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Abstract
In this paper, a linearized energy-stable scalar auxiliary variable (SAV) Galerkin scheme is 
investigated for a two-dimensional nonlinear wave equation and the unconditional super-
convergence error estimates are obtained without any certain time-step restrictions. The 
key to the analysis is to derive the boundedness of the numerical solution in the H1-norm, 
which is different from the temporal-spatial error splitting approach used in the previous 
literature. Meanwhile, numerical results are provided to confirm the theoretical findings.
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1 Introduction

In this paper, we focus on the unconditional superconvergence error estimate of an energy-
stable and linearized Galerkin finite element method (FEM) for the following two-dimen-
sional nonlinear wave equations [7]:

where � ⩾ 0 is a constant, 𝛺 ⊂ ℝ2 is a rectangular domain with the boundary �� , 
u = u(x, t) is the unknown function defined in � × [0,T] , u0 and u1 are sufficiently smooth 

(1)utt − Δu + �u + F�(u) = 0, (x, t) ∈ � × (0,T],

(2)u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

(3)u(x, t) = 0, (x, t) ∈ �� × (0, T],
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functions, and x = (x, y) and T > 0 is a finite number. Moreover, F ∈ C2(ℝ) is the nonlin-
ear potential.

Nonlinear wave equations (1)–(3) are widely used to describe many of complicated natu-
ral phenomena in scientific fields [9, 37]. Numerous numerical methods and analyses for the 
nonlinear wave equations have been investigated extensively, e.g., see [1, 11, 31] for finite 
difference methods, [5–7, 10, 16, 26, 35, 36] for Galerkin FEMs. In particular, optimal error 
estimate was studied in [7] for the nonlinear wave equation with an energy-conserving and 
linearly implicit scalar auxiliary variable (SAV) Galerkin scheme with the help of the tempo-
ral-spatial error splitting technique. Optimal error estimates were derived using the standard 
Galerkin method for a linear second-order hyperbolic equation in [5]. An H1-Galerkin mixed 
FEM was discussed and the corresponding error estimates were obtained for a class of second-
order hyperbolic problems in [26].

As we all know, for nonlinear problems, some certain assumptions about the nonlinear 
term are indeed to obtain the corresponding error estimation. The most common assump-
tion is that the nonlinear term is required to satisfy the Lipschitz continuity condition for 
differential problems [8, 13, 14, 18, 38]. However, as pointed out in [15, 27], the Lipschitz 
continuity assumption is not satisfied in most actual applications. For instance, the nonlin-
ear terms appeared in phase field problems, nonlinear Schrödinger equations, and the vis-
cous Burgers’ equations. Moreover, certain time-step restrictions dependent on the spatial 
mesh size for high-dimensional nonlinear problems were required using a nonlinear/line-
arized scheme [3, 32]. In practical applications, if similar time-step restrictions are required, 
one may apply an unnecessarily small time-step and be extremely time-consuming in com-
putations. A new approach called the time-splitting technique was proposed in [20, 21] to 
obtain error estimates for a nonlinear thermistor system and a nonlinear system from incom-
pressible miscible flow in porous media without the time-step restrictions (i.e., uncondi-
tional convergence). Subsequently, the time-splitting technique was successfully applied to 
study the unconditional error estimates for different high-dimensional nonlinear problems, 
such as nonlinear thermistor equations [19], the Landau-Lifshitz equation [4, 12], nonlinear 
Schrödinger equations [23, 28, 30, 34], nonlinear parabolic problems [22, 24, 39], etc. The 
key of the analysis is to introduce an additional time-discrete system ((elliptic) time-discrete 
equations), which leads to the error estimation process being relatively complicated. Moreo-
ver, the L∞-norm boundedness of the numerical solution is usually required in the time-
splitting approach.

In this paper, the unconditional superconvergence error estimate is obtained for two-
dimensional nonlinear wave equation based on an energy-stable and linearized Galerkin 
FEM. The difficulties come from the estimation of the nonlinear term without using the 
Lipschitz continuity assumption and the L∞-boundedness of the numerical solution in the 
error analysis. We first established a priori boundedness of the numerical solution in H1

-norm based on a rigorous analysis in terms of an energy inequality without introducing 
an additional time discrete system in the previous literature. Then, the unconditional super-
convergence error estimates are obtained by treating the nonlinear term skillfully without 
using the L∞-norm boundedness of the numerical solution required in the previous litera-
ture. Meanwhile, some numerical results are provided to confirm our theoretical findings.

