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Abstract
The purpose of this paper is to develop a hybridized discontinuous Galerkin (HDG) method 
for solving the Ito-type coupled KdV system. In fact, we use the HDG method for discre-
tizing the space variable and the backward Euler explicit method for the time variable. To 
linearize the system, the time-lagging approach is also applied. The numerical stability of 
the method in the sense of the L

2
 norm is proved using the energy method under certain 

assumptions on the stabilization parameters for periodic or homogeneous Dirichlet bound-
ary conditions. Numerical experiments confirm that the HDG method is capable of solving 
the system efficiently. It is observed that the best possible rate of convergence is achieved 
by the HDG method. Also, it is being illustrated numerically that the corresponding con-
servation laws are satisfied for the approximate solutions of the Ito-type coupled KdV sys-
tem. Thanks to the numerical experiments, it is verified that the HDG method could be 
more efficient than the LDG method for solving some Ito-type coupled KdV systems by 
comparing the corresponding computational costs and orders of convergence.

Keywords  Hybridized discontinuous Galerkin (HDG) method · Stability analysis · Ito-type 
coupled KdV system · Conservation laws

Mathematics Subject Classification  65M60 · 65M12 · 35Q53

1  Introduction

The class of KdV equations is one of the most attractive classes of the nonlinear evolu-
tion equations. This popularity is due to the exceedingly applications in science and 
engineering. One of the most interesting members of this class is the coupled KdV sys-
tem which is arisen from several branches of applications such as fluid dynamics [21], 
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supersymmetric integrable systems [23], and ion-acoustic waves [34]. The general form 
of the coupled KdV system of equations reads as follows:

where � and � are known arbitrary real values and the sufficiently smooth functions � and 
� are considered as given nonlinear functions with respect to variables � and/or � . By con-
sidering various �, �, � , and � (based on the studied models and physical systems), many 
types of the coupled KdV system of equations arise from the general form (1). Some of 
them are the Hirota-Satsuma equation [3, 17], coupled KdV dark equations [6], coupled 
Schrödinger-KdV equations [34], generalized complex Hirota-Satsuma coupled KdV equa-
tion [40], and also some other previous ones [14–16].

Although the Ito-type coupled KdV system [10, 18, 36] is nominated and investi-
gated in this research, the proposed HDG method can be reformulated and analyzed for 
the other types of the coupled KdV system. With arbitrary constants � and � and setting 
� = 0 , and

in (1), the Ito-type coupled KdV system is as follows:

where (x, t) ∈ � × I in which � = [a, b] and I = (0, T] such that 0 < T < ∞ is specified as 
the final time. And besides, �(x, 0) and �(x, 0) for all x ∈ � are given as initial conditions 
and we need some admissible boundary conditions for the  well-posedness of the Ito-type 
coupled KdV system (3). These boundary conditions may be either the periodic boundary 
conditions or a collection of � = b� at x = a or x = b , �x = b�x

 at x = a or x = b , and one of 
the following conditions:

where b� , b� , b�x
 , and b�xx

 are boundary data of � , � , �x , and �xx , respectively.
It is known that there are several versions of what called Ito equations. Some of them 

are integrable and have soliton solutions. Although (3) is integrable, it is unclear that 
whether it has soliton solutions or not. Therefore, studying (3) is a hard problem from 
the viewpoint of integrable systems. On the other hand, it is well known that the third-
order Ito-type coupled KdV system possesses infinitely many symmetries and conser-
vation laws [24]. It is worth pointing out that these symmetries define a hierarchy of 
the Ito-type coupled KdV system. Each equation of the system (3) is a Hamiltonian 
with infinitely many constants of the motion, and also, the Ito-type coupled KdV system 
does not have a Lagrangian. Most of shallow water wave problems can be modelled in 
nonlinear KdV systems [33, 36] and proceeding of the interaction of two long internal 
waves can be shown by the Ito-type system (3) [16, 18].

(1)
{

�t + (�(�, �))x + ��xxx = 0,

�t + (�(�, �))x + ��xxx = 0,

(2)�(�, �) =
�

2
�2 +

�

2
�2, �(�, �) = ���

(3)

{
�t +

(
�

2
�2 +

�

2
�2
)
x
+ ��xxx = 0,

�t + �(��)x = 0,

⎧⎪⎨⎪⎩

� = b� at x = a and �xx� = b�xx
at x = b,

� = b� at x = b and �xx� = b�xx
at x = a,

� = b� at x = a and x = b,
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To solve some complicated problems involving PDEs or systems of them, several 
numerical methods have been exploited. Among a variety of existing works, the finite 
difference [1, 3, 34], finite element [4], wavelet [9], discontinuous Galerkin (DG) [7, 13, 
30, 35–37], and meshless [25–27] methods are more outstanding and applicable. Due to 
some limitations of the traditional DG method, e.g., existing inconsistency in numerical 
solutions, Cockburn and Shu [12] invented the local DG (LDG) method which can be 
applied for solving problems with higher order space derivatives [22, 28, 35, 37–39]. 
The framework of LDG methods is based on reformulating a higher order linear/nonlin-
ear PDE to a first-order system of PDEs, see, e.g., [8, 28, 35–39]. Classical DG meth-
ods preserve high-order accuracy for both the solution and its derivatives but some 
continuous Galerkin (CG) methods such as the well-known finite-element method are 
more economical in particular in solving some steady-state problems. Some hybridized 
DG (HDG) methods have developed for keeping high-order accuracy of DG methods 
and improving their efficiencies. In fact, an HDG method exploits DG and CG solv-
ers simultaneously for increasing performance of the method. According to what men-
tioned in [19], an HDG method in solving steady-state problems at high orders is actu-
ally quite computationally competitive with CG methods. Therefore, the HDG method 
is more accurate and efficient than some traditional methods. The first HDG method was 
introduced by Cockburn et al. in [11], and since then, this interesting method has been 
applied to the various classes of linear/nonlinear of fractional/nonfractional PDEs, see, 
e.g., [7, 13, 20, 30–32]. It is worth noting that HDG methods need less number of glob-
ally coupled degrees of freedom rather than DG methods. Numerical traces in the HDG 
method, as global unknowns, depend only on the number of elements for an arbitrary 
polynomial.

