (referred as C−1-Pk−1 ). In this case, the finite ele-
ment problem reads: find (uh, ph) ∈ Vh × Ph ⊂ H1

0
(𝛺) × L2

0
(𝛺) such that

In this case the divergence-free condition is satisfied point wise and the discrete solution 
for the velocity is the Galerkin projection within the space of divergence-free functions. 
Therefore the numerical solution uh is independent of p and its error is independent of the 
viscosity � . But other methods, for example, the Taylor-Hood finite element, would dete-
riorate when � is small. However, the Pk-Pk−1 method is not stable in general. Scott and 
Vogelius showed in [16, 17] that the method is stable and consequently of the optimal order 
on 2D triangular grids for polynomial degree k ⩾ 4 , provided the grids have no nearly-sin-
gular vertex. Many works on the divergence-free Pk-Pk−1 finite element method have been 
done, mostly on macro-type meshes or with bubble stabilization, cf. [1–15, 19–26].

The P3-P2 finite element is not stable. In [4], it is stabilized by enriching P3 space with 
some rational, divergence-free bubbles. In Zhang-P3, it is stabilized by enriching P3 space 
with some P4 divergence-free bubbles. Computationally, these methods solved the prob-
lem. Mathematically, one would like to know if the method can be stable without adding 
bubbles in some cases. If so, the method would be more efficient in computation without 
bubbles.

The P3-P2 finite element is not stable on general triangular meshes. In this work, we show 
the element is stable on subquadrilateral triangular meshes. What is a subquadrilateral triangu-
lar mesh? After we put two diagonal lines into every quadrilateral in a quadrilateral mesh, we 
get a subquadrilateral triangular mesh. We can also obtain such a mesh from a quasi-uniform 
triangular mesh of even number of triangles, see Fig. 1. We simply connect the two opposite 
points on two sides of an edge which is shared by a pair of triangles, see Fig. 1b. In both cases, 
the intersection point is a singular vertex, in terms of finite element analysis. At a singular ver-
tex, the discrete pressure function is not a totally discontinuous P2 function. The four values 
of a discrete pressure p2(x) are subject to a continuity condition that 

∑4

i=1
(−1)ip2�Ti (n0) = 0 , 

(2)(q, div u) = 0, ∀q ∈ L2
0
(�).

(3)(�∇uh,∇vh) − (ph, div vh) = (f, vh), ∀vh ∈ Vh,

(4)(qh, divuh) = 0, ∀qh ∈ Ph.

(a) (b) (c)

Fig. 1  a Two triangles in a triangular mesh form a quadrilateral. b A subquadrilateral triangular mesh. c A 
subquadrilateral triangular mesh without any singular vertex



Communications on Applied Mathematics and Computation 

1 3

where n0 is the intersection point. A singular vertex would cause some extra work in computer 
coding. To avoid a singular vertex in this case, one can move the center point to any point of 
distance Ch away for some fixed C > 0 , see Fig. 1c. If it is moved a way by a distance, say h2 , 
we would have a nearly singular vertex. Then the method is no longer stable. Though a singu-
lar vertex creates more coding work, the method would be more accurate and be more efficient 
with less degrees of freedom. We limit this work on the case with a singular vertex. Numerical 
tests are presented confirming the theory. Numerical comparison also shows the robustness of 
the method when 𝜇 << 1 , and its advantage over the Taylor-Hood P3-P2 method.

Because the method is divergence-free, its pressure error is usually 100 times larger than 
that of the P3-P2 Taylor-Hood element. However, for large Reynolds number flows, this 
method would be a Reynolds number times better, e.g., both pressure and velocity errors are 
106 times less than that of the other method, cf. Tables 2 and 4. One would expect that it is 
more efficient numerically if one subdivides a quadrilateral into two triangles instead of four. 
But if we view the grid at a 45o rotation, we would realize this 4-triangle subdivision is exactly 
a 2-triangle subdivision on size h∕

√
2 quadrilaterals. Thus the two subdivisions are equally 

efficient.

2  Inf‑sup Stability

Let Qh = {Q} be a quasi-uniform quadrilateral mesh on the domain � , where h =

max{diameter(Q)} . Connecting two pairs of points on each quadrilateral Q(= ∪4
i=1

Ti) , we 
obtain a quasi-uniform triangular mesh Th = {Ti} , see Fig. 2.

