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Abstract

In this paper, finite difference schemes for solving time-space fractional diffusion equations
in one dimension and two dimensions are proposed. The temporal derivative is in the
Caputo-Hadamard sense for both cases. The spatial derivative for the one-dimensional
equation is of Riesz definition and the two-dimensional spatial derivative is given by the
fractional Laplacian. The schemes are proved to be unconditionally stable and convergent.
The numerical results are in line with the theoretical analysis.
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1 Introduction

Fractional calculus has been applied to numerous fields such as fluid mechanics, physics,
chemistry, epidemiology, and finance during the last decades [3, 15, 23, 24, 28], to
characterize memory effects and/or nonlocality. Fractional models are more suitable than
integer models for systems with memory and long-term interactions. The anomalous
diffusion equation is a class of important fractional differential equations, which has been
widely applied in modeling of random walk, unification of diffusion and wave propagation,
etc. [1, 19]. In some scenarios, anomalous diffusion can be described by the time-space
fractional diffusion equation.

In this paper, we first consider a numerical method for the following one-dimensional
time-space fractional diffusion equation:
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CHD u(x, 1) — RZDﬂu(x H=fx10, x,t)e 2x(a,T],
u(a, t)—u(b =0 te(a, T, (1)
u(x, a) = uy(x), XEQ

witha € (0,1), f € (1,2),a > 0, 2 = [a,b] C R being a bounded interval, and u,(x) being
a given initial condition. Here ;D7 , denotes the Caputo-Hadamard differentiation operator
defined by

! n—a—1
cnDg o) = 1 / (logf) 5”<o(s)@, O<a<t,
! (n —a) Ja s s

where

d n

5"p(s) = (sd—) p6), n—1<a<nez".

s
The sufficient condition for the existence of the Caputo-Hadamard derivative oyD7 ¢(7)
is that @(t) € AC}[a.T] = {¢: 6" ' € AC[a,T]} with AC(R) denoting the space

of absolute continuous functions. The spatial derivative is the Riesz derivative of order
p (1 < p <2)given by

1
p = ] (]
DI ) = = 3o [ Pl + Dy
where
1
D) y(x /(x " Py(s)ds, m— 1< f<me Z,

rLDg W (¥) = Ton—p) dv ) w(s) B
and

r.DL () = E D );xm/ (s =" " Py(s)ds, m—1 < fp<meZz*

are the left-hand side and right-hand side Riemann-Liouville fractional
derivatives.  Sufficient condition for the existence of RZD)’fy/(x) is  that

w(x) € ACN[a,b] = {y: y® € AC[a,bl,k=0,1,..., |p]}
We also consider the following two-dimensional time-space fractional diffusion
equation:

CHDZ,,”(X’ v, 1)+ (—A)gu(x, v, 1) =f(x,y,1), (x,y) € ﬁ, te(a,T],
u(x,y,1) =0, (xr,y) € R\Q,1 € @a,T1, 2)
u(x’y’ a) = Mo(xy)’), (x,)’) e ‘Q

witha € (0,1), € (1,2),a> 0, 2 = (L. L)*> C R? being a bounded domain, and u,(x, y)
being a given initial condition. Here (—A)?2 is the fractional Laplacian defined by the hyper-
singular integral [16],

— B
(—A) i) = ¢,PV. / y®-y@ 2T +5/2) o

w Xzt T TRl
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where x = (x,y) € R? and P.V. stands for the Cauchy principal value. One sufficient
condition for the existence of the fractional Laplacian (—A)2y(x) is that y(x) belongs to
the following Schwartz space:

N
S=1weC®®): sup(l+[x])" Y [Dy(x)] <00, N=0,1,2, -
xeR? k=0

There are some researches on numerical methods for time-space fractional diffusion
equations. Liu et al. [20] proposed a first-order implicit finite difference scheme to solve the
fractional diffusion equation with the temporal Caputo derivative and the spatial Riemann-
Liouville derivative on a bounded domain in one spatial dimension. Cao and Li [4] derived
two finite difference schemes for two kinds of time-space fractional diffusion equations
by approximating Riemann-Liouville fractional derivatives with the second-order accuracy
via the weighted and shifted Griinwald-Letnikov formula. Arshad et al. [2] constructed a
numerical scheme for the time-space fractional diffusion equation with the second-order
accuracy in both time and space directions, where the temporal and spatial fractional
derivatives are in the senses of Caputo and Riesz, respectively. A finite difference scheme
was developed for the time-space fractional diffusion equation with Dirichlet fractional
boundary conditions in the work of Xie and Fang [29], where the fractional derivatives
include the temporal Caputo derivative and the spatial Riemann-Liouville derivative.

In view of the aforementioned studies, some numerical schemes have been proposed for
the time-space fractional diffusion equation. However, the temporal derivative is mainly
given by the Caputo derivative which is adequate for characterizing algebraic decay. In this
paper, the temporal derivative in considered time-space fractional diffusion equations is in
the Caputo-Hadamard sense which is suitable in describing the ultra slow process [5, 12,
17]. For the numerical approximation to the Caputo-Hadamard derivative, Gohar et al. [13]
introduced the L1 formula for the temporal Caputo-Hadamard derivative to deduce a semi-
discrete difference scheme, and gave the stability and convergence analysis. Fan et al. [11]
proposed three numerical formulae for the Caputo-Hadamard derivative of order a with the
(3 — a) order accuracy, including L1-2 and L2-1¢ formulae for the case with a € (0, 1),
and H2N2 formula for the case with @ € (1,2). Li et al. [18] proposed and numerically
analyzed an LDG scheme for the Caputo-Hadamard fractional sub-diffusion equation. Ou
et al. [22] investigated the numerical scheme for the Caputo-Hadamard fractional diffusion-
wave equation using exponential type meshes. In the aforementioned two works, the spatial
derivative is in the sense of classical Laplacian.