This paper is concerned with the numerical solution of the Ito-type coupled KdV system of 
equations equipped with specific initial/boundary conditions. In this work, we are interested in 
establishing and developing an HDG method for approximating the solutions of the Ito-type 
coupled KdV system of equations. The main step of all types of DG methods including the 
hybridized type, which is reformulating the higher order system into a corresponding first-order 
system, has to be performed. Based on this fact, we must define appropriate numerical fluxes 
that fit to the stability analysis of the HDG method. Since the coupled KdV equation (1) is 
first order with respect to time variable, the discretization in time can be performed using an 
unconditionally stable method. The structure of the variational formulation of the selected types 
of coupled KdV equations is complicated. Based on this fact and to avoid more complexity, 
we select a very simple unconditionally stable time-discretization method, called the backward 
Euler implicit method. We note that the analysis of any type of the DG method, in particu-
lar the HDG method, depends on special theoretical concepts that are not available in classical 
Sobolev spaces. Based on the definition of broken Sobolev spaces introduced in [5], we set up 
the relevant Sobolev spaces of the variational formulation of the HDG method for the Ito-type 
coupled KdV problem. By proving the  stability of the method under certain conditions on the 
stabilization parameters and demonstrating numerical examples, the efficiency of the method is 
confirmed. By setting � = � = 0 , the coupled KdV system is reduced to the linear KdV equa-
tion which has been solved in [14] using an HDG method and an error estimate has been pre-
sented. The convergence analysis of the HDG method for this kind of coupled system is too 
complicated, and to the best of our knowledge, it has not yet been presented neither for the LDG 
nor for the HDG methods and we leave it to the next future. To compare the LDG and the pro-
posed HDG methods, orders of convergence and computational costs of the methods, for solv-
ing some Ito-type coupled KdV systems, are reported.
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The remainder of the paper is organized as follows. In Sect. 2, we recall and briefly sum-
marize the needed preliminaries for the proposed HDG method. In Sect.  3, the variational 
formulation of the Ito-type coupled KdV system of equations is obtained in the framework of 
the HDG method. Section 4 is devoted to the stability analysis of the HDG method for the Ito-
type coupled KdV system of equations. In Sect. 5, some numerical examples have been tested 
for demonstrating the efficiency and accuracy of the HDG method for the Ito-type coupled 
KdV system and dealing with some physical properties of the system. Last section is devoted 
to conclusions.

2 � Necessary Preliminaries: Notations and Spaces

To design the HDG method for the Ito-type coupled KdV system, the appropriate broken 
Sobolev spaces and corresponding broken inner products, with respect to the spatial variable 
x, are proposed. Meanwhile, the elementary ingredients for performing the HDG method are 
given based on the spatial decomposition. In the coupled KdV system, the spatial domain is 
considered the interval � = [a, b] . Let � be partitioned to

Without loss of generality, we suppose that � is regularly partitioned with the mesh size 
h =

b−a

N
 . The jth element of the partitioning of � is represented by

The collection of disjoint elements and the collection of boundaries of elements, respec-
tively, are denoted by

where �I ∶= �Ij = {x
j−

1

2

, x
j+

1

2

} . The set of all nodes is denoted by Eh = E
0
h
∪ E

�
h
 , where E0

h
 

and E�
h
 are the sets of interior and boundary nodes of the partition, respectively. The aver-

age and jump of the function v are defined as follows:

where v+ and v− on the node e represent, respectively, v(e+) and v(e−) . The function v has a 
single value at the boundary nodes, then different definitions at those nodes are specified 
separately. The outward unit normal vectors for boundaries of the element Ij are given as 
n
−
j+1∕2

= +1 and n+
j−1∕2

= −1 . The sets of boundary nodes which boundary data are speci-
fied on � and � , and their first and second derivatives are denoted, respectively, by 
Γ�, Γ�, Γ�x

, and Γ�xx
.

The corresponding broken Sobolev spaces associated with the partition Th and the node set 
Eh , are defined as

a = x− 1

2

< x 1

2

< x 3

2

< ⋯ < x
N−

1

2

= b.

I ∶= Ij = [x
j−

1

2

, x
j+

1

2

], j = 0,⋯ ,N − 1.

Th ∶= {I0,I1,⋯ ,IN−1}, �Th ∶= {�I0, �I1,⋯ , �IN−1},

{{v}} =

{
(v+ + v−)∕2, e ∈ E

0

h
,

v, e ∈ E
�
h
,

[[vn]] =

{
v+n+ + v−n−, e ∈ E

0

h
,

vn, e ∈ E
�
h
,

L2(Th) ={v ∶ � → ℝ ∶ v ∣I ∈ L2(I),∀I ∈ Th},

H1(Th) ={v ∶ � → ℝ ∶ v ∣I ∈ H1(I),∀I ∈ Th},

M
1(Eh) ={� ∶ Eh → ℝ ∶ � ∣e ∈ H1(e),∀e ∈ Eh}.



1355Communications on Applied Mathematics and Computation (2022) 4:1351–1373	

1 3

Similar to the standard Sobolev spaces, several broken embedding theorems, such as  the 
broken Sobolev-Poincaré theorem, are proven for the broken Sobolev spaces [5]. The 
standard broken inner products with respect to Th, �Th , and Eh , respectively, are defined as

The superscripts − and + indicate the left- and right-hand limits of the function, respec-
tively. In the broken inner products (4), �1 and �2 are defined on Th, and �1 and�2 are 
defined on �Th.

Let Pk(I) be the set of polynomials of degree at most k over the element I ∈ Th . The sub-
spaces of discontinuous finite-element space and skeleton space (or trace space), respectively, 
are defined as

Regarding the boundary conditions, it is needed to define some subspaces of Mk
h
 such as

where the L2-projection Π maps the space of boundary functions into the skeleton space 
Mk

h
.