The velocity finite element space is defined by

The pressure finite element space is defined by

where n0 is the intersection point of two diagonals of quadrilateral Q = ∪4
i=1

Ti.

Lemma 1 Let p2 ∈ Ph defined in (6). There is a uh ∈ Vh , defined in (5), such that

(5)Vh =
{
vh ∈ H1

0
(�)2∶ vh|Ti ∈ P3(Ti)

2, Ti ∈ Th
}
.

(6)Ph =

{
ph ∈ L2

0
(�)∶ ph|Ti ∈ P2,

4∑
i=1

(−1)iph|Ti (n0) = 0

}
,

Fig. 2  Lagrange nodes on T
1
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Consequently,

where 𝛽 > 0 is independent of the mesh size h.

Proof Let p2 ∈ Ph . There is a smooth function u ∈ H1
0
(�)2 ∩ H2(�)2 such that

We do a modified Lagrange interpolation uh,1 of u . Except one node each edge, we inter-
polate uh,1(ni) = u(ni) at the rest nodes. At the special mid-edge nodes, uh,1(ni) are chosen 
such that

where n is a normal vector on edge x1n0 , see Fig. 2. Let

Then we have, for all Ti ∈ Th,

where mi is the outward normal vector of Ti.
We will match p2,1 separately by constructing a uh ∈ H1

0
(Q)2 ∩ Vh , on each patch of four 

triangles Q = ∪4
i=1

Ti , cf. Fig. 2.
Such a uh , as uh|x1x2 = 0 , has the following expansion under the Lagrange basis that

We replace the degree of freedom (DOF) of P3 basis function of nodal value at n1 , cf. 
Fig. 2, by the tangential derivative basis function at point x1 . We do same replacement for 
Lagrange n3 node. That is,

Let

Then

(7)div uh = p2 and �uh�1 ⩽ C‖p2‖0.

(8)� ⩽ inf
ph∈Ph

sup
vh∈Vh

(div vh, ph)

�vh�1‖ph‖0 ,

div u = p2 and �u�1 ⩽ C‖p2‖0.

∫x1n0

(uh,1 − u) ⋅ nds = 0,

(9)p2,1 = p2 − divuh,1 ∈ Ph.

(10)∫Ti

p2,1dx = ∫Ti

(div u − div uh,1)dx = ∫
�Ti

(u − uh,1) ⋅mids = 0,

(11)uh|T1 =
5∑
i=0

uh(ni)�i(x).

(12)

⎧
⎪⎨⎪⎩

�x1n0�1(x1) = 1, �x2n0�1(x2) = 0,

�x1n0�3(x1) = 0, �x2n0�3(x2) = 1,

�x1n0�2(x1) = 0, �x2n0�2(x2) = 0.

B =
(
x2 − x1 n0 − x1

)
,

(
b11 b12
b21 b22

)
= B−⊺.
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where b2 = ⟨b12, b22⟩ . Similarly, on T4,

where c2 = ⟨c12, c22⟩ , and

Together, we have a linear system of two equations,

Because b2 ⟂ x1x2 , c2 ⟂ x1x4 , x1x2 and x1x4 are not on a same line, and b2 ∦ c2 , (13) has a 
unique solution �x1n0uh(x1) . Similarly we can find �xin0uh(xi) , i = 1,⋯ , 4 , to match the two 
p2 values on two sides of the vertex.

Let uh,2 be the Vh function which has only the terms with �xin0uh(xi) (while the rest 
coefficients are zero under its modified Lagrange basis expansion (11).) Then we add it the 
other mid-edge nodal value functions ( uh(n2)�2 and uh(n4)�4 on T1 ), which cancel the non-
zero flux so that the new uh,2 satisfies

on the four internal edges. Let

Then, p2,2 also satisfies (10) and vanishes at the corner vertexes,

for appropriate triangles.
We continue to match p2,2 by divuh,3 and more functions without destroying earlier 

matches. Such a divuh,3 must have the following expansion ( �i is no longer the standard 
Lagrange basis function but the modified one satisfying (12)):

