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Abstract
In this paper, we study systems of conservation laws in one space dimension. We prove that 
for classical solutions in Sobolev spaces Hs , with s > 3/2, the data-to-solution map is not 
uniformly continuous. Our results apply to all nonlinear scalar conservation laws and to 
nonlinear hyperbolic systems of two equations.
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1 Introduction

In 1975, Kato [11] studied the following system of symmetric hyperbolic equations:

and showed the existence, uniqueness, and continuous dependence of solutions on the ini-
tial data using a semigroup approach. This approach for proving the well-posedness for 
partial differential equations (PDEs) has been shown to be applicable to a wide variety 
of Cauchy problems. However, the limitation of using a general approach for a particular 
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problem is that one may not find the optimal results for a particular PDE. For example, the 
Korteweg-de Vries (KdV) equation

is well-posed in the Sobolev space Hs(ℝ) for s > −3∕4 (Colliander et al. [4]). This result 
required the advent of Bourgain spaces [2]; indeed Kato’s approach was useful only in 
showing the well-posedness for s > 3∕2.

One of the deficiencies of the semigroup approach concerns the smoothness 
of the data-to-solution map. The semigroup approach yields only that the map 
H

s ∋ u0 ↦ u ∈ C([0, T]; Hs) is continuous, even if the map is actually Lipschitz or C1 , 
as in the case of the KdV equation. This is an artifact of the generality of the approach. 
In an appendix, Kato [11] showed that for Burgers’ equation

the data-to-solution map is not Hölder continuous for any Hölder exponent. Kato’s method 
is enlightening, and we now review his argument briefly.

Classical ( Hs , for s ∈ ℤ with s ⩾ 2 ) solutions to Burgers’ equation satisfy the implicit 
formula

For each 𝜖 > 0 and 𝛼 > s − 1∕2 , Kato considered the two pieces of initial data

where �(x) is a smooth bump function equal to 1 for ∣ x ∣⩽ 2 . Using the implicit formula, 
the difference between the solutions u and v can be estimated for 0 < x − tu < 1 by

Then, one takes s derivatives and uses the implicit formula for the solution again to find

where the dots indicate lower order terms. After taking the L2 norm of this difference, the 
contribution of the leading term yields

Since ��u0 − v0
��Hs = �‖�‖Hs and 𝛼 > s − 1∕2 was arbitrary, this exponent can be made 

arbitrarily small. Hence, for every � ∈ (0, 1] , there exist initial data u0, v0 ∈ Hs such that for 
small t > 0,

This leaves the following open  questions. 

 (i) Is the lack of the Hölder continuity in the data-to-solution map a general property 
of nonlinear equations?

 (ii) Is the data-to-solution map even uniformly continuous?

ut + uxxx +
1

2
uux = 0

ut + uux = 0,

u(x, t) = u0(x − tu).

u0(x) = (� +max{x, 0}�)�(x), v0(x) = max{x, 0}��(x),

u(x, t) − v(x, t) = u0(x − tu) − v0(x − tv) = � + (x − tu)� − (x − tv)� .

�s
x
u(x, t) − �s

x
v(x, t) = C(�, s)

[
(x − �t)�−s − (x)�−s

]
+⋯ ,

‖u(t) − v(t)‖Hs ⩾ C(�, s, t)��−s+1∕2.

‖u(t) − v(t)‖Hs ⩾ ct���u0 − v0
���Hs .
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In 2005, Koch and Tzvetkov [12] studied the Cauchy problem for the Benjamin-Ono (BO) 
equation

where H is the Hilbert transform. It was known that the BO equation is well-posed in Hs , 
s ⩾ 1 [14]. Using high-frequency initial data, Molinet et al. [13] showed that the data-to-
solution map is not C2 . Koch and Tzvetkov showed that the data-to-solution map is not 
uniformly continuous. The interesting innovation they made was that they introduced a pair 
of low-high frequency approximate solutions:

where � is a cutoff function to ensure u�,n
ap

∈ Hs(ℝ) and the pair is given by � = 1 and 
� = −1 . They then took advantage of the nonlinear interaction in ut + uux . Himonas et al. 
[6], and Himonas and Kenig [5] used the same method, low-high frequency approximate 
solutions of the form

to prove non-uniform dependence for the Camassa-Holm (CH) equation in Hs , s > 3∕2 . In 
the non-periodic case, they introduced suitable cutoff functions similar to those of Koch 
and Tzvetkov. Then, in 2010, Himonas and Misiolek [7] discovered that the low-high fre-
quency functions

are exact solutions to the incompressible Euler equations on � 2 (the periodic case). This 
enabled them to prove directly that the data-to-solution map is not uniformly continu-
ous. This result extends to the non-periodic case using cutoff functions, and to higher 
dimensions.

