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Abstract
This paper investigates superconvergence properties of the direct discontinuous Galerkin 
(DDG) method with interface corrections and the symmetric DDG method for diffusion 
equations. We apply the Fourier analysis technique to symbolically compute eigenvalues 
and eigenvectors of the amplification matrices for both DDG methods with different 
coefficient settings in the numerical fluxes. Based on the eigen-structure analysis, we 
carry out error estimates of the DDG solutions, which can be decomposed into three 
parts: (i) dissipation errors of the physically relevant eigenvalue, which grow linearly with 
the time and are of order 2k for Pk (k = 2, 3) approximations; (ii) projection error from a 
special projection of the exact solution, which is decreasing over the time and is related 
to the eigenvector corresponding to the physically relevant eigenvalue; (iii) dissipative 
errors of non-physically relevant eigenvalues, which decay exponentially with respect 
to the spatial mesh size Δx . We observe that the errors are sensitive to the choice of the 
numerical flux coefficient for even degree P2 approximations, but are not for odd degree P3 
approximations. Numerical experiments are provided to verify the theoretical results.
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1  Introduction

In this paper, we investigate superconvergence properties of the direct discontinuous 
Galerkin (DDG) method with interface corrections (DDGIC) [19] and the symmetric DDG 
[28] method for linear diffusion equations.

The DDG methods are a class of discontinuous Galerkin (DG) methods for solving dif-
fusion problems. The original DDG method was proposed by Liu and Yan [18], where a 
numerical flux concept of (̂uh)x was introduced to approximate the solution’s spatial deriva-
tive ux at the element interface. Different from the local DG (LDG) method, where auxil-
iary variables are introduced for the solution’s spatial derivatives, and the original equation 
is rewritten as a first-order system, the DDG method is based on the direct weak formula-
tion of diffusion equations. The original DDG method suffers from the challenge of identi-
fying suitable coefficients for higher-order ( ⩾ 4 ) numerical fluxes and the accuracy loss on 
the nonuniform mesh. The DDGIC method proposed in [19] modified the original DDG 
method by adding interface correction terms to balance the solution and test function in the 
bi-linear form, which guarantees the optimal convergence and improves the capacity of the 
DDG method. It is the best solver so far for time-dependent diffusion equations. The sym-
metric DDG method [28] is another variation of the original DDG method by introducing 
the numerical flux for the derivative of the test function to carry out the L2(L2) error esti-
mate, resulting a more suitable solver for elliptic-type equations.

Superconvergence properties of DG and LDG methods for hyperbolic and parabolic 
problems have been intensively studied in the literature via different approaches, including 
treating the problem as an initial or boundary value problem [1–4, 16], establishing the 
negative norm estimate [14, 17, 27], introducing special projections to decompose the 
error and manipulating with test functions in the weak formulation [7, 8, 10–12, 22, 32, 
33], applying the Fourier analysis technique [13, 15, 24, 25, 31, 39], and constructing 
special correction functions [20, 21, 30], etc. In recent years, the superconvergence of the 
DDG methods was studied for diffusion equations. The authors in [6] proved that, under 
suitable choice of numerical fluxes, the DDG solution with Pk polynomial approximation 
is superconvergent of order k + 2 to the Gauss-Lobatto projection of the exact solution. 
The authors in [38] carried out the superconvergence of moment errors for DDGIC 
and symmetric DDG methods via the Fourier analysis approach for P2 polynomial 
approximations. The authors in [23] investigated the superconvergence properties of the 
original DDG method and its variations (DDGIC, symmetric and nonsymmetric DDG 
methods) via the Fourier analysis approach for both P2 and P3 approximations. It is worth 
mentioning that P3 case is more challenging for the Fourier type analysis.

The Fourier analysis is a powerful technique to study the stability and error estimates 
for DG methods, especially when standard finite element techniques can not be applied. 
Besides the superconvergence studies mentioned above, this technique was applied 
to provide a sufficient condition for the instability of “bad” schemes in [34] and to 
demonstrate the optimal convergence in [35–37], etc. Although the Fourier analysis is 
restricted to linear problems with periodic boundary conditions and uniform mesh, it can 
be used as a guidance to problems under general settings.

In this paper, we continue to study superconvergence properties of the DDGIC and 
symmetric DDG methods for one-dimensional linear diffusion equation by the Fourier 
analysis approach based on the eigen-structure of the amplification matrix. Our work is 
motivated by the superconvergence properties of DDG methods at shifted Lobatto 
points in [23] and is an extension of the superconvergence study via the eigen-structure 
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based the Fourier analysis for the DG and LDG methods [15] to DDG methods. We 
first choose basis functions as Lagrange polynomials based on shifted Lobatto points 
and rewrite DDG finite element methods as finite difference schemes. Then we carry 
out the Fourier analysis and symbolically compute eigenvalues and the corresponding 
eigenvectors of the amplification matrices of the DDGIC and symmetric DDG 
methods. We consider the coefficients in numerical fluxes with both settings of 
�1 ≠ 1

2k(k+1)
 and �1 =

1

2k(k+1)
 for Pk (k = 2, 3) polynomial approximations. We observe 

the following properties.

•	 The amplification matrices of the DDGIC and symmetric DDG methods are diago-
nalizable with k + 1 distinct eigenvalues, among which one is physically relevant 
and approximates the analytical wave propagation speed with the order of 2k in the 
dissipation error, while the others are non-physical and of order 1

Δx2
 with a negative 

real coefficient.
•	 The amplification matrices of both DDG methods have k + 1 corresponding eigen-

vectors. For �1 ≠ 1

2k(k+1)
 , the eigenvector corresponding to the physically relevant 

eigenvalue approximates the wave function with order k + 1 for P2 polynomial 
approximations, and with order k + 2 for P3 polynomial approximations. For 
�1 =

1

2k(k+1)
 , it approximates the wave function with order k + 2 for both P2 and P3 

polynomial approximations.