3 � Variational Formulation and Numerical Scheme

This section is concerned with establishing a numerical scheme derived from the HDG 
method to the Ito-type coupled KdV system. The numerical scheme is formed by the aid of 
the weak formulation of the Ito-type coupled KdV with the HDG method element by ele-
ment over the partition Th . The significant subject in this formulation is to define appropriate 
numerical fluxes that leads to the stability of the numerical method based on the HDG method 
for the Ito-type coupled KdV system. We note that the numerical fluxes are defined globally 
over the domain � . The usage of numerical fluxes leads to the main advantage of the HDG 
method and its superiority over other DG methods. In fact, imposing the continuity of the 
numerical fluxes and then applying the CG method establish a global system with less degree 
of freedom over the node set �Th . The first-order system corresponding to the Ito-type cou-
pled KdV system (3) is formulated as

where �(�, �,�) = �(�, �) + �� . By multiplying all equations in (7) by test functions 
�, �, �,� ∈ H1(Th) , from top to bottom, respectively, and integrating both sides over the 
element I ∈ Th , we end up with the variational problem of finding solution

such that for all I ∈ Th and for all test functions �, �, �,� ∈ H1(Th),

(4)

⎧
⎪⎨⎪⎩

⟨�1, �2⟩Th
=

�
I∈Th

⟨�1, �2⟩I, ⟨�1,�2⟩�Th
=

�
I∈Th

⟨�1,�2⟩�I,
⟨�1, �2⟩Ij

= ∫ xj+1∕2
xj−1∕2

�1(x)�2(x)dx, ⟨�1,�2⟩�Ij
= �−

1,j+
1

2

�−

2,j+
1

2

+ �+

1,j−
1

2

�+

2,j−
1

2

.

(5)
{

Sk
h
=

{
w ∈ H1(Th) ∶ w ∣I ∈ P

k(I),∀I ∈ Th

}
,

Mk
h
= {� ∈ M

1(Eh) ∶ � ∣e ∈ P
k(e),∀e ∈ Eh}.

(6)M
k,�

h
(l) ∶= {� ∈ Mk

h
∶ �(x) = Πl(x), x ∈ Γ�},

(7)�t +
(
�(�, �, �)

)
x
= 0, �t +

(
�(�, �)

)
x
= 0, � − �x = 0, � − �x = 0,

(�, �, �,�) ∈ H1(I;H1(Th)) × H1(I;L2(Th)) × L2(I;H
1(Th)) × L2(I;H

1(Th)),
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To obtain the discretized version of the variational problem (8), we substitute an approxi-
mate solution (u, v, q, p) into the weak formulation (8) and apply the integration by parts. 
Now, we seek (u, v, q, p) ∈ (H1(I; Sk

h
))2 × (L2(I; S

k
h
))2 , such that

hold for all (�, �, �,�) ∈ (Sk
h
)4 and for all I ∈ Th . Here, the following numerical fluxes are 

considered:

The stabilization parameters �1 , �2 , and �3 are determined, such that the stability of the 
method is attained. Numerical traces û ∈ M

k,�

h
(b�) , v̂ ∈ M

k,�

h
(b�) , and q̂ ∈ M

k,�

h
(b�) are 

defined as follows:

where (�u, �v, �q) ∈ M
k,�

h
(0) ×M

k,�

h
(0) ×M

k,�

h
(0) . We simply figure out that in contrast to 

local unknowns u, v, p, and q over each element I ∈ Th , the traces û, v̂, q̂ ∈ M
1(Eh) are 

global unknowns. Taking into account that three new unknowns �u, �v, and �q are added to 
the variational formulation (9), it is essentially needed to impose three appropriate equa-
tions. These equations can be obtained by enforcing conservation of the fluxes. Thanks to 
this fact, we have

Remark 1  By considering periodic boundary conditions, some small changes must be 
made to (11) and (12). The periodic boundary conditions state more simply that �|a = �|b , 
�x|a = �x|b , �xx|a = �xx|b , and �|a = �|b . Indeed, it must be guaranteed that the numerical 
traces û , v̂ , and q̂ get the same value at x = a and x = b , that is

where (�u, �v, �q) ∈ Mk
h
×Mk

h
×Mk

h
 . In this case, there exist N faces where (�u, �v, �q) are 

unknown. On the other hand, we need N global equations which are defined as

(8)

⎧⎪⎨⎪⎩

⟨�t,�⟩I + ⟨��(�, �, �)�
x
,�⟩I = 0,

⟨�, �⟩I − ⟨�x, �⟩I = 0,

⟨�, �⟩I − ⟨�x, �⟩I = 0,

⟨�t, �⟩I + ⟨��(�, �)�
x
, �⟩I = 0.

(9)

⎧⎪⎨⎪⎩

⟨ut,𝜇⟩I − ⟨�(u, v, p),𝜇x⟩I + ⟨�sn,𝜇⟩𝜕I = 0,

⟨q, 𝜈⟩I + ⟨u, 𝜈x⟩I − ⟨ûn, 𝜈⟩𝜕I = 0,

⟨p, 𝜚⟩I + ⟨q, 𝜚x⟩I − ⟨�qn, 𝜚⟩𝜕I = 0,

⟨vt, 𝜗⟩I − ⟨�(u, v), 𝜗x⟩I + ⟨�gn, 𝜗⟩𝜕I = 0,

(10)

⎧⎪⎨⎪⎩

�s = �(û, v, p) + 𝜏1(u − û)n,

�g =
1

2
(�(û, v̂) + �(û, v)) + 𝜏2(v − v̂)n,

�q = q̂ + 𝜏3(q − q̂)n.

(11)û =

{
b𝔲, E

𝜕
h
∩ Γ𝔲,

𝜆u, Eh ⧵ Γ𝔲,
v̂ =

{
b𝔳, E

𝜕
h
∩ Γ𝔳,

𝜆v, Eh ⧵ Γ𝔳,
q̂ =

{
b𝔮, E

𝜕
h
∩ Γ𝔮,

𝜆q, Eh ⧵ Γ𝔮,

(12)

{
pn = b𝔭, e ∈ Γ𝔭,

[[̂sn]] = 0, e ∈ E
0

h
,

{
[[ĝn]] = �uvn, e ∈ E

�
h
⧵ Γ𝔳,

[[ĝn]] = 0, e ∈ E
0

h
,

{
[[q̂n]] = qn, e ∈ E

�
h
⧵ Γ𝔮,

[[q̂n]] = 0, e ∈ E
0

h
.