After these advances, the answers to the above questions are clear. There is a general 
class of equations for which the Cauchy problem is well-posed, and yet the data-to-solu-
tion map is not smoother than continuous. Several authors have since applied the method 
of low-high frequency approximate solutions to other special equations, first in Sobolev 
spaces, and then in Besov spaces (see [8, 9, 15, 16] and the references there). However, 
a theorem which can be applied to a general class of equations is elusive. Indeed, each 
of these results appears to be tailored carefully to both the function space and the PDE in 
question. The precise nonlinearity appears to be important in the construction of the par-
ticular approximate solutions considered. An approach applicable to a variety of equations 
seemed out of reach. This is the question we are answering in part in this paper.

We consider the data-to-solution map for nonlinear hyperbolic conservation laws 
in one space dimension. We prove for scalar equations and for systems of two equa-
tions that the data-to-solution map is not uniformly continuous in Sobolev spaces 
H

s ∋ u0 ↦ u ∈ C([0, T]; Hs) . Our first result is for periodic solutions ( x ∈ �).

Theorem  1 The data-to-solution map for the Cauchy problem ut + f �(u)ux = 0 , f ∈ C∞ , 
u(x, 0) = u0(x) on �  , with u0 ∈ Hs , s > 3∕2 , is not uniformly continuous in Hs.

ut + Huxx + uux = 0,

u�,n
ap

(t, x) =
[
�

n
+

1

ns+�∕2+1∕2
cos

(
nx + �t − n2t

)]
�

(
x

n1+�

)
,

u�,n
ap

(t, x) =
�

n
+ n−s cos(nx − �t),

u�,n(t, x, y) =
(
�

n
+ n−s cos (ny − �t),

�

n
+ n−s cos(nx − �t)

)



492 Communications on Applied Mathematics and Computation (2024) 6:489–500

1 3

The same result holds for data on the real line.

Theorem  2 The data-to-solution map for the Cauchy problem ut + f �(u)ux = 0 , f ∈ C∞ , 
u(x, 0) = u0(x) on ℝ , with u0 ∈ Hs , s > 3∕2 , is not uniformly continuous in Hs.

Our method applies to nonlinear systems of two conservation laws, using Riemann 
invariants, but cannot (in general) be extended to systems of three or more equations; how-
ever, our results hold for the equations of compressible gas dynamics.

Unlike the proof for the BO equation and those which follow it, our method does not 
require the construction of approximate solutions tailored to the particular nonlinear PDE. 
Rather, our approach is to use the low-high frequency initial data, and the implicit for-
mula for classical solutions to conservation laws along the lines of Kato’s approach. Our 
approach does not directly extend to nonlocal perturbations of a conservation law, such as 
the BO or CH equation.

This result has implications for the numerical approximation of solutions to these PDEs. 
The accuracy, stability, and convergence for particular numerical methods have been 
proved for many classes of equations, including hyperbolic conservation laws and for weak 
solutions (for example, using discontinuous Galerkin methods [3, 10]). However, special 
care needs to be taken for nonlinear problems. Indeed, our result shows that even for exact 
solutions, one cannot find an estimate in Sobolev or Ck spaces on the difference between 
two solutions u, v with slightly different initial data u0, v0 . Our result does not preclude the 
possibility that estimates can be found using weaker topologies. On the other hand, these 
results show that uniform dependence in Hs does not hold for conservation laws in more 
than one space dimension.

The paper is organized as follows. In Sect. 2, we prove the data-to-solution map is not 
uniformly continuous for classical solutions of scalar conservation laws under the Hs norm. 
Then in Sect. 3, we extend the results to systems of two equations.