Following the eigen-structure analysis of amplification matrices, we establish error 
estimates of the DDGIC and symmetric DDG methods, which can be decomposed into 
three parts. The first part is the dissipation error of the physically relevant eigenvalue, 
which grows linearly with the time and is superconvergent of order 2k for Pk (k = 2, 3) 
with any admissible �1 . The second part is the projection error related to the 
eigenvector corresponding to the physically relevant eigenvalue. This part of error is 
decreasing over the time and is superconvergent of order k + 2 for P2 approximations 
with �1 =

1

12
 and for P3 approximations with any admissible �1 . The error degrades to 

optimal ( k + 1)-th order for P2 approximations with �1 ≠ 1

12
 . The third part is dissipa-

tive errors of non-physically relevant eigenvalues, which decay exponentially with 
respect to Δx . Therefore, the error between the numerical solution and the exact solu-
tion decreases with the time at the beginning, and is superconvergent of order k + 2 for 
P2 case with �1 =

1

12
 and P3 case with any admissible �1 , while it is only optimal of 

order k + 1 for P2 case with �1 ≠ 1

12
 . As time increases to O

(
1

Δxk−2

)
 for P2 approxima-

tions with �1 =
1

12
 and P3 approximations with any admissible �1 , or to O

(
1

Δxk−1

)
 (longer 

time simulation) for P2 approximations with �1 ≠ 1

12
 , the error grows linearly with the 

time, and is superconvergent of order 2k. We also provide an alternative way to check 
the long-time behaviour of the numerical solution. Numerical experiments are pro-
vided to demonstrate the theoretical results.

The rest of the paper is organized as follows. We briefly review the scheme formu-
lation of the DDGIC and symmetric DDG methods in Sect. 2. Section 3 is devoted to 
the superconvergence study of both DDG methods with the Fourier analysis procedure 
presented in Sect.  3.1, the eigen-structure analysis of amplification matrices carried 
out in Sect.  3.2, and error estimates shown in Sect.  3.3. Numerical experiments are 
presented in Sect. 4 to validate the theoretical results. Conclusions are given in Sect. 5.
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2 � DDGIC and Symmetric DDG Methods

In this section, we present the algorithm formulation of the DDGIC and symmetric DDG 
methods for the one-dimensional linear diffusion problem

with the initial condition u(x, 0) = sin x and the periodic boundary condition. The exact 
solution is

To define DDG methods for this model problem, we first uniformly divide [0, 2π] into N 
cells with the mesh size Δx = 2π

N
 . We denote the cell by Ij = [xj−1∕2, xj+1∕2] , where

and further denote the cell center by xj =
1

2

(
xj−1∕2 + xj+1∕2

)
 , for j = 1,⋯ ,N . The finite 

approximation space is defined by

where Pk(Ij) denotes the set of polynomials of degree up to k defined in the cell Ij.
For vh ∈ � k

h
 , we denote by v−

h
 and v+

h
 the left and right limits of vh at the cell interface, 

respectively, and denote the jump and average of vh at the cell interface as

Now we are ready to define DDGIC and symmetric DDG methods for (1).

2.1 � DDG Method with Interface Correction

Before introducing the DDGIC method for solving the model (1), we first review the original 
DDG method [18], which is defined as follows: find the solution uh ∈ � k

h
 , such that for any 

test function vh ∈ � k
h
 , we have

This weak formulation is obtained by multiplying both sides of the model (1) by test func-
tions in � k

h
 , and performing integration by parts in the cell Ij . (̂uh)x is the so-called numeri-

cal flux to approximate the derivative of the solution (uh)x at the cell interfaces x
j±

1

2

 , for 

j = 1,⋯ ,N , since uh ∈ � k
h
 is discontinuous at cell interfaces. (̂uh)x is uniquely defined at 

the cell interface as

which involves the jump of the numerical solution, the average of derivative, as well as the 
jump of even-th order derivatives at the cell interface, and is consistent to ux.

(1)ut − uxx = 0, x ∈ [0, 2π], t > 0

(2)u(x, t) = e−t sin x.

0 = x 1

2

< x 3

2

< ⋯ < x
N+

1

2

= 2π,

�
k
h
∶= {vh ∈ L2[0, 2π]∶vh|Ij ∈ Pk(Ij), j = 1,⋯ ,N},

(3)[[vh]] = v+
h
− v−

h
, {{vh}} =

v+
h
+ v−

h

2
.

(4)∫Ij

(uh)tvhdx − (̂uh)x(vh)
−

j+
1

2

+ (̂uh)x(vh)
+

j−
1

2

+ ∫Ij

(uh)x(vh)xdx = 0.

(5)(̂uh)x = �0
[[uh]]

Δx
+ {{(uh)x}} + �1Δx[[(uh)xx]] + �2(Δx)

3[[(uh)xxxx]] +⋯ ,
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Although there exists a large group of admissible coefficient pairs (�0, �1) that 
ensures the stability and convergence of the DDG method, it is challenging to identify 
suitable higher order numerical flux coefficients; see [18] for more details. To guarantee 
the optimal convergence and improve the capability of the DDG method, the DDGIC 
method [19] was thus introduced by adding interface correction terms to the original 
scheme (4) to balance the solution and test functions in the bi-linear form.

The DDGIC method for solving (1) is defined as follows: find the solution uh ∈ � k
h
 , 

such that for any test function vh ∈ � k
h
 , we have

where

The numerical flux is given by

involving only the jump of the solution, the average of the first derivative, and the jump of 
the second-order derivative. Here jumps of higher order ( ⩾ 4) derivatives are dropped off 
from (5).

With a suitable coefficient pair (�0, �1) , the DDGIC method was proved to be 
stable and optimal accurate in [19]. It is worth mentioning that for lower order 
piecewise constant ( k = 0 ) and linear ( k = 1 ) approximations, the second derivative 
jump term [[(uh)xx]] has no contribution to the numerical flux (7), and the DDGIC 
method degenerates to the classical interior penalty DG (IPDG) method [5, 29]. For 
higher approximations ( k ⩾ 2 ), the DDGIC method has a few advantages over the 
IPDG method. The DDGIC solution satisfies strict maximum principle with at least 
third order of accuracy [9], while only second order can be obtained for the IPDG 
method. The DDGIC solution is proved to be superconvergent on its approximation to 
the solution’s spatial derivative ux [38] with the Fourier analysis technique, while no 
such superconvergence result is observed for the IPDG method. In [23], the DDGIC 
method is superconvergent of order (k + 2) at shifted Lobatto points with both k = 2 and 
k = 3 polynomial approximations, while the IPDG method is superconvergent of order 
(k + 2) with P3 polynomial approximations. For P2 approximation, the IPDG method is 
superconvergent of order (k + 2) at the cell center, but is convergent with the optimal 
order of (k + 1) at the other two Lobatto points.

