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Abstract
The Hermite-Taylor method, introduced in 2005 by Goodrich et al. is highly efficient and 
accurate when applied to linear hyperbolic systems on periodic domains. Unfortunately, 
its widespread use has been prevented by the lack of a systematic approach to implement-
ing boundary conditions. In this paper we present the Hermite-Taylor correction function 
method (CFM), which provides exactly such a systematic approach for handling bound-
ary conditions. Here we focus on Maxwell’s equations but note that the method is easily 
extended to other hyperbolic problems.

Keywords Hermite method · Correction function method (CFM) · Maxwell’s equations · 
High order · Boundary conditions

Mathematics Subject Classification 35Q61 · 65M70

1 Introduction

The property of waves to travel over large distances and long time without changing their 
shape is an important feature used in current technologies, such as communication devices 
and other electromagnetic products. The governing equations for electromagnetic problems 
are the Maxwell’s equations and it is to these we seek approximate solutions in this paper. 
To make the numerical approximation to the solution accurate either low order methods 
on fine meshes, which can be computationally costly, or high-order methods on coarser 
meshes can be used. The latter approach is usually preferable for large scale problems.

Several high-order methods in computational electromagnetics have been proposed, 
such as high-order finite-difference time-domain (FDTD) methods [26, 28], discontinu-
ous Galerkin (DG) methods [4, 8, 13, 14], and pseudo-spectral methods [9, 10, 27], to 
name a few. High-order explicit FDTD methods require a restrictive stability condition 
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and wide stencils, which complicate the enforcement of boundary conditions. Uncondi-
tionally stable alternating-direction-implicit (ADI) FDTD methods have been developed 
to circumvent the time step constraints [6, 18, 24, 25, 29], however, methods are dif-
ficult to generalize to high order and treating complex geometry is not straightforward.

DG methods achieve high-order convergence rates by approximating the function 
using local high order polynomials and are an excellent choice for problems where 
a high quality mesh can be generated. The main drawbacks of DG methods are their 
restrictive time step at a high order of accuracy and the duplication of degrees of free-
dom on the edges of elements.

Another avenue to handle time dependent wave problems is the Hermite-Taylor 
method, which consists of a Hermite interpolation procedure in space and a Taylor 
method in time [11] (see also [12] for a review of Hermite methods). The key idea is to 
evolve, in time, the numerical solution as well as its space derivatives through order m 
to achieve a (2m + 1) order accurate method using only (m + 1)d degrees of freedom per 
element in d-dimensions.

As was shown for linear symmetric hyperbolic problems in [11], this method pro-
vides a stability condition that only depends on the largest wave-speed, independent 
of the order. Hence, large time-step sizes can be used for these high-order methods 
and therefore ease the computational burden for large-scale problems. As the (m + 1)d 
degrees of freedom in a Hermite method are collocated at a single node the imposition 
of general boundary conditions can be challenging. Typically, in addition to the physical 
boundary conditions the method needs to be augmented with a relatively large number 
of numerical boundary conditions (sometimes called compatibility boundary conditions 
or, more recently, inverse Lax-Wendroff conditions). While this has been successfully 
done for the wave equation on both Cartesian and curvilinear meshes in [20], it has 
proven difficult to use this technique for first order hyperbolic systems.

A possible solution to this is to use a hybrid DG-Hermite method [7] for Maxwell’s 
equations. The method in [7] takes advantage of the flexibility of DG solvers to han-
dle complex geometries and boundary conditions by considering two non-overlapping 
meshes, an unstructured mesh for the DG method and a staircased Cartesian mesh 
where the Hermite method is used. This approach requires a hybrid structured-unstruc-
tured mesh and the use of local time-stepping to maintain large time-step sizes in the 
Hermite method. In [5] an overset grid method that combines a Hermite method (on 
Cartesian meshes) and a DG method (on structured curvilinear meshes) for the wave 
equation was proposed. This method does not require a hybrid non-overlapping mesh 
and as such it is somewhat more geometrically flexible but again, it is not easy to extend 
to first order hyperbolic systems.

In this work, we propose an alternative solution for imposing boundary conditions for 
Maxwell’s equations within the framework of Hermite methods. Our new method is based 
on the correction function method (CFM). The CFM was first proposed in [21] to handle 
Poisson’s equation with interface conditions and continuous coefficients in a finite-differ-
ence context. Given a numerical solution (for example from a finite difference method) that 
has been updated near but not on the boundary from the CFM seeks a polynomial approxi-
mation to the solution in the vicinity of a boundary or interface using a minimization pro-
cedure. A functional that is based on a square measure of the residual of the original PDE 
problem and that also contains terms from the finite difference solver is minimized over a 
suitable space of polynomials. Once this polynomial approximation, also called the cor-
rection function, is found, the numerical solution can be corrected so that it satisfies the 
boundary conditions to a high order of accuracy. The CFM has been used for Poisson’s 
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equation [22, 23], the wave equation [1], and for electromagnetic problems with both inter-
face and boundary [15–17].

In this paper we introduce a CFM-Hermite-Taylor method. An advantage of using 
Hermite based methods for the base scheme is that the Hermite stencil remains the same 
regardless of its order. This is not the case for FDTD methods. Additionally, the Hermite-
Taylor method directly provides a space-time polynomial approximating the solution that 
is required in the CFM functional. In this paper we focus exclusively on the case when 
the geometry of the problem can be represented on a Cartesian mesh or on a logically 
Cartesian curvilinear mesh. Already in this setting the Hermite stencil provides a good 
advantage but we expect that in future work where we treat interfaces and non-grid aligned 
boundaries the advantage will be even greater.

We are focusing exclusively on the enforcement of boundary conditions. Other impor-
tant concerns, such as the preservation of the divergence-free constraints and the energy, 
will not be addressed here.

The paper is organized as follows. We introduce Maxwell’s equations with the considered 
boundary conditions in Sect.  2. In Sect.  3, the one-dimensional Hermite-Taylor method is 
described in detail and some remarks are provided for higher dimensional cases. The correc-
tion function method is introduced and described in detail in the Hermite-Taylor setting in 
Sect. 4. Finally, numerical examples in one dimension (1-D) and two dimensions (2-D) that 
verify the properties of the Hermite-Taylor CFM are presented in Sect. 5.