2  Classical Solutions to Scalar Conservation Laws

We consider the Cauchy problem

where x ∈ �  or ℝ and u0 ∈ Hs , s > 3∕2 ; we assume f ∈ C∞ in a neighborhood of 0. Before 
we begin, we make some inessential normalizations. First, if we are interested in data near 
a value ū , it is translated to the origin by u ↦ u − ū . We may also assume that f �(0) = 0 
by making a change of coordinates x ↦ x − f �(0)t . Then, since f is smooth, there is a posi-
tive integer m such that f �(u) = um +O(um+1) . In the case of Burgers’ equation, m = 1 and 
f �(u) = u . We first show all of the details in the periodic case; then we show the changes 
necessary to deal with the non-periodic case.

By the method of characteristics, one can show that the solution satisfies the implicit 
relation

{
ut + f �(u)ux = 0,

u(x, 0) = u0(x),

u(x, t) = u0
(
x − tf �(u(x, t))

)
.
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From the ODE existence and uniqueness theorem, if the initial data are C1 and f is C2 , there 
exists a unique solution to the above implicit formula. Moreover, the map u0 ↦ u is con-
tinuous. We will show that this map is not uniformly continuous. We begin by recalling a 
size and lifespan estimate for classical solutions, proved using induction.

Lemma 1 If u0 ∈ Ck and f ∈ Ck+1 , then u ∈ Ck and there exists a T, 0 < T <
1

−2𝜏
, where 

𝜏 = min
x,y

{u�
0
(x)f ��(u0(y))} < 0 and a C = C(f , k) , such that for 0 < t < T ,

Proof From the implicit relation, we see that ‖u‖L∞ ⩽ ��u0��L∞ . Now differentiate the 
implicit formula to find

Solve for ux to obtain

We see that the denominator is bounded below by 1/2 for t < 1

−2𝜏
 since f ��(⋅) is bounded 

and u is bounded by the initial data. Continue differentiating the implicit formula for u to 
obtain 

where R is composed of derivatives of u0 , f, and u, where the maximum number of deriva-
tives of u0 is n, the maximum number of derivatives of f is n + 1 and the maximum number 
of derivatives of u is n − 1 . By assumption, these terms are bounded, and after solving for 
�n
x
u(x, t) , we find

From here we see that the result follows by induction on n.

Remark 1 Notice that the time interval of the existence depends upon the C1 norm of u0 and 
the C2 norm of f, not the Ck norm of u0 , regardless of the space in which the initial data and 
solution are measured.

Remark 2 The result also holds if the Ck norm is replaced with the Hs norm, for s > 3∕2.

We take the initial data u�
0
(x) = v�(x, 0) , where

with � = 1 or 0, and we denote by u� the corresponding solution to the conservation law. 
Note that ‖v�‖Hk ≈ �k−s + �−1∕m.

‖u(t)‖Ck ⩽ C��u0��Ck .

ux(x, t) = u�
0

(
x − tf �(u(x, t))

)[
1 − tf ��(u(x, t))ux(x, t)

]
.

ux(x, t) =
u�
0

(
x − tf �(u(x, t))

)
1 + tu�

0
(x − tf �(u(x, t)))f ��(u(x, t))

.

𝜕n
x
u(x, t) = u�

0

(
x − tf �(u(x, t))

)[
1 − tf ��(u(x, t))𝜕n

x
u(x, t)

]
+ R, 1 < n ⩽ k,

�n
x
u(x, t) =

u�
0

(
x − tf �(u(x, t))

)
+ R

1 + tu�
0
(x − tf �(u(x, t)))f ��(u(x, t))

.

v�(x, t) =
�

�1∕m
+

1

�s
cos(�x − �t)
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Proof of Theorem 1 We will show the following three properties; these imply that the data-
to-solution map is not uniformly continuous. 

 (i) For � = 0, 1 , and small t > 0 , lim
�→∞

‖u�(t) − v�(t)‖Hs = 0.

 (ii) lim
�→∞

‖‖‖u
1
0
− u0

0

‖‖‖Hs
= 0.

 (iii) lim inf
�→∞

‖‖‖v
1 − v0

‖‖‖Hs
⩾ ct for t > 0.