2.2 � Symmetric DDG Method

In this section, we present the symmetric DDG method [28], which is also a variation 
of the original DDG method. It introduces the concept of the numerical flux for the test 
function’s derivative (vh)x and is defined as follows: find the solution uh ∈ � k

h
 , such that 

for any test function vh ∈ � k
h
 , we have

(6)∫Ij

(uh)tvhdx − (̂uh)xvh
|||
j+

1

2

j−
1

2

+ ∫Ij

(uh)x(vh)xdx +
(vh)

−
x

2
[[uh]]j+ 1

2

+
(vh)

+
x

2
[[uh]]j− 1

2

= 0,

(̂uh)xvh
|||
j+

1

2

j−
1

2

∶= (̂uh)x(vh)
−

j+
1

2

− (̂uh)x(vh)
+

j−
1

2

.

(7)(̂uh)x = �0
[[uh]]

Δx
+ {{(uh)x}} + �1Δx[[(uh)xx]],
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with the numerical fluxes of the solution uh and test function vh given by

In fact, it follows by summing up (8) over all cells Ij that

with the bi-linear form �(uh, vh) given by

Clearly, �(uh, vh) = �(vh, uh) , i.e., the bi-linear form �(uh, vh) is symmetric.
Denote �0 = �0u + �0v . It was proved in [28] that a quadratic form satisfied by the 

coefficient pair (�0, �1) can lead to the admissible numerical flux (9) and guarantee 
the optimal accuracy. Similar to the DDGIC method, the symmetric DDG method also 
degenerates to the IPDG method with lower order ( k ⩽ 1 ) approximations. As shown in 
[23], the symmetric DDG method is also superconvergent of order (k + 2) at shifted 
Lobatto points with both k = 2 and k = 3 polynomial approximations.

3 � Superconvergence Study via Eigen‑structure Analysis

In this section, we study the superconvergence properties of the DDGIC and symmetric 
DDG methods via the Fourier analysis approach based on the eigen-structure of the 
amplification matrices.

3.1 � Fourier Analysis Procedure

In this section, we present in details the Fourier analysis procedure for the DDGIC and 
symmetric DDG methods.

We first present the details of rewriting the DDGIC scheme (6) and the symmetric DDG 
scheme (8) as finite difference schemes. By choosing a local basis of Pk(Ij) , denoted as 
�l
j
(x) , l = 1,⋯ , k + 1 , we can express the numerical solution as

After substituting (11) into the DDGIC scheme (6) and the symmetric DDG scheme 
(8), and inverting a local (k + 1) × (k + 1) mass matrix, the DDGIC method (6) and the 
symmetric DDG method (8) can be rewritten in the form of

(8)∫Ij

(uh)tvhdx − (̂uh)xvh
|||
j+

1

2

j−
1

2

+ ∫Ij

(uh)x(vh)xdx + (̃vh)x[[uh]]j+ 1

2

+ (̃vh)x[[uh]]j− 1

2

= 0

(9)

{
(̂u

h
)
x
= �0u

[[u
h
]]

Δx
+ {{(u

h
)
x
}} + �1Δx[[(uh)xx]],

(̃v
h
)
x
= �0v

[[v
h
]]

Δx
+ {{(v

h
)
x
}} + �1Δx[[(vh)xx]].

(10)∫
2π

0

(u
h
)
t
v
h
dx + �(u

h
, v

h
) = 0

�(uh, vh) =

N∑

j=1
∫Ij

(uh)x(vh)xdx +

N∑

j=1

(
(̂uh)x[[vh]] + (̃vh)x[[uh]]

)

j+
1

2

.

(11)uh|Ij =
k+1∑

l=1

ul
j
�l
j
(x), x ∈ Ij.
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where uj =
(
u1
j
, u2

j
,⋯ , uk+1

j

)T

 , and A, B , and C are (k + 1) × (k + 1) constant matrices. 
They depend on the coefficients ( �0, �1) related to the numerical fluxes (7) and (9).

In particular, as in [23], to reveal the superconvergence properties of DDG methods at 
Lobatto points, the basis functions {�l

j
} are chosen to be the Lagrange polynomials based on 

the following k + 1 shifted Lobatto points in the cell Ij:

where {�l}k+1l=1
 are the roots of the polynomial 

(
1 − x2

)
Pk

�(x) = 0 with Pk(x) being the Leg-
endre polynomial of degree k. With such a basis, the coefficients of the solution uh in the 
cell Ij , uj , are a vector of length k + 1 containing the values of the solution at these shifted 
Lobatto points in the cell Ij . In this way, the DDG schemes (6) and (8) become finite differ-
ence schemes. However, they are not standard finite difference schemes, since each point 
in the group of k + 1 points belonging to the cell Ij obeys a different form. We refer to [23] 
for explicit expressions of the matrices A, B , and C in (12) for the DDGIC and symmetric 
DDG methods with P2 and P3 approximations.

Now we carry out the standard Fourier analysis technique to solve (12). It is worth 
mentioning that this analysis depends heavily on the assumption of the uniform mesh and 
periodic boundary conditions. Assume

where i is the imaginary unit satisfying i2 = −1 . It follows from substituting (13) into (12) 
that the coefficient vector û satisfies the following ODE system:

where G(Δx) is the amplification matrix, given by

with the matrices A, B, C defined in (12). If we denote the eigenvalues of G as �1, �2,⋯ , �
k+1

 , 
and the corresponding eigenvectors as Ṽ1, Ṽ2,⋯ , Ṽk+1 , then the general solution of the 
ODE system (14) is

where the coefficients a1, a2,⋯ , ak+1 are determined by the initial condition

Thus, the explicit expression of the coefficient vector can be written as

(12)
duj

dt
= Auj−1 + Buj + Cuj+1,

xl
j
= xj +

�l
2
Δx, l = 1, 2, ⋯ , k + 1,

(13)uj(t) = û(t)eixj ,

(14)
d

dt
û(t) = G(Δx)û(t),

(15)G(Δx) = Ae−iΔx + B + CeiΔx

(16)û(t) = a1e
𝜆1tṼ1 + a2e

𝜆2tṼ2 +⋯ + ak+1e
𝜆k+1tṼk+1,

û(0) =
(
e𝜁1Δx∕2, e𝜁2Δx∕2,⋯ , e𝜁k+1Δx∕2

)
.

(17)û(t) = e𝜆1tV1 + e𝜆2tV2 +⋯ + e𝜆k+1tV
k+1
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by letting Vl = alṼl , which, combining with (13), yields the explicit expression of the DDG 
solution uj , and further helps to conduct the error estimate by comparing with the exact 
solution.

3.2 � Eigen‑structure of the Amplification Matrix G

In this section, we analyze the eigen-structure of the amplification matrix G defined in (15) 
obtained by the DDGIC and symmetric DDG methods with the basis functions taken as 
the Lagrange polynomials based on the shifted Lobatto points. It is worth emphasizing 
that the amplification matrix G depends on the choices of basis functions in the DDG 
scheme. However, the eigenvalues of G stay the same for different basis functions, since 
DG methods are independent of the choice of basis functions, while the eigenvectors are 
different according to different basis functions.