The Riesz derivative is in the form of a linear combination of a left Riemann-
Liouville derivative and a right Riemann-Liouville derivative, which allows the
modeling of flow regime impacts from either side of the domain [30, 31]. In the mean
while, the fractional Laplacian was frequently adopted to take long-range interaction in
higher dimensions into account [27]. Therefore, the spatial derivative is chosen as the
Riesz derivative in one dimension and the fractional Laplacian in two dimensions in the
present paper. Based on the numerical method of approximating the Riemann-Liouville
derivative, several numerical approximations for evaluating the Riesz fractional
derivative were proposed, such as the spline interpolation method [25], standard
Griinwald-Letnikov formula and its modifications [21, 26]. In particular, a series of high
order algorithms for Riesz derivatives were constructed by Ding et al. [6-9]. Since the
linear combination of shifted Griinwald-Letnikov formulae with different displacements
and appropriate weights can evaluate the Riemann-Liouville derivative with the higher
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order accuracy and the resulting finite difference schemes for time dependent problems
are stable, we choose weighted and shifted Griinwald-Letnikov formula for the Riesz
derivative. For the fractional Laplacian, obtaining numerical approximations is still
difficult and hot. A recent work given by Hao et al. [14] proposed a fractional centered
difference formula. It generates a symmetric block Toeplitz matrix with Toeplitz blocks
which enables us to develop fast and efficient algorithms by fast Fourier transform. This
novel approximation technique is adopted for solving the two-dimensional nonlinear
Schrodinger equation with the fractional Laplacian [27], where the temporal derivative
is still of integer order.

Numerical methods for partial differential equations with the temporal Caputo
derivative and the spatial fractional derivative are rare. This situation and potential
applications of ultra slow diffusion motivate us to study numerical algorithms for (1)
and (2).

The remaining part of this paper is organized as follows. Numerical approximations
adopted in this paper for evaluating the Caputo-Hadamard derivative, Riesz derivative,
and fractional Laplacian are shown in Sect. 2, along with corresponding properties.
Fully discrete schemes for the one-dimensional time-space fractional diffusion equation
(1) and the two-dimensional equation (2) are derived in Sect. 3. Rigorous stability
analysis and error estimates are discussed as well. Numerical simulations in Sect. 4
verify the feasibility of the proposed numerical schemes and the theoretical analysis.

2 Preliminaries

In this section, we introduce approximations of the Caputo-Hadamard derivative, Riesz
derivative in one dimension, and integral fractional Laplacian in higher dimensions
that are applied in constructing numerical schemes for (1) and (2). In the following
discussion, the L1 formula for the Caputo-Hadamard derivative [13], the weighted and
shifted Griinwald-Letnikov formula for the Riesz derivative [26], and the fractional
centered difference formula for the fractional Laplacian [14] are adopted.

2.1 L1 Formula for Caputo-Hadamard Derivative

Let t, =a+kr with k=0,1,---,N(N € Z"), where © = (T —a)/N is the time step.
For ¢(t) € C*[a, T, its Caputo-Hadamard derivative of order @ € (0,1) at t = ¢, can be
evaluated by the following L1 approximation [13]:

k
DL, o0y, = Y, e [ot) — ol )] + R 4)

i=1

1-a l—a
w1 1 (log [_k> _ <10g t_k> )
T2 =) log tt— fim1 l;
i-1

where

and
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k 1 _
1 i e\ o) — et;_1) |ds
R = — 1 log £ | sg(s) — L —Timt 2148
S ,-Zzl / (1og ) |00 sl ©)

licy

Lemma 1 [13] For 0 < a < 1, the coefficients cf‘}? (1<ig<k, 1<k<N) given by (5)
satisfy ’

C(a) N C(a) S e > () > C(a)

(a)
k= Cr-1k Cik x> > >0

Remark 1 Let 0 < a < 1 and the coefficients c(a) (1 <i<k, 1 <k<N)be defined by (5).

There holds — F(l )(k )%

Clk

Proof According to the mean value theorem,

l1-a I-a
t 1
C(a) = —1 1 log _k — IOg _k
Lk F(2 - a) log t_l tO tl

S .
1ﬂ(2—06)1

= mf‘“, e <10g ,log 0>

( —a)” "log—

Asty = a, we have

Ly Lee(# ) (5)
@ <log—k> = >

c,, > .
L& T - a) ra-ow Id-a)

)

In other words,

The proof is thus completed.

Lemma 2 [13] If O<a <1 and @(t) € C*[a,T), then the local truncation error
R’;H (1 < k< N)in (6) has the following estimate:

2 2
< 1 log e + —l 10g —
ul S\ T2 —a) i rda - a) 1Sy t, |

—a
<log —> max
tk 1 asi<ty,

Remark 2 [13] The local truncation error given by (6) is bounded in the following sense:

5% (1).

2—a

)

with C > 0 being a constant independent of the temporal stepsize .
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2.2 Weighted and Shifted Griinwald-Letnikov Formula for Riesz Derivative

Let x; =a+jh, j=0,1,-+,M, where h = (b — a)/M is the spatial stepsize. Define grid
functlon spaces U, = {w | w = (wWo, wy, -+, wy)}and U = {w | w € U, wy = w), = 0}. For
any grid functions w = {w;} and v = {v;} in UZ, a discrete inner product and the associated
norm are defined as

(w, m-hZ wvi, Wl = (w,w),.