div uh|T1 (x1) = �x(uh)1 + �y(uh)2

= b11�x1x2 (uh)1 + b12�x1n0 (uh)1

+ b21�x1x2 (uh)2 + b22�x1n0 (uh)2

= b12�x1n0 (uh)1 + b22�x1n0 (uh)2

= b2 ⋅ �x1n0uh|T1 (x1),

div uh|T4 (x1) = �x(uh)1 + �y(uh)2

= c11�x1x2 (uh)1 + c12�x1n0 (uh)1

+ c21�x1x2 (uh)2 + c22�x1n0 (uh)2

= c12�x1n0 (uh)1 + c22�x1n0 (uh)2

= c2 ⋅ �x1n0uh|T4 (x1),

C =
(
x4 − x1 n0 − x1

)
,

(
c11 c12
c21 c22

)
= C−⊺.

(13)
{

b2 ⋅ �x1n0uh(x1) = p2|T1 (x1),
c2 ⋅ �x1n0uh(x1) = p2|T4 (x1).

∫xin0

uh,2 ⋅mids = 0

p2,2 = p2,1 − div uh,2 ∈ L2
0
(Q) ∩

4∏
i=1

P2(Ti).

(14)p2,2|Ti (xj) = 0, j = 1,⋯ , 4
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where x12 is the middle point on the edge x1x2 , cf. Fig. 2. In particular, we select only one 
term to construct uh,3,

where �x12n0�5(x12) = 1 . On T1 , we have

where d2 = ⟨d12, d22⟩ , and

The second equation matches the divergence at another mid-edge point of T1,

where x10 = (x1 + n0)∕2 is the mid-point, x20 = (x2 + n0)∕2 , c0 = 𝜕x10x20𝜙5 > 0 , c
2
=

⟨c
12
, c

22
⟩ , and

We have following two equations:

Because d2 ⟂ x12x2 , c2 ⟂ x1x2 , and d2 ∦ c2 , (16) has a unique solution �x12n0uh(x12) . Let 
uh,3|T1 = �x12n0uh(x12)�5 and 

Then

where l∗ is the Lagrange basis function at a P2 node, and

(15)uh|T1 = uh(n0)�0 + uh(n2)�2 + uh(n4)�4 + �x12n0uh(x12)�5,

uh|T1 = �x12n0uh(x12)�5,

div uh(x12) = �x(uh)1 + �y(uh)2

= d11�x12x2 (uh)1 + d12�x12n0 (uh)1

+ d21�x12x2 (uh)2 + d22�x12n0 (uh)2

= d12�x12n0 (uh)1 + d22�x12n0 (uh)2

= d2 ⋅ �x12n0uh(x12),

D =
(
x2 − x12 n0 − x12

)
,

(
d11 d12
d21 d22

)
= D−⊺.

div uh(x10) = �x(uh)1 + �y(uh)2

= c11�x10x20 (uh)1 + c12�x10n0 (uh)1

+ c21�x10x20 (uh)2 + c22�x10n0 (uh)2

= c12�x10n0 (uh)1 + c22�x10n0 (uh)2

= c0c2 ⋅ �x12n0uh(x12),

C =
(
x20 − x10 n0 − x10

)
,

(
c11 c12
c21 c22

)
= C−⊺.

(16)
{ d2 ⋅ �x12n0uh(x12) = p2,2(x12),

c0c2 ⋅ �x12n0uh(x12) =
1
2
(p2,2(x10) − p2,2(x20)).

p2,3|T1 = p2,2 − divuh,3.

p2,3|T1 = p2,3(n0)ln0 + p2,3(x10)(lx10 + lx20 ),



Communications on Applied Mathematics and Computation 

1 3

by the construction (16) and a symmetric divergence of c�5 . p2,3|T1 has three non-zero 
nodal values. We will show it in fact has only one non-zero coefficient by the zero integral 
condition (10). That is,

Thus p2,3(x10) = 0 and

Defining uh,3 on the other three triangles as we did on T1 , we let

Then, p2,3 also satisfies (10) and (14), and vanishes at 4 outside mid-edge points and 8 mid-
edge points,

where we use a notation convention that x5 = x1 and T5 = T1 . We note that to get (19), we 
do not use/limit the DOF of �xin0�1(x10) and �x10x20�i(x10) there. Thus in future construc-
tion, (19) is not preserved automatically, but (14) and (18) are.