û =

{
𝜆u|a = 𝜆u|b, E𝜕h,
𝜆u, E

0
h
,
v̂ =

{
𝜆v|a = 𝜆v|b, E𝜕h,
𝜆v, E

0
h
,
q̂ =

{
𝜆q|a = 𝜆q|b, E𝜕h,
𝜆q, E

0
h
,
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It is noteworthy that the extra equations (12) must be solved and then by substituting 
the solutions of the equations (12) into (9), all of the local unknowns in this weak form can 
be found in each element of Th . Finally, summing (9) up over all elements and substituting 
numerical traces (11) and the numerical fluxes (10) into (9) and (12), we achieve a semi-dis-
crete HDG method that is the problem of finding (u, v, q, p, ��, ��, ��) , such that for all

the following system of equations holds:

where

To have simultaneous space-time discretization for the Ito-type coupled KdV system, a 
suitable time discretization must be applied to (13). To do this, for time discretization, we 
choose the backward scheme which is actually the BDF(1), i.e., the backward differen-
tiation formula [2], that is unconditionally stable and easy to implement. To have a corre-
sponding matrix representation of (13), it is needed to apply a suitable linearization method 
like the Newton-Raphson or time-lagging method to the nonlinear weak formulation (13). 
We linearize the nonlinear weak form (13) using the time-lagging method that is formed by 
applying the following Taylor expansions:

where Δt is a time-step size, and tn = nΔt for n = 0, 1,⋯ . The nonlinear terms v2 , uv, �2
u
 , 

�2
v
 , and �u�v are linearized similarly. By defining some necessary linear functionals, bilin-

ear, trilinear, and quadrilinear forms based on (13), the space-time-discretization scheme 
corresponding to the Ito-type coupled KdV system for n = 1, 2,⋯ reads as

{
ŝ|a = ŝ|b, e ∈ E

�
h
,

[[̂sn]] = 0, e ∈ E
0
h
,

{
ĝ|a = ĝ|b, e ∈ E

�
h
,

[[ĝn]] = 0, e ∈ E
0
h
,

{
q̂|a = q̂|b, e ∈ E

�
h
,

[[q̂n]] = 0, e ∈ E
0
h
.

(�, �, �,�, �u, �v, �q) ∈ (Sk
h
)4 ×M

k,�

h
(0) ×M

k,�

h
(0) ×M

k,�

h
(0),

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ut,�⟩Th
+ �⟨px,�⟩Th

−
�

2
(u2,�x)Th

+
�

2
((v2)x,�)Th

+
�

2
⟨�2

u
n,�⟩�Th⧵Γ𝔲

+⟨�1u,�⟩�Th
− ⟨�1�u,�⟩�Th⧵Γ𝔲

= l1(�),

⟨q, �⟩Th
+ (u, �x)Th

− ⟨�un, �⟩�Th⧵Γ𝔲
= l2(�),

⟨p, �⟩Th
+ (q, �x)Th

− ⟨(n − �3)�qn, �⟩�Th⧵Γ𝔮
− ⟨�3q, �⟩�Th

= l3(�),

⟨vt, �⟩Th
− �(uv,�x)Th

+
�

2
⟨�u�vn, �⟩�Th⧵Γ𝔳

+
�

2
⟨�uvn, �⟩�Th

+
�

2
⟨b𝔲v�, �⟩Γu

+⟨�2v, �⟩�Th
− ⟨�2�v, �⟩�Th⧵Γ𝔳

= l4(�),
�

2
⟨�2

u
n, �u⟩�Th⧵E

�
h
+

�

2
⟨v2n, �u⟩�Th⧵E

�
h
+ �⟨pn, �u⟩(�Th⧵E

�
h
)∪Γ𝔭

+⟨�1u, �u⟩�Th⧵E
�
h
− ⟨�1�u, �u⟩�Th⧵E

�
h
= l5(�u),

⟨(n − �3)�q, �q⟩�Th⧵Γ𝔮
+ ⟨�3q, �q⟩�Th⧵Γ𝔮

− ⟨qn, �q⟩E�
h
⧵Γ𝔮

= 0,

�

2
⟨�u�vn, �v⟩�Th⧵Γ𝔳

+
�

2
⟨�uvn, �v⟩�Th⧵Γ𝔳

+⟨�2v, �v⟩�Th⧵Γ𝔳
− ⟨�2�v, �v⟩�Th⧵Γ𝔳

− �⟨uvn, �v⟩E�
h
⧵Γ𝔳

= 0,

l
1
(�) = −

�

2
⟨b2

�
n,�⟩Γ�

+ ⟨�
1
b�,�⟩Γ�

, l
2
(�) = ⟨b�n, �⟩Γ�

, l
3
(�) = ⟨(n − �

3
)b�, �⟩Γ�

,

l
4
(�) = −

�

2
⟨b�b��, �⟩Γ�

+ ⟨�
2
b
v
, �⟩Γ�

, l
5
(�

u
) = �⟨b�, �u⟩Γ�

.

u2(⋅, tn) = u(⋅, tn−1)u(⋅, tn) + O(Δt),
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where the linear functionals and multilinear forms in (14) are given as

Hence, (u, v, q, p) at t = tn is obtained in terms of the values at t = tn−1 for n = 1, 2,⋯ , by 
solving the system of linear equations (14). The corresponding matrix-vector equation of 
(14) is formulated as