2  Problem Definition

In this work, we seek approximate solutions to Maxwell’s equations

in the domain 𝛺 ⊂ ℝd with d = 1, 2 and the time interval I = [t0, tf ] . Here H is the mag-
netic field, E is the electric field, � is the magnetic permeability, and � is the electric per-
mittivity. To complete the system (1), we consider the initial conditions

 and the boundary conditions on the electromagnetic fields.
In this work, we focus on the following boundary conditions: 

 (i) perfect electric conductor (PEC)

 (ii) perfect magnetic conductor (PMC) 

(1)

⎧⎪⎪⎨⎪⎪⎩

� �tH + ∇ × E = 0,

� �tE − ∇ ×H = 0,

∇ ⋅ (� E) = 0,

∇ ⋅ (�H) = 0

{
H(x, t0) = H0 in �,

E(x, t0) = E0 in �

(2)n × E = 0 on � × I,

(3)n ×H = 0 on � × I,
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 (iii) impedance boundary condition 

Here Z =

√
�

�
 is the impedance, �  is the boundary of the domain � , and n is the outward unit 

normal to �  . For further discussions on Maxwell’s equations with these boundary conditions 
and results on their well-posedness, we refer the reader to [2, 19]. Note that we consider the non-
homogeneous case of these boundary conditions to facilitate the verification of the Hermite-
Taylor CFM. We denote the given right-hand side function by g(x, y, t).

3  Hermite‑Taylor Method

In the following, a brief review of the Hermite-Taylor method, introduced by Goodrich et al. 
[11], is provided. For simplicity, we consider the one-dimensional case and include some 
comments regarding higher dimensions.

The Hermite method uses a mesh staggered in both space and time as illustrated in Fig. 1.
Consider the domain � = [x

�
, xr] and a time interval I = [t0, tf ] . We then define the primal 

mesh to be

Here Nx is the number of cells on the primal mesh. The dual mesh is then defined as the 
cell centers of the primal mesh

The approximate solution on the primal mesh is centered at times

while the approximation on the dual mesh is centered at times

Here Nt is the number of time steps.
The Hermite-Taylor method requires three processes. 

(4)E × n + Z n × (H × n) = 0 on � × I.

xi = x
𝓁
+ iΔx, i = 0,⋯ ,Nx, Δx =

xr − x
𝓁

Nx

.

xi+1∕2 = x
𝓁
+ (i + 1∕2) Δx, i = 0,⋯ ,Nx − 1.

tn = t0 + nΔt, n = 0,⋯ ,Nt, Δt =
tf − t0

Nt

,

tn+1∕2 = t0 + (n + 1∕2) Δt, n = 0,⋯ ,Nt − 1.

Fig. 1  Illustration of the Hermite-
Taylor procedure to evolve the 
data from (xi+1, tn−1) to (xi+1, tn) . 
The Hermite interpolation proce-
dure and the Taylor method are 
denoted respectively by I  and T  . 
The primal and dual nodes are 
respectively represented by black 
squares and blue circles
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 (i) Hermite interpolation
   Assume that the values of the electromagnetic fields and their derivatives through 

order m (or sufficiently accurate approximation of these) are available on the primal 
mesh at tn−1 . Then, for each cell in the primal mesh, for each electromagnetic field, 
we construct the unique polynomial of degree 2m + 1 coinciding with the electro-
magnetic field and its derivatives through order m at the endpoints of the cell, that is 
the Hermite interpolant of the electromagnetic field. In Fig. 1, this step is represented 
by I .

 (ii) Recursion relation
   The recursion relation constructs a space-time polynomial, referred as a Hermite-

Taylor polynomial in this work, approximating each electromagnetic field. Consid-
ering a cell and a given Hermite interpolant of each electromagnetic field on this 
cell, we identify the derivatives of the electromagnetic field as scaled coefficients of 
the polynomial at the cell center. By expanding, in time, each scaled coefficient in 
a Taylor polynomial and enforcing the PDE at the cell center, we obtain a recursion 
relation for the coefficients of the Hermite-Taylor polynomials. This step is repre-
sented in Fig. 1 by either blue dashed circles or black dashed squares.

 (iii) Time evolution
   Finally, we update the electromagnetic fields and their derivatives through order m 

at the dual mesh points by simply evaluating the Hermite-Taylor polynomials. This 
step is represented by T  in Fig. 1.

Let us now detail each time step of the method.

3.1  Hermite Interpolation

Assuming that the space derivatives through order m of the electromagnetic fields at the initial 
time t0 are available on the primal mesh, we compute the (2m + 1) degree Hermite interpolant 

p
f

i+1∕2
(x) on each cell [xi, xi+1] satisfying

Here f is either the magnetic field H or the electric field E. We then obtain a polynomial 
approximating each electromagnetic field on the cell [xi, xi+1] and centered at the cell center 
xi+1∕2,

where cH(t) and cE(t) are time-dependent coefficients.

d𝓁p
f

i+1∕2
(xi, t0)

dx𝓁
=

d𝓁f (xi, t0)

dx𝓁
,

d𝓁p
f

i+1∕2
(xi+1, t0)

dx𝓁
=

d𝓁f (xi+1, t0)

dx𝓁
, 𝓁 = 0,⋯ ,m.

H(x, t)|t=t0 ≈ pH
i+1∕2

(x) =

2m+1∑
�=0

cH
�
(t)|t=t0

(
x − xi+1∕2

Δx

)�

,

E(x, t)|t=t0 ≈ pE
i+1∕2

(x) =

2m+1∑
�=0

cE
�
(t)|t=t0

(
x − xi+1∕2

Δx

)�

,



 Communications on Applied Mathematics and Computation

1 3

3.2  Recursion Relation

Let us now compute a Hermite-Taylor polynomial approximating each electromagnetic field. 
To do so, we expand the coefficients in a Taylor polynomial of degree q centered at t0 , which 
leads to

Here cH
�,0

 and cE
�,0

 are known from the initial data and the interpolation step. Consider Max-
well’s equations in 1-D with constant coefficients,

For smooth solutions, we then have

Substituting H and E by their Hermite-Taylor approximations pH
i+1∕2

(x, t) and pE
i+1∕2

(x, t) in 
the system (6) and evaluating them at (xi+1∕2, t0) , we obtain the following recursion rela-
tions for the coefficients:

Knowing cH
�,0

 and cE
�,0

 , these recursion relations allow the computation of the Hermite-Tay-
lor polynomials approximating the electromagnetic fields.

3.2.1  Variable Coefficients Problems

For spatially variable coefficients, the recursion relations for the polynomial coefficients 
involve high-order derivatives of the coefficients. As in [11], we consider high-order deriva-
tives of the coefficients u(x) = 1

�(x)
 and e(x) = 1

�(x)
 and take advantage of the Leibnitz’ rule.