The amplification matrix G involves the matrices A, B , and C defined in (12) which 
depend on the coefficients (�0, �1) given in the numerical flux (7) for the DDGIC scheme 
and the coefficients ( �0 = �0u + �0v, �1 ) in the numerical flux (9) for the symmetric DDG 
scheme. We investigate both settings of coefficients with �1 ≠ 1

2k(k+1)
 and �1 =

1

2k(k+1)
 to 

analyze P2 and P3 polynomial approximations. The coefficients settings used throughout 
this paper are listed in Table 1. It is worth mentioning that the results hold for other admis-
sible coefficients. Moreover, it was investigated in [23] that the errors of DDG methods 
stay the same for different choices of �0 , while the errors are sensitive to �1 for P2 approxi-
mations. In particular, the error is superconvergent with �1 =

1

12
 ( �1 =

1

2k(k+1)
 ) for P2 poly-

nomial approximations, while the superconvergence property is not sensitive to the choice 
of �1 for the P3 case. We also refer to [6, 23, 38] for related studies regarding the depend-
ence of the superconvergence property on �1 and its independence of �0.

Proposition 1  (eigenvalues of G) Consider solving the model problem (1) with periodic bound-
ary condition and uniform mesh using the DDGIC scheme (6) or the symmetric DDG scheme 
(8) with Pk (k = 2, 3) polynomial approximations, when the basis functions are taken as the 
Lagrange polynomials based on the shifted Lobatto points, and the coefficients (�0, �1) in 
numerical fluxes are set as in Table 1. The amplification matrix G defined in (15) is diagonaliz-
able with k + 1 distinct eigenvalues, denoted as �1,⋯ , �k+1 , among which �1 is the physically 
relevant eigenvalue, approximating −1 with dissipation error of order 2k, while the non-physi-
cally relevant eigenvalues �2,⋯ , �k+1 , are of order 1

Δx2
 with negative real coefficients.

Proof  We carry out symbolic computations via Mathematica, and list the eigenvalues of G 
for the DDGIC and symmetric DDG methods in Tables 2 and 3, respectively.

Table 1   The coefficient settings 
( �0, �1 ) for the DDGIC and 
symmetric DDG methods

P
k �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

DDGIC k = 2 (�0, �1) =
(
3,

1

8

)
(�0, �1) =

(
3,

1

12

)

k = 3 (�0, �1) =
(
12,

1

8

)
(�0, �1) =

(
12,

1

24

)

Symmetric DDG k = 2 (�0, �1) =
(
2,

1

8

)
(�0, �1) =

(
2,

1

12

)

k = 3 (�0, �1) =
(
24,

1

8

)
(�0, �1) =

(
24,

1

24

)
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It follows from the results that for k = 2, 3 , the eigenvalues of the amplification matrix G 
of both DDG methods satisfy

with both settings of �1 =
1

2k(k+1)
 and �1 ≠ 1

2k(k+1)
 in numerical fluxes. Here C is a positive 

constant independent of Δx.

According to Proposition 1, the non-physically relevant eigenvalues {�l}k+1l=2
 are nega-

tive real and of order 1

Δx2
 . Therefore, the corresponding terms in the explicit represen-

tation (7) are damped out exponentially with respect to Δx over time, while the term 
with the physically relevant �1 dominates in the numerical solution. It is observed from 
the symbolic computation that the eigenvalues of the amplification matrices G for both 
DDG methods are real for k = 2, 3 , though it is difficult to prove this fact.

�1 = −1 +O(Δx2k), �
l
= −

C

Δx2
+O(1), l = 2,⋯ , k + 1

Table 2   Symbolic analysis of G’s eigenvalues for the DDGIC method

P
k �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

k = 2 �1 =
1

8
�1 =

1

12

�1 −1 −
Δx4

320
+O(Δx6) −1 −

Δx4

720
+O(Δx6)

�2 −
24

Δx2
+O(1) −

24

Δx2
+O(1)

�3 −
60

Δx2
+O(1) −

60

Δx2
+O(1)

k = 3 �1 =
1

8
�1 =

1

24

�1 −1 − 9.92 × 10−6Δx6 +O(Δx8) −1 − 9.92 × 10−6Δx6 +O(Δx8)

�2 −
49.22

Δx2
+O(1) −

43.77

Δx2
+O(1)

�3 −
60

Δx2
+O(1) −

60

Δx2
+O(1)

�4 −
460.78

Δx2
+O(1) −

326.23

Δx2
+O(1)

Table 3   Symbolic analysis of G’s eigenvalues for the symmetric DDG method

P
k �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

k = 2 �1 =
1

8
�1 =

1

12

�1 −1 +
Δx4

2 880
+O(Δx6) −1 −

Δx4

720
+O(Δx6)

�2 −
60

Δx2
+O(1) −

60

Δx2
+O(1)

�3 −
12

Δx2
+O(1) −

12

Δx2
+O(1)

k = 3 �1 =
1

8
�1 =

1

24

�1 −1 − 9.92 × 10−6Δx6 +O(Δx8) −1 − 9.92 × 10−6Δx6 +O(Δx8)

�2 −
31.26

Δx2
+O(1) −

41.60

Δx2
+O(1)

�3 −
60

Δx2
+O(1) −

60

Δx2
+O(1)

�4 −
1 168.74

Δx2
+O(1) −

878.40

Δx2
+O(1)
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Proposition 2  (eigenvectors of G) With the same assumption as Proposition 1, denote the 
k + 1 eigenvectors of G as V1,V2,⋯ ,Vk+1 . Let ‖ ⋅ ‖ be any norm vector. Then,

•	 for P2 approximations with �1 =
1

2k(k+1)
=

1

12
, and for P3 approximations with any 

admissible �1 , 

•	 for P2 approximations with �1 ≠ 1

2k(k+1)
 , 

Proof  We carry out symbolic computations via Mathematica, and list the eigenvectors of 
G for the DDGIC and symmetric DDG methods with P2 polynomials in Table 4 and with 
P3 polynomials in Table 5, respectively. We obtain the following observations.

•	 For P2 approximations with �1 =
1

2k(k+1)
=

1

12
 , and P3 approximations with both settings 

of �1 =
1

2k(k+1)
 and �1 ≠ 1

2k(k+1)
 , the eigenvector V1 corresponding to the physically rele-

vant eigenvalue �1 approximates û(0) in (17) with order k + 2 at all the shifted Lobatto 
points. The non-physically relevant eigenvectors V2,⋯ ,Vk+1 are of order at least k + 2 
at all the shifted Lobatto points.

