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Abstract

In this paper, a linearized energy-stable scalar auxiliary variable (SAV) Galerkin scheme is
investigated for a two-dimensional nonlinear wave equation and the unconditional super-
convergence error estimates are obtained without any certain time-step restrictions. The
key to the analysis is to derive the boundedness of the numerical solution in the H'-norm,
which is different from the temporal-spatial error splitting approach used in the previous
literature. Meanwhile, numerical results are provided to confirm the theoretical findings.
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1 Introduction

In this paper, we focus on the unconditional superconvergence error estimate of an energy-
stable and linearized Galerkin finite element method (FEM) for the following two-dimen-
sional nonlinear wave equations [7]:

u,—Au+Au+F'(u)=0, (x,0)e2x(0,T], (1)
u(x, 0) = uy(x), u,(x,0) = u(x), X € L, )
ux, =0, (x,1neo2x(0,T1], 3)

where 4> 0 is a constant, 2 C R? is a rectangular domain with the boundary 0%,
u = u(x, 1) is the unknown function defined in £ X [0, T], u, and u, are sufficiently smooth
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functions, and x = (x,y) and 7 > O is a finite number. Moreover, F € C2(R) is the nonlin-
ear potential.

Nonlinear wave equations (1)—(3) are widely used to describe many of complicated natu-
ral phenomena in scientific fields [9, 37]. Numerous numerical methods and analyses for the
nonlinear wave equations have been investigated extensively, e.g., see [1, 11, 31] for finite
difference methods, [5-7, 10, 16, 26, 35, 36] for Galerkin FEMs. In particular, optimal error
estimate was studied in [7] for the nonlinear wave equation with an energy-conserving and
linearly implicit scalar auxiliary variable (SAV) Galerkin scheme with the help of the tempo-
ral-spatial error splitting technique. Optimal error estimates were derived using the standard
Galerkin method for a linear second-order hyperbolic equation in [5]. An H'-Galerkin mixed
FEM was discussed and the corresponding error estimates were obtained for a class of second-
order hyperbolic problems in [26].

As we all know, for nonlinear problems, some certain assumptions about the nonlinear
term are indeed to obtain the corresponding error estimation. The most common assump-
tion is that the nonlinear term is required to satisfy the Lipschitz continuity condition for
differential problems [8, 13, 14, 18, 38]. However, as pointed out in [15, 27], the Lipschitz
continuity assumption is not satisfied in most actual applications. For instance, the nonlin-
ear terms appeared in phase field problems, nonlinear Schrodinger equations, and the vis-
cous Burgers’ equations. Moreover, certain time-step restrictions dependent on the spatial
mesh size for high-dimensional nonlinear problems were required using a nonlinear/line-
arized scheme [3, 32]. In practical applications, if similar time-step restrictions are required,
one may apply an unnecessarily small time-step and be extremely time-consuming in com-
putations. A new approach called the time-splitting technique was proposed in [20, 21] to
obtain error estimates for a nonlinear thermistor system and a nonlinear system from incom-
pressible miscible flow in porous media without the time-step restrictions (i.e., uncondi-
tional convergence). Subsequently, the time-splitting technique was successfully applied to
study the unconditional error estimates for different high-dimensional nonlinear problems,
such as nonlinear thermistor equations [19], the Landau-Lifshitz equation [4, 12], nonlinear
Schrodinger equations [23, 28, 30, 34], nonlinear parabolic problems [22, 24, 39], etc. The
key of the analysis is to introduce an additional time-discrete system ((elliptic) time-discrete
equations), which leads to the error estimation process being relatively complicated. Moreo-
ver, the L*-norm boundedness of the numerical solution is usually required in the time-
splitting approach.

In this paper, the unconditional superconvergence error estimate is obtained for two-
dimensional nonlinear wave equation based on an energy-stable and linearized Galerkin
FEM. The difficulties come from the estimation of the nonlinear term without using the
Lipschitz continuity assumption and the L*-boundedness of the numerical solution in the
error analysis. We first established a priori boundedness of the numerical solution in H'
-norm based on a rigorous analysis in terms of an energy inequality without introducing
an additional time discrete system in the previous literature. Then, the unconditional super-
convergence error estimates are obtained by treating the nonlinear term skillfully without
using the L*®-norm boundedness of the numerical solution required in the previous litera-
ture. Meanwhile, some numerical results are provided to confirm our theoretical findings.