For sufficiently smooth solutions and coefficients u and e, we have

(5)

⎧
⎪⎪⎨⎪⎪⎩

H(x, t) ≈ pH
i+1∕2

(x, t) =

2m+1�
�=0

q�
s=0

cH
�,s

�
x − xi+1∕2

Δx

�� �
t − t0

Δt

�s

,

E(x, t) ≈ pE
i+1∕2

(x, t) =

2m+1�
�=0

q�
s=0

cE
�,s

�
x − xi+1∕2

Δx

�� �
t − t0

Δt

�s

.

�H

�t
= −

1

�

�E

�x
,

�E

�t
= −

1

�

�H

�x
.

(6)

⎧⎪⎨⎪⎩

��+s+1H

�ts+1�x�
= −

1

�

��+s+1E

�ts�x�+1
,

��+s+1E

�ts+1�x�
= −

1

�

��+s+1H

�ts�x�+1
.

cH
𝓁,s

= −
(𝓁 + 1) Δt

� sΔx
cE
𝓁+1,s−1

, cE
𝓁,s

= −
(𝓁 + 1) Δt

� sΔx
cH
𝓁+1,s−1

, 𝓁 = 0,⋯ , 2m + 1, s = 1,⋯ , q.

(7)

⎧⎪⎪⎨⎪⎪⎩

��+s+1H

�ts+1�x�
= −

��

�x�

�
u
�s+1E

�ts�x

�
=

��
i=0

�
�

i

�
��−iu

�x�−i
�i+s+1E

�ts�xi+1
,

��+s+1E

�ts+1�x�
= −

��

�x�

�
e
�s+1H

�ts�x

�
=

��
i=0

�
�

i

�
��−ie

�x�−i
�i+s+1H

�ts�xi+1
.
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Identifying the coefficients of the Hermite-Taylor polynomials as scaled derivatives and 
enforcing the system (7) at (xi+1∕2, t0) , we obtain

for 𝓁 = 0,⋯ , 2m + 1 and s = 1,⋯ , q.
We note that this step can be generalized for other problems including linear, non-linear, 

and variable coefficient problems. We refer the reader to [12] for more details.

3.3  Time Evolution

Finally, we evolve the electromagnetic fields and their space derivatives through order m on 
the dual mesh nodes, located at (xi+1∕2, t1∕2) for the cell [xi, xi+1] , by evaluating (5),

A similar process is repeated to evolve the data from the dual mesh at t1∕2 to the primal 
mesh at t1 and therefore to complete the time step. The overall procedure is repeated until 
the final time is reached. Figure 1 illustrates the Hermite-Taylor method at a given primal 
node.

Remark 1 For linear constant coefficients hyperbolic problems, the Taylor expansion in 
time of the coefficients of the Hermite polynomials is computed exactly for q sufficiently 
large [11], for example q = 2m + 1 in (5) for the one-dimensional case. In general, we set 
q = � (2m + 1) in ℝ� to obtain an exact time expansion of the coefficients.

Remark 2 In higher dimensions, the primal mesh is defined as the classical Cartesian mesh 
while the dual nodes are defined at the cell center. Hence, this differs from the mesh used 
in FDTD methods. As for the Hermite interpolation procedure, approximations are com-
puted using a tensor product of one-dimensional Hermite polynomials. We refer the inter-
ested reader to [11] for more details on the Hermite-Taylor setting for higher dimensions.

As mentioned before, a challenge for the Hermite-Taylor method is to enforce general 
boundary conditions. Indeed, this method requires to know all information on the boundary, 
including the space derivatives through order m, which are usually not available. In the next 
section, we present a way to obtain the needed information using the CFM.

4  Correction Function Method (CFM)

In this section, we describe the CFM that computes approximations to the electromag-
netic fields and their derivatives through order m at the nodes located on the boundary of 
the domain. There are two key ingredients to the CFM: the minimization of functionals 
describing the electromagnetic fields near the boundary, and careful definition of the space-
time domains of the functionals along the boundary. We refer to a space-time domain of 

cH
�,s

= −

�∑
i=0

(i + 1) ΔtΔx�−i−1

(� − i)! s

��−iu

�x�−i
cE
i+1,s−1

,

cE
�,s

= −

�∑
i=0

(i + 1) ΔtΔx�−i−1

(� − i)! s

��−ie

�x�−i
cH
i+1,s−1

�𝓁pH
i+1∕2

(xi+1∕2, t1∕2)

�x𝓁
,

�𝓁pE
i+1∕2

(xi+1∕2, t1∕2)

�x𝓁
, 𝓁 = 0,⋯ ,m.
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a functional as a local patch. Once the minimization procedure is completed, we obtain 
space-time polynomials, called correction functions, approximating each electromagnetic 
field in the vicinity of the boundary. The correction functions are used to update the solu-
tion at the boundary nodes. In the following, we first describe the method in detail in 1-D 
and then generalize it in higher dimensions.

4.1  The Hermite‑CFM in 1‑D

On the mesh in Fig.  1, the first step has allowed for the update of the Hermite solution 
on the dual mesh at time level tn−1∕2 and the second step has allowed for the update of 
the numerical solution on the primal mesh at tn , except near the boundary. At (x0, tn) and 
(xNx

, tn) for n = 1,⋯ ,Nt the solution will be updated using the CFM.
We define a node where the numerical solution is updated using the Hermite-Taylor 

method as a Hermite node and a node where the numerical solution is computed using the 
CFM we denote as a CF node. In the following, the subscript i refers to the ith CF node in 
the mesh and the superscript n refers to the time level tn . In the one-dimensional case, i = 0 
and i = 1 refer respectively to the boundary nodes x0 and xNx

.
We further note that although the functional just to be defined can depend on time, as 

manifested by the n superscript, (for example to account for a moving geometry) but for all 
the problems considered here it will not. When there is no time dependence all the small 
linear system of equations (one at each CF node) resulting from the quadratic optimization 
problem, will not change in time and can thus be formulated, factored, and stored once and 
for all before the time stepping loop. Consequently, the complexity of the Hermite-CFM 
will approach that of the Hermite method in the limit h → 0.

The CFM minimizes a functional unique to each CF node composed of three parts

Here, Gn
i
 weakly enforces the governing equations, Bn

i
 weakly enforces the boundary con-

ditions, and Hn
i
 weakly enforces that the correction functions match the Hermite solution 

near the ith CF node.
The domains over which the different terms in the functional are computed are not the 

same. The domain of Bn
i
 should include the part of the boundary in the vicinity of the 

ith CF node to weakly enforce the boundary conditions. The domain of Hn
i
 should be the 

same as the space-time domains of the Hermite nodes closest to the ith CF node. We then 
weakly enforce the correction functions to match the Hermite solution in the domain of Hn

i
 

while avoiding extrapolation procedures of the Hermite solution. Finally, the domain of 
integration for Gn

i
 should enclose the ith CF node, the domain of integration for Bn

i
 and the 

domain of integration for Hn
i
 to enforce Maxwell’s equations over the whole local patch of 

the functional Jn
i
.