•	 For P2 approximations with �1 ≠ 1

2k(k+1)
 , the eigenvector V1 approximates û(0) with 

order k + 2 at the cell center and with order k + 1 at the other two shifted Lobatto 
points. The eigenvectors V2,⋯ ,Vk+1 are of order at least k + 1 at all three shifted 
Lobatto points.

‖V1 − û(0)‖ = O(Δxk+2), ‖Vl‖ = O(Δxk+2), l = 2,⋯ , k + 1;

‖V1 − û(0)‖ = O(Δxk+1), ‖Vl‖ = O(Δxk+1), l = 2,⋯ , k + 1.

Table 4   Symbolic analysis of G’s eigenvectors for P2 approximations

�1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

DDGIC Symmetric DDG DDGIC Symmetric DDG

V1 − û(0) V1 − û(0) V1 − û(0) V1 − û(0)

iΔx3

96
+O(Δx4)

iΔx3

48
+O(Δx4)

Δx4

2 880
+O(Δx5)

Δx4

2 880
+O(Δx5)

−
Δx4

960
+O(Δx6)

Δx4

1 440
+O(Δx6) −

Δx4

5 760
+O(Δx6) −

Δx4

5 760
+O(Δx6)

−
iΔx3

96
+O(Δx4) −

iΔx3

48
+O(Δx4)

Δx4

2 880
+O(Δx5)

Δx4

2 880
+O(Δx5)

V2 V2 V2 V2

−
23Δx4

8 640
+O(Δx5) −

13Δx4

3 840
+O(Δx5) −

iΔx5

1 152
+O(Δx6) −

iΔx5

512
+O(Δx6)

23Δx4

17 280
+O(Δx6)

13Δx4

7 680
+O(Δx6) −

Δx6

41 472
+O(Δx7) −

Δx6

8 192
+O(Δx7)

−
23Δx4

8 640
+O(Δx5) −

13Δx4

3 840
+O(Δx5)

iΔx5

1 152
+O(Δx6)

iΔx5

512
+O(Δx6)

V3 V3 V3 V3

−
iΔx3

96
+O(Δx4) −

iΔx3

48
+O(Δx4) −

Δx4

2 880
+O(Δx6) −

Δx4

2 880
+O(Δx5)

−
Δx4

3 456
+O(Δx6) −

11Δx4

4 608
+O(Δx6)

Δx4

5 760
+O(Δx6)

Δx4

5 760
+O(Δx6)

iΔx3

96
+O(Δx4)

iΔx3

48
+O(Δx4) −

Δx4

2 880
+O(Δx6) −

Δx4

2 880
+O(Δx5)
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The proof is complete based on these observations.

3.3 � Error Estimates Based on the Eigen‑structure of G

In this section, we carry out error estimates based on the eigen-structure of the 
amplification matrix G discussed in Sect.  3.2 and investigate superconvergence 
properties of the DDGIC and symmetric DDG methods.

Theorem  1  (error estimate) With the same assumption as Proposition 1, let u(T) = 
û(0) exp(ixj − T) and uh(T) = û(T) exp(ixj) be the point values of the exact solution and 
numerical solutions at shift Lobatto points in the cell Ij , respectively. For T > 0 , the error 
vector �(T) = u(T) − uh(T) satisfies

•	 for P2 approximations with �1 =
1

12
 and P3 approximations with any admissible �1 , 

•	 for P2 approximations with �1 ≠ 1

12
 , 

Here C, C1 , C2, and C3 are positive constants independent of Δx, and ‖ ⋅ ‖ can be any 
vector norm.
Proof  It follows from (17) that û0 =

∑k+1

l=1
Vl and

which completes the proof by combining with Propositions 1, 2, and the fact that ‖V1‖ is of 
order 1 according to Proposition 2.

It can be seen from (18) and (19) that under the assumption of the uniform mesh, the 
errors of the DDGIC and symmetric DDG solutions for the model problem (1) can be 
decomposed as three parts. 

(18)‖�(T)‖ ⩽ C1TΔx
2k + C2 exp(−T)Δx

k+2 + C3 exp

�
−
CT

Δx2

�
Δxk+2;

(19)‖�(T)‖ ⩽ C1TΔx
2k + C2 exp(−T)Δx

k+1 + C3 exp

�
−
CT

Δx2

�
Δxk+1.

‖�(T)‖ = ‖u(T) − uh(T)‖
= ‖ exp(−T)û(0) − û(T))‖

=

������
exp(−T)

k+1�

l=1

Vl −

k+1�

l=1

exp(𝜆lT)Vl

������

⩽ ‖
�
exp(−T) − exp(𝜆1T)

�
V1‖ + � exp(−T)�

������

k+1�

l=2

Vl

������
+

k+1�

l=2

‖ exp(𝜆lT)Vl‖

⩽ �(exp(−T) − exp(𝜆1T))�‖V1‖ + exp(−T)‖û(0) − V1‖ +
k+1�

l=2

� exp(𝜆lT)�‖Vl‖,
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	 (i)	 Dissipation errors of physically relevant eigenvalues. This part of error grows linearly 
over time and is superconvergent of order 2k.

	 (ii)	 Projection error ‖u∗ − u‖ , where u∗ is a special projection of the solution, defined by 

 This part of error is closely related to ‖V1 − û(0)‖ via 

and is decreasing over the time. It follows from Proposition 2 that such a projec-
tion approximates the exact solution at shifted Lobatto points with the supercon-
vergent order k + 2 for P2 approximations with �1 =

1

12
 and P3 approximations with 

any admissible �1 , while with the optimal order k + 1 for P2 approximations with 
�1 ≠ 1

12
.

	 (iii)	 Dissipation errors of non-physically relevant eigenvalues. This part of error decays 
exponentially with respect to Δx over the time.

Moreover, the numerical solution is much closer to the special projection of the exact 
solution ( ‖u∗ − uh‖ = O(Δx2k) ) than to the exact solution itself. In fact, similar to the 
proof of Theorem 1, we have

where C, C1 , and C2 are positive constants independent of Δx . It is worth mentioning that 
this paper focuses on the eigenvector analysis of this special projection, and its analytical 
form is subject to future investigation.

We now investigate the time evolution of the error between the DDG solutions and 
the exact solution based on the error estimates in Theorem 1.