The rest of the paper is organized as follows. In Sect. 2, some preliminaries and nota-
tions are introduced. In Sect. 3, an energy-stable and linearized SAV Galerkin finite-element
scheme is proposed and the superconvergence error estimate of the scheme is presented. In
Sect. 4, numerical results are provided to demonstrate the theoretical analysis.
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2 Preliminaries and Notations

Let W™?(£2) be the standard Sobolev space with norm|| - ||, , and semi-norm]| - |,, , [2].
L?(9) is the space of square integrable functions defined in £2, and its inner product and
norm are denoted by (-, -) and || - ||, respectively. For any Banach space X and I = [0, T7,
let LP(I; X) be the space of all measurable functions f: I — X with the norm

T 1
»
(/ ||f||§dr> L l<p<w,
”f”[_p([;x) = 0

esssup [Iflly.  p = co.
tel

Moreover, let 7, = {K} be a conforming and shape regular simplicial triangulation of €,
and h = maxycy {diam K} be the mesh size. Let V), be the finite-dimensional subspace of

Hé (£2), which consists of continuous piecewise polynomials on 7. Then, for a given ele-

ment K € 7, we define the finite-element space V), as
V,={v, € C%Q): v,lx € span{l,x,y,xy}, VK € T, vl = 0}. )
Define the Ritz projection operator R),: H& (2) - V,by
(Vu—-Ru),Vy)=0, VyeV, (5)
Then, by the classical finite-element theory [33], there holds for u € H*(2) N H(l) (2)

llu = Ryully + Al V(@ = R,uw)lly < Ch*|ul,. (6)

Lemma 1 [25] Suppose that T, is a shape regular rectangular partition and u € H*>(8),
then there holds

(V@ —ILu), Vv) < Ch2||u||3||Vv||0, YWwev, (7

where I, H*(Q) - V, is the Lagrangian node interpolation operator.

With the help of Lemma 1, the following superclose error estimate between [,u and
R,u in H'-norm has been established in [29].

Lemma 2 Suppose that u € H>(), then we have
IVUju = Rywlly < Ch2||“||3~ (®)

Following the basic idea of [15, 27], we adopt the following assumption instead of
Lipschitz continuity assumption in the error estimate:

) <CA+1sl?), p=0, 9)

If ()l <C+1s/P), p=0. (10)

Here, we present the following Gronwall-typed inequality, which plays an important role in
the error analysis.
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Lemma 3 [17] Let 7, B and a, by, ¢, v;. for integers k > 0, be nonnegative numbers, such
that

n n n
an+12bk<T2ykak+chk+B for n>0.
k=0 k=0 k=0

Suppose that ty, < 1, for all k, and set 6, = (1 — 7y,)~\. Then, there holds

n n n
an+12bk < (Tch+B>exp<TZykak>.
k=0 k=0

k=0

3 Superconvergence Error Estimates of the Energy-Stable
and Linearized SAV Galerkin Scheme

Suppose
Ey(u) = / Fuydx > —c,
Q
for some ¢, > 0, i.e., it is bounded from below, and let C, > ¢, such that
E (w)+Cy> 0.
Then, we introduce the following SAV:

r(t) = VEu), E(M)=/F(u)dx+C0.
Q

Therefore, we can rewrite (1)—(3) as

u =, (11)
1)
,— Au+ Au+ u) =0,
1
= Swu,dx,
I, 5 E(u)/g u)u (13)

where f(u) = F'(u).
The weak formulation of (1)—(3) is: for any ¢ € [0, T], find u € Hé(.Q), vV E H(l)(.Q), and
r € R, such that

e 2)) = (v, 1) =0, Vi € Hy(R), (14)

r(?)
VE)

v 22) + (Vi Vo) + A, ) + (. 1) =0, Yy €HyQ). (15
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1

r, = FQuyu,dx.
2\/E(u)/!2 o (16)

Let0=1, <t <-- <ty =T be auniform partition of the time interval [0, 7] with time-
step size 7 = T/N and u" = u(-,t,) for 0 < n < N. For a smooth function w on [0, T], we
define