Let w(x) and RLD R7ZE9 RLD bt//(x) and its Fourier transform belong to L'(R). The Riesz
derivative of y(x) at x =x;(1 £j <M — 1) can be approximated by the following weighted
and shifted Griinwald-Letnikov formula [26]:

J+, J+
rzDly (%)) [ Z 8y jket,) TV Z 80w (Yken,)
®)
v 2 Py X)) + 72 2 8V W) | + OGP,
=0 k=0
=L g® k ﬁ _ 2 2=
where W, = 2o’ —( 1) , and vy = w2 T 2(/‘ - L #1,. In
particular, the coefficients g p ) can be computed via the following recursive formula:
g =1, ¢ = BN w o _
=gl = (1-5= e k=12,
Lemma 3 [23, 26] For1 < B < 2, the coefficients g(ﬂ) (k = 0) in (8) satisfy
% :(ﬂl), g(lﬂ)u; o
1>g, >g3 > 20, ©)

In the following discussion, we choose (/;,1;,) =(1,0) in (8) and the resulting
approximation reads

l}lﬁ Jj+1 M—j+1
RZDfW(xj) = _h_ﬁ<zwl(cﬁ)lll(xj—k+l) + Z W ll/( Xjpie— 1)) +O0). (10)
k=0 k=0

B _ BB Oy} (ﬂ) 2-p (B
Here wy” = Zg," and w; 58 = 811 for k

coefficients w; )in (10) satisfy

> 1. In view of Lemma 3, the
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B /()] B+ B _ BB*+p—4)
wy —(ﬂg W (ﬂ) =1-==<0,w," = _—
> >w >
1 Zw, Z W, >0, (11
ZWk =0,2wk <0,m>=2.
k=0 k=0
As a matter of fact, (10) can be rewritten as
1 ® (ﬁ)
i __1 2
RZDXI//(xj) == Z 1// + Z + O(h”)
k=0 k=j+1 1
o (12)
=——= > rhw(x) + 00,
W=
where
B _ B _ 1 B>
PO = 2w _@@ ) >0,
B _ ()] By _ 1 BB +B-2)
) r= \Pﬁ(wo +w, )= —2cos("/’)—4 <0, 3
B _ B _ 1 (ﬁ) (3)
e =YW = m o <0, k22,
rl(cﬂ) = r(_ﬂk), k> 1.

Lemma4 Forl < f < 2, the coefficients r,Eﬁ) (k = 0) satisfy

Proof It follows from (11) that > w’ < 0 with m > 2. Thus,
k=0

m m—j+1
rjffl:lyﬂ(zwww Z )>0,j+1 Z2m—j+122
k=0

m

In view of (13), 7"’ > 0 and ¥’ < 0 with k # 0. Therefore, when m > 2 ) < 0. Fur-
thermore, (11) and (13) yield

m—1 m
B _ #)
Zrk —Z‘PﬂZwk >0, m=2.
k=1-m k=0

All this completes the proof.
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2.3 Fractional Centered Difference Formula for Fractional Laplacian

In the case with two dimensions, let h = 2L/M with M € Z*, x; = =L + jh with 0 < j < M,

and y, = —L +kh with 0 < k <M. Denote Qh ={(x,y) 10K k< M}, 2, = Qh ne,
and 082, = Qh noQ.

For any grid function w={w},v={v;} on §; ={w|w={wy},wy=0 with
(x;, ) € 042}, a discrete inner product and the associated norm are defined as

M—-1M-1

2 2
W,V =nh Z 2 WikViks ||w||L% =W, W),.
j=1 k=1 !

Set L = {W [w={w} ||W|| < +o0 } For w € L;, we define the semi-discrete Fourier
transform w: [—;, —;] - C as

M-1M-1
R 5 e
w(y,l, ;72) =h Z Z ije l(’?]Jh‘Hhkh),

=1 k=1

and the inverse semi-discrete Fourier transform

N ER N =i, ki
ij — @ /75 '[E W(’71J12)€ i(n,jh+n, )dnldn2
h h

with i € C being the imaginary unit. It follows from the Parseval’s identity that the
continuous definition of the inner product takes the form

AN A
W) = / ) / Wy, mp)0(ny, mp)dmy dn
TR

with the norm given by

1 Pl 2
”W”ii = m/“ /n |W(’11,’72)| dn,dn,.
-z J.z

h

For an arbitrary positive constant s, define the fractional Sobolev semi-norm | - | as
h

2 _
lwl 2_41!2/ / (2 +12) " |Weny, )| dnydr.

Based on the above the settings, the fractional Laplacian in two dimensions can be
evaluated by the two-dimensional fractional centered difference formula

(-A ) y(x,y) = W Z (ﬁ)y/(x+]h Y+ kh) (14)

J.kez

with

LIS

=

1 b T . —i(n. i
i =g [ [ ot (3) v ()] om0

g

t\)|~“
M|

@ Springer



1682 Communications on Applied Mathematics and Computation (2023) 5:1674-1696

Here we introduce the way of calculating a(ﬂ ) given by [14]. Take an integer number K > M
and stepsize § = 2n/K, we have

s
af) = ) / / 4sm +4sn (?)]ze‘i(m””z")dnldnz
g
é 2 L
N Z Z [4sm +4sm ( ;)] g iGop+koq)
With the expression above, the coefficients a;ﬁ JORS J.k —1) can be computed

efficiently by the built-in function “fft2” in Matlab, where the accuracy of approximation
is O(K~?-2) [14]. Throughout the numerical examples in this paper, K is taken as 2!? to

compute the coefficients aj(, e

Before introducing proberties of the fractional central finite difference formula, the
following space should be introduced [10, 14, 27]:

B(R?) = {w‘ v e LI(RZ),/ [1+ 171%] [ (ny. my) | dny gy < oo},
RZ
where |5|* = 71]2 + n§-

Lemma 5 [14] Let w(x,y) € B>*P(R?). For the fractional centered difference operator in
(3), it holds that

=)y (ny) = (=A,) Fw(e) + Ry (xy). 0<f<2

where the truncation error satisfies
IR (e.3)]| < Col? / (U 123y )y iy = CI2 (16)
R2
with C being a constant independent of h.

s
Lemma 6 (Fractional semi-norm equivalence) [14] Fory € H hz (R?), we have

2\* g
C)wr,  <(-a0fww) <wP,

H?(R?)

3 Fully Discrete Schemes
In this section, we derive fully discrete schemes for the one-dimensional time-space

fractional diffusion equation (1) and the two-dimensional time-space fractional diffusion
equation (2), along with the corresponding stability analysis and error estimation.
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3.1 Fully Discrete Scheme for (1)

Denote the exact solution u(x, ) and the numerical solution U(x, ) at the grid point (x;, 7,)
by u/ and U/" respectively. Denote also f" =f(x X, 1) Substituting (4) and (12) into (1),
omitting the high-order terms, we obtain the following implicit difference scheme:

M
@771 _ (@770 —-p B rr1 _ ¢l : _
cl’lUj LLIUJ. +h kgorj—kUk —];,,1 <jsM-1,

n—1
@ _ @ (@) 770 ()
<c£fr)ll]jn + E(ci,n l+1 n)Ul - cl,nt > +h” / Z I‘ Un ];n!
i=
2<n<N, I<j<M-1,

Un=U'=0,1<n<N.

L

a7

In order to rigorously analyze the numerical stability and convergence of the fully discrete
scheme in (17), we first derive the following lemma.

Lemma?7 For any grid functionv = (v, vy, -+, vy) € U,, we have

M-1 /M
Wy (Z r;f;(vk>vj >0,
j=1 \ k=0
where r ) is defined by (13) with f € (1,2).

Proof It follows from Lemma 4 and (13) that

2 nh 2 (Z “”vk)vj

M-1 h M-1 M (18)
- w2, h B2, 2
Zh"|h ) 1 vj+2 Z rj_k(vk+vj)
j=1 Jj=1 k=04
M-1 Rl M PR
_ 3-8 w2 h w2, h ® 2
=h (h ro Vi + > Z rovi T > Z r kvk>
j=1 =1 k=04 =1 k=0k#i
2 nPA + A, +Ay)
Note that
" M-1 M " M-1 M
_h w2 _h 2 ®
Ay = 2 Z T T 5 Vj Z Tk
Jj=1 k=0.kstj J=l 7 k=0
hM—l j hM—l M-1 (19)
_h¥y 2 ROBSER I P8
2 J k 2 J k
j=1 7 k=j=Mk#0 j=1 " JkI=1
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and
b M-1 M
— B 2
Ay=3 2 i
j=1 k=0k#j
" M-1 -1 M-1 j
_n ®. 2 ® 2
—2< Z e vj_k+22rk vj_k)
=1 kM =1 k=1
i -1 k+M M-1  M-1
— ()] 2 ()] 2
) "k 2 Vit 2 7% Vick (20
k=1-M j=1 k=1 =k
" -1 M-1 M-1
= 5 r]((ﬂ ) + rfcﬂ ) vf
k=1-M k=1 j=1
M-1  M-1
A WA N0
2 I k

Substituting (19) and (20) into (18) gives

M-1 M-1  M-1
-B ()W) 2 ()]
AZ>h <h U vj+h2vj rk>

j=1 j=1 " k=1
M-1 M-1
=h ﬂh( (ﬂ)+ Z ) vj? @1
[k|=1 j=1
= h'=f r]((ﬂ) v? > 0.
k=1-M =1

The proof is thus completed.

Based on the above lemma, we are ready for the stability and convergence analysis of
the fully discrete scheme in (17).

Theorem 1 Let a € (0,1) and p € (1,2), the fully discrete scheme in (17) for the time-
space fractional diffusion equation (1) is unconditionally stable.

Proof Let U" be the approximation of U which is the exact solution to the fully discrete
scheme in (17) at (x;, 7). The perturbation term §;l = Ujfl - Ujfl satisfies

(a)§1+h[}’z (ﬂ)ék_c(a)§01<j _1’

: 22
chagi]n +hP z r(ﬂ) Z(Cf[j-)ln _ cft;))gjz + c(a)éo (22)
nz22,1<j<M-1.