•	 For the short time T, the second terms in (18) and (19), which are related to the pro-
jection error, dominate. The error ‖�‖ decreases with the rate e−T over the time and 
is superconvergent of order k + 2 for P2 approximations with �1 =

1

12
 and P3 approxi-

mations with any admissible �1 , while optimal of order k + 1 for P2 approximations 
with �1 ≠ 1

12
.

•	 As T increases to O
(

1

Δxk−2

)
 for P2 approximations with �1 =

1

12
 and P3 approxima-

tions with any admissible �1 , or to O
(

1

Δxk−1

)
 (longer time simulation) for P2 approxi-

mations with �1 ≠ 1

12
 , the first terms in (18) and (19) dominate. The error ‖�‖ grows 

linearly with the time and is superconvergent of order 2k.

(20)u
∗(T)|Ij = P∗

h
u(T)|Ij = exp(ixj − T)V1, j = 1,⋯ ,N.

‖u∗ − u‖ = ‖ exp(ixj − T)V1 − û(0) exp(ixj − T)‖ = exp(−T)‖û(0) − V1‖,

‖u∗ − uh‖ = ‖ exp(ixj − T)V1 − û(T) exp(ixj)‖

=

������
exp(−T)V1 −

k+1�

l=1

exp(𝜆lT)Vl

������

⩽ ‖(exp(−T) − exp(𝜆1T))V1‖ +
k+1�

l=2

‖ exp(𝜆lT)Vl‖

⩽ C1TΔx
2k + C2 exp

�
−
CT

Δx2

�
Δxk+2,
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It is usually challenging to check the long-time behavior of the DDG solutions numeri-
cally. We propose the following corollary as a way to numerically assess our theoretical 
results above.

Corollary 1  Let uh be the numerical solution obtained by the DDGIC or symmetric DDG 
method with Pk (k = 2, 3) approximations on uniform mesh for the model problem (1). Let 
T ⩾ t > 0 , and denote �̃(T; t) = uh(T) − uh(t) exp(−(T − t)) . Then,

where C1 and C2 are positive constants independent of Δx.

Proof  It follows from the explicit expression of the numerical solution in (13) with (17) as 
well as Propositions 1 and 2 that

where C1 and C2 are positive constants independent of Δx . Again, we have applied the fact 
that ‖V1‖ is of order 1 and {�l}k+1l=2

 are negative real with order 1

Δx2
.

It is worth emphasizing that (21) holds for Pk (k = 2, 3) with any admissible �1 , since we 
adopt the optimal order of k + 1 for ‖Vl‖, l = 2,⋯ , k + 1 . In fact, for t = O(1) , the second 
term on the right-hand side of (21) decays exponentially with respect to Δx . Then this term 
is damped out, and the first term on the right-hand side of (21) dominates, which grows 
linearly with (T − t) and is superconvergent of order 2k.

We end this section with the relation between the error �(T) in Theorem 1 and �̃(T; t) in 
Corollary 1. Recall that the exact solution is u(T) = û(0) exp(ixj − T) , then we have

For t = O(1) , ‖�̃(T; t)‖ grows linearly with T and is of order 2k by Corollary 1. According 
to Theorem 1, ‖�(t)‖ is superconvergent of order k + 2 for P2 case with �1 =

1

12
 and P3 case 

with any admissible �1 , while it is optimal of order k + 1 for P2 case with �1 ≠ 1

12
 . We 

(21)

‖�̃(T; t)‖ = ‖uh(T) − uh(t) exp(−(T − t))‖ ⩽ C1(T − t)Δx2k + C2 exp

�
−

Ct

Δx2

�
Δxk+1,

‖u
h
(T) − u

h
(t) exp(−(T − t))‖

=

������

k+1�

l=1

exp(�
l
T)V

l
−

k+1�

l=1

exp(�
l
t − (T − t))V

l

������

⩽ � exp(�1T) − exp(�1t − (T − t))�‖V1‖ +
k+1�

l=2

� exp(�
l
T) − exp(�

l
t − (T − t))�‖V

l
‖

⩽ � exp(�1(T − t)) − exp(−(T − t))�� exp(�1t)�‖V1‖ + C2 exp

�
−

Ct

Δx2

�
Δxk+1

⩽ C1(T − t)Δx2k + C2 exp

�
−

Ct

Δx2

�
Δxk+1,

‖�(T)‖ = ‖u(T) − uh(T)‖
= ‖u(t) exp(−(T − t)) − uh(T)‖
⩽ ‖uh(T) − uh(t) exp(−(T − t))‖ + � exp(−(T − t))�‖u(t) − uh(t)‖
⩽ ‖�̃(T; t)‖ + ‖�(t)‖.
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conclude that ‖�(T)‖ will not grow in time until T = O

(
1

Δxk−2

)
 for P2 case with �1 =

1

12
 and 

P3 case with any admissible �1 and until T = O

(
1

Δxk−1

)
 for P2 case with �1 ≠ 1

12
.

4 � Numerical Results

In this section, we provide numerical experiments to demonstrate the theoretical results 
presented in Sect. 3.

We numerically solve (1) with both DDGIC and symmetric DDG methods for spatial 
discretization. For temporal discretization, we apply the third-order strong-stability-pre-
serving (SSP) Runge-Kutta (RK) method [26] for Example 1 and the classical fourth-order 
RK method for Example 2. To make the temporal error negligible comparing with the 
spatial error, we take CFL = 0.001 and set Δt = CFLΔx2 . We investigate different settings 
of coefficients (�0, �1) in the numerical fluxes for P2 and P3 polynomials. The coefficients 
(�0, �1) used in the numerical experiments are given in Table 1 for both two examples.

Example 1  This example concerns the model problem (1). We examine two types of error 
measures. One is �(T) = u(T) − uh(T) , i.e., the regular error between the numerical solu-
tion and the exact solution. The other is �̃(T; t) = uh(T) − uh(t) exp(−(T − t)) as discussed 
in Corollary 1. In this paper, we do not show the errors �(T) at shifted Lobatto points as 
they have been well documented in [23]. Instead, we show the time evolution of the regu-
lar errors �(T) for short-time interval. We use forty spatial meshes for P2 approximation 
and twenty spatial meshes for P3 approximation. Figure 1 plots the time evolution of the 
L2 norm of �(T) for T ∈ [2, 20] in semi-log scale. It can be observed that the errors decay 
exponentially with respect to the time T as expected from Theorem 1, where the dominat-
ing term in �(T) for short time is the project error, which is decreasing with the rate e−T.