Proof of (i). We compute u� − v� and obtain

Differentiating, we find for integers k ⩽ s,

In the last equation, we introduced the notation O(�k−1) . We say a function g(�) is O(�k−1) 
if there exists a C ∈ ℝ such that lim

�→∞
∣g(�) ∣∕�k−1 ⩽ C . We also used the facts that f ∈ C∞ 

in a neighborhood of 0 and for every k ∈ ℕ , u ∈ Ck ∩ Hk with ‖u‖Ck ≈ �k−s and 
‖u‖Hk ≈ �k−s for t ∈ [0, T] . We use the notation SC(x) to denote either sin(x) or cos(x) . 
Using the identities

we conclude

Now we use the assumption that f �(u) = um +O(um+1) to find that the argument of the first 
term in (1) becomes (up to a factor of 2)

u� − v� =
1

�s

[
cos

(
�x − �tf �(u�)

)
− cos (�x − �t)

]
.

�x(u
� − v�) =

−1

�s

[
� sin

(
�x − �tf �(u�)

)[
1 − tf ��(u�)u�

x

]
− � sin (�x − �t)

]
,

�2
x
(u� − v�) =

−1

�s

[
�2 cos

(
�x − �tf �(u�)

)[
1 − tf ��(u�)ux

]2

−� sin
(
�x − �tf �(u�)

)[
tf ���(u�)

(
u�
x

)2
+ tf ��(u�)u�

xx

]

−�2 cos (�x − �t)
]
,

⋯

∣�k
x
(u� − v�) ∣ =

1

�s
∣�kSC

(
�x − �tf �(u�)

)[
1 − tf ��(u�)ux

]k

− �kSC(�x − �t) +O
(
�k−1

)
∣

=
1

�s
∣�kSC

(
�x − t�f �(u�)

)
− �kSC(�x − �t) +O

(
�k−1

)
∣.

SC(a) − SC(b) = ±2SC
(
a + b

2

)
sin

(
a − b

2

)
,

(1)∣�k
x
(u� − v�) ∣ ⩽

2

�s−k
sin

(
�t − �tf �(u�)

2

)
+O

(
�−1

)
.
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Therefore, for large � , and using sin(x) ≈ x for x ≈ 0 , (1) becomes

Computing the Ḣk norm of the difference we see that

where

for k ⩽ s . In particular, for integer values of s,

In the case s ∉ ℤ , we write s = ⌊s⌋ + � , � ∈ (0, 1) , and s > 3∕2 . Then in the case 
s ∈ (3∕2, 2) , from estimate (2), we have

Using the solution size estimate found in Lemma 1, we obtain for k ⩾ s,

Now we use real interpolation of Sobolev spaces [1] to find

Since � ∈ (1∕2, 1) , the exponent is negative and the difference tends to zero as � → ∞.
If 2 ⩽ ⌊s⌋ < s < ⌊s⌋ + 1 , then by interpolation,

which again tends to zero as � → ∞.
Proof of (ii). The fact that lim

�→∞

‖‖‖u
1
0
− u0

0

‖‖‖Hs
= 0 follows immediately from u1

0
− u0

0
=

1

�1∕m
.

Proof of (iii). Using the difference of cosines, we compute

Using ‖sin(�x − a)‖Hs ≈ �s, we have

and the theorem now follows from taking the limit � → ∞.

�t − �t
([
u�(�x − �u�t)

]m
+⋯

)
≈ t

(
� − �

(
�

�1∕m
+

cos(�x −⋯)

�s

)m)

= −t

m∑
j=1

(
m

j

)
�m−j[cos(�x −⋯)]j

�j(s−1∕m)
.

∣ 𝜕k
x
(u𝜔 − v𝜔) ∣ ≲ O

(
𝜆k−s

)
O
(
𝜆−s+1∕m

)
+O

(
𝜆k−s

)
O
(
𝜆1−ms

)
+O

(
𝜆−1

)
.

(2)
���𝜕

k
x
(u𝜔 − v𝜔)

���L2 ⩽
√
2π

���𝜕
k
x
(u𝜔 − v𝜔)

���L∞ ≲ 𝜆𝛼 ,

𝛼 = max {k − 2s + 1∕m, 1 + k − (m + 1)s,−1} < 0

lim
�→∞

‖‖�sx(u� − v�)‖‖L2 → 0.

‖u𝜔 − v𝜔‖H1 ≲ 𝜆−2𝛽 .