7 n—1

w —w

D _o" =
4 T

Based on the above notations, a linearized fully discrete SAV Galerkin scheme is to find
up €V, vi €V, i €R, for given ui"' € V), vi-' €V, /"' € R and n=1,2,---,N,

h
such that
Dty 1) = Vo 1) =0, Yy, €V, (17)
n
(DTVZ, Zzh) + (VMZ, V12h) + i(uz7 12/1) + —l(f(uz_l)7 /YZh)’ VXZI’L € Vha (18)
Ew™)

_ 1
-t =

S / FG - =),
"o JEw e T (19)

and the initial values are chosen as (uo 0, 0) = (Ryuy, R,vy, VEuy)).

The scheme (17)-(19) is energy stable In fact, taking yy, =v, —v;~ in (17),
Jop = Uy — U~ 'in (18), and multiplying (19) by r;, then one can derive

Vv = Vi) + (Vagl, Vg, — w ™) + A, iy — ™) + () = 1D =0,
which shows that

—112 2 12 — 2
AVEIE = IV 3 + IV = v 13y + A Va2 = IV 12 + 1V @l = w=HIR) 00
+ A IS = W™ IS + o — w7 IS + () = (D2 + 0 =) =0
Thus, we have
VIS + IV Ils + Al 15 + > < VUG + IV~ g + Al IE + (D% 21)

Define the energy £" by

+ (72,

£ = \/IVIZ+ IV + All 2

then we have

gt <<, (22)
which implies that the SAV Galerkin scheme (17)-(19) is energy stable.
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Clearly, ifu, € H 1(©Q) and u, € L*(R), one can check that the H'-norm boundedness of
the numerical solution, i.e.,

luzlly < C, n=0,1,-,N. (23)
Then, we present the convergence and superclose error estimates in the following theorem.
Theorem 1 Let (u",V", ") and (uZ,vZ,rZ) be the solutions of (14)—(16) and (17)—(19),
respectively. Suppose that u € L®((0,T]; H), u, € L*((0,T]; H?), u, € L*((0,T]; H?),

U, € L°((0,T1; L), v € L®((0,T]; H), and v, € L*((0, T]; H?). Then, we have for n = 1,2,
N,

V' = Villo + AIV@" = u)llg + |7 = rp| < COR* +7), (24)
and the superclose error estimate
" =l < Ch* + 7). 25)
Proof For the convenience of error estimation, we denote
' —uy =u" = Ru" + R —uy =&+,
ViV =V =RV RV — v =&+,

P =

Att =t,, from (14)—(16), we have

D", i) — O ) = D" =l 1), Yoy, € Hy(€), (26)

N
DV, ) + (V' ¥ ) + AW, ) + ———— ("), x23)

n—1 n (27)
=D - V?v)(zh) + ”n( ) - fer) ’}(2}1)’ Vi € H(l)(‘Q)’
VE@™1)  \E@u)
Ny P /f(u"_')(u"—u”_l)dx+r<—rn_rn_] —r;'>
20/Ew1) Ja T

1 T (28)

- f"DH" — 0"+ ——— / f@"yudx.

2VE@) /9 2\VEw") Je
Then, from (26)—(28) and (17)-(19), we have the following error equations:
(Dfﬂz’ Xin) — (”I‘r,l, Xin) = _(Dré:,f’ X)) + (53’ X))+ DU = ”;1’ X Vi € Vi

(29)
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fwh fa™
VE®@w1) h‘/E(uZ—l)

= =D&}, xon) — (V& Vi) = MEs o) + (DY = v, )

f@h S@W")
+ 7 - o ), Yy, €V,
( \/E(u"“) \/E(u”) 2h> 2h h

D1, xon) + (V. Vo) + Ay, o) +| 7" > Xon

(30)

n—1 n—1
eﬁ _ e:l—l — l/ f(u ) _ f(uh ) (un _ u”_l)dx
2 Q \/E(u"_l) \/E(MZ_I)

1 [ fah " 1 T / S fa™h

- no__ . n — (" dx el - L "dx

32/, E(uZ’l)((u W) =l mu et 5 Ea  VEw )

47 Jwh
2 Ja VB

(u} =D u"ydx + (D, 7" —17).