The p2,3 in (17) has only 4 nodal values at the central point to be matched. We match 
p2,3|T1 (n0) next by a divuh . On T1 and T2 , let

where �i on different triangles are defined as in (15) and d1 is determined by these two 
equations,

For the first equation, we have

p2,3(x10) = p2,3(x20) =
1

2
(p2,2(x10) + p2,2(x20))

0 = ∫T1

p2,3dx

= p2,3(n0)∫T1

ln0dx + p2,3(x10)

(
∫T1

lx10dx + ∫T1

lx20dx

)

= 0 + p2,3(x10)
(
1

6
|T1| + 1

6
|T1|

)
.

p2,3|T1 = p2,3(n0)ln0 .

(17)p2,3 = p2,2 − div uh,3 ∈ L2
0
(Q) ∩ Ph.

(18)p2,3|Ti (xi,i+1) = 0, i = 1,⋯ , 4,

(19)p
2,3
|
T
i
(x

i,0
) = p

2,3
|
T
i+1
(x

i,0
) = 0, i = 1,⋯ , 4,

uh =

{
d1�4 on T1,

d1�2 on T2,

(20)div uh|T1 (n0) = 1, ∫x2n0

uh ⋅ nds = 0.
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where c2 = ⟨c12, c22⟩ , and

For the second equation, we have

As c2 ⟂ x1n0 , n ⟂ x2n0, and c2 ∦ n , (20) has a unique solution d1 . With it, we define

where d1 is defined by (13) and ui is defined to be the solution of (16) with the right-hand 
side vector ⟨0, 1⟩,

Here the function u1 corrects div(d1�4) at the two mid-edge points x10 and x20 . Define

We have

To match the above one non-zero value, similar to (21), we can get a uh,5 supported on T2 
and T3 . Define

We have

divuh|T1 (n0) = �x(uh)1 + �y(uh)2

= c11�n0x1 (uh)1 + c12�n0x2 (uh)1

+ c21�n0x1 (uh)2 + c22�n0x2 (uh)2

= c12(d1)1∕(−4) + c22(d1)2∕(−4)

= −
1

4
c2 ⋅ d1,

C =
(
x1 − n0 x2 − n0

)
,

(
c11 c12
c21 c22

)
= C−⊺.

∫x2n0

uh ⋅ nds =
(
2

15
|x2n0|

)
n ⋅ d1.

(21)u
h,4 =

⎧⎪⎨⎪⎩

d1�4 +
1

4
u1 on T1,

d1�2 −
1

4
u2 on T2,

ui|Ti = ci�5, i = 1,⋯ , 4.

p2,4 = p2,3 − div uh,4 ∈ L2
0
(Q) ∩ Ph.

p2,4|T1 (y) = 0, y = x1, x12, x2, x20, n0, x10,

p2,4|T2 (n0) = p2,3|T2 (n0) − p2,3|T1 (n0),
p2,4|T2 (y) = 0, y = x2, x23, x3, x30, x20.

p2,5 = p2,4 − div uh,5 ∈ L2
0
(Q) ∩ Ph.

p2,5|T2 = 0,

p2,5|T3 (n0) = p2,3|T3 (n0) − p2,3|T2 (n0) + p2,3|T1 (n0),
p2,5|T3 (y) = 0, y = x3, x34, x4, x40, x30.
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Repeating (21) one more time, we can get a uh,6 supported on T3 and T4 . Define

We have

Because p2,3 ∈ Ph , we do have

By (22)

Let uh,i be defined on all quadrilaterals as it is defined on this Q. Let

Then

As all the construction of late uh,i ( i > 1 ) is local, we have a uniform stability under cor-
responding norms. Thus

The lemma is proved.

3  Convergence

Lemma 2 The linear system of finite element equations (3)–(4) has a unique solution 
(uh, ph) ∈ Vh × Ph , where Vh and Ph are defined in (5) and (6), respectively.