The rest of the paper is organized as follows. In Sect.  2, some preliminaries and nota-
tions are introduced. In Sect. 3, an energy-stable and linearized SAV Galerkin finite-element 
scheme is proposed and the superconvergence error estimate of the scheme is presented. In 
Sect. 4, numerical results are provided to demonstrate the theoretical analysis.
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2  Preliminaries and Notations

Let Wm,p(�) be the standard Sobolev space with norm ‖ ⋅ ‖m,p and semi-norm | ⋅ |m,p [2]. 
L2(�) is the space of square integrable functions defined in � , and its inner product and 
norm are denoted by (⋅, ⋅) and ‖ ⋅ ‖0 , respectively. For any Banach space X and I = [0, T] , 
let Lp(I;X) be the space of all measurable functions f∶ I → X with the norm

Moreover, let Th = {K} be a conforming and shape regular simplicial triangulation of � , 
and h = maxK∈Th

{diam K} be the mesh size. Let Vh be the finite-dimensional subspace of 
H1

0
(�) , which consists of continuous piecewise polynomials on Th . Then, for a given ele-

ment K ∈ Th , we define the finite-element space Vh as

Define the Ritz projection operator Rh∶ H1

0
(�) → Vh by

Then, by the classical finite-element theory [33], there holds for u ∈ H2(�) ∩ H1
0
(�)

Lemma 1 [25] Suppose that Th is a shape regular rectangular partition and u ∈ H3(�) , 
then there holds

where Ih∶ H2(�) → Vh is the Lagrangian node interpolation operator.

With the help of Lemma 1, the following superclose error estimate between Ihu and 
Rhu in H1-norm has been established in [29].

Lemma 2 Suppose that u ∈ H3(�) , then we have

Following the basic idea of [15, 27], we adopt the following assumption instead of 
Lipschitz continuity assumption in the error estimate:

Here, we present the following Gronwall-typed inequality, which plays an important role in 
the error analysis.

‖f‖Lp(I;X) =
⎧
⎪⎨⎪⎩

�
∫

T

0

‖f‖p
X
dt

� 1

p

, 1 ⩽ p < ∞,

esssup
t∈I

‖f‖X , p = ∞.

(4)Vh = {vh ∈ C0(�)∶ vh|K ∈ span{1, x, y, xy}, ∀K ∈ Th, vh|�� = 0}.

(5)(∇(u − Rhu),∇�) = 0, ∀� ∈ Vh.

(6)‖u − Rhu‖0 + h‖∇(u − Rhu)‖0 ⩽ Ch2�u�2.

(7)(∇(u − Ihu),∇v) ⩽ Ch2‖u‖3‖∇v‖0, ∀v ∈ Vh,

(8)‖∇(Ihu − Rhu)‖0 ⩽ Ch2‖u‖3.

(9)|f (s)| ⩽ C(1 + |s|p), p ⩾ 0,

(10)|f � (s)| ⩽ C(1 + |s|p), p ⩾ 0.
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Lemma 3 [17] Let � , B and ak , bk , ck , �k , for integers k > 0 , be nonnegative numbers, such 
that

Suppose that 𝜏𝛾k < 1 , for all k, and set �k = (1 − ��k)
−1 . Then, there holds

3  Superconvergence Error Estimates of the Energy‑Stable 
and Linearized SAV Galerkin Scheme

Suppose

for some c0 > 0 , i.e., it is bounded from below, and let C0 > c0 , such that

Then, we introduce the following SAV:

Therefore, we can rewrite (1)–(3) as

where f (u) = F�(u).
The weak formulation of (1)–(3) is: for any t ∈ [0, T] , find u ∈ H1

0
(�) , v ∈ H1

0
(�) , and 

r ∈ ℝ , such that

an + �

n∑
k=0

bk ⩽ �

n∑
k=0

�kak + �

n∑
k=0

ck + B for n ⩾ 0.

an + �

n∑
k=0

bk ⩽

(
�

n∑
k=0

ck + B

)
exp

(
�

n∑
k=0

�k�k

)
.

E1(u) = ∫�

F(u)dx ⩾ −c0

E1(u) + C0 > 0.

r(t) =
√
E(u), E(u) = ∫�

F(u)dx + C0.

(11)ut = v,

(12)vt − Δu + �u +
r(t)√
E(u)

f (u) = 0,

(13)rt =
1

2
√
E(u) ∫�

f (u)utdx,

(14)(ut,�1) − (v,�1) = 0, ∀�1 ∈ H1
0
(�),

(15)(vt,�2) + (∇u,∇�2) + �(u,�2) +
r(t)√
E(u)

(f (u),�2) = 0, ∀�2 ∈ H1
0
(�),
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Let 0 = t0 < t1 < ⋯ < tN = T  be a uniform partition of the time interval [0, T] with time-
step size � = T∕N and un = u(⋅, tn) for 0 ⩽ n ⩽ N . For a smooth function � on [0, T], we 
define

Based on the above notations, a linearized fully discrete SAV Galerkin scheme is to find 
un
h
∈ Vh , vnh ∈ Vh , rnh ∈ ℝ , for given un−1

h
∈ Vh , vn−1h

∈ Vh , rn−1h
∈ ℝ and n = 1, 2,⋯ ,N , 

such that

and the initial values are chosen as (u0
h
, v0

h
, r0

h
) = (Rhu0,Rhv0,

√
E(u0)).

The scheme (17)–(19) is energy stable. In fact, taking �1h = vn
h
− vn−1

h
 in (17), 

�2h = un
h
− un−1

h
 in (18), and multiplying (19) by rn

h
 , then one can derive

which shows that

Thus, we have

Define the energy En by

then we have

which implies that the SAV Galerkin scheme (17)–(19) is energy stable.