We prove the unconditional stability by mathematical induction. When n = 1, multiplying
both sides of the first equation in (22) by fjl and summing j from 1 to M — 1yield that
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M-1 M- M
@ 2 B (ﬂ) R 0 gl
hZ(:) +h hZ}(Zr >j hZéé
According to Lemma 7, we have
M-1 M
hny <Z r;ﬂ)g“k)fl >0,
j=1 \ k=0

which gives

ATEN < STIE ANE - (23)
Note also that c<") > 0. Therefore,
I N, < 1€
Assume that ||€"|, < ||£°]], holds for 1 < m < n— 1. When m = n, multiplying both sides

of the second equation in (22) by 5(’ and summing j from 1 to M yield that

fflzh Z(gn)Z +h ﬂhz (Z (ﬂ)§k>§n
=1 j=

M-1 n—1

=1 (ij_)] ) (ﬂ))g 5” + c(a)h Z §O§n
1

1
= i=

It follows from Lemma 7 that

§

-1 M

7 k=0

which gives

M-1

n—1
llEly < Qe = <Dk Z g +ch Z &¢
i=1

VAN

—1

i 0
D = cENNE L+ <N NE
i=1

n—1
n (a) (a) (a) 0
<& ||h(2<ci+ln V) + )ns I
i=1
0
= DN N IE s
where Lemma 1 is used. As a result, we have

& 1y < NE°N-

The proof is thus completed.
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Theorem 2 Let u(x, t) be the exact solution to (1) and U(x t) be the numerical solution
given by scheme (17). Assume that u(x, t), RLD M, 1), RLD u(x t) and its Fourier trans-
form belong to C2([a T1, LI(R)) Then for the numerlcal errore = u — U, there holds

le"ll, < C(z“ +h*), 0<n <N, 24)

where €" = (eg,s’l’, e e’]f/,_l,e"M) € L{Z, a € (0,1),and C > 0 is a constant.

Proof It follows from (1) and (17) that

-

M
c\lel +h ﬂerj(ﬁ) AN+ RIS <M -1,
M
{ et 4 ﬂkzorjﬁ;(s; = Zl(cﬁi)l,n — cithel + el + Ry, (25)
2<nEN, 1<j<M~1,
ej(.’=0,1<j<M—1.

By Lemma 2 and (8), the truncation error R]’.’ satisfies

< E(Tz—”‘th),j: 1,2, .M—1,n=1,2,--,N

where C is a positive constant.
Now we give the convergence analysis by proving

1", < —)max{<kr>“||Rk||,,} I<n<N 26)

via mathematical induction. The case with n = 0 is trivial as ||€°||, = 0
For n = 1, multiplying both sides of the first equation in (25) by € /1 and summing j from
1to M — 1yield '

(")hZ(e )+ h” ﬂhZ(Z e i)f —c(”)h2551+hZR1 !
j=1

Based on Lemma 7 and Remark 1, we give the following estimates:

1
e g < SN NE 1, + IR M lle" 1,

from which follows

I'd—a) 4 .1
le'll, < 1€, + — (a) IR[l), < S—F 7 IR 1[),-

11

Assume that (26) holds for1 <n <m with1 <m < N. When n = m + 1, multiplying both
sides of the second equation in (25) by sj and summing j from 1 to M — 1 give
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M
EOYEETD) (zr;f;e;:)e;
Jj=1

=1 0

-1 n-1

M
=h Z Z(cl(,:’r)l I c(“))e’e" + c(a)h Z e?ef +h Z RYel.
1

1
j=1 i= =1 Jj=1

\

It follows from Lemma 7 and Remark 1 that

n—1 R
2 (@) ( ) (@) 0 IR ”h
@ llemlly < Z (i, = oMl + 61“,1<I|8 I, + @ e Nl

i=1

ln
n—1 (
k
< 2, = T () IR e,
i=1

)F( )

+c () (IR [[ 1€ 11,

n—1
o a a r( ) a
< [Z@E&n e+ ”] —— max {ko) IR e

' —a)
) a | pk n
= e max {Gko) IR, }lle" ;.
Therefore,

ra-a)

lle® |l < T°C(7> " + 1?).

ra-a
a k <
max {®o IR} < ———

Zla
Consequently, there exists a positive constant C, such that
eI, < C(rz_“ + hz).

This finishes the proof.

3.2 Fully Discrete Scheme for (2)

For the two-dimensional fractional diffusion equation in (2), we denote u = u(x;, Yy I, )
and f" =f(x, Yo 1,) With x; = =L + jh, y, = =L + kh, and 1, = nt. Here h and T are the
spatlal stepsize and the temporal stepsize, respectively. Adopting the L1 approximation
in (4) for the temporal Caputo-Hadamard derivative and the fractional centred difference
formula in (14) for the fractional Laplacian, we obtain the following fully discrete scheme
after omitting the high-order terms:
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s
cﬁ‘ffuj?k - cﬁf‘fufk +(=8)) Ul = [l 1 <ok <M -1,
n—1
a) (a) (@) i (@) 70
) Ciug Uy + g:l(ci,n =) U =€, Up + (—4y) on
2<n<N, 1<j,ksM-1,

(Jjok = u()(xj9yk)7 1 Sj,k < M— 1’
U;;{ =0, (xj,yk) €00,,0<n<N.

Here U/.’;( = U(xj,yk,tn) with U(x, y, f) being the approximation of u(x, y, t). This finite
different system can be written into the following matrix form:

AU = U0+ SAU =F n =1,
(28)

n—1

()" (@) _ (@) i _ ()70 1 n _ gn

U + .Zi(ci,n Cin)U =, U+ AU =F'n>2,
i=

where

n n vee n
Jm-n1J120 T -1y2°

s

no__ cfno n n T
F - 11° ))

1m-1y " S -1
and
Un _ (Un Un Un )T
— MY e Yy

T
with U]’,‘ = (U’fj, Ugj’ . U(’;\/I_l)j> . The coefficient matrix A is a real symmetric block

Toeplitz matrix with Toeplitz blocks, say,

AO Al A2 AM—3 AM—Z

Al A() Al AM—4 AM—3
a=f A2 A A A A
AM—3 AM—4 AM—S AO Al
AM—2 AM—3 AM—4 Al AO

with
®» B ® )
S S Tl
di; Gy, i Aygy Y3
Db B
A = 2j 1j 0,j M-5j "M-4j
J : : : : :
®» B B )
Yyzj sy Mmsm-si T Yoy 4y
@ ® » Logh b
M-2j Ym-3;  “Yym-4j 1, 0,

It follows from Lemma 6 that the matrix A is a real symmetric positive definite matrix.
Now we show the unconditional stability of the fully discrete scheme (27).