As an example for the CF node x0 at time level tn , G
n
0
 contains the residual of the PDE 

and it is integrated over the rectangular space-time region (the local patch) consisting of 
the direct product of the space interval S0 = [x0, x3∕2] with the time interval In = [tn−1, tn] 
as illustrated in Fig. 2.

We then have

(8)Jn
i
= G

n
i
+ B

n
i
+H

n
i
.

G
n
0
(Hn

h,0
,En

h,0
) =

�0

2 ∫In
∫S0

((� �tH
n
h,0

+ �xE
n
h,0
)2 + (� �tE

n
h,0

+ �xH
n
h,0
)2)dxdt,
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where �0 = x3∕2 − x0 = 1.5Δx is the characteristic length of the space interval S0 . Here 
Hn

h,0
 and En

h,0
 are the sought correction functions approximating the electromagnetic fields 

and are used to update the numerical solution at (x0, tn).
The term Bn

0
 contains the residual of the boundary condition at x0 and it is integrated 

over the time interval In as shown in Fig. 3. As an example, we have

for the boundary condition (2).
We now require the correction functions to weakly match the Hermite solution over 

the space-time domains of the primal Hermite node x1 and the dual Hermite node x1∕2 . 
This is what connects the two methods and is needed for the minimization problem to be 
well-posed. The first part of H

n
0
 contains the Hermite-Taylor polynomials 

H∗(x, t) = pH
1∕2

(x, t) and E∗(x, t) = pE
1∕2

(x, t) , which are associated with the cell of the dual 
Hermite node x1∕2 , and it is integrated over the rectangular region consisting of the direct 
product of the space interval SH

0,d
= [x0, x1] with the time interval [tn−1, tn−1∕2] . The second 

B
n
0
(En

h,0
) =

1

2 ∫In

(En
h,0
(x0, t) − gE(t))

2 dt

Fig. 2  Illustration of the domain of integration S0 × In of Gn
0
 . The primal CF and Hermite nodes are respec-

tively represented by green squares and black squares while the dual Hermite nodes are represented by blue 
circles. The CFM seeks the information located at (x0, tn) which is enclosed by the red circle. The space-
time local patch S0 × In is denoted by a dashed magenta box

Fig. 3  Illustration of the domain of integration In at x0 of Bn
0
 . The primal CF and Hermite nodes are respec-

tively represented by green squares and black squares while the dual Hermite nodes are represented by blue 
circles. The CFM seeks the information located at (x0, tn) which is enclosed by the red circle. The intersec-
tion between the boundary and the local patch, that is the line connecting (x0, tn−1) to (x0, tn) , is denoted by a 
dashed purple line



 Communications on Applied Mathematics and Computation

1 3

part of the term Hn
0
 contains the Hermite-Taylor polynomials H∗(x, t) = pH

1
(x, t) and 

E∗(x, t) = pE
1
(x, t) , and it is integrated over the rectangular space-time region consisting 

of the direct product of the space interval SH
0,p

= [x1∕2, x3∕2] , which is the cell associated 
with the primal Hermite node x1 with the time interval [tn−1∕2, tn] . The space-time regions 
SH
0,d

× [tn−1, tn−1∕2] and SH
0,p

× [tn−1∕2, tn] are illustrated in Fig. 4. We then have

where cH is a given penalization function that is such that 0 < cH(Δx) ⩽ 1.
A similar procedure is used to define the local patch and the functional associated 

with the second CF node xNx
 at the time level tn.

4.1.1  The Linear System of Equations that Solves the Optimization Problem

At each CF node we must solve the following problem:

Here V = ℚk
(
S
i
× I

n

)
 is the space of polynomials of degree k. In this work, we use space-

time Legendre polynomials. In our one-dimensional example i = 0, 1 . Note that although 
n = 1,⋯ ,N

t
 , since the boundary does not change in time, there is in fact only one optimi-

zation problem for each CF node.
We formally compute the gradient of Jn

i
 with respect to the coefficients of the polyno-

mial approximations Hn
h,i

 and En
h,i

 , and use that it vanishes at a minimum to find a solution 
to the minimization problem (10). This leads to a linear system

(9)

H
n
0
(Hn

h,0
,En

h,0
) =

cH

2 ∫
tn−1∕2

tn−1
∫SH

0,d

((Hn
h,0

− H∗)2 + (En
h,0

− E∗)2)dxdt

+
cH

2 ∫
tn

tn−1∕2
∫SH

0,p

((Hn
h,0

− H∗)2 + (En
h,0

− E∗)2)dxdt,

(10)find (Hn
h,i
,En

h,i
) ∈ V × V such that (Hn

h,i
,En

h,i
) = argmin

v,w∈V

Jn
i
(v,w).

Fig. 4  Illustration of the domains of integration SH
0,d

× [tn−1, tn−1∕2] and SH
0,p

× [tn−1∕2, tn] of Hn
0
 . The pri-

mal CF and Hermite nodes are respectively represented by green squares and black squares while the dual 
Hermite nodes are represented by blue circles. The CFM seeks the information located at (x0, tn) which is 
enclosed by the red circle. The domains SH

0,d
× [tn−1, tn−1∕2] and SH

0,p
× [tn−1∕2, tn] , where we enforce the cor-

rection functions to match the Hermite-Taylor polynomials, is denoted by a dashed blue box
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where cn
i
 contains the coefficients of Hn

h,i
 and En

h,i
.

Again, since the boundary of the domain does not move, we have Mi = Mn
i
 , so the 

matrices Mi , their scaling and LU factorization are found in a pre-computation step. Con-
sequently, the only computations needed at each time step is the computation of the right-
hand side bn

i
 , followed by forward and backward substitutions to find cn

i
.

4.1.2  Summary of the Hermite‑CFM in 1‑D

Given the numerical solution on the primal mesh at tn−1 , the algorithm of the Hermite-
Taylor CFM to evolve the numerical solution at tn is: 

 (i) update the numerical solution on the dual mesh at tn−1∕2 using the Hermite-Taylor 
method and store the Hermite-Taylor polynomials needed for the CFM;

 (ii) update the numerical solution on the primal Hermite node at tn using the Hermite-
Taylor method and store the Hermite-Taylor polynomials needed for the CFM;

 (iii) update the numerical solution at the CF nodes using the CFM by computing the 
right-hand sides bn

i
 and solve for cn

i
 . This is done independently for each i and can 

thus be done in parallel without any communication step.