(16)rt =
1

2
√
E(u) ∫�

f (u)utdx.

D��
n =

�n − �n−1

�
.

(17)(D�u
n
h
,�1h) − (vn

h
,�1h) = 0, ∀�1h ∈ Vh,

(18)(D�v
n
h
,�2h) + (∇un

h
,∇�2h) + �(un

h
,�2h) +

rn
h√

E(un−1
h

)

(f (un−1
h

),�2h), ∀�2h ∈ Vh,

(19)rn
h
− rn−1

h
=

1

2

√
E(un−1

h
)
∫�

f (un−1
h

)(un
h
− un−1

h
)dx,

(vn
h
, vn

h
− vn−1

h
) + (∇un

h
,∇(un

h
− un−1

h
)) + �(un

h
, un

h
− un−1

h
) + (rn

h
− rn−1

h
)rn

h
= 0,

(20)
(‖vn

h
‖2
0
− ‖vn−1

h
‖2
0
+ ‖vn

h
− vn−1

h
‖2
0
) + (‖∇un

h
‖2
0
− ‖∇un−1

h
‖2
0
+ ‖∇(un

h
− un−1

h
)‖2

0
)

+ �(‖un
h
‖2
0
− ‖un−1

h
‖2
0
+ ‖un

h
− un−1

h
‖2
0
) + ((rn

h
)2 − (rn−1

h
)2 + (rn

h
− rn−1

h
)2) = 0.

(21)‖vn
h
‖2
0
+ ‖∇un

h
‖2
0
+ �‖un

h
‖2
0
+ (rn

h
)2 ⩽ ‖vn−1

h
‖2
0
+ ‖∇un−1

h
‖2
0
+ �‖un−1

h
‖2
0
+ (rn−1

h
)2.

E
n =

�
‖vn

h
‖2
0
+ ‖∇un

h
‖2
0
+ �‖un

h
‖2
0
+ (rn

h
)2,

(22)E
n
⩽ E

n−1
⩽ ⋯ ⩽ E

0,
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Clearly, if u0 ∈ H1(�) and u1 ∈ L2(�) , one can check that the H1-norm boundedness of 
the numerical solution, i.e.,

Then, we present the convergence and superclose error estimates in the following theorem.

Theorem  1 Let (un, vn, rn) and (un
h
, vn

h
, rn

h
) be the solutions of (14)–(16) and (17)–(19), 

respectively. Suppose that u ∈ L∞((0,T]; H3) , ut ∈ L∞((0,T]; H2) , utt ∈ L∞((0,T]; H2) , 
uttt ∈ L∞((0,T]; L2) , v ∈ L∞((0,T]; H2) ,  and vt ∈ L∞((0,T]; H2) . Then, we have for n = 1, 2,

⋯ ,N,

and the superclose error estimate

Proof For the convenience of error estimation, we denote

At t = tn , from (14)–(16), we have

Then, from (26)–(28) and (17)–(19), we have the following error equations:

(23)‖un
h
‖1 ⩽ C, n = 0, 1,⋯ ,N.

(24)‖vn − vn
h
‖0 + h‖∇(un − un

h
)‖0 + �rn − rn

h
� ⩽ C(h2 + �),

(25)‖Ihun − un
h
‖1 ⩽ C(h2 + �).

un − un
h
= un − Rhu

n + Rhu
n − un

h
∶= �n

u
+ �n

u
,

vn − vn
h
= vn − Rhv

n + Rhv
n − vn

h
∶= �n

v
+ �n

v
,

rn − rn
h
∶= en

r
.

(26)(D�u
n,�1h) − (vn,�1h) = (D�u

n − un
t
,�1h), ∀�1h ∈ H1

0
(�),

(27)

(D�v
n,�2h) + (∇un,∇�2h) + �(un,�2h) +

rn√
E(un−1)

(f (un−1),�2h)

= (D�v
n − vn

t
,�2h) + rn

�
f (un−1)√
E(un−1)

−
f (un)√
E(un)

,�2h

�
, ∀�2h ∈ H1

0
(�),

(28)

rn − rn−1 =
1

2
√
E(un−1) ∫�

f (un−1)(un − un−1)dx + �

�
rn − rn−1

�
− rn

t

�

−
1

2
√
E(un−1) ∫�

f (un−1)(un − un−1)dx +
�

2
√
E(un) ∫�

f (un)un
t
dx.