Theorem 3 Let 1 < f <2 and 0 < a < 1. The finite difference scheme (27) for the frac-
tional diffusion equation (2) is unconditionally stable.
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Proof Let ﬁ” be the approximation of Uj which is the exact solution to the
fully dlscrete scheme in (27) at ( , Yo t,). It is evident that the perturbation term
U" - U” O<jksM,1<n< N) satisfies

s
(@) .1 (a) 0 Fp - :
L€k~ 11€,k+( Ah)zjk—0,1<j,k<M—1,
g
@ @ _ @ @0 4 (_A \om _ 2
cn"nejk + Z( € n)e —cp €t ( Ah)%s;;c =0, (29)

2<n N,1<],k< ~1.

Now we show that ||e"|| A < 1€l L (n > 0) via mathematical induction. The case with
n = 0is trivial. Forn = 1, takmg the inner product of the first equation of (29) with e! gives

(C(lal)el ¢ )hz ( iese )hz (( Ay, 1>hz=0- (30)

Note that Lemma 6 gives ((—Ah)

L=

€', el) |2 0. By Cauchy inequality, we have
K

(a) (@ 1 1 (@ 0 .1 (0t)
el = (cllele) < (cffetie) < ezl
which yields that
1 0
e llz2 < M€l 2 (31)
Assume that ||e"’||2 ||€0||L/2 holds for m=2,---,n— 1. It follows from the second

equation in (29) that

n—1
s
(@) . (@) (a) (@) 0 5. n n _
< e, e > 2+Z<(CWl [Hn)e € >h2 <cln€ € >h2+<(_Ah)2€ € )hz =
i=1

(32)
Applying Lemma 6 and the Cauchy inequality, we have
n—1
clle”liz; < ey, — i€l e”) o + (e ")
i
< 2@, = ale Nz ez + el lle 2
i=1

< el Z(cfﬁﬂ — e + el
<cle 2l 2,
which yields
lle™ll2 < 1€ 2.
The proof is thus finished.

Now we show the convergence of the fully discrete scheme in (27).
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Theorem 4 Assume that u(x,y,t) € C2([a, T1, B2 (Q)) is the solution of (2). Let
Ui’;< (0 <j,k<M,0< n<N) be the numerical solution given by (27). Then the numerical
error " = {e]'.'k}%(zo € S, with e;7k = U].’}{ - u;‘k 0 <j,k<M,0< n<N)satisfies

||e”||Lz < C(fz_"’ + hz).
Here C is a positive constant independent of h and t.

Proof It follows from (2) and (27) that

SIS

(@) 1 (@) ,0 1 _ pl P _ —
C11€ €118 + (—Ah) € —Rjk,l jEM-1,1<ksM—-1,

B

n—1
(a) ,n (@) _ () i _ @0 _ 20 _ pn
ConCic T ZI(Ci,n Cir1)€k ~ Cra T (—4y) tey =Ry,
iz

33
2<n<N,1<jSM-1,1<ks<M-1, (33)
e =01<j<SM-1L1<k<M-1,
e]’.’k =0, (xj,yk) €08,,0<n<N.
By Lemmas 2 and 5, itis evident thatforl <n < Nandl <j,k <M -1,
Ry < C™" + 1) (34)
with C being a positive constant independent of / and 7. Now we prove
I'l—a)
el < === max { O IR Il }. 0<n<N (35)
via mathematical induction. When n = 0, it is obvious that
lle’ll2 = 0. (36)

When n = 1, taking the inner product of the first equation of (33) with e' gives
Wele') — (el e') + (-A )gel e') =(R'e"
1,1¢ > 1,1¢ > h ’ , = V€. 37
> h2 ’ h2 h.
It follows from the above equation and Lemma 6 that
@102 — (@, 1 (@) ,0 1 1 1
e 2, = (cffelse) <l izle! i + IR iz lle' s
where the Cauchy inequality is applied. As a result, (36) and Remark 1 yield that
1 r'd-a
0
le'llz <11l + 5 1Rz < ——=—
L1

@)"|IR' Il (38)

Assume that (35) holds for 2 < n < m— 1. For the case with n = m, taking the inner
product of the second equation of (33) with " gives

n—1
B
(a) ,;n n (@) _ (2) i n _ (@) 0 n _ 30 ,n _ non
(cme ,€ )hz + Zl ((ci’" ci+]’n)e,e )hz (cl‘ne , € )hz + (( A,,) e e )hz =(R", ")
i=
Combining (36), Lemma 6, and Remark 1 gives
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(@) 11|12 (@) (01) () non
enlle'l;; < Z(cm D)+ (e + R
i=1
n—1

< D, = el lle"lz + c“”(c(a) IRz lle" 2 )
i=1

1,n

where the Cauchy inequality is applied. Therefore,

n—1 F(l )
(@) || 1 () (a) aNRe -,
cleli; < i, - e max {0 I |
I'l-a
+ C(l(l) ( _ )
SN a%

i I - a)
< lz«,fi),,, A+ “”] ——— max {(fr)“llRflle}
i=1

o) IR 2

1<<

I(l—a)
— 7 a 4
== g%{(ff) IR Ing}~
As a result,
) (- a) i} rd-a), ,~ 5.
ey < 2 max { o iR b < 21T ),

Consequently, there exists a positive constant C, such that
||e"||LIz < C(rz“' + hz).