(14)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�1(u
n, un−1,�) + �2(v

n, vn−1,�) + ��1(�, p
n) + �3(�

n
u
, �n−1

u
,�) = �

n,n−1

1
(�),

�1(u
n, �) + �2(q

n, �) + �3(�
n
u
, �) = �n

2
(�),

�1(q
n, �) + �2(p

n, �) + �2(�
n
q
, �) = �n

3
(�),

�1(v
n, un−1, �n−1

u
, �) + �2(�

n
v
, �n−1

u
, �) = �

n,n−1

4
(�),

�1(u
n, �n−1

u
, �u) + �2(v

n, vn−1, �u) + �3(p
n, �u) + �4(�

n
u
, �n−1

u
, �u) = �n

5
(�u),

�1(q
n, �q) + �2(�

n
q
, �q) = 0,

�1(v
n, un−1, �n−1

u
, �v) + �2(�

n
v
, �n−1

u
, �v) = 0,

�1(u
n, un−1,�) =

� un

Δt
,�

�
Th

−
�

2
⟨un−1un,�x⟩Th

+ ⟨�n−1
1

un,�⟩�Th
,

�2(v
n, vn−1,�) = �⟨vn−1vn

x
,�⟩Th

,

�3(�
n
u
, �n−1

u
,�) =

�

2
⟨�n−1

u
�n
u
n,�⟩�Th⧵Γ𝔲

− ⟨�n−1
1

�n
u
,�⟩�Th⧵Γ𝔲

,

�1(u
n, �) = ⟨un, �x⟩Th

, �2(q
n, �) = ⟨qn, �⟩Th

, �3(�
n
u
, �) = −⟨�n

u
n, �⟩�Th⧵Γ𝔲

,

�1(q
n, �) = ⟨qn,wx⟩Th

− ⟨�3qn, �⟩�Th
, �2(�

n
q
, �) = ⟨(�3 − n)�n

q
, �⟩�Th⧵Γ𝔮

,

�1(v
n, un−1, �n−1

u
, �) =

� vn

Δt
, �
�
Th

− �⟨un−1vn, �x⟩Th
+ ⟨�n−1

2
vn, �⟩�Th

+
�

2
⟨�n−1

u
vnn, �⟩�Th

+
�

2
⟨b𝔲vn�, �⟩Γ𝔲

,

�2(�
n
v
, �n−1

u
, �) =

�

2
⟨�n−1

u
�n
v
n, �⟩�Th⧵Γ𝔳

− ⟨�n−1
2

�n
v
, �⟩�Th⧵Γ𝔳

,

�1(u
n, �n−1

u
, �u) = ⟨�n−1

1
un, �u⟩�Th⧵E

�
h
, �2(v

n, vn−1, �u) =
�

2
⟨vn−1vnn, �u⟩�Th⧵E

�
h
,

�3(p
n, �u) = �⟨pnn, �u⟩(�Th⧵E

�
h
)∪Γ𝔭

,

�4(�
n
u
, �n−1

u
, �u) =

�

2
⟨�n−1

𝔲
�n
𝔲
n, �u⟩�Th⧵E

�
h
− ⟨�n−1

1
�n
𝔲
, �u⟩�Th⧵E

�
h
,

�1(q
n, �q) = ⟨�3qn, �q⟩�Th⧵Γ𝔮

− ⟨qnn, �q⟩E�
h
⧵Γ𝔮

,

�2(�
n
q
, �q) = ⟨(n − �3)�

n
q
, �q⟩�Th⧵Γ𝔮

,

�1(v
n, un−1, �n−1

u
, �v) = ⟨�n−1

2
vn, �v⟩�Th⧵Γ𝔳

+
�

2
⟨�n−1

u
vnn, �v⟩�Th⧵Γ𝔳

− �⟨un−1vnn, �v⟩E�
h
⧵Γ𝔳

,

�2(�
n
v
, �n−1

u
, �v) =

�

2
⟨�n−1

u
�n
v
n, �v⟩�Th⧵Γ𝔳

− ⟨�n−1
2

�n
v
, �v⟩�Th⧵Γ𝔳

,

�
n,n−1

1
(�) = ⟨un−1

Δt
,�⟩Th

−
�

2
⟨(b2

𝔲
)nn,�⟩Γ𝔲

+ ⟨�n
1
bn
𝔲
,�⟩Γ𝔲

,

�
n,n−1

4
(�) =

�vn−1
Δt

, �
�
Th

−
�

2
⟨(b𝔲b𝔳)nn, �⟩Γ𝔳

+ ⟨�n
2
bn
𝔳
, �⟩Γ𝔳

,

�n
2
(�) =

�
bn
𝔲
n, �

�
Γ𝔲
, �n

3
(�) = ⟨(n − �3)b

n
𝔮
, �⟩Γ𝔮

, �n
5
(�u) = ⟨bn

𝔭
, �u⟩Γ𝔭

.
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where

It is worth pointing out that the matrices A1,A2,⋯ ,G1,G2 are the matrix representations 
of the �1, �2,⋯ , �1, �2 , respectively, and also, the vectors Ln,n−1

1
, Ln

2
,⋯ , Ln

5
 are the vector 

representations of the functionals �n,n−1
1

, �n
2
,⋯ , �n

5
 , respectively, with respect to the standard 

basis functions for subspaces Sk
h
,M

k,�

h
(0),M

k,�

h
(0), and M

k,�

h
(0) . To reduce the matrix com-

putations for solving (15), it is very useful to consider the following notations:

where

and

Based on the Schur complement idea [29] and the introduced matrix and vector partition-
ing in (16), we propose a method that it can be exploited for solving (15). This method 
contains two steps at each time level n = 1, 2,⋯ . At time level n, the first step is to find Xn

2
 

by solving the following matrix-vector equation:

The second step of the proposed method at time level n is to compute Xn
1
 via solving the 

following matrix-vector equation:

The advantage of this method is that the large system of linear equations (15) is splitted to 
the systems of linear equations (18) and (19) with smaller sizes where three matrix-vector 
equations depend on the mesh size h. Since, in this method, the degree of freedom decreases 

(15)MXn = Rn,n−1, n = 1, 2,⋯ ,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 0 �BT
1
A3 0 0

B1 0 B2 0 B3 0 0

0 0 C1 B2 0 0 C2

0 D1 0 0 0 D2 0

E1 E2 0 E3 E4 E5 0

0 0 F1 0 0 0 F2

0 G1 0 0 0 G2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Xn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Un

Vn

Qn

Pn

Λn
u

Λn
v

Λn
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Rn,n−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L
n,n−1

1

Ln
2

Ln
3

L
n,n−1

4

Ln
5

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)M =

[
M11 M12

M21 M22

]
, Xn =

[
Xn
1

Xn
2

]
, Rn,n−1 =

[
R
n,n−1

1

R
n,n−1

2

]
,

Xn
1
= [Un Vn Qn Pn]T, Xn

2
= [Λn

u
Λn

v
Λn

q
]T, Rn,n−1

1
= [Ln,n−1

1
Ln
2
Ln
3
L
n,n−1

4
]T, R2 = [Ln

5
0 0]T,

(17)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M
11

=

⎡⎢⎢⎢⎣

A
1
A
2

0 �BT

1

B
1

0 B
2

0

0 0 C
1

B2

0 D
1

0 0

⎤⎥⎥⎥⎦
, M

12
=

⎡⎢⎢⎢⎣

A
3

0 0

B
3

0 0

0 0 C
2

0 D
2

0

⎤⎥⎥⎥⎦
,

M
21

=

⎡
⎢⎢⎣

E
1
E
2

0 E
3

0 0 F
1

0

0 G
1

0 0

⎤⎥⎥⎦
, M

22
=

⎡⎢⎢⎣

E
4
E
5

0

0 0 F
2

0 G
2

0

⎤
⎥⎥⎦

(18)(M22 −M21M
−1
11
M12)X

n
2
= R

n,n−1

2
−M21M

−1
11
R
n,n−1

1
.