Proof For a finite square system of linear equations, we only need to prove the uniqueness. 
Let f = 0 in (3). Letting vh = uh in (3) and qh = ph in (4), we add the two equations to get

uh would be constant vectors on each T. Because uh is continuous and it has a zero 
boundary condition, uh = 0 . By the inf-sup condition (7) and (3), we have a vh such that 
div vh = ph and

p2,6 = p2,5 − div uh,6 ∈ L2
0
(Q) ∩ Ph.

(22)

⎧
⎪⎨⎪⎩

p2,6�T3 = 0,

p2,6�T4 (n0)a = p2,3�T4 (n0) − p2,3�T3 (n0) + p2,3�T2 (n0) − p2,3�T1 (n0),
p2,6�T4 (y) = 0, y = x4, x41, x1, x10, x40.

4∑
i=1

(−1)ip2,3|Ti (n0) = 0.

p2,6 = 0 on Ti, i = 1, 2, 3, 4.

uh = uh,1 + uh,2 + uh,3 + uh,4 + uh,5 + uh,6.

div uh = p2.

�uh�1 ⩽ C‖p2‖0.

‖∇uh‖20 = 0.

‖ph‖20 = (div vh, ph) = 0,
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which shows ph = 0 . The lemma is proved. 

Theorem  1 Let (u, p) ∈ (H4(�) ∩ H1
0
(�))2 × (H3(�) ∩ L2

0
(�)) be the solution of the sta-

tionary Stokes problem (1)–(2). Let (uh, ph) ∈ Vh × Ph be the solution of the finite element 
problem (3)–(4). It holds that

where C is independent of �.

Proof Subtracting (3) from (1), we get

and

where

By (25),

That is,

Let

For any vh ∈ Vh , let yh ∈ Z⟂

h
 be the unique solution of

By the on-to condition (7) and the inf-sup condition (8), we have divVh = Ph and (27) 
has solutions. All such solutions are projected to the unique solution in Z⟂

h
 . Letting 

qh = −div vh in (27), we get

Thus

and

By (26), we have

(23)‖u − uh‖1 ⩽ Ch3�u�4,

(24)(∇(u − uh),∇vh) − (p − ph, div vh) = 0, ∀vh ∈ Vh,

(25)(∇(u − uh),∇vh) = 0, ∀vh ∈ Zh,

Zh = {zh ∈ Vh∶ div zh = 0}.

|u − uh|21 = (∇(u − uh),∇(u − zh)) ⩽ |u − uh|1|u − zh|1.

(26)|u − uh|1 = inf
zh∈Zh

|u − zh|1.

Z⟂

h
= {vh ∈ Vh∶ (∇vh,∇zh) = 0, ∀zh ∈ Zh}.

(27)(div yh, qh) = (div (u − vh), qh) = (−div vh, qh), ∀qh ∈ Ph.

‖div vh‖20 = (div yh, qh) ⩾ ��yh�1‖qh‖0.

�yh�1 ⩽ �−1‖qh‖0 = �−1‖div(u − vh)‖0 ⩽ �−1�u − vh�1,

div(vh + yh) = 0, i.e., vh + yh ∈ Zh.
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where Ih is the nodal interpolation operator defined by DOF of (5). As Vh includes all P3 
polynomials, such an Ih can be proved H1-stable and quasi-optimal up to order 3 in H1

-norm, cf. [18]. The proof is complete.

Theorem  2 Let (u, p) ∈ (H4(�) ∩ H1
0
(�))2 × (H3(�) ∩ L2

0
(�)) be the solution of the sta-

tionary Stokes problem (1)–(2). Let (uh, ph) ∈ Vh × Ph be the solution of the finite element 
problem (3)–(4). It holds that

Proof By (24) and (8), we get

where Πh is the L2 projection operator onto Ph . Hence,

Thus, (28) is proved.

Theorem  3 Let (u, p) ∈ (H4(�) ∩ H1
0
(�))2 × (H3(�) ∩ L2

0
(�)) be the solution of the sta-

tionary Stokes problem (1)–(2). Let (uh, ph) ∈ Vh × Ph be the solution of the finite element 
problem (3)–(4). It holds that

where C is independent of �.