This finishes the proof.

4 Numerical Experiments

In this section, we numerically demonstrate the aforementioned theoretical results on the
convergence and numerical stability.

Example 1 Consider the following fractional diffusion equation in one dimension with
a€(0,1)and g € (1,2):

enD| U 1) — gz DPulx, 1) = f(x, 1), 1 € (1,2]
on a finite domain 0 < x < 1, with a given force term

_ 6 401 _ 4 3—a M
f,n = a—a" (I —x)"(log )™ + 2 cos(nf/2)

4
3 (s 1))
=1

N - DTG +1—-p)
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The initial condition and the boundary condition are given by u(x,1)=0 and
u(0,1) = u(1,1) = 0, respectively. Its exact solution is

u(x, 1) = (log 1°x*(1 = x)*.

The numerical error is defined as

M-1 5
_ N
Error = h 2 |uj —u(x;, y)
J=1

Tables 1 and 2 show the numerical error and the convergence orders given by the
fully discrete scheme (17). We can see that the scheme is stable and the numerical error
is O(7% + h?) indeed.

Example 2 Consider the following fractional diffusion equation in two dimensions with
ae€(0,1)and g € (1,2):

Table 1 Spatial convergence of scheme (17) with ¢ = 0.000 05 for Example 1

p h a=03 a=0.6 a=0.9
Error Order Error Order Error Order
1.3 1/23 5.181 2E-5 - 4.879 7TE-5 - 4.475 6E-5 -
124 1.303 6E-5 1.991 1.235 5E-5 1.982 1.144 6E-5 1.967
1/2? 3.318 2E-6 1.974 3.150 SE-6 1.972 2.927 2E-6 1.967
1726 8.410 6E-7 1.980 7.990 OE-7 1.979 7.441 OE-7 1.976
1727 2.120 1E-7 1.988 2.014 8E-7 1.988 1.889 4E-7 1.978
1.5 1/23 5.153 4E-5 - 4.952 2E-5 - 4.677 TE-5 -
124 1.273 2E-5 2.017 1.227 7E-5 2.012 1.166 3E-5 2.004
1/23 3.214 4E-6 1.986 3.102 5E-6 1.984 2.952 4E-6 1.982
1726 8.112 6E-7 1.986 7.832 8E-7 1.986 7.466 9E-7 1.983
1727 2.040 4E-7 1.991 1.970 5SE-7 1.991 1.888 9E-7 1.983
1.7 1/23 4.722 9E-5 - 4.604 OE-5 - 4.439 6E-5 -
124 1.143 8E-5 2.046 1.116 2E-5 2.044 1.078 7E-5 2.041
1/23 2.860 3E-6 2.000 2.791 7TE-6 1.999 2.699 8E-6 1.998
1/26 7.179 9E-7 1.994 7.008 6E-7 1.994 6.786 8E-7 1.992
1727 1.800 5E-7 1.996 1.757 9E-7 1.995 1.710 5E-7 1.988
1.9 1/23 3.861 SE-5 - 3.802 9E-5 - 3.720 7E-5 -
1724 9.084 5E-6 2.088 8.939 7E-6 2.089 8.741 8E-6 2.090
1/2° 2.246 1E-6 2.016 2.209 1E-6 2.017 2.159 6E-6 2.017
1/26 5.605 OE-7 2.003 5.512 1E-7 2.003 5.394 OE-7 2.001
1727 1.401 2E-7 2.000 1.378 1E-7 2.000 1.355 1E-7 1.993
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Table 2 Temporal convergence of scheme (17) with 2 = 0.000 1 for Example 1
B T a=03 a=0.6 a=09
Error Order Error Order Error Order
1.3 1/23 2.114 6E-6 - 1.002 4E-5 - 3.603 9E-5 -
124 6.846 TE-7 1.627 3.883 4E-6 1.368 1.704 6E-5 1.080
1/2° 2.190 5E-7 1.644 1.491 OE-6 1.381 8.009 SE-6 1.090
1/26 6.948 6E-8 1.656 5.695 SE-7 1.388 3.750 3E-6 1.095
1727 2.190 5SE-8 1.665 2.169 1E-7 1.393 1.752 9E-6 1.097
1.5 1/23 1.708 2E-6 - 8.165 1E-6 - 2.988 7E-5 -
124 5.524 8E-7 1.629 3.156 9E-6 1.371 1.413 OE-5 1.081
1/2° 1.766 2E-7 1.645 1.210 6E-6 1.383 6.636 1E-6 1.090
1126 5.599 9E-8 1.657 4.621 OE-7 1.389 3.106 3E-6 1.095
1727 1.764 8E-8 1.666 1.759 2E-7 1.393 1.451 6E-6 1.098
1.7 1/23 1.341 8E-6 - 6.448 3E-6 - 2.391 9E-5 -
124 4.335 3E-7 1.630 2.488 1E-6 1.374 1.129 OE-5 1.083
1/25 1.385 OE-7 1.646 9.530 2E-7 1.384 5.297 2E-6 1.092
1/26 4.389 3E-8 1.658 3.635 3E-7 1.390 2.478 1E-6 1.096
1727 1.382 8E-8 1.666 1.383 3E-7 1.394 1.157 7E-6 1.098
1.9 1/23 1.026 2E-6 - 4.944 9E-6 - 1.848 8E-5 -
124 3.312 4E-7 1.631 1.904 5E-6 1.377 8.706 7TE-6 1.086
1/2° 1.057 6E-7 1.647 7.287 2E-7 1.386 4.079 7TE-6 1.094
1/26 3.350 1IE-8 1.659 2.778 OE-7 1.391 1.907 2E-6 1.097
1727 1.055 2E-8 1.667 1.056 7TE-7 2.486 8.906 2E-7 1.099
D% Uy, 1) + (—8) Fulr ) = f(xy. 1), (xy) € 2.1 € (1,2],
u(x,y, 1) = 0, (x,y) € R\Q,1 € (1,2],
u(x,y,1) =0, (x,y) € R,
where @ = (=1, 1)? and the exact solution is set as u(x, y, ) = (log £)3(1 — x2)*(1 — y?)*.