€2y

Denote

Hy = L4

VE®)

Then, taking y;, = D, in (29) and y,, = D % in (30), we have

(1, D12) + (VL VD ') + A, Do) + (P H@' ™) = rfHGdy ™), Dol
= (D&, D) = (&, D.ny)) = (Dou" = u), D.1y)

— (D&, D) = (VEL, VD) — MEL Dol

+ DV =V, D) + P (HW™) = Hw"), D).

(32)

Moreover, multiplying (31) by e, we derive

et — en—l n

r r n_ r n—1 n—1 n
— e = 5(H(u )—H(u,™),D,u") +

e’r’ .
(H@!™"), D&
T

2
e 1 e 1
+ —(H@w,™), D) + —(HW") = Hu"™), uf) 33)
2 w2 '
e:l n—1 n n n
+ S HG D0 = Do) + (D" =1) - .
Note that
PHW' ) = i H@ ™) = PHW) = Hg ™) + P Hg ™),

then substituting (33) into (32) yields
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n n n n n n 2 n n—1 n
), D)+ (Vn,, VD ) + Am,, D) + ;(e, —e ) el

=(D.&,.D.n)) — (&, D)) — (D" — uf, D )
= (D&}, Do) = (VE,, VD) — A&, Do) + (D" — v/, Do)

+(HW"™") = HW"),Dn") — r"(H@"™") = H@}™"), D ")
+ " (HW") — HW"™"), ul) + " (Hw ™), D& + " (Hw"™") — Hu}™"), D u")

14
+ ! (HW' ™), ! = D"y + 2D, " = 1) - e i= Y E,.
¢=1
(34)
One can check that the left-hand side of (34) is
1 n n— n n— 1 n n— n n—
Z(Ilnvllé — =G+ N = 1) + 2—T(I|V11L¢II3 — IV~ Ig + IV G =D

A n— n - 1 n - n n—
5 l1g = MG =+l = ™ 1) + —((€) = (€7 + (e = ™)),
(35)
Now, we start to estimate the terms on the right-hand side of (34). Using summation by
parts, we have for E; — E, that

n n 1 n n n— n— 1 n n— n—
Ey = (D&, Do) = —[(D£5m) = (D&, L - ~(D.£ - D&, Lrh

36)
1 1o _ (
< MO0 = D& my D1+ Oty iy ™ o,
and
1 n n— — 1 — —
Ey=—E.,Dl)=—=[E&n)— & D+ =& - n™)
T T
1 1 -l 2 1 37)
< —;[(5:13'13) =&+ CRE vl s gy 1y Nl
In a similar way, we have
Ey=—(D" =Dy’ = Lo - W) = D" = )
T
1 n n n— n— n—
+ (D" — 1) = (D,u T W (38)
1 _ e -
<=0 =i, 1)) = D™ == D]+ Crll ™o,
where we have used (D, u" — ) — (D,u""! — u:“l) = O(z?) by the Taylor expansion.
By the Cauchy-Schwarz inequality and the Ritz projection definition, we derive
Ey+ Es + Eg < CH*||D. 1|l (39)
Applying the Taylor expansion gives that
E; < Cz||D .l (40)

Note that
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fah _fa
VE@!)  VE@)
{0 W {0 WA C0 W (1)
VE@=Y)  VEw-') E@w-)  AEw)
i ) (CO AP (') - E@'™)
VE@™) VE@=DVE@)(VE@=) + \/E@)

and E(s) > O for s € R, we have

HW'™ Y- Hu" =

f@ —f(u")D

’ / " E@") - E@"™") ]
7 f@ D n,dx
2 VE@DVEW)VE@") + VEwW))

c / (™" = fu)D,nldx + C / (Fe) - Fa) )ax / J@"D . dx
Q0 Q

< Ct|Dollo-

Eg = r"(HW"™") = HW"),D,n}) = r”/ 1,dx
Q

(41)
Similar to Eg, Eq can be estimated as
¢ [ () = gy s
2
+C / (Fau™) = Fu"™"))dx - / @D, n"dx
Q Q
c / U+ 1 P = D,
Q
C/f((l — 0"+ 0u ) = w | dx /f(u;—l)D,n;jdx
Q Q
42)