(29)
(D��

n
u
,�1h) − (�n

v
,�1h) = −(D��

n
u
,�1h) + (�n

v
,�1h) + (D�u

n − un
t
,�1h), ∀�1h ∈ Vh,
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Denote

Then, taking �1h = D��
n
v
 in (29) and �2h = D��

n
u
 in (30), we have

Moreover, multiplying (31) by en
r
 , we derive

Note that

then substituting (33) into (32) yields

(30)

(D��
n
v
,�2h) + (∇�n

u
,∇�2h) + �(�n

u
,�2h) +

⎛
⎜⎜⎜⎝
rn

f (un−1)√
E(un−1)

− rn
h

f (un−1
h

)
�

E(un−1
h

)

,�2h

⎞
⎟⎟⎟⎠

= −(D��
n
v
,�2h) − (∇�n

u
,∇�2h) − �(�n

u
,�2h) + (D�v

n − vn
t
,�2h)

+ rn

�
f (un−1)√
E(un−1)

−
f (un)√
E(un)

,�2h

�
, ∀�2h ∈ Vh,

(31)

en
r
− en−1

r
=
1

2 ∫�

⎛
⎜⎜⎜⎝

f (un−1)√
E(un−1)

−
f (un−1

h
)

�
E(un−1

h
)

⎞
⎟⎟⎟⎠
(un − un−1)dx

+
1

2 ∫�

f (un−1
h

)

E(un−1
h

)
((un − un−1) − (un

h
− un−1

h
))dx +

�

2 ∫�

�
f (un)√
E(un)

−
f (un−1)√
E(un−1)

�
un
t
dx

+
�

2 ∫�

f (un−1)√
E(un−1)

(un
t
− D�u

n)dx + �(D�r
n − rn

t
).

H(u) =
f (u)√
E(u)

.

(32)

(�v,D��
n
v
) + (∇�n

u
,∇D��

n
u
) + �(�n

u
,D��

n
u
) + (rnH(un−1) − rn

h
H(un−1

h
),D��

n
u
)

= (D��
n
u
,D��

n
v
) − (�n

v
,D��

n
v
) − (D�u

n − un
t
,D��

n
v
)

− (D��
n
v
,D��

n
u
) − (∇�n

u
,∇D��

n
u
) − �(�n

u
,D��

n
u
)

+ (D�v
n − vn

t
,D��

n
u
) + rn(H(un−1) − H(un),D��

n
u
).

(33)

en
r
− en−1

r

�
⋅ en

r
=

en
r

2
(H(un−1) − H(un−1

h
),D�u

n) +
en
r

2
(H(un−1

h
),D��

n
u
)

+
en
r

2
(H(un−1

h
),D��

n
u
) +

en
r

2
(H(un) − H(un−1), un

t
)

+
en
r

2
(H(un−1), un

t
− D�u

n) +
(
D�r

n − rn
t

)
⋅ en

r
.

rnH(un−1) − rn
h
H(un−1

h
) = rn(H(un−1) − H(un−1

h
)) + en

r
H(un−1

h
),
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One can check that the left-hand side of (34) is

Now, we start to estimate the terms on the right-hand side of (34). Using summation by 
parts, we have for E1 − E2 that

and

In a similar way, we have

where we have used (D�u
n − un

t
) − (D�u

n−1 − un−1
t

) = O(�2) by the Taylor expansion.
By the Cauchy-Schwarz inequality and the Ritz projection definition, we derive

Applying the Taylor expansion gives that

Note that

(34)

(�n
v
,D��

n
v
) + (∇�n

u
,∇D��

n
u
) + �(�n

u
,D��

n
u
) +

2

�
(en

r
− en−1

r
) ⋅ en

r

= (D��
n
u
,D��

n
v
) − (�n

v
,D��

n
v
) − (D�u

n − un
t
,D��

n
v
)

− (D��
n
v
,D��

n
u
) − (∇�n

u
,∇D��

n
u
) − �(�n

u
,D��

n
u
) + (D�v

n − vn
t
,D��

n
u
)

+ rn(H(un−1) − H(un),D��
n
u
) − rn(H(un−1) − H(un−1

h
),D��

n
u
)

+ en
r
(H(un) − H(un−1), un

t
) + en

r
(H(un−1

h
),D��

n
u
) + en

r
(H(un−1) − H(un−1

h
),D�u

n)

+ en
r
(H(un−1), un

t
− D�u

n) + 2(D�r
n − rn

t
) ⋅ en

r
∶=

14∑
𝓁=1

E
𝓁
.

(35)

1

2�
(‖�n

v
‖2
0
− ‖�n−1

v
‖2
0
+ ‖�n

v
− �n−1

v
‖2
0
) +

1

2�
(‖∇�n

u
‖2
0
− ‖∇�n−1

u
‖2
0
+ ‖∇(�n

u
− �n−1

u
)‖2

0
)

+
�

2�
(‖�n

u
‖2
0
− ‖�n−1

u
‖2
0
+ ‖�n

u
− �n−1

u
‖2
0
) +

1

�
((en

r
)2 − (en−1

r
)2 + (en

r
− en−1

r
)2).