4.2  The Hermite‑CFM in 2‑D

We only consider piecewise rectangular domains composed of straight lines between pri-
mal nodes. For higher dimensions, the spatial domain of a local patch is adapted depending 
on the geometry of the boundary and where the Hermite solution is available in the vicinity 
of its CF node while the time domain In remains the same. The spatial domain Si of a local 
patch needs to satisfy three constraints: 

 (i) the ith CF node must be inside;
 (ii) part of the boundary of the domain close to the ith CF node must be contained in it;
 (iii) it must contain the cells of the Hermite nodes closest to the ith CF node.

Examples of the spatial domains of local patches in 2-D that satisfy these constraints are 
shown in Figs. 5, 6, and 7. For simplicity, we omit the subscript associated with the CF 
node in the description of the local patches.

Let us first consider a CF node (xi, y0) along an edge as depicted in Fig.  5. In 
this case, the spatial domain of the local patch is S = [xi−1, xi+1] × [y0, y3∕2] while 
its intersection with the boundary of the domain, S ∩ �  , is the line connecting the 
points (xi−1, y0) and (xi+1, y0) . The spatial domains where we weakly enforce the Her-
mite solution are SH

d
= [xi−1, xi+1] × [y0, y1] over the time interval [tn−1, tn−1∕2] and 

SH
p
= [xi−1∕2, xi+1∕2] × [y1∕2, y3∕2] over the time interval [tn−1∕2, tn].
For a CF node located at a corner (x0, y0) as illustrated in Fig. 6, we have S = [x0, x3∕2]

×[y0, y3∕2] , SHd = [x0, x1] × [y0, y1] , and SH
p
= [x1∕2, x3∕2] × [y1∕2, y3∕2] . The intersection of S 

with the boundary is composed of the line connecting (x0, y0) to (x0, y3∕2) and that connect-
ing (x0, y0) to (x3∕2, y0).

Mn
i
cn
i
= bn

i
,
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As a last example, we consider the situation in Fig.  7 where a CF node is located at a 

reentrant corner (xi, yi) . We then have S = [xi−1, xi+3∕2] × [yj−1, yj+3∕2] . The spatial domain 

where the Hermite solution is enforced SH
d

 over the time interval [tn−1, tn−1∕2] is the union of 

[xi−1, xi+1] × [yj, yj+1] and [xi, xi+1] × [yj−1, yj] . The spatial domain where the Hermite solution 

is enforced SH
p

 over the time interval [tn−1∕2, tn] is the union of [xi−1∕2, xi+3∕2] × [yj+1∕2, yj+3∕2] 
and [xi+1∕2, xi+3∕2] × [yj−1∕2, yj+1∕2] . The intersection between the spatial domain S of the local 
patch and the boundary is composed of the line connecting (xi, yj−1) to (xi, yj) and that connect-
ing (xi−1, yj) to (xi, yj).

Let us now consider Maxwell’s equations in three dimensions (3-D) and seek poly-
nomial approximations of the magnetic field and the electric field in each local patch, 

Fig. 5  Illustration of a two-dimensional local patch for a bottom edge CF node. The left and right plots 
show respectively the spatial component of the local patch over the time intervals [tn−1, tn−1∕2] and 
[tn−1∕2, tn] . The primal CF and Hermite nodes are respectively represented by green squares and black 
squares while the dual Hermite nodes are represented by blue circles. The CFM seeks the information 
located at (xi, y0) , which is enclosed by the red circle. The spatial domain S of local patches is denoted by a 
dashed magenta box. The part of the boundary �  included in the local patch is represented by a dashed pur-
ple line. The spatial domains SH

d
 and SH

p
 where we enforce the correction functions to match the Hermite-

Taylor polynomials are denoted by a dashed blue box

Fig. 6  Illustration of a two-dimensional local patch for a bottom-left corner CF node. The left and right 
plots show respectively the spatial component of the local patch over the time intervals [tn−1, tn−1∕2] and 
[tn−1∕2, tn] . The primal CF and Hermite nodes are respectively represented by green squares and black 
squares while the dual Hermite nodes are represented by blue circles. The CFM seeks the information 
located at (x0, y0) , which is enclosed by the red circle. The spatial domain S of local patches is denoted by a 
dashed magenta box. The part of the boundary �  included in the local patch is represented by a dashed pur-
ple line. The spatial domains SH

d
 and SH

p
 where we enforce the correction functions to match the Hermite-

Taylor polynomials are denoted by a dashed blue box
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that is Hn
h,i

 and En
h,i

 for i = 0,⋯ ,N�  and n = 1,⋯ ,Nt . Here N�  is the total number of CF 
nodes. The first part of the functional (8) becomes

where �i = � h is the characteristic length of the spatial domain Si that depends on the mesh 
size h and 𝛽 > 0 . The second part of the functional Jn

i
 that weakly enforces the boundary 

conditions is either

for the boundary condition (2),

for the boundary condition (3) or

G
n
i
(Hn

h,i
,En

h,i
) =

𝓁i

2 ∫In
∫Si

((� �tH
n
h,i
+ ∇ × En

h,i
) ⋅ (� �tH

n
h,i
+ ∇ × En

h,i
)

+ (� �tE
n
h,i
− ∇ ×Hn

h,i
) ⋅ (� �tE

n
h,i
− ∇ ×Hn

h,i
)

+ (∇ ⋅ (�Hn
h,i
))2 + (∇ ⋅ (� En

h,i
))2)dxdt,

B
n
i
(En

h,i
) =

1

2 ∫In
∫
�∩Si

(n × En
h,i
− gE) ⋅ (n × En

h,i
− gE) dsdt

B
n
i
(Hn

h,i
) =

1

2 ∫In
∫
�∩Si

(n ×Hn
h,i
− gH) ⋅ (n ×Hn

h,i
− gH) dsdt

B
n
i
(Hn

h,i
,En

h,i
) =

1

2 ∫In
∫
�∩Si

(En
h,i
× n + Z n × (Hn

h,i
× n) − g)