(19)M11X
n
1
= R

n,n−1

1
−M12X

n
2
.
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simply, therefore, the computational complexity of the arithmetic operations for solving (14) 
or (15) is reduced remarkably. We finish this section with the  following remark.

Remark 2  We note that the HDG method is almost local, and regarding the structure of the 
matrices and vectors given in (16) and (17), it is possible to solve matrix-vector equations 
(18) and (19) in parallel.

4 � Stability Analysis of the Method

In this section, we aim to investigate the numerical stability of the proposed scheme which 
is based on the HDG method with the time-lagging linearization and backward Euler 
method. In our verifications, we consider two types of boundary conditions which men-
tioned along the Ito-type coupled KdV system, i.e., periodic boundary conditions and 
homogeneous Dirichlet boundary conditions.

To simplify the analysis, by setting �1 = �11 + �12 , we decompose ŝ  in (10) into linear 
and nonlinear parts as ŝ = f̂ + �̂p, where

Lemma 1  Setting

we get

where S1 =
∑N−1

j=0
S1,j , S2 =

∑N−1

j=0
S2,j , and S3 =

∑N−1

j=0
S3,j.

Proof  Getting � = u, � = −�p, � = �q , and � = v in (9), we have

Summing all equations of (22), using integration by parts formula, and adding and sub-
tracting ⟨�fn, û⟩𝜕I  , we get

(20)�f = �(û, v) + 𝜏12(u − û)n, �𝛾p = 𝛾p + 𝜏11(u − û)n.

S1,j =
�
(�𝛾p)−

j+
1

2

− 𝛾(p)−
j+

1

2

�
u−
j+

1

2

+
�
𝛾(p)+

j−
1

2

− (�𝛾p)+
j−

1

2

�
u+
j−

1

2

+ 𝛾 û
j+

1

2

(p)−
j+

1

2

− 𝛾 û
j−

1

2

(p)+
j−

1

2

+�f −
j+

1

2

û
j+

1

2

−�f +
j−

1

2

û
j−

1

2

,

S2,j = − 𝛾
�
(�q−

j+
1

2

−
1

2
q−
j+

1

2

)q−
j+

1

2

− (�q+
j−

1

2

−
1

2
q+
j−

1

2

)q+
j−

1

2

�
,

S3,j =⟨�gn, v⟩𝜕I + ⟨�fn, u − û⟩𝜕I − ⟨�(u, v), ux⟩I − ⟨�(u, v), vx⟩I,

(21)
1

2

�

�t ∫Ω

(u2 + v2)dx + S1 + S2 + S3 = 0,

(22)

⎧⎪⎨⎪⎩

⟨ut, u⟩I − ⟨�(u, v, p), ux⟩I + ⟨�𝛾pn, u⟩𝜕I + ⟨�fn, u⟩𝜕I = 0,

−𝛾⟨q, p⟩I − 𝛾⟨u, px⟩I + 𝛾⟨ûn, p⟩𝜕I = 0,

𝛾⟨p, q⟩I + 𝛾⟨q, qx⟩I − 𝛾⟨�qn, q⟩𝜕I = 0,

⟨vt, v⟩I − ⟨�(u, v), vx⟩I + ⟨�gn, v⟩𝜕I = 0.

(23)
1

2

�

�t ∫I

(u2 + v2)dx + S1,j + S2,j + S3,j = 0,
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where

which need to simplify by expanding boundary terms. The proof is completed by summing 
(23) up over all elements.

Theorem  1  The proposed HDG method is stable if the Ito-type coupled KdV system (3) 
is equipped with the periodic boundary condition and the stabilization parameters satisfy 
𝜏11 > 0 , 𝜏12 > 𝜏 , 𝜏2 > 0 , and 2𝛾𝜏3 < 𝛾n , where

Proof  Using the definition of the numerical flux �̂p from (20), we have

By substituting (�̂p)−
j+

1

2

 and (�̂p)+
j−

1

2

 from (25) into S1,j , we get

Summing up over all elements I  , using conservation of the fluxes, and applying periodic 
boundary conditions, we obtain

If 𝜏11 > 0 , then it is concluded that S1 is nonnegative. On the other hand, from the last term 
of (10) with the assumption �3 ≠ 0 , we have

Substituting (26) into S2,j leads to

S1,j = −⟨𝛾pu, n⟩𝜕I + ⟨�𝛾pn, u⟩𝜕I + 𝛾⟨û, pn⟩𝜕I + ⟨�fn, û⟩𝜕I,
S2,j =

𝛾

2
∫
I
(q2)xdx − 𝛾⟨�qn, q⟩𝜕I =

𝛾

2
⟨q2, n⟩𝜕I − 𝛾⟨�qn, q⟩𝜕I,

S3,j = ⟨�gn, v⟩𝜕I + ⟨�fn, u − û⟩𝜕I − ⟨�(u, v), ux⟩I − ⟨�(u, v), vx⟩I,

(24)𝜏(u, v, û) ∶=
1

(u − û)2 ∫
u

û

(f (w, v) − f (û, v))ndw.

(25)

(�𝛾p)−
j+

1

2

= 𝛾p−
j+

1

2

+ 𝜏−
11,j+

1

2

(
u−
j+

1

2

− û
j+

1

2

)
, (�𝛾p)+

j−
1

2

= 𝛾p+
j−

1

2

− 𝜏+
11,j−

1

2

(
u+
j−

1

2

− û
j−

1

2

)
.