<O+ 1 = = oDl
e / (14 1= PRaell™ = o 1Do
Q
< O+ IV I = 1 o g + 19" = Ryl
UV IR

+ C(L+ Vi~ I + = ) ID.n! o
< CE + NV g + iy~ IpID. 7 o,

where 0 < 6 < 1 and we have used (9), (10), and (23) in the above estimate.
Thus, we obtain

Ey+Es + Eg+ E; + Eg + Eg < CO + 7 + IV g + I MDA (43)

On the other hand, taking y, = D_n;; in (29) results in
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1D A5 = 0", D0y = (D&, D) + (€7, Dy + (Du" — ul', Doy’
< N lollDompllg + D& Mo ID 1 llo + IEN o 1D 1 o + 1D, = wf [Nl D 1 Ml
< CH + 7 + I ll)ND# o

which shows that
1D Mo < CH* + 7+ 1 1lo)- (44)
Substituting (44) into (43) gives that
Ey+Es + Eg + E; + Eg + Eg < C(0* + 1) + Cllr, ™ 1§ + IV~ IG + 1) 1IE)- - (45)
Similar to Eg, E,|, can be bounded by
Ey = €'(HW") — Hu"™"),ul) < Crle!]. (46)

Using (9) and (23), we have for E, that

E, <Cle| / [F@~ 1D, dx < Cle| / (1 + =" 1P)|D,&" | dx
Q Q
Cler | + w12 D E o < A+ IV~ Il D&l @D

S 0,2p
< Crle).

Using a process similar to Egy, we have
B <Clel [ () =g hp s
Q

+Clet /Q (F™"y = Fu'"))dx - /Q f@D, i dx “8)
<O + I p)lel .
With an application of (9) and the Taylor expansion, we obtain
E;+E\, < Crlel|. (49)
Thus, it follows that
Ey+E) +Ep+E;+E, <CO+1+ 07 lple!. (50)

Substituting (35), (36), (37), (38), (45), and (50) into (34) leads to

SR = I )+ (VIR = 19 1) + -l
A R (A

<DL ) = 0L D1+ 271 ) = @7
+ D" = ul ) = D" = D] + C + 1) + Clet|?
+ C R+ 19 R+ I 1R

(D

Summing up the above inequality and using 112 =0, 118 =0, and e(r) =0, we derive
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1 1 A 1 - -
SIS+ S IVAIE + S + —1eh? < =7 Do) + 7' @)
. (52)
77 D =)+ O+ 2+ C Y kI + VLG + 1 + el ).
k=1

Multiplying both sides of the above inequality by 27 and using the Cauchy-Schwarz ine-
quality for the first three terms appeared on the right-hand side of the above inequality
yields that

n
215 + 1213 + 2113 + €212 < U + 2% + Cr ) kIS + VAL + Il + 1412,
k=1

(53)

Therefore, an application of the Gronwall inequality (see Lemma 3) gives that for the suf-
ficiently small ¢

I llo + IV llo + Nl llg + 11| < Ch* + 7). (54)

Then, the desired result (24) is obtained by the triangle inequality. Moreover, according to
(54) and (8) and using the triangle inequality again, we have forn = 1,2, - ,N

VU = u)llo < IVUEU" = RuDllg + IVR,U" — ully < Ch* + 1), (55)
which the desired result (25) can be derived using the Poincare inequality.

In what follows, based on the above superclose error estimate between ”Z and [,u" in
(55), we employ the interpolation post-processing approach to obtain the global super-
convergence result in H'-norm. To do this, we build a macroelement K consisting of
four elements Kj, j=1,2,3,4 (see Fig. 1), and we adopt the local interpolation operator
L. C(K) > Q22(1~() as interpolation post-processing operator [25] with the following
interpolation conditions:

Lyu(z) = u(z), i=1,2,--,9,

where z;,i = 1,2, ---,9 are the nine vertices of K and QZZ(IN( ) denotes the space of polyno-
mials degree less than or equal to 2 in variables x and y on K, respectively.
Moreover, the following properties for operator I,, have been shown in [25]:

Ly dyu = Lyu, (56)