⋅ (En
h,i
× n + Z n × (Hn

h,i
× n) − g) dsdt

Fig. 7  Illustration of a two-dimensional local patch for a reentrant corner CF node. The left and right 
plots show respectively the spatial component of the local patch over the time intervals [tn−1, tn−1∕2] and 
[tn−1∕2, tn] . The primal CF and Hermite nodes are respectively represented by green squares and black 
squares while the dual Hermite nodes are represented by blue circles. The CFM seeks the information 
located at (xi, yi) , which is enclosed by the red circle. The spatial domain S of local patches is denoted by a 
dashed magenta box. The part of the boundary �  included in the local patch is represented by a dashed pur-
ple line. The spatial domains SH

d
 and SH

p
 where we enforce the correction functions to match the Hermite-

Taylor polynomials are denoted by a dashed blue box
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for the boundary condition (4).
The final part of Jn

i
 that weakly enforces the correction functions to match the Her-

mite solution is given by

We then have the following problem statement:

for i = 0,⋯ ,N� and n = 1,⋯ ,Nt . Here

As in 1-D, we use that the gradient of the functional Jn
i
 with respect to the coefficients 

of the polynomial approximations Hn
h,i

 and En
h,i

 vanishes at a minimum to obtain a linear 
system of equations to solve. The dimension of the minimization problems is independ-
ent of the mesh size and the time step size, and is 3 (k + 1)3 in 2-D and 6 (k + 1)4 in 3-D. 
However, the number of minimization problems (N� + 1)Nt increases as the mesh size and 
the time step size diminish. Once the minimization problem is solved on a local patch, the 
electromagnetic fields and their space derivatives through order m are estimated at its CF 
node using Hn

h,i
 and En

h,i
.

Remark 3 The terms in Gn
i
 enforcing the residual of Maxwell’s equations (1) are scaled 

by �i to guarantee that all the terms in Gn
i
 and Bn

i
 behave in a similar way as the mesh 

size diminishes [21]. Let us assume that the correction functions are polynomials of 

degree k that leads to an accuracy of O(�k+1
i

) and that k = 2m . Using Hn
i
= H +O(�k+1

i
) 

and En
i
= E +O(�k+1

i
) in the functional Jn

i
 , we have that the terms in Gn

i
 and Bn

i
 behave as 

O(�2 k+5
i

) while the term in Hn
i
 scales as O(�2 k+6

i
) . Hence, the functional Jn

i
 is dominated by 

the boundary conditions and Maxwell’s equations as �i diminishes.

Remark 4 The number of matrices to construct can be further reduced depending on the 
geometry of the domain and the physical properties of the material � and � . As an exam-
ple, let us consider a two-dimensional geometry discretized with a Cartesian mesh with 
Δx = Δy . We also assume the boundary �  of the domain to coincide only with primal nodes. 
For problems with constant coefficients on a rectangular domain, the number of matrices is 
reduced to eight because the spatial domain Si of local patches on an edge translates along it. 
If reentrant corners are also considered, there is a maximum of twelve matrices to compute.

Remark 5 Assuming that the correction functions are polynomials of degree k that lead to 
an accuracy of O(�k+1

i
) , we then have k ⩾ 2m to preserve the accuracy of a (2m + 1) order 

Hermite-Taylor method. As was remarked for FDTD methods in [16], the CFM impacts 
the stability of the original method because of the Hermite-Taylor polynomials H∗ and 

H
n
i
((Hn

h,i
,En

h,i
) =

cH

2 ∫
tn−1∕2

tn−1
∫SH

i,d

((Hn

h,i
−H∗) ⋅ (Hn

h,i
−H∗) + (En

h,i
− E∗) ⋅ (En

h,i
− E∗)) dxdt

+
cH

2 ∫
tn

tn−1∕2
∫SH

i,p

((Hn

h,i
−H∗) ⋅ (Hn

h,i
−H∗) + En

h,i
− E∗) ⋅ (En

h,i
− E∗)) dxdt

(11)find (Hn
h,i
,En

h,i
) ∈ V × V such that (Hn

h,i
,En

h,i
) = argmin

v,w∈V

Jn
i
(v,w)

V =
{
v ∈

[
ℚk(Si × In)

]3}
.
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E∗ . Since a rigorous proof of the stability of the proposed method is out of reach for the 
moment, we investigate numerically its stability properties in Sect. 5.

5  Numerical Examples

In this section, we numerically investigate the stability of the proposed method and per-
form convergence studies in 1-D and 2-D.

5.1  Examples in 1‑D

Let us seek approximate solutions to Maxwell’s equations

in the domain � = [x
�
, xr] and the time interval I = [t0, tf ] . The initial conditions are 

H(x, t0) = a(x) and E(x, t0) = b(x) , and we focus on the boundary conditions E(x
�
, t) = g

�
(t) 

and E(xr, t) = gr(t) . Here a(x), b(x), g
�
(t) , and gr(t) are known functions.

In this subsection, we use the Hermite-Taylor CFM with 1 ⩽ m ⩽ 5 . We set the degree 
of the correction functions to be 2m . The CFM should not therefore impact the conver-
gence rate of the Hermite-Taylor method.

5.1.1  Stability

Let us first investigate the stability of the Hermite-Taylor CFM. We consider � = [0, 1] , 
and set � = 1 and � = 1 . The stability condition of the Hermite-Taylor method depends 
only on the largest wave speed and is given here by Δt < h , where h is the mesh size. 
As mentioned in Remark 5, the stability of the Hermite-Taylor method is impacted by the 
CFM because we use Hermite-Taylor polynomials H∗ and E∗ in the minimization problem 
(11). Although we do not have a rigorous proof of the stability of the Hermite-Taylor CFM, 
we provide numerical evidences of it by investigating the eigenvalues of the global matrix 
associated with the method.

Since Maxwell’s equations are a linear system of PDEs and assuming g
�
= gr = 0 , the 

proposed numerical method can be written as

where A is a square matrix of dimension 2 (Nx + 1) (m + 1) and Wn
p
 is a vector containing 

all the degrees of freedom on the primal mesh at time tn . A stable method should have all 
the eigenvalues of A inside the unit circle of the complex plane. In the following, we com-
pute numerically the eigenvalues of A and consider that the scheme is stable if the spectral 
radius �(A) of the matrix A is at most one with an error of O(10−10).

The left plot of Fig. 8 illustrates the absolute difference between one and the spectral 
radius of the matrix A, denoted �(A) , as a function of the mesh size for a CFL constant 
of 0.9, cH = 1 and various values of m. For m ⩽ 4 , we observe that the method is stable 
for a sufficiently small mesh size. In other words, the eigenvalues of A are moving inside 
the unit circle as the mesh is refined. This is expected since the terms in Hn

i
 impacting 

� �tH + �xE = 0,

� �tE + �xH = 0

Wn+1
p

= AWn
p
,
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the stability scale as O(�2 k+6
i

) while the other terms in Jn
i
 scale as O(�2 k+5

i
) . For m = 5 , 

we do not observe a clear improvement as the mesh size diminishes for the considered 
CFL constant. This motivates us to diminish the CFL constant and the value of cH to 
improve the stability of the Hermite-Taylor CFM.