S1,j = 𝜏−
11,j+

1

2

((u−
j+

1

2

)2 − û
j+

1

2

u−
j+

1

2

) + 𝜏+
11,j−

1

2

((u+
j−

1

2

)2 − û
j−

1

2

u+
j−

1

2

)

+ 𝜏−
11,j+

1

2

((û
j+

1

2

)2 − û
j+

1

2

u−
j+

1

2

) + 𝜏+
11,j−

1

2

((û
j−

1

2

)2 − û
j−

1

2

u+
j−

1

2

)

+ �(𝛾p)
−

j+
1

2

û
j+

1

2

− �(𝛾p)
+

j−
1

2

û
j−

1

2

+�f −
j+

1

2

û
j+

1

2

−�f +
j−

1

2

û
j−

1

2

.

S1 =

N−1∑
j=0

S1,j =

N−1∑
j=0

𝜏−
11,j+

1

2

(
u−
j+

1

2

− û
j+

1

2

)2
+ 𝜏+

11,j−
1

2

(
u+
j−

1

2

− û
j−

1

2

)2
.

(26)

q+
j−

1

2

=
(
(1 + 𝜏+

3,j−
1

2

) q̂
j−

1

2

− �q+
j−

1

2

)
∕(𝜏+

3,j−
1

2

), q−
j+

1

2

=
(
�q−
j+

1

2

− (1 − 𝜏−
3,j+

1

2

)q̂
j+

1

2

)
∕(𝜏−

3,j+
1

2

).

S2,j = − 𝛾

(2𝜏−
3,j+

1

2

− 1

2
(
𝜏−
3,j+

1

2

)2
((
�q−
j+

1

2

)2
+
(
q̂
j+

1

2

)2
− 2�q−

j+
1

2

q̂
j+

1

2

)
−

1

2

(
q̂
j+

1

2

)2
+ �q−

j+
1

2

q̂
j+

1

2

+

2𝜏+
3,j−

1

2

+ 1

2
(
𝜏+
3,j−

1

2

)2
(
�q+
j−

1

2

− q̂
j−

1

2

)2
+

1

2

(
q̂
j−

1

2

)2
− �q+

j−
1

2

q̂
j−

1

2

)
.
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Again summing up over all elements I  , using conservation of the fluxes, and imposing 
boundary conditions, we get

If 2𝛾𝜏3 < 𝛾n , then S2 ⩾ 0 . According to the definition of �(u, v) and �(u, v) and letting 
F(u, v) =

�

6
u3 +

�

2
v2u , we obtain

Summing S3,j up over all elements, using (27), adding −⟨�gn, v̂⟩𝜕Th
= 0 , and finally using 

the definition of the numerical flux ĝ , we have

Noticing the definition of f̂  , using (24), and applying boundary conditions, we get

Therefore, it can be concluded that S3 will be positive when 𝜏12 > 𝜏 and 𝜏2 > 0 . Eventu-
ally, according to (21), we conclude that �

�t
∫
�
(u2 + v2)dx ⩽ 0 and, therefore, the numerical 

scheme is stable due to the cell entropy inequality [35].

Corollary 1  Assume that the Ito-type coupled KdV system (3) is equipped with the bound-
ary conditions �(a, ⋅) = �(b, ⋅) = �x(a, ⋅) = �(a, ⋅) = 0 . The proposed HDG method is sta-
ble when

Proof  Steps of the proof are similar to the proof of Theorem  1. Let us consider 
�(a, ⋅) = �(b, ⋅) = 0 . Hence, all of the following summands:

and also −⟨ 𝛼
6
û3, n⟩𝜕Th

 and −⟨ 𝛽
2
ûv̂n, v̂⟩𝜕Th

 are zero due to the conditions b� = b� = 0 . On the 
other hand, because of the boundary condition �x(a, ⋅) = 0 we have �q+

−
1

2

q̂− 1

2

= (�q+q̂)|a = 0 . 

Also, using (26) and the third global equation of (12) on the face b, i.e., q̂−|b = q−|b , we 

S2 =

N−1∑
j=0

S2,j =

N−1∑
j=0

(−𝛾
(
2𝜏−

3,j+
1

2

− 1
)

2
(
𝜏−
3,j+

1

2

)2
(
�q−
j+

1

2

− q̂
j+

1

2

)2
+

−𝛾
(
2𝜏+

3,j−
1

2

+ 1
)

2
(
𝜏+
3,j−

1

2

)2
(
�q+
j−

1

2

− q̂
j−

1

2

)2)
.

(27)

−⟨�(u, v), u
x
⟩I − ⟨�(u, v), v

x
⟩I = −

�
d

dx
F(u, v), 1

�
I

= − ⟨F(u, v), n⟩𝜕I
= −

�
∫

u

û

�(w, v)dw, n

�

𝜕I

− ⟨𝛽
2
v
2
û, n⟩𝜕I − ⟨𝛼

6
û
3, n⟩𝜕I.

S3 = −

�
∫

u

û

(�(w, v) − �(û, v))dw,n

�

𝜕Th

+ ⟨�f − �(û, v), (u − û)n⟩𝜕Th

−

�
𝛽

2
v2û, n

�

𝜕Th

−
�
𝛼

6
û3, n

�
𝜕Th

+

�
𝛽

2
ûvn, v

�

𝜕Th

−

�
𝛽

2
ûv̂n, v̂

�

𝜕Th

+ ⟨𝜏2, (v − v̂)2⟩𝜕Th
.

S3 = ⟨𝜏12 − 𝜏, (u − û)2⟩𝜕Th
+ ⟨𝜏2, (v − v̂)2⟩𝜕Th

.

𝜏11 > 0, 𝜏12 > 𝜏, 𝜏2 > 0, 2𝛾𝜏3 < 𝛾n.

(�𝛾p)−
j+

1

2

û
j+

1

2

− (�𝛾p)+
j−

1

2

û
j−

1

2

+�f −
j+

1

2

û
j+

1

2

−�f +
j−

1

2

û
j−

1

2

,
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get �q−|b = q̂|b . Therefore, �q−
N+

1

2

q̂
N+

1

2

= (�q−q̂)|b = q̂2|b which is a positive term. The rest of 

the proof is similar to Theorem 1.

Corollary 2  We have 𝜏 ⩽
1

2
supw∈ℑ |𝛼w| where ℑ is the interval [min{u, û}, max{u, û}].

Proof  The mean value theorem leads to

where �w is a value between u and û . Therefore

Remark 3  Using Corollary 2, it is obvious that 𝜏12 > 𝜏 holds when 𝜏12 >
1

2
supw∈ℑ |𝛼w|.