Fig. 1 The macroelement K 24 27 z3
K, K

28 % 26
K, K,

21 25 E)
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lu = Lyull, < CR*||ulls,  Vu € H(Q), (57)

vl < Clivplly, Vv, € V. (58)
Then, we have the following global superconvergent result.
Theorem 2 Suppose that u € L*((0, T1; H>(R2)) together with the conditions of Theorem 1,
we have forn=1,2,--,N

llu" = Ly ll, < CO* + ). (59)
Proof By the triangle inequality and the properties (56)—(58) and (55), we have
lu" — Lyuplly < llu® = Lyl + W u" — Lyug

lu" = Lyu" |y + |y, (Lyu" — ”Z)”l
CR|u" |5 + CllLu" = iyl
Ch* + 1),

/

(60)

N IN N

which is the desired result and the proof is complete.

4 Numerical Results

In this section, we present some numerical results to verify the correctness of the theoreti-
cal findings.

Example 1 Consider the following Kelin-Gordon equation [7]:
u, —Au+u’ —u=gx,0, xy)eR 0<t<T.

Let the function g(x, r) and the initial and boundary conditions be chosen corresponding to
the exact solution

u(x,y, 1) = exp(=0x*(1 = 0°y*(1 = y)*.

We set the domain 2 = (0, 1) X (0, 1) and the final time 7' = 1.0 in the computation.

A uniform partition with m + 1 nodes in both horizontal and vertical directions is made
on the domain €. To confirm the error estimates in Theorems 1 and 2, choose 7 = O(h?).
We present the numerical errors of [V —vj|lo, lu" — u}lly, lu" —wplly, 1,u" — upll,, and
lu" — I ,up |l at £ = 1.0 in Table 1. Obviously, we can see that the numerical results agree
well with the theoretical analysis, i.e., the convergence rate is O(h%), O(h%), O(h), O(h?),
and O(h?), respectively.

Example 2 Consider the following Kelin-Gordon equation:
U, —Au+uw’—u=0, (xy)€R=0,1)x(0,1), 0<t<T=100

with the initial conditions
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Table 1 The numerical errors atz = 1.0

mxn 4x4 8x8 16 x 16 32x32

v =iy 7.982 5E-05 2.177 3E-05 5.422 2E—06 1.342 7E-06
Order / 1.8743 2.005 6 2.0138

lu" —wupllo 8.613 6E-05 2.443 8E—05 6.293 1E-06 1.584 4E—06
Order / 1.8175 1.9573 1.989 8

llu* =)l 1.198 8E—03 6.525 8E—04 3.324 TE-04 1.669 9E—04
Order / 0.877 41 0.972 92 0.993 43
2,u" = ]l 1.117 3E-04 4.022 6E-05 1.104 7E-05 2.832 5E-06
Order / 1.473 8 1.864 5 1.963 5

lu" = Lyupll, 1.208 1E-03 3.303 5E-04 8.398 7E—05 2.107 5E-05
Order / 1.870 6 1.975 8 1.994 6

up(x,y) = *(1 =0 (1 =), uy(x,y) = =1 = 0% (1 -y~

The temporal direction is divided with time-step size 1, and the spatial direction is

divided with stepsize h = % In Fig. 2, we present some values of the discrete energy
for the backward Euler scheme at various time levels #,. It can be seen that the numerical
scheme preserves the nonincreasing property of the discrete energy, which is consistent
with the theoretical analysis.

Example 3 Consider the following sine-Gordon equation [7]:
u, — Au+sin(u) = glx, 1), @xy) €, 0<r<T.

Let the function g(x, 7) and the initial and boundary conditions be chosen corresponding to
the exact solution

u(x,y, t) = exp(—t) sin(2nx) sin(2my).

We set the domain £2 = (0, 1) X (0, 1) and the final time 7 = 1.0 in the computation.

A uniform partition with m + 1 nodes in both horizontal and vertical directions is
made on the domain 2. To confirm the error estimates in Theorems 1 and 2, choose
7= O(h*). We present the numerical errors of ||V’ — Villos Il = llo, [l —u Iy,
[l1,u" —w,ll;, and ||u" — I, ,uzll, at £ =1.0 in Table 2. Obviously, we can see that the
numerical results agree well with the theoretical analysis, i.e., the convergence rate is
O(h?), O(h*), O(h), O(h?), and O(h?), respectively.