The middle plot of Fig. 8 illustrates the absolute difference between one and �(A) as 
a function of the CFL constant for h =

1

80
 , cH = 1 and various values of m. We clearly 

have a stable method as the CFL constant diminishes.
The right plot of Fig. 8 illustrates the absolute difference between one and the spec-

tral radius of the matrix A as a function of cH for a CFL constant of 0.9, h =
1

80
 and 

various values of m. For all m, a smaller value of the penalization coefficient cH helps to 
obtain a stable method.

To give further evidences of that, Fig. 9 illustrates the absolute difference between 

one and �(A) as a function of the CFL constant for m = 5 , h ∈
{

1

20
,

1

100
,

1

250
,

1

500
,

1

750
,

1

1 000

}
 

and cH ∈
{
1,

1

10
,

1

100

}
 . A smaller penalization coefficient cH does not improve the stabil-

ity of the proposed method for coarser meshes. In these cases, we therefore need to 
lower the CFL constant.

Based on these results, the stability of the Hermite-Taylor CFM improves by reduc-
ing the CFL constant and the value of the penalization coefficient cH . Moreover, the sta-
bility of this method improves as the mesh size diminishes, which suggests that larger 
CFL constants could be used for finer meshes.

5.1.2  Condition Number of CFM Matrices

Let us now investigate the impact of h, cH , and the CFL constant on the condition number 
of the matrices Mi coming from the minimization procedure used in the CFM. Figure 10 
illustrates the maximum condition number of these matrices as a function of the mesh size, 
the CFL constant and the penalization parameter cH for various values of m. We observe 
that the condition number increases as the mesh size diminishes and, more precisely, scales 
as 1

h
 for all different settings. We also notice that the condition number first diminishes as 

the CFL constant decreases, then appears to stabilize at a constant. Finally, the condition 
number increases as cH diminishes and scales as 1

cH
 . Hence, an arbitrary small value of cH 

Fig. 8  Absolute difference between one and the spectral radius of the matrix A as a function of the mesh 
size, the CFL constant and the penalization parameter cH for various values of m. For the left plot, the CFL 
constant is set to 0.9 and cH = 1 . For the middle plot, the mesh size is h =

1

80
 and cH = 1 . For the right plot, 

the CFL constant is set to 0.9 and h =
1

80
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cannot be taken to avoid poorly conditioned matrices coming from the CFM. It is then 
preferable to diminish the CFL constant to obtain a stable method.

5.1.3  Accuracy

In the following, we use cH = 1 and k = 2m for all settings. We set the CFL constant at 0.9 
for m = 1 and m = 2 , 0.5 for m = 3 and m = 4 , and 0.25 for m = 5 . The computed spectral 
radius is maximum one up to an error of 10−12 for all considered mesh sizes.

Let us now verify the convergence order of the proposed method. We consider a domain 
� = [

1

3
,
4

3
] , a time interval I = [0, 1] , � = 1 , and � = 1 . We set the initial and boundary data 

so find that the solution to the problem is

Figure 11 shows how the errors follow the expected (2m + 1) rates of convergence.

(12)
{

H(x, t) = sin(250 x) sin(250 t),

E(x, t) = cos(250 x) cos(250 t).

Fig. 9  Absolute difference between one and the spectral radius of the matrix A as a function of the CFL 
constant for m = 5 , and various mesh sizes and values of cH . The left, middle, and right plots are respec-
tively for cH = 1 , cH =

1

10
 , and cH =

1

100

Fig. 10  Maximum condition number of the matrices coming from the CFM as a function of the mesh size, 
the CFL constant and the penalization parameter cH for various values of m. For the left plot, the CFL con-
stant is set to 0.9 and cH = 1 . For the middle plot, the mesh size is h =

1

80
 and cH = 1 . For the right plot, the 

CFL constant is set to 0.9 and h =
1

80
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5.2  Examples in 2‑D

Let us consider the transverse magnetic ( TMz ) mode. We seek approximate solutions to 
Maxwell’s equations

in the domain 𝛺 ⊂ ℝ2 and the time interval I with initial conditions for Hx , Hy , and Ez . The 
boundary conditions are either

 or

We consider two geometries of the domain, that is a square � = [
1

3
,
4

3
] × [

1

6
,
7

6
] and one 

with reentrant corners, which is named cross domain and is illustrated in Fig. 12.
We set k = 2m and cH = 1 . The CFL constant is 0.9 for m = 1 , 0.5 for m = 2 , and 0.25 for 

m = 3 . In the following, we numerically investigate the stability of the Hermite-Taylor CFM 
and perform convergence studies for both geometries.

5.2.1  Stability

Since the total number of degrees of freedom on the primal mesh in 2-D, given by 
3 (Nx + 1) (Ny + 1) (m + 1)2 where Nx and Ny are the number of cells in respectively the x 
and y directions, is very large, we cannot compute the spectral radius of the matrix A for small 

(13)

⎧
⎪⎪⎨⎪⎪⎩

� �tHx + �yEz = 0,

� �tHy − �xEz = 0,

� �tEz − �xHy + �yHx = 0,

�xHx + �yHy = 0

(14)Ez = gE,

(15)nx Hy − ny Hx = gH

(16)
[
−ny Ez + Z ny (ny Hx − nx Hy)

nx Ez − Z nx (ny Hx − nx Hy)

]
= g.

Fig. 11  Convergence plots in the 
maximum norm for a standing 
mode problem using the Hermite-
Taylor CFM with different values 
of m in 1-D. Here U = [H,E]T
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mesh sizes, as in 1-D. To provide numerical evidences of the stability of the proposed method, 
we therefore compute the maximum norm of the electromagnetic fields over 10 000 time steps 
using the trivial solution, but with initial data, that is the electromagnetic fields and their deriv-
atives through order m, to be random numbers in ] − 10 �M , 10 �M[ . Here �M is the machine 
precision. We set � = 1 and � = 1 . Figure 13 illustrates the evolution of the maximum norm 
of the electromagnetic fields using different values of m and boundary conditions for the cross 
domain and different mesh sizes.

These results suggest that the method is stable.