(36)
E1 = (D��

n
u
,D��

n
v
) =

1

�
[(D��

n
u
, �n

v
) − (D��

n−1
u

, �n−1
v

)] −
1

�
(D��

n
u
− D��

n−1
u

, �n−1
v

)

⩽
1

�
[(D��

n
u
, �n

v
) − (D��

n−1
u

, �n−1
v

)] + Ch2‖utt‖L∞(H2)‖�n−1v
‖0,

(37)
E2 = −(�n

v
,D��

n
v
) = −

1

�
[(�n

v
, �n

v
) − (�n−1

v
, �n−1

v
)] +

1

�
(�n

v
− �n−1

v
, �n−1

v
)

⩽ −
1

�
[(�n

v
, �n

v
) − (�n−1

v
, �n−1

v
)] + Ch2‖vt‖L∞(H2)‖�n−1v

‖0.

(38)

E3 = −(D�u
n − un

t
,D��

n
v
) = −

1

�
[(D�u

n − un
t
, �n

v
) − (D�u

n−1 − un−1
t

, �n−1
v

)]

+
1

�
((D�u

n − un
t
) − (D�u

n−1 − un−1
t

), �n−1
v

)

⩽ −
1

�
[(D�u

n − un
t
, �n

v
) − (D�u

n−1 − un−1
t

, �n−1
v

)] + C�‖�n−1
v

‖0,

(39)E4 + E5 + E6 ⩽ Ch2‖D��
n
u
‖0.

(40)E7 ⩽ C�‖D��
n
u
‖0.
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and E(s) > 0 for s ∈ ℝ , we have

Similar to E8 , E9 can be estimated as

where 0 < 𝜃 < 1 and we have used (9), (10), and (23) in the above estimate.
Thus, we obtain

On the other hand, taking �1h = D��
n
u
 in (29) results in

H(un−1) − H(un) =
f (un−1)√
E(un−1)

−
f (un)√
E(un)

=
f (un−1)√
E(un−1)

−
f (un)√
E(un−1)

+
f (un)√
E(un−1)

−
f (un)√
E(un)

=
f (un−1) − f (un)√

E(un−1)
+ f (un)

E(un) − E(un−1)√
E(un−1)

√
E(un)(

√
E(un−1) +

√
E(un))

(41)

E8 = rn(H(un−1) − H(un),D��
n
u
) = rn ∫�

f (un−1) − f (un)√
E(un−1)

D��
n
u
dx

+ rn ∫�

f (un)
E(un) − E(un−1)√

E(un−1)
√
E(un)(

√
E(un−1) +

√
E(un))

D��
n
u
dx

⩽ C ∫�

(f (un−1) − f (un))D��
n
u
dx + C ∫�

�
F(un) − F(un−1)

�
dx ⋅ ∫�

f (un)D��
n
u
dx

⩽ C�‖D��
n
u
‖0.

(42)

E9 ⩽ C ∫�

(f (un−1) − f (un−1
h

))D��
n
u
dx

+ C ∫�

�
F(un−1

h
) − F(un−1)

�
dx ⋅ ∫�

f (un−1
h

)D��
n
u
dx

⩽ C ∫�

(1 + �un−1
h

�p)�un−1 − un−1
h

��D��
n
u
�dx

+ C ∫�

f ((1 − �)un−1 + �un−1
h

)�un−1
h

− un−1�dx∫�

f (un−1
h

)D��
n
u
dx

⩽ C(1 + ‖un−1
h

‖p
0,4p

)‖un−1 − un−1
h

‖0,4‖D��
n
u
‖0

+ C ∫�

(1 + �un−1
h

�p)2dx‖un−1 − un−1
h

‖0‖D��
n
u
‖0

⩽ C(1 + ‖∇un−1
h

‖p
0
)(‖un−1 − Ihu

n−1‖0,4 + ‖∇(Ihun−1 − Rhu
n−1)‖0

+ ‖∇�n
u
‖0)‖D��

n
u
‖0

+ C(1 + ‖∇un−1
h

‖2p
0
)(h2 + ‖�n−1

u
‖0)‖D��

n
u
‖0

⩽ C(h2 + ‖∇�n−1
u

‖0 + ‖�n−1
u

‖0)‖D��
n
u
‖0,

(43)E4 + E5 + E6 + E7 + E8 + E9 ⩽ C(h2 + � + ‖∇�n−1
u

‖0 + ‖�n−1
u

‖0)‖D��
n
u
‖0.
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which shows that

Substituting (44) into (43) gives that

Similar to E8 , E10 can be bounded by

Using (9) and (23), we have for E11 that

Using a process similar to E9 , we have

With an application of (9) and the Taylor expansion, we obtain

Thus, it follows that

Substituting (35), (36), (37), (38), (45), and (50) into (34) leads to

Summing up the above inequality and using �0
u
= 0 , �0

v
= 0 , and e0

r
= 0 , we derive

‖D��
n
u
‖2
0
= (�n

v
,D��

n
u
) − (D��u,D��

n
u
) + (�n

v
,D��

n
u
) + (D�u

n − un
t
,D��

n
u
)

⩽ ‖�n
v
‖0‖D��

n
u
‖0 + ‖D��

n
u
‖0‖D��

n
u
‖0 + ‖�n

v
‖0‖D��

n
u
‖0 + ‖D�u

n − un
t
‖0‖D��

n
u
‖0

⩽ C(h2 + � + ‖�n
v
‖0)‖D��

n
u
‖0,

(44)‖D��
n
u
‖0 ⩽ C(h2 + � + ‖�n

v
‖0).