We then investigate the error measure �̃(T; t) as an alternative way to check the long-
time behaviour of the DDG solutions, as discussed in Corollary 1. We list the L2 - and 
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Fig. 1   Time evolution of L2-norm of �(T) for the DDGIC (left) and symmetric DDG (right) methods. Forty 
spatial meshes for P2 case and 20 spatial meshes for P3 case
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L∞-norms of the errors �̃(2; 1) , �̃(3; 2) , and �̃(3; 1) and their orders of accuracy in 
Tables  6,  7,  8, and  9 for the DDGIC and symmetric DDG methods with P2 and P3 
approximations. Again we choose different coefficients in numerical fluxes. It can be 
observed that both DDG solutions can achieve 2k-th order of accuracy in the error 
measure ‖�̃(T; t)‖ for Pk (k = 2, 3) approximations with both settings of �1 ≠ 1

2k(k+1)
 and 

�1 =
1

2k(k+1)
 in numerical fluxes, as expected from Corollary 1. It is also observed that 

‖�̃(3;1)‖ ≈ 2 ‖�̃(3; 2)‖ , which is consistent with Corollary 1 that the dominating term of 

Table 6   The L2 - and L∞-norms and orders of �̃(T; t) for the DDGIC method with P2

N �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

�̃(2; 1) 10 4.64E−05 6.55E−05 2.13E−05 3.01E−05
20 2.91E−06 3.99 4.11E−06 3.99 1.30E−06 4.03 1.84E−06 4.03
40 1.82E−07 4.00 2.57E−07 4.00 8.11E−08 4.01 1.15E−07 4.01
80 1.14E−08 4.00 1.61E−08 4.00 5.06E−09 4.00 7.16E−09 4.00

�̃(3; 2) 10 1.70E−05 2.41E−05 7.84E−06 1.11E−05
20 1.07E−06 3.99 1.51E−06 3.99 4.80E−07 4.03 6.78E−07 4.03
40 6.70E−08 4.00 9.47E−08 4.00 2.98E−08 4.01 4.22E−08 4.01
80 4.19E−09 4.00 5.92E−09 4.00 1.86E−09 4.00 2.63E−09 4.00

�̃(3; 1) 10 3.41E−05 4.82E−05 1.57E−05 2.22E−05
20 2.14E−06 3.99 3.03E−06 3.99 9.59E−07 4.03 1.36E−06 4.03
40 1.34E−07 4.00 1.89E−07 4.00 5.96E−08 4.01 8.43E−08 4.01
80 8.37E−09 4.00 1.18E−08 4.00 3.72E−09 4.00 5.26E−09 4.00

Table 7   The L2-and L∞-norms and orders of �̃(T; t) for the DDGIC method with P3

N �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

�̃(2; 1) 10 6.12E−08 8.57E−08 5.73E−08 8.02E−08
20 9.24E−10 6.05 1.31E−09 6.04 9.08E−10 5.98 1.28E−09 5.96
40 1.43E−11 6.01 2.02E−11 6.01 1.42E−11 5.99 2.01E−11 5.99
60 1.25E−12 6.00 1.77E−12 6.00 1.25E−12 6.00 1.77E−12 6.00

�̃(3; 2) 10 2.25E−08 3.15E−08 2.11E−08 2.95E−08
20 3.40E−10 6.05 4.81E−10 6.04 3.34E−10 5.98 4.72E−10 5.96
40 5.26E−12 6.01 7.44E−12 6.01 5.24E−12 5.99 7.41E−12 5.99
60 4.61E−13 6.00 6.52E−13 6.00 4.61E−13 6.00 6.51E−13 6.00

�̃(3; 1) 10 4.50E−08 6.31E−08 4.21E−08 5.90E−08
20 6.80E−10 6.05 9.61E−10 6.04 6.68E−10 5.98 9.45E−10 5.96
40 1.05E−11 6.01 1.49E−11 6.01 1.05E−11 5.99 1.48E−11 5.99
60 9.22E−13 6.00 1.30E−12 6.00 9.21E−13 6.00 1.30E−12 6.00
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‖�̃(T; t)‖ in (21) grows linearly with T − t for t = O(1) . Moreover, it follows from a sim-
ple check that e−1‖�̃(2; 1)‖ ≈ ‖�̃(3; 2)‖ , which is consistent with the fact that the domi-
nating term ‖�̃(T; t)‖ is

according to the proof of Corollary 1.
We further compare the error measures �(T) and �̃(T; t) . We get almost the same 

results for numerical fluxes with �1 ≠ 1

2k(k+1)
 and �1 =

1

2k(k+1)
 , and thus we only show the 

exp(�1t)(T − t)Δx2k ≈ e−t(T − t)Δx2k,

Table 8   The L2 - and L∞-norms and orders of �̃(T; t) for the symmetric DDG method with P2

N �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

�̃(2; 1) 10 6.48E−06 9.17E−06 2.03E−05 2.86E−05
20 3.44E−07 4.24 4.87E−07 4.24 1.29E−06 3.98 1.82E−06 3.97
40 2.06E−08 4.07 2.91E−08 4.07 8.08E−08 3.99 1.14E−07 3.99
80 1.27E−09 4.02 1.79E−09 4.02 5.06E−09 4.00 7.15E−09 4.00

�̃(3; 2) 10 2.39E−06 3.37E−06 7.45E−06 1.05E−05
20 1.27E−07 4.24 1.79E−07 4.24 4.74E−07 3.97 6.70E−07 3.97
40 7.56E−09 4.07 1.07E−08 4.07 2.97E−08 3.99 4.20E−08 3.99
80 4.68E−10 4.01 6.61E−10 4.01 1.86E−09 4.00 2.63E−09 4.00

�̃(3; 1) 10 4.77E−06 6.75E−06 1.49E−05 2.11E−05
20 2.53E−07 4.24 3.58E−07 4.24 9.48E−07 3.97 1.34E−06 3.97
40 1.51E−08 4.07 2.14E−08 4.07 5.95E−08 3.99 8.41E−08 3.99
80 9.34E−10 4.02 1.32E−09 4.02 3.72E−09 4.00 5.26E−09 4.00

Table 9   The L2 - and L∞-norms and orders of �̃(T; t) for the symmetric DDG method with P3

N �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

�̃(2; 1) 10 5.39E−08 7.55E−08 5.76E−08 8.07E−08
20 8.95E−10 5.91 1.27E−09 5.90 9.10E−10 5.98 1.29E−09 5.97
40 1.41E−11 5.98 2.00E−11 5.98 1.42E−11 6.00 2.01E−11 6.00
60 1.15E−12 6.20 1.62E−12 6.20 1.22E−12 6.07 1.72E−12 6.07