5.2.2  Accuracy

For the convergence studies, we consider the time interval I = [0, 1] , and set � = 1 and � = 1 . 
The initial conditions and boundary conditions are chosen in such a way that the solution is 
given by

with � = 20 . Figure 14 illustrates convergence plots for different values of m, boundary 
conditions and geometries in 2-D. As expected, we observe a (2m + 1) rate of convergence 
in the maximum norm for the Hermite-Taylor CFM.

Figure 15 illustrates convergence plots for the divergence-free constraint on the mag-
netic field. We observe a 2m rate of convergence as expected.

Let us now consider an initial Gaussian pulse on the electric field and PEC bound-
ary conditions, that is Ez = 0 , on all the boundary of the domain. The square domain 
� = [0, 1] × [0, 1] and the cross domain are considered with the time domain I = [0, 2] . 
The initial conditions are given by Hx = Hy = 0 and

Hx = −
1√
2
sin(� π x) cos(� π y) sin(

√
2� π t),

Hy =
1√
2
cos(� π x) sin(� π y) sin(

√
2� π t),

Ez = sin(� π x) sin(� π y) cos(
√
2� π t)

Ez = e
−

r2

2 �2 .

Fig. 12  Geometry of a cross 
domain in 2-D
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Here r2 = (x − 0.5)2 + (y − 0.5)2 and � = 0.035 . We set � = 1 and � = 1.
To our knowledge, there is no known analytic solution for this problem. Hence, we 

perform self-convergence studies. The reference solution U∗ = [H∗
x
,H∗

y
,E∗

z
]T is com-

puted using the seventh-order Hermite-Taylor CFM with h =
1

800
 . We use meshes with 

h =
{

1

25
,

1

50
,

1

100
,

1

200
,

1

400

}
 , so all nodes used in the coarser meshes are also part of the refer-

ence solution mesh.
Figure  16 illustrates the self-convergence plots for the square domain. We obtain the 

expected (2m + 1) order of convergence for the electromagnetic fields, while a 2m order of 
convergence is observed for the magnetic field divergence. The reference electromagnetic 
fields at the final time are shown in Fig. 17.

Figure  18 illustrates the self-convergence plots for the cross domain. The numerical 
solution does not convergence in the maximum norm. These results are explained by the 
reentrant corners in the cross domain. In this setting, the solution has a singular part that 

Fig. 13  Evolution of the maximum norm of the numerical solution for different values of m and boundary 
conditions using the cross domain in 2-D. The left, middle, and right columns are respectively for m = 1 , 
m = 2 , and m = 3 . The top, middle, and bottom rows are for the boundary conditions (14), (15), and (16). 
Here U = [H

x
,H

y
,E

z
]T
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Fig. 14  Convergence plots in the maximum norm for a standing mode problem using for different values of 
m, boundary conditions and geometries in 2-D. The left, middle, and right columns are respectively for the 
boundary conditions (14), (15), and (16). The top and bottom rows are for the square and cross domains. 
Here U = [H

x
,H

y
,E

z
]T

Fig. 15  Convergence plots of the divergence of the magnetic field in the L2 norm for a standing mode prob-
lem using for different values of m, boundary conditions and geometries in 2-D. The left, middle, and right 
columns are respectively for the boundary conditions (14), (15), and (16). The top and bottom rows are for 
the square and cross domains. Here H = [H

x
,H

y
]T
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hinders the performance of the numerical method [3]. The reference solution of the cross 
domain is shown in Fig. 19, where strong variations in the magnetic field are observed at 
the reentrant corners.

As a final numerical example, we consider a variable coefficients problem. In this situa-
tion, we use a manufactured solution given by

with �(x, y) = sin(5 π x y) + 2 and �(x, y) = 2 ex y . Note that source terms were considered 
in Maxwell’s equations (13). We consider the cross domain and the time interval I = [0, 1] . 
We enforce impedance boundary condition (16). Figure 20 illustrates the convergence plots 
for the electromagnetic fields and the divergence of the magnetic field for different values 
of m.

For m = 1 , we observe a lower rate of convergence than expected. Based on previous 
numerical examples and the convergence of the magnetic field divergence, finer meshes 

Hx = − x e−x y sin(2 π t),

Hy = y e−x y sin(2 π t),

Ez = sin(2 π x y) cos(2 π t)

Fig. 16  Self-convergence plots for a Gaussian pulse problem using for different values of m and 
the square domain in 2-D. The left and right plots are respectively for the error on the electromagnetic 
fields in the maximum norm and the error on the divergence of the magnetic field in the L2 norm. Here 
U = [H

x
,H

y
,E

z
]T and H = [H

x
,H

y
]T

Fig. 17  The components Hx , Hy , and Ez for a Gaussian pulse problem using a square domain with the sev-

enth-order Hermite-Taylor CFM and h =
1

800
 at the final time
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should exhibit the expected order of convergence. As for m = 2 , we obtain the expected 
convergence order for the electromagnetic fields and the divergence-free constraint on the 
magnetic field. Finally, the error on the electromagnetic fields with m = 3 is already very 
low for coarser meshes, making it hard to observe the seventh-order convergence of the 
method, while a clear sixth-order convergence is observed for the divergence of the mag-
netic field.

6  Conclusion

In this work, we have proposed a new method to handle boundary conditions for the Her-
mite-Taylor method for first order hyperbolic problems based on the CFM. Our method 
relies on a functional to be minimized that is a square measure of the residual of Maxwell’s 
equations, the boundary conditions, and the polynomial approximations of the electromag-
netic fields coming from the Hermite-Taylor method. Once the minimization problems are 
solved, the information needed on the boundary, that is both electromagnetic fields and 

Fig. 18  Self-convergence plots for a Gaussian pulse problem using for different values of m and the 
cross domain in 2-D. The left and right plots are respectively for the error on the electromagnetic 
fields in the maximum norm and the error on the divergence of the magnetic field in the L2 norm. Here 
U = [H

x
,H

y
,E

z
]T and H = [H

x
,H

y
]T

Fig. 19  The components Hx , Hy , and Ez for a Gaussian pulse problem using a cross domain with the sev-

enth-order Hermite-Taylor CFM and h =
1

800
 at the final time



 Communications on Applied Mathematics and Computation

1 3

their space derivatives through order m, are computed. Numerical examples suggest that 
the Hermite-Taylor CFM is stable under a loose CFL constant and the value of the penali-
zation coefficient. Convergence rates of the Hermite-Taylor CFM have been verified in 1-D 
and 2-D with different boundary conditions and geometries of the domain. Future work 
will focus on embedded boundary and interface problems.
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