The source term fis not explicitly known and we use very fine stepsize to gompute it. In
this case we evaluate the source term by f = f, = CHle,,“(x’ v, b))+ (—Ah) 2u(x,y, t) with
h = 278, The numerical error in the spatial direction is
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E(h) =

h2

Mz

J

Il
(=]

f=}

2
o) = (/2,90

where 7 is small enough. The numerical error in the temporal direction is

F(r) =

where 4 is small enough.

h2

J

LM<
M=

2
|uij(h, ) =12 (h, 1/2)| ,

Tables 3 and 4 display the errors and convergence orders for the finite difference scheme
(27). We can observe that the numerical results are stable and of (2 — @) order in time and

of 2nd order in space, which verifies Theorems 3 and 4.

Table 3 Spatial convergence of scheme (27) with 7 = 1/27 for Example 2

p h a=03 a=0.6 a=0.9
E(h) Order E(h) Order E(h) Order
1.3 1/22 - - - - - -
1/23 4.492 SE-3 - 4.054 9E-3 - 3.505 7E-3 -
124 1.064 OE-3 2.078 9.643 4E4 2.072 8.397 1IE4 2.062
1/2? 2.628 4E-4 2.017 2.384 6E-4 2.016 2.081 3E4 2.012
1/26 6.550 6E-5 2.004 5.945 5E-5 2.004 5.200 3E-5 2.001
1.5 1722 - - - - - -
1/23 5.519 OE-3 - 5.103 3E-3 - 4.562 9E-3 -
124 1.292 5E-3 2.094 1.199 3E-3 2.089 1.078 9E-3 2.080
1/23 3.184 4E-4 2.021 2.956 TE-4 2.020 2.664 6E—4 2.018
1/26 7.932 OE-5 2.005 7.366 6E-5 2.005 6.649 2E-5 2.003
1.7 1722 - - - - - -
1723 6.589 9E-3 - 6.212 8E-3 - 5.709 6E-3 -
1724 1.524 5E-3 2.112 1.441 3E-3 2.108 1.331 1E-3 2.101
1/2° 3.745 2E-4 2.025 3.541 8E-4 2.025 3.274 9E4 2.023
1/26 9.323 2E-5 2.006 8.817 7E-5 2.006 8.160 4E-5 2.005
1.9 122 - - - - - -
1723 7.700 2E-3 - 7.370 1E-3 - 6.921 2E-3 -
1724 1.757 6E-3 2.131 1.685 9E-3 2.128 1.589 5E-3 2.122
1/2° 4.303 9E4 2.030 4.128 SE4 2.030 3.894 2E4 2.029
1/2¢ 1.070 6E-4 2.007 1.026 9E-4 2.007 9.688 9E-5 2.007
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Table 4 Temporal convergence of scheme (27) with 4 = 1/2° for Example 2

p T a=03 a=0.6 a=09
F(r) Order F(r) Order F(r) Order
1.3 1/22 - - - - - -
1/23 1.464 9E-3 - 5.174 6E-3 - 1.296 6E-2 -
1724 4.881 7E4 1.585 2.065 8E-3 1.325 6.241 3E-3 1.055
1/2? 1.592 1IE-4 1.616 8.068 6E—4 1.356 2.964 5E-3 1.074
1726 5.119 6E-5 1.637 3.112 8E4 1.374 1.396 5E-3 1.086
15 1722 - - - - - -
1/23 1.464 9E-3 - 5.174 6E-3 - 1.296 6E-2 -
1724 4.881 7E4 1.585 2.065 8E-3 1.325 6.241 3E-3 1.055
1/23 1.592 1E-4 1.616 8.068 6E—4 1.356 2.964 5E-3 1.074
1/26 5.119 6E-5 1.637 3.112 8E4 1.374 1.396 5E-3 1.086
1.7 1722 - - - - - -
1/23 1.116 1E-3 - 4.012 3E-3 - 1.024 OE-2 -
1724 3.708 6E—4 1.590 1.595 6E-3 1.330 4.952 4E-3 1.048
1/2° 1.207 3E-4 1.619 6.213 OE-4 1.361 2.3559E-3 1.072
1/26 3.877 2E-5 1.639 2.392 2E4 1.377 1.110 2E-3 1.085
1.9 1722 - - - - - -
1723 9.517 SE4 - 3.448 3E-3 - 8.882 7E-3 -
1724 3.157 6E-4 1.592 1.367 6E-3 1.334 4.298 6E-3 1.047
1/2° 1.026 9E-4 1.621 5.3153E-4 1.363 2.044 1E-3 1.072
1/2¢ 3.295 9E-5 1.640 2.044 3E4 1.379 9.628 9E4 1.086
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