(45)E4 + E5 + E6 + E7 + E8 + E9 ⩽ C(h2 + �)2 + C(‖�n−1
u

‖2
0
+ ‖∇�n−1

u
‖2
0
+ ‖�n

v
‖2
0
).

(46)E10 = en
r
(H(un) − H(un−1), un

t
) ⩽ C�|en

r
|.

(47)

E11 ⩽ C�en
r
�∫�

�f (un−1
h

)��D��
n
u
�dx ⩽ C�en

r
�∫�

(1 + �un−1
h

�p)�D��
n
u
�dx

⩽ C�en
r
�(1 + ‖un−1

h
‖p
0,2p

)‖D��
n
u
‖0 ⩽ C(1 + ‖∇un−1

h
‖p
0
)�en

r
�‖D��

n
u
‖0

⩽ Ch2�en
r
�.

(48)

E12 ⩽ C�en
r
�∫�

(f (un−1) − f (un−1
h

))D�u
ndx

+ C�en
r
�∫�

�
F(un−1

h
) − F(un−1)

�
dx ⋅ ∫�

f (un−1
h

)D�u
ndx

⩽ C(h2 + ‖�n−1
u

‖0)�enr �.

(49)E13 + E14 ⩽ C�|en
r
|.

(50)E10 + E11 + E12 + E13 + E14 ⩽ C(h2 + � + ‖�n−1
u

‖0)�enr �.

(51)

1

2�
(‖�n

v
‖2
0
− ‖�n−1

v
‖2
0
) +

1

2�
(‖∇�n

u
‖2
0
− ‖∇�n−1

u
‖2
0
) +

�

2�
(‖�n

u
‖2
0

− ‖�n−1
u

‖2
0
) +

1

�
(�en

r
�2 − �en−1

r
�2)

⩽ �−1[(D��
n
u
, �n

v
) − (D��

n−1
u

, �n−1
v

)] + �−1[(�n
v
, �n

v
) − (�n−1

v
, �n−1

v
)]

+ �−1[(D�u
n − un

t
, �n

v
) − (D�u

n−1 − un−1
t

, �n−1
v

)] + C(h2 + �)2 + C�en
r
�2

+ C(‖�n−1
u

‖2
0
+ ‖∇�n−1

u
‖2
0
+ ‖�n−1

v
‖2
0
).
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Multiplying both sides of the above inequality by 2� and using the Cauchy-Schwarz ine-
quality for the first three terms appeared on the right-hand side of the above inequality 
yields that

Therefore, an application of the Gronwall inequality (see Lemma 3) gives that for the suf-
ficiently small �

Then, the desired result (24) is obtained by the triangle inequality. Moreover, according to 
(54) and (8) and using the triangle inequality again, we have for n = 1, 2,⋯ ,N

which the desired result (25) can be derived using the Poincare inequality. 

In what follows, based on the above superclose error estimate between un
h
 and Ihun in 

(55), we employ the interpolation post-processing approach to obtain the global super-
convergence result in H1-norm. To do this, we build a macroelement K̃ consisting of 
four elements Kj , j = 1, 2, 3, 4 (see Fig. 1), and we adopt the local interpolation operator 
I
2 h∶ C(K̃) → Q

22
(K̃) as interpolation post-processing operator [25] with the following 

interpolation conditions:

where zi , i = 1, 2,⋯ , 9 are the nine vertices of K̃ and Q22(K̃) denotes the space of polyno-
mials degree less than or equal to 2 in variables x and y on K̃ , respectively.

Moreover, the following properties for operator I2h have been shown in [25]:

(52)

1

2�
‖�n

v
‖2
0
+

1

2�
‖∇�n

u
‖2
0
+

�

2�
‖�n

u
‖2
0
+

1

�
�en

r
�2 ⩽ �−1(D��

n
u
, �n

v
) + �−1(�n

v
, �n

v
)

+ �−1(D�u
n − un

t
, �n

v
) + Cn(h2 + �)2 + C

n�
k=1

(‖�k
u
‖2
0
+ ‖∇�k

u
‖2
0
+ ‖�k

v
‖2
0
+ �ek

r
�2).

(53)

‖�n
v
‖2
0
+ ‖∇�n

u
‖2
0
+ ‖�n

u
‖2
0
+ �en

r
�2 ⩽ C(h2 + �)2 + C�

n�
k=1

(‖�k
u
‖2
0
+ ‖∇�k

u
‖2
0
+ ‖�k

v
‖2
0
+ �ek

r
�2).

(54)‖�n
v
‖0 + ‖∇�n

u
‖0 + ‖�n

u
‖0 + �en

r
� ⩽ C(h2 + �).