‖u𝜔 − v𝜔‖Hk ≲ ��u𝜔0 ��Hk + ��v𝜔0 ��Hk ≈ 𝜆k−s.

‖u𝜔 − v𝜔‖Hs ≲ ‖u𝜔 − v𝜔‖1−𝛽
H1

‖u𝜔 − v𝜔‖𝛽
H2

≈ 𝜆−2𝛽+2𝛽
2+2𝛽−𝛽s = 𝜆𝛽(2𝛽−s) = 𝜆𝛽(𝛽−1).

‖u𝜔 − v𝜔‖Hs ≲ ‖u𝜔 − v𝜔‖1−𝛽
H⌊s⌋‖u𝜔 − v𝜔‖𝛽

H⌊s⌋+1 ≈ 𝜆1+⌊s⌋+𝛽s−2s = 𝜆(1−𝛽)(1−s),

‖‖‖v
1 − v0

‖‖‖Hs
⩾
‖‖‖‖
1

�s
sin

(
t

2

)
sin

(
�x −

t

2

)‖‖‖‖Hs

−
‖‖‖‖

1

�1∕m

‖‖‖‖Hs

.

‖‖‖v
1 − v0

‖‖‖Hs
⩾ c sin

(
t

2

)
−

1

�1∕m
,
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One may notice that our computations did not rely on the Sobolev norm. Indeed, one 
may replace the Sobolev space with the classical space Ck(� ) in the above computations 
and obtain the following result.

Corollary 1 For all integers k ⩾ 1 , the data-to-solution map is not uniformly continuous 
from Ck(� ) to C([0, T]; Ck(� )).

2.1  The Non‑periodic Case

The case when x ∈ ℝ is similar, though some technical adjustments must be made to the 
approximating functions v�(x, t) . We let 0 ⩽ �(x) be a smooth function with support in 
[−2, 2] , and equal to 1 when x ∈ [−1, 1] . Since we see that the degree m of the nonlinearity 
in f does not matter, we will assume for the sake of simplicity that m = 1 , and that we have 
f �(u) = u +O(u2) . For a large integer � and � = 1, 0 , we set

with q ∈ (0, 1) being a small number, and we take u�
0
(x) = v�(x, 0) . The Hk norm of the 

solution is bounded by

where we used that for any s ⩾ 0 , ‖�(⋅�−q)‖Hk ≈ �q∕2‖�‖Hk , and for any constant a ∈ ℝ,

Proof of Theorem 2 Proceeding as we did in the periodic case, we will show the following 
three properties. 

 (i) For � = 0, 1, and small t > 0 , lim
�→∞

‖u�(t) − v�(t)‖Hs = 0.
 (ii) lim

�→∞

‖‖‖u
1
0
− u0

0

‖‖‖Hs
= 0.

 (iii) lim inf
�→∞

‖‖‖v
1 − v0

‖‖‖Hs
⩾ ct for t > 0.

Proof of (i). We compute u� − v� and obtain

v�(x, t) =
�

�
�

(
x

�q

)
+

1

�s+q∕2
�

(
x

�q

)
cos

(
�x − �t�

(
x

�q

))

‖u�(t)‖Hk ⩽
�‖�‖Hk

�1−q∕2
+ �k−s‖�‖Hk ,

�����
�

⋅

�q

�
cos (� ⋅ −a)

����Hk

≈ �k+q∕2‖�‖Hk .
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Differentiating, we find

We rearrange the terms as follows:

Since the derivatives of � are bounded, and since the L∞ norm of the solution u� is 
bounded, we obtain estimates of each of the six lines in this equation as

u� − v� =
�

�

[
�
(
�−qx − t�−qf �(u�)

)
− �(�−qx)

]

+
1

�s+q∕2

[
�
(
�−qx − t�−qf �(u�)

)
cos

(
�x − t�f �(u�)

)

−�(�−qx) cos (�x − �t�(�−qx))
]
.

�x(u
� − v�) =

�

�1+q

[
��
(
�−qx − t�−qf �(u�)

)(
1 − tf ��(u�)u�

x

)
− ��(�−qx)

]

+
1

�s+3q∕2

[
��
(
�−qx − t�−qf �(u�)

)(
1 − tf ��(u�)u�

x

)
cos

(
�x − t�f �(u�)

)

−��(�−qx) cos (�x − �t�(�−qx))
]

+
1

�s−1+q∕2

[
�
(
�−qx − t�−qf �(u�)

)
sin

(
�x − t�f �(u�)

)(
1 − tf ��(u�)u�

x

)

− �(�−qx) sin (�x − �t�(�−qx))
(
1 − �−q−1�t��(�−qx)

)]
.