Proof We will use the duality argument. Let w ∈ H1
0
(�)2 and r ∈ L2

0
(�) such that

We assume the following regularity:

Multiplying (30) by (u − uh) and doing integration by parts, we get

|u − uh|1 = inf
zh∈Zh

|u − zh|1 ⩽ inf
vh∈Vh

|u − (vh + yh)|1
⩽ inf

vh∈Vh

|u − vh|1 + |yh|1
⩽ (1 + �−1) inf

vh∈Vh

|u − vh|1
⩽ (1 + �−1)|u − Ihu|1
⩽ Ch3|u|4,

(28)‖p − ph‖0 ⩽ Ch3(��u�4 + �p�3).

��vh�‖Πhp − ph‖ ⩽ �(div vh,Πhp − ph)�
= �(div vh, p − ph)� = �(�∇(u − uh),∇vh)�
⩽ ��u − uh�1�vh�1,

‖p − ph‖0 ⩽ ‖p − Πhp‖0 + �−1�u − uh�1
⩽ Ch3(�p�3 + ��u�4).

(29)‖u − uh‖0 ⩽ Ch4�u�4,

(30)− div(�∇w) + ∇r = u − uh in �,

(31)divw = 0 in �.

(32)��w�2 + �r�1 ⩽ C‖u − uh‖0.
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Let wh ∈ Vh and rh ∈ Ph be the finite element solution for problem (30)–(31), satisfying

Letting vh = wh in (24), we get

Subtracting (36) from (33), we get

We have, by the quasi-optimal error bound (23) and the assumed elliptic regularity (32), 
from (37),

Thus, (29) follows (38). 

4  Numerical Experiments

In the numerical computation, the domain is � = (0, 1) × (0, 1) . We choose an f in (1) so 
that the exact solution is

We compute the solution (39) on the uniform triangular grids shown in Fig. 3, by the 
divergence-free P3-P2 finite element and the Taylor-Hood P3-P2 finite element. The results 
are listed in Tables 1 and 2. We can see that the optimal order of convergence is achieved 
in all cases for the two finite elements in Tables 1 and 2. Both methods have the same num-
bers of unknowns for the velocity. The divergence-free P3-P2 method has more pressure 
unknowns than the Taylor-Hood P3-P2 method. However, from Table 1, all errors of the 
Taylor-Hood P3-P2 method are smaller, when � = 1.

We can see, from Table 1, that the divergence-free P3-P2 method performs worse than 
the Taylor-Hood P3-P2 method, when � = 1 . But it shows the opposite in Table 2 when 
� = 10−8 . Both the velocity error and the pressure error of the Taylor-Hood P3-P2 element 

(33)(�u − uh, u − uh) = (�∇w,∇(u − uh)) − (div(u − uh), r).

(34)(�∇wh,∇vh) − (div vh, rh) = (u − uh, vh), ∀vh ∈ Vh,

(35)(divwh, qh) = 0, ∀qh ∈ Ph.

(36)(�∇(u − uh),∇wh) = (divwh,Πhp − ph) = 0.

(37)�‖u − uh‖20 = (�∇(w − wh),∇(u − uh)) − (div(u − uh), r − Πhr).

(38)

‖u − uh‖20 ⩽ �‖∇(w − wh)‖0 ‖∇(u − uh)‖0 + ‖u − uh‖1‖r − Πhr‖0
⩽ Ch4�u�4(��w�2 + �r�1)
⩽ Ch4�u�4‖u − uh‖0.

(39)

⎧⎪⎨⎪⎩

u =

�
−27(x − x2)2(y − y2)(1 − 2y)

27(x − x2)(1 − 2x)(y − y2)2

�
,

p = x −
1

2
.
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are about 106 times larger than the corresponding error of the divergence-free P3-P2 ele-
ment. In fact, the discrete velocity uh remains same, from Tables 1 and 2, when � changes, 
verifying our theory that the uh convergence is independent of �.

Next, we compute the above example again, but on perturbed meshes, shown in Fig. 4, 
by the divergence-free P3-P2 element and the Taylor-Hood P3-P2 element. All comments 
made above on Tables  1 and 2 remain same for Tables  3 and 4. Between the errors on 
Fig. 3 meshes and on Fig. 4 meshes, the latter ones are about double the earlier ones. It is 
always true that it works better on meshes with the singular vertex.