(55)‖∇(Ihun − un
h
)‖0 ⩽ ‖∇(Ihun − Rhu

n)‖0 + ‖∇(Rhu
n − un

h
)‖0 ⩽ C(h2 + �),

I2hu(zi) = u(zi), i = 1, 2,⋯ , 9,

(56)I2hIhu = I2hu,

Fig. 1  The macroelement K̃

z1 z5 z2

z6

z3z7z4

z8 z9
K1 K2

K3K4
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Then, we have the following global superconvergent result.

Theorem 2 Suppose that u ∈ L∞((0,T];H3(�)) together with the conditions of Theorem 1, 
we have for n = 1, 2,⋯ ,N

Proof By the triangle inequality and the properties (56)–(58) and (55), we have

which is the desired result and the proof is complete. 

4  Numerical Results

In this section, we present some numerical results to verify the correctness of the theoreti-
cal findings.

Example 1 Consider the following Kelin-Gordon equation [7]:

Let the function g(x, t) and the initial and boundary conditions be chosen corresponding to 
the exact solution

We set the domain � = (0, 1) × (0, 1) and the final time T = 1.0 in the computation.

A uniform partition with m + 1 nodes in both horizontal and vertical directions is made 
on the domain � . To confirm the error estimates in Theorems 1 and 2, choose � = O(h2) . 
We present the numerical errors of ‖vn − vn

h
‖0 , ‖un − un

h
‖0 , ‖un − un

h
‖1 , ‖Ihun − un

h
‖1 , and 

‖un − I2 hu
n
h
‖1 at t = 1.0 in Table 1. Obviously, we can see that the numerical results agree 

well with the theoretical analysis, i.e., the convergence rate is O(h2) , O(h2) , O(h), O(h2) , 
and O(h2) , respectively.

Example 2 Consider the following Kelin-Gordon equation:

with the initial conditions

(57)‖u − I2hu‖1 ⩽ Ch2‖u‖3, ∀u ∈ H3(�),

(58)‖I2hvh‖1 ⩽ C‖vh‖1, ∀vh ∈ Vh.

(59)‖un − I2hu
n
h
‖1 ⩽ C(h2 + �).

(60)

‖un − I2hu
n
h
‖1 ⩽ ‖un − I2hIhu

n‖1 + ‖I2hIhun − I2hu
n
h
‖1

⩽ ‖un − I2hu
n‖1 + ‖I2h(Ihun − un

h
)‖1

⩽ Ch2‖un‖3 + C‖Ihun − un
h
‖1

⩽ C(h2 + �),

utt − Δu + u3 − u = g(x, t), (x, y) ∈ 𝛺, 0 < t ⩽ T .

u(x, y, t) = exp(−t)x2(1 − x)2y2(1 − y)2.

utt − Δu + u3 − u = 0, (x, y) ∈ 𝛺 = (0, 1) × (0, 1), 0 < t ⩽ T = 100
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The temporal direction is divided with time-step size 1, and the spatial direction is 
divided with stepsize h =

√
2

30
 . In Fig.  2, we present some values of the discrete energy 

for the backward Euler scheme at various time levels tn . It can be seen that the numerical 
scheme preserves the nonincreasing property of the discrete energy, which is consistent 
with the theoretical analysis.

Example 3 Consider the following sine-Gordon equation [7]:

Let the function g(x, t) and the initial and boundary conditions be chosen corresponding to 
the exact solution

We set the domain � = (0, 1) × (0, 1) and the final time T = 1.0 in the computation.

A uniform partition with m + 1 nodes in both horizontal and vertical directions is 
made on the domain � . To confirm the error estimates in Theorems  1 and 2, choose 
� = O(h2) . We present the numerical errors of ‖vn − vn

h
‖0 , ‖un − un

h
‖0 , ‖un − un

h
‖1 , 

‖Ihun − un
h
‖1 , and ‖un − I2 hu

n
h
‖1 at t = 1.0 in Table  2. Obviously, we can see that the 

numerical results agree well with the theoretical analysis, i.e., the convergence rate is 
O(h2) , O(h2) , O(h), O(h2) , and O(h2) , respectively.

Example 4 Consider the following sine-Gordon equation:

with initial conditions

u0(x, y) = x2(1 − x)2y2(1 − y)2, u1(x, y) = −x2(1 − x)2y2(1 − y)2.

utt − Δu + sin(u) = g(x, t), (x, y) ∈ 𝛺, 0 < t ⩽ T .

u(x, y, t) = exp(−t) sin(2πx) sin(2πy).

utt − Δu + sin(u) = 0, (x, y) ∈ 𝛺 = (0, 1) × (0, 1), 0 < t ⩽ T = 100

u0(x, y) = v, u1(x, y) = − sin(2πx) sin(2πy).