(3)�x(u
� − v�) =

�

�1+q

[
��
(
�−qx − t�−qf �(u�)

)
− ��(�−qx)

]

(4)−
�tf ��(u�)u�

x

�1+q

[
��
(
�−qx − t�−qf �(u�)

)]

(5)

+
1

�s+3q∕2

[
��
(
�−qx − t�−qf �(u�)

)
cos

(
�x − t�f �(u�)

)

−��(�−qx) cos (�x − �t�(�−qx))
]

+
�t

�s+3q∕2

[
�
(
�−qx

)
sin

(
�x − �t�

(
�−qx

))
��
(
�−qx

))]

(6)−
tf ��(u�)u�

x

�s+3q∕2

[
��
(
�−qx − t�−qf �(u�)

)
cos

(
�x − t�f �(u�)

)]

(7)

+
1

�s−1+q∕2

[
�
(
�−qx − t�−qf �(u�)

)
sin

(
�x − t�f �(u�)

)

−�(�−qx) sin (�x − �t�(�−qx))
]

(8)−
tf ��(u�)u�

x

�s−1+q∕2

[
�
(
�−qx − t�−qf �(u�)

)
sin

(
�x − t�f �(u�)

)]
.
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Therefore, we can recognize that after differentiating k times, the terms with slowest decay 
in � are the terms which contributed to the fifth term, C�

�s−1
 . In other words, from line (7) 

above,

where 𝛼 > 0 and the L2 norm of P is bounded independent of � . We add and subtract

inside the brackets to obtain for �k
x
(u� − v�):

The term on the second line of (10) is bounded, since it is a shift:

For the first line of expression (10), we use the difference of cosines or sines to find

Using the implicit solution formula, the �t� cancels and we have the bound

where the dots represent a function of u� . From here, one can see that for large � , the L2 
norm of the first term of expression (10) also tends to zero at the rate �k−s−q.

The above argument is sufficient to conclude that for � = 0, 1, and small t > 0 , 
lim
�→∞

‖u�(t) − v�(t)‖Hs = 0 when s = k . When s is not an integer, the interpolation argument 
presented in the periodic case can be augmented without any adjustments. This proves the 
first property in the non-periodic case.

Proof of (ii). The fact that lim
�→∞

‖‖‖u
1
0
− u0

0

‖‖‖Hs
= 0 follows immediately from 

u1
0
− u0

0
= �(x∕�q)∕�.

Proof of (iii). Using the difference of cosines, we compute

���x(u� − v�)��L2 ⩽
�C�

�1+q∕2
+

�tC�,f

�1+q
‖u�‖H1 +

C�(1 + �t)

�s+q

+
tC�,f

�s+3q∕2
‖u�‖H1 +

C�

�s−1
+

tC�,f

�s−1+q∕2
‖u�‖H1 .

(9)

�k
x
(u� − v�) =

1

�s−k+q∕2

[
�
(
�−qx − t�−qf �(u�)

)
SC

(
�x − t�f �(u�)

)

−�(�−qx)SC(�x − �t�(�−qx))
]

+ �−�P
(
��,⋯ ,�[k], �xu

�,⋯ , �k
x
u�

)
,

�
(
�−qx − t�−qf �(u�)

)
SC(�x − �t�(�−qx))

(10)

1

�s−k+q∕2

[
�

(
x

�q
−

t

�q
f �(u�)

)(
SC

(
�x − t�f �(u�)

)
− SC

(
�x − �t�

(
x

�q

)))

+
(
�

(
x

�q
−

t

�q
f �(u�)

)
− �

(
x

�q

))
SC

(
�x − �t�

(
x

�q

))]

+ �−�P
(
��,⋯ ,�[k], �xu

�,⋯ , �k
x
u�

)
.

‖‖‖𝜑
(
𝜆−qx − t𝜆−qf �(u𝜔)

)
− 𝜑

(
𝜆−qx

)‖‖‖L2 ≲ 𝜆−1−q∕2.