Fig. 3  The first three levels of grids for the computation in Tables 1 and 2

Table 1  Error profile on the triangular meshes shown as in Fig. 3 for the solution (39), � = 1

Grid  ‖u − uh‖0                   O(hr)  |u − uh|1                     O(hr)  ‖Πhp − ph‖0                 O(hr)   
 By the divergence-free P

3
-P

2
 element, � = 1

3 0.673 6E−03 4.1 0.318 0E−01 3.0 0.146 5E+00 3.4
4 0.404 0E−04 4.1 0.386 1E−02 3.0 0.130 2E−01 3.5
5 0.244 3E−05 4.0 0.475 9E−03 3.0 0.135 0E−02 3.3

 By the Taylor-Hood P
3
-P

2
 element, � = 1

3 0.263 3E−03 3.5 0.127 4E−01 2.7 0.897 4E−02 2.8
4 0.169 9E−04 4.0 0.159 6E−02 3.0 0.104 0E−02 3.1
5 0.106 4E−05 4.0 0.195 7E−03 3.0 0.109 5E−03 3.2

Table 2  Error profile on the triangular meshes shown as in Fig. 3 for the solution (39), � = 10
−8

Grid  ‖u − uh‖0                      O(hr)  |u − uh|1                     O(hr)  ‖Πhp − ph‖0                   O(hr)
 By the divergence-free P

3
-P

2
 element, � = 10

−8

3 0.673 6E−03 4.1 0.318 0E−01 3.0 0.149 6E−08 3.4
4 0.404 0E−04 4.1 0.386 1E−02 3.0 0.148 4E−09 3.3
5 0.244 4E−05 4.0 0.475 9E−03 3.0 0.474 7E−11 5.0

 By the Taylor-Hood P
3
-P

2
 element, � = 10

−8

3 0.321 3E+03 3.4 0.133 4E+01 2.6 0.122 7E−03 3.4
4 0.233 5E+02 3.8 0.187 3E+00 2.8 0.122 8E−04 3.3
5 0.155 9E+01 3.9 0.246 9E−01 2.9 0.132 8E−05 3.2
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Fig. 4  The first three levels of grids for the computation in Tables 3 and 4

Table 3  Error profile on the triangular meshes shown as in Fig. 4 for the solution (39), � = 1

Grid  ‖u − uh‖0                     O(hr)  |u − uh|1                    O(hr)  ‖Πhp − ph‖0                 O(hr)
 By the divergence-free P

3
-P

2
 element, � = 1

3 0.165 2E−02 3.8 0.688 9E−01 2.8 0.397 6E+00 2.9
4 0.971 8E−04 4.1 0.815 5E−02 3.1 0.429 1E−01 3.2
5 0.561 5E−05 4.1 0.957 9E−03 3.1 0.460 5E−02 3.2

 By the Taylor-Hood P
3
-P

2
 element, � = 1

3 0.403 8E−03 3.6 0.165 9E−01 2.6 0.183 3E−01 2.8
4 0.268 2E−04 3.9 0.218 8E−02 2.9 0.217 0E−02 3.1
5 0.169 7E−05 4.0 0.274 5E−03 3.0 0.236 6E−03 3.2

Table 4  Error profile on the triangular meshes shown as in Fig. 4 for the solution (39), � = 10
−8

Grid  ‖u − uh‖0                      O(hr)  |u − uh|1                   O(hr)  ‖Πhp − ph‖0                 O(hr)
 By the divergence-free P

3
-P

2
 element, � = 10

−8

3 0.165 2E−02 3.8 0.688 9E−01 2.8 0.400 3E−08 2.9
4 0.971 8E−04 4.1 0.815 5E−02 3.1 0.526 6E−09 2.9
5 0.561 5E−05 4.1 0.957 9E−03 3.1 0.113 4E−10 5.5

 By the Taylor-Hood P
3
-P

2
 element, � = 10

−8

3 0.311 7E+01 3.4 0.133 3E+00 2.6 0.138 9E−03 3.3
4 0.226 2E+00 3.8 0.186 8E−01 2.8 0.148 0E−04 3.2
5 0.151 0E−01 3.9 0.246 0E−02 2.9 0.169 0E−05 3.1
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