�̃(3; 2) 10 1.98E−08 2.78E−08 2.12E−08 2.97E−08
20 3.29E−10 5.91 4.66E−10 5.90 3.35E−10 5.98 4.73E−10 5.97
40 5.20E−12 5.98 7.36E−12 5.98 5.24E−12 6.00 7.40E−12 6.00
60 4.22E−13 6.20 5.96E−13 6.20 4.47E−13 6.07 6.33E−13 6.07

�̃(3; 1) 10 3.97E−08 5.56E−08 4.24E−08 5.93E−08
20 6.58E−10 5.91 9.31E−10 5.90 6.69E−10 5.98 9.46E−10 5.97
40 1.04E−11 5.98 1.47E−11 5.98 1.05E−11 6.00 1.48E−11 6.00
60 8.43E−13 6.20 1.19E−12 6.20 8.95E−13 6.07 1.27E−12 6.07
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results obtained by �1 =
1

2k(k+1)
 . Figures 2 and 3 plot point values of �(2) and �̃(2;1) for 

the DDGIC and symmetric DDG methods with piecewise P2 and P3 polynomials. We 
take 20 points (shifted Lobatto points included) on each cell. It can be observed that the 
regular errors �(2) of DDG solutions are highly oscillatory, while the errors �̃(2;1) are 
non-oscillatory. Moreover, the magnitude of �̃(2;1) is much smaller than �(2).

Example 2  This example considers the following convection-diffusion equation:

with the initial condition u(x, 0) = esin(x)∕2 and periodic boundary conditions, where the 
variable coefficient � = 1 + cos(x − t)∕2 . The exact solution is

For the convection term (�u)x , the numerical flux is taken the upwind flux. We exam-
ine the error measure �(T) = u(T) − uh(T) and list the L2 - and L∞ - norms of �(0.3) and 
their orders of accuracy in Tables 10 and 11 for the DDGIC and symmetric DDG meth-
ods with P2 and P3 approximations. For �1 =

1

2k(k+1)
 , the errors are superconvergent of 

order (k + 2) for both P2 and P3 case. For �1 ≠ 1

2k(k+1)
 , the errors are of order (k + 1) for 

(22)u
t
+ (𝛼u)

x
= u

xx
, x ∈ [0, 2π], t > 0

u = esin(x−t)∕2.
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Fig. 2   �(2) (left) and �̃(2;1) (right) for the DDGIC (top) and symmetric DDG (bottom) methods with P2 
polynomials. y-axis denotes logarithmic scale of the errors
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Fig. 3   �(2) (left) and �̃(2;1) (right) for the DDGIC (top) and symmetric DDG (bottom) methods with P3 
polynomials. y-axis denotes logarithmic scale of the errors

Table 10   The L2 - and L∞-norms and orders of �(0.3) for the DDGIC method

N �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

L
2-error Order L

∞-error Order L
2-error Order L

∞-error Order

P
2 8 1.54E−03 4.95E−03 4.36E−04 1.22E−03

16 1.83E−04 3.08 6.40E−04 2.95 1.85E−05 4.56 5.05E−05 4.59
32 2.30E−05 2.99 7.82E−05 3.03 1.02E−06 4.19 2.48E−06 4.35
64 2.92E−06 2.98 9.73E−06 3.01 6.11E−08 4.05 1.33E−07 4.22

P
3 8 5.49E−05 2.22E−04 1.99E−05 3.43E−05

16 1.84E−06 4.90 7.26E−06 4.94 6.86E−07 4.86 1.57E−06 4.45
32 5.87E-08 4.97 2.32E−07 4.97 2.21E−08 4.96 5.66E−08 4.80
48 7.79E−09 4.98 3.07E−08 4.98 2.95E−09 4.96 6.95E−09 5.17
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P2 approximation and of order (k + 2) for P3 approximations. These results agree well 
with those in [6].

5 � Conclusion

In this paper, we discuss superconvergence properties of the DDGIC and symmetric DDG 
methods for the one-dimensional linear diffusion equation. Under the assumption of the 
uniform mesh and periodic boundary conditions, we carry out the Fourier analysis for both 
DDG methods with P2 and P3 polynomials. We also investigate different choices of the 
coefficient pairs (�0, �1) in numerical fluxes.

We analyze the eigen-structure of amplification matrices associated with the Lagrange 
basis functions based on shifted Lobatto points and concludes that: (i) the eigenvalues are 
not sensitive to �1 . The physically relevant eigenvalue approximates the value −1 with dis-
sipation errors of order 2k. The non-physically relevant eigenvalues are negative real and of 
order 1

Δx2
 . The corresponding parts in the solution decay exponentially with respect to Δx . 

(ii) The eigenvectors are sensitive to �1 for P2 case. The eigenvector corresponding to the 
physically relevant eigenvalue approximates the wave function with the superconvergent 
order k + 2 for P2 case with �1 =

1

12
 and P3 case with any admissible �1.

Based on the eigen-structure analysis of the amplification matrices, we establish 
error estimates of the DDG solutions which can be decomposed into three parts: (i) dis-
sipation errors of physically relevant eigenvalues, which are superconvergent of order 
2k and grow linearly with time. We also propose an error measure to verify this super-
convergence; (ii) projection error, which is superconvergent of order k + 2 for P2 poly-
nomial with �1 =

1

12
 and P3 polynomial with any admissible �1 ; (iii) dissipative errors of 

non-physically relevant eigenvalues, which decay exponentially with respect to Δx.
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Table 11   The L2 - and L∞-norms and orders of �(0.3) for the symmetric DDG method

N �1 ≠ 1

2k(k+1)
�1 =

1

2k(k+1)

L
2 -error Order L

∞ -error Order L
2 -error Order L

∞ -error Order

P
2 8 2.07E−03 6.84E−03 4.45E−04 1.60E−03

16 3.12E−04 2.73 1.11E−03 2.63 1.99E−05 4.49 6.72E−05 4.58
32 4.31E−05 2.85 1.45E−04 2.93 1.05E−06 4.24 3.13E−06 4.43
64 5.67E−06 2.93 1.88E−05 2.95 6.18E−08 4.09 1.54E−07 4.35

P
3 8 5.32E−05 1.31E−04 1.73E−05 3.10E−05

16 2.17E−06 4.61 4.89E−06 4.74 5.47E−07 4.99 1.31E−06 4.57
32 7.35E−08 4.89 1.64E−07 4.90 1.70E−08 5.01 4.39E−08 4.90
48 9.84E−09 4.96 2.18E−08 4.97 2.27E−09 4.96 5.23E−09 5.24
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