Example 4 Consider the following sine-Gordon equation:
u, —Au+sinw) =0, (xy)eR=0,1)x(0,1), 0<r<T =100

with initial conditions

ug(x,y) = v, u, (x,y) = — sin(2mx) sin(2my).
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Fig.2 The profile of the discrete energy for Example 2

The temporal direction is divided with time-step size 1, and the spatial direction is
divided with stepsize h = %. In Fig. 3, we present some values of the discrete energy

for the backward Euler scheme at various time levels ¢#,. It can be seen that the numeri-
cal scheme preserves the nonincreasing property of the discrete energy, which is con-
sistent with the theoretical analysis.

Example 5 Consider the following Kelin-Gordon equation [7]:
Uy — Au+u’ —u =gx,0n, @ye, 0<t<LT.

Let the function g(x, 7) and the initial and boundary conditions be chosen corresponding to
the exact solution

Table 2 The numerical errors att = 1.0

mxn 4x4 8§x8 16 x 16 32x32

v =il 4.095 7E—02 8.908 6E-03 2.101 2E-03 5.195 2E-04
Order / 2.200 8 2.0840 2.0160

" = uilly 4.439 8E—02 1.086 6E—02 2.671 3E-03 6.638 6E—04
Order / 2.030 7 2.024 2 2.008 6

llu" = uill, 7.344 2E-01 3.690 6E—01 1.850 8E—01 9.261 6E-02
Order / 0.992 74 0.995 74 0.998 80
[[1,u" — u, Il 2.663 OE—01 8.328 7E—02 2.219 1E-02 5.644 6E—03
Order / 1.676 9 1.908 1 1.9750

lu" = Lyl 5.635 4E-01 1.709 2E-01 4.359 TE-02 1.095 7E—02
Order / 1.7212 1.9710 1.992 4
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Fig.3 The profile of the discrete energy for Example 4

70 80

u(x,y, 1) = exp(=Hx*(1 — x)?y*(1 — y)*.

100

We set the domain £2 = (0, 1) X (0, 1) and the final time 7" = 1.0 in the computation.

The domain £2 is divide into m X n rectangles with m xn =4 x 16, 8§ X 32, 16 X 64,
32 x 128, respectively (see Fig. 4 for the cases 4 X 16 and 8 x 32). We choose 7 = 0.001
and present the numerical errors of [|[v* —vi|ly, llu" — u}lly, lu" — w1y, 116" — ull;, and
lu" = I, ,u; |l at £ = 1.0 in Table 3. Obviously, we can see that the numerical results agree
well with the theoretical analysis, i.e., the convergence rate is O(h?), O(h*), O(h), O(h?),
and O(h?), respectively. Moreover, for clarity, we present the graphics of the exact solution
and numerical solution at # = 1.0 in Figs. 5-6 on mesh 32 x 128, which also shows that the
numerical solution approximates the exact solution very well.

Table 3 The numerical errors att = 0.1

mxn 4x4 8§x8 16 x 16 32%x32

v =il 5.877 1E-05 1.621 4E-05 4.018 9E—06 1.002 4E-06
Order / 1.8579 2.0123 2.003 3

llu = uilly 5.892 6E-05 1.642 9E—05 4.238 6E—06 1.107 1E-06
Order / 1.8427 1.954 6 1.936 8

||lu" — 142||1 8.846 4E—04 4.768 SE—04 2.424 TE-04 1.217 4E-04
Order / 0.891 55 0.97571 0.994 06
(1,u" = uplly 8.123 1E-05 2.555 7TE-05 6.406 8E-06 1.356 4E—06
Order / 1.668 3 1.996 0 2.239 8

lu" = Lyl 8.626 9E—04 2.336 4E-04 5.931 3E-05 1.485 7E-05
Order / 1.8845 1.9779 1.9972
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(a) mxn=4x16 (b) m xn=28x 32

Fig.4 The partition of £2 for Example 5
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Fig.5 The graphics of the solutions v and v, at # = 1.0 on mesh 32 x 128
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Fig.6 The graphics of the solutions u and u, at t = 1.0 on mesh 32 x 128
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