SC
(
𝜆x − 𝜆f �(u𝜔)t

)
− SC

(
𝜆x − 𝜔t𝜑

(
x

𝜆q

))
≲ sin

(
1

2

(
𝜔t𝜑

(
x

𝜆q

)
− 𝜆f �(u𝜔)t

))
.

‖‖‖‖SC
(
𝜆x − 𝜆f �(u𝜔)t

)
− SC

(
𝜆x − 𝜔t𝜑

(
x

𝜆q

))‖‖‖‖∞ ≲
𝜔t2

2𝜆q
+⋯ ,
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Using the estimate 
‖‖‖‖�

(
x

�q

)
sin(�x)

‖‖‖‖Hs

≈ �s+q∕2, we have

This completes the proof of Theorem 2.

3  Systems of Conservation Laws

All strictly hyperbolic genuinely nonlinear systems of two conservation laws in one space 
variable possess Riemann invariants, which satisfy transport equations. Classical solutions 
of the Riemann invariant equations correspond to classical solutions of the original conser-
vation laws. Since smooth initial data yield the existence of a smooth solution, locally in 
time, we may work completely with Riemann invariants, and write the system as

with � ≠ � . This is paired with the initial data z(x, 0) = z0 and w(x, 0) = w0 . We take the 
following steps. 

 (i) Translate the state variables (z,w) ↦
(
z − z0,w − w0

)
 , so that (0, 0) is a physical state.

 (ii) Scale the independent variables (x, t) ↦ (x + ct, kt) , so that �(0, 0) = 0 and 
�z(0, 0) = 1 . This can be done by the assumption of the genuine nonlinearity in the � 
characteristic. Since the two characteristics are interchangeable in this development, 
we need assume only that there is one genuinely nonlinear family1.

 (iii) Take the initial data w0 = 0 and z0 =
�

�
+

1

�
cos(�x).

 (iv) It is easy to see that one of the solutions is w(x, t) = 0.
 (v) The first equation is now                                    with ∣ g(z) ∣⩽ �z2.
 (vi) The arguments from the previous two sections now show that the data-to-solution 

map z0 ↦ z is not uniformly continuous in Hs.

When there are more than two equations, typically Riemann invariants do not exist, as the 
defining conditions lead to an overdetermined system. An example of a physical system lacking 
Riemann invariants is the system of three equations for compressible, ideal gas dynamics:

with E = u2∕2 + p∕(� − 1)� , with the density, velocity, and pressure, (�, u, p) , the state 
variables and � the ratio of specific heats. As is well known, classical solutions also satisfy 
conservation of entropy,

‖‖‖v
1 − v0

‖‖‖Hs
⩾
‖‖‖‖

1

�s+q∕2
�

(
x

�q

)
sin

(
1

2
t�
(
x

�q

))
sin

(
�x −

1

2
t�
(
x

�q

))‖‖‖‖Hs

−
‖‖‖‖
1

�
�

(
x

�q

)‖‖‖‖Hs

.

lim inf
�→∞

‖‖‖v
1 − v0

‖‖‖Hs
⩾ C sin

(
1

2
t
)
.

(11)
{

zt + �(z,w)zx = 0,

wt + �(z,w)wx = 0

(12)

⎧⎪⎨⎪⎩

�t + (�u)x = 0,

(�u)t +
�
�u2 + p

�
x
= 0,

(�E)t + (�uE + up)x = 0

1 There are situations where this fails, for example the system zt + wzx = 0 , wt + zwx = 0 , for which one 
conservation law system is the isentropic gas dynamics system with p(�) = P0 − �−3∕3.

zt + (z + g(z))zx = 0
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and also an entropy transport equation, St + uSx = 0 , which has S = const. as a solution. 
It is also straightforward to show that if one assumes the isentropic gas dynamics relation, 
p = A�� , then any solution of the first two equations in (12) satisfies the third. Thus, we 
may consider solutions of the first two equations of (12). The Riemann invariants for this 
system, with p = ��∕� , are z,w = u ∓ 2�(�+1)∕2∕(� + 1) . If we set u = −2�(�+1)∕2∕(� + 1) , 
so w = 0 , then the scalar equation zt + F(z)x = 0 displays non-uniform dependence on the 
initial data in a neighborhood of any constant density �0.
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