Table 1  The numerical errors at t = 1.0

m × n 4 × 4 8 × 8 16 × 16 32 × 32

‖vn − vn
h
‖
0

7.982 5E−05 2.177 3E−05 5.422 2E−06 1.342 7E−06
Order / 1.874 3 2.005 6 2.013 8
‖un − un

h
‖
0

8.613 6E−05 2.443 8E−05 6.293 1E−06 1.584 4E−06
Order / 1.817 5 1.957 3 1.989 8
‖un − un

h
‖
1

1.198 8E−03 6.525 8E−04 3.324 7E−04 1.669 9E−04
Order / 0.877 41 0.972 92 0.993 43
‖Ihun − un

h
‖
1

1.117 3E−04 4.022 6E−05 1.104 7E−05 2.832 5E−06
Order / 1.473 8 1.864 5 1.963 5
‖un − I

2hu
n
h
‖
1

1.208 1E−03 3.303 5E−04 8.398 7E−05 2.107 5E−05
Order / 1.870 6 1.975 8 1.994 6
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The temporal direction is divided with time-step size 1, and the spatial direction is 
divided with stepsize h =

√
2

30
 . In Fig. 3, we present some values of the discrete energy 

for the backward Euler scheme at various time levels tn . It can be seen that the numeri-
cal scheme preserves the nonincreasing property of the discrete energy, which is con-
sistent with the theoretical analysis.

Example 5 Consider the following Kelin-Gordon equation [7]:

Let the function g(x, t) and the initial and boundary conditions be chosen corresponding to 
the exact solution

utt − Δu + u3 − u = g(x, t), (x, y) ∈ 𝛺, 0 < t ⩽ T .

0 10 20 30 40 50 60 70 80 90 100
1.118 030

1.118 035

1.118 040

1.118 045

1.118 050

1.118 055

1.118 060

1.118 065

Fig. 2  The profile of the discrete energy for Example 2

Table 2  The numerical errors at t = 1.0

m × n 4 × 4 8 × 8 16 × 16 32 × 32

‖vn − vn
h
‖
0

4.095 7E−02 8.908 6E−03 2.101 2E−03 5.195 2E−04
Order / 2.200 8 2.084 0 2.016 0
‖un − un

h
‖
0

4.439 8E−02 1.086 6E−02 2.671 3E−03 6.638 6E−04
Order / 2.030 7 2.024 2 2.008 6
‖un − un

h
‖
1

7.344 2E−01 3.690 6E−01 1.850 8E−01 9.261 6E−02
Order / 0.992 74 0.995 74 0.998 80
‖Ihun − un

h
‖
1

2.663 0E−01 8.328 7E−02 2.219 1E−02 5.644 6E−03
Order / 1.676 9 1.908 1 1.975 0
‖un − I

2hu
n
h
‖
1

5.635 4E−01 1.709 2E−01 4.359 7E−02 1.095 7E−02
Order / 1.721 2 1.971 0 1.992 4
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We set the domain � = (0, 1) × (0, 1) and the final time T = 1.0 in the computation.

The domain � is divide into m × n rectangles with m × n = 4 × 16 , 8 × 32 , 16 × 64 , 
32 × 128 , respectively (see Fig. 4 for the cases 4 × 16 and 8 × 32 ). We choose � = 0.001 
and present the numerical errors of ‖vn − vn

h
‖0 , ‖un − un

h
‖0 , ‖un − un

h
‖1 , ‖Ihun − un

h
‖1 , and 

‖un − I2 hu
n
h
‖1 at t = 1.0 in Table 3. Obviously, we can see that the numerical results agree 

well with the theoretical analysis, i.e., the convergence rate is O(h2) , O(h2) , O(h), O(h2) , 
and O(h2) , respectively. Moreover, for clarity, we present the graphics of the exact solution 
and numerical solution at t = 1.0 in Figs. 5–6 on mesh 32 × 128 , which also shows that the 
numerical solution approximates the exact solution very well.

u(x, y, t) = exp(−t)x2(1 − x)2y2(1 − y)2.

0 10 20 30 40 50 60 70 80 90 100
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fig. 3  The profile of the discrete energy for Example 4

Table 3  The numerical errors at t = 0.1

m × n 4 × 4 8 × 8 16 × 16 32 × 32

‖vn − vn
h
‖
0

5.877 1E−05 1.621 4E−05 4.018 9E−06 1.002 4E−06
Order / 1.857 9 2.012 3 2.003 3
‖un − un

h
‖
0

5.892 6E−05 1.642 9E−05 4.238 6E−06 1.107 1E−06
Order / 1.842 7 1.954 6 1.936 8
‖un − un

h
‖
1

8.846 4E−04 4.768 5E−04 2.424 7E−04 1.217 4E−04
Order / 0.891 55 0.975 71 0.994 06
‖Ihun − un

h
‖
1

8.123 1E−05 2.555 7E−05 6.406 8E−06 1.356 4E−06
Order / 1.668 3 1.996 0 2.239 8
‖un − I

2hu
n
h
‖
0

8.626 9E−04 2.336 4E−04 5.931 3E−05 1.485 7E−05
Order / 1.884 5 1.977 9 1.997 2
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(a) m× n = 4× 16 (b) m× n = 8× 32

Fig. 4  The partition of � for Example 5

Fig. 5  The graphics of the solutions v and vh at t = 1.0 on mesh 32 × 128

Fig. 6  The graphics of the solutions u and uh at t = 1.0 on mesh 32 × 128
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