5 � Numerical Results

It is verified that the proposed numerical scheme is stable. Actually the desired numerical 
scheme is stemmed from three approximation techniques that are the HDG method for the 
spatial discretization, the backward Euler method for the temporal discretization, and the 
time-lagging method for linearizing the nonlinear terms of the Ito-type coupled KdV equa-
tions. Therefore, the full space-time discretization is formed by a matrix-vector equation 
that it has been studied in details in Sect.  3. In this section, we effort to show that the pro-
posed method is efficient, valid, and reliable for solving the Ito-type coupled KdV system. 
To do this, the order of convergence of the obtained approximate solutions is compared 
with the expected rates. Also, the corresponding conservation laws of the Ito-type coupled 
KdV are investigated for the approximate solutions. As dealt with in [35], the dispersive or 
shock behavior of numerical solutions is also investigated in this section.

Example 1  ([36]) We consider (3) with periodic boundary conditions and with set-
ting � = −6 , � = −2 , and � = −1 , and proceed to the numerical solution of the HDG 
method. In Fig.  1, the results are shown for �(x, 0) = �(x, 0) = cos(x) at different times 
t = 0, 0.5, 1 with 500 quadratic elements and Δt = 0.000 1 . The values �11 = 40 , 𝜏12 = |𝛼û| , 
𝜏2 = |𝛽û| + 40 , and �3 = 40 are chosen, so that the conditions mentioned in Theorem  1 
are valid. Due to the lack of the dispersive term for � in (30), it is seen that � behaves like 
a shock wave. In contrast, u behaves like the dispersive wave solution. Briefly, results are 
as good as which were obtained by the LDG method in [36]. In the next, by exploiting the 
following formula:

we investigate the order of convergence. In above formula, ujK , u2jK , and u4jK are the 
approximate solutions with number of elements jK, 2jK, and 4jK, respectively. As reported 
in Table 1, we obtain optimal convergence order for degree of polynomials k = 1, 2, 3 , with 

f (w, v) − f (û, v) =
𝜕�

𝜕�
(𝜉w, v)(w − û) = 𝛼 𝜉w(w − û),

(28)𝜏(u, v, û) =
1

(u − û)2 ∫
u

û

𝛼 𝜉w(w − û)ndw ⩽
1

2
sup
w∈ℑ

|𝛼w|.

(29)Oj = log2

� ‖u2jK − ujK‖2
‖u4jK − u2jK‖2

�
,
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Fig. 1   The HDG numerical solutions for the Ito-type coupled KdV system (30) in Example 1 with the ini-
tial condition �(x, 0) = �(x, 0) = cos(x) at different times 0,  0.5, and 1 with the space of polynomials of 
degree two, 500 numbers of elements, and Δt = 0.000 1 . The left are numerical solutions u and the rights 
are numerical solutions v 
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Table 1   The order of 
convergence versus the 
refinements j = 1,⋯ , 7 in 
formula (29) with K = 10 for 
Example 1. When the number of 
refinements increases from 1 to 
7, the order of convergence tends 
to 2, 3, and 4 corresponding to 
k = 1, 2 , and 3, respectively

k j u q p v

1 1 1.664 8 0.775 2 0.076 9 0.275 5
2 2.404 8 1.330 2 2.394 7 2.348 7
3 2.660 9 3.989 1 1.835 4 2.421 0
4 2.111 8 2.674 2 2.144 0 3.373 0
5 2.015 5 2.073 6 2.029 7 2.051 9
6 2.002 7 2.017 0 2.009 9 2.011 7
7 2.000 2 2.012 2 2.021 5 2.005 1
Expected order 2

2  1 2.672 7 1.635 5 1.975 2 2.438 3
 2 2.944 5 3.981 0 2.391 9 2.397 2
 3 2.683 2 2.837 0 2.563 3 2.651 1
 4 2.937 3 2.088 6 2.425 5 2.327 3
 5 2.840 9 2.031 2 2.296 6 2.171 9
 6 2.895 4 2.753 6 2.543 6 2.740 2
 7 2.969 5 2.945 4 2.854 4 2.894 0

Expected order 3
3  1 2.435 8 0.819 3 1.838 4 1.582 1

 2 2.774 7 1.934 2 3.507 3 3.034 1
 3 4.136 0 5.079 1 3.710 9 3.527 3
 4 3.989 2 6.009 1 4.165 3 4.618 4
 5 3.997 6 4.199 0 4.041 1 4.326 5
 6 4.012 5 4.078 4 4.054 4 4.115 2
 7 4.010 5 4.079 4 4.004 4 4.045 2

Expected order 4

0       1        2       3        4        5        6        7        8        9       10 0       1        2       3        4        5        6        7        8        9       10
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0

2

4

0

1

2

3

4

5

Fig. 2   The values of conservation quantities versus time for Example 1 (left) and for Example 2 (right). 
Solid, dashed, and dashed-dotted are, respectively, for C1 , C2 , and C3
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j = 1,⋯ , 7 , and K = 10 . To show the validation of the approximate solutions obtained by 
the HDG method, we test the following conservation quantities [10, 24]:

The values of conservation quantities are shown in the left side of Fig. 2 for t ∈ [0, 10] , 
approximate polynomial of degree two, 600 number of elements, and Δt = 0.000 1 . As 

C1 = ∫Ω

(� + �)dx, C2 =
1

2 ∫Ω

(�2 + �2)dx, C3 = ∫Ω

(
−

�

6
�3 −

�

2
��2 +

�

2
�2
x

)
dx.
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Fig. 3   The HDG numerical solutions for the Ito-type coupled KdV system (30) in Example 2 with the ini-
tial condition �(x, 0) = �(x, 0) = exp(−x2) at different times 0, 1, and 2 with the space of polynomials of 
degree two, 500 numbers of elements, and Δt = 0.000 1 . The left are numerical solutions u and the right are 
numerical solutions v 
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expected, these values are constant in different times which implies the good performance 
of the HDG method in solving the Ito-type coupled KdV system.

Example 2  ([36]) The next example is similar to Example 1 but with initial conditions 
�(x, 0) = �(x, 0) = exp(−x2) . The choice of stabilization parameters is the same as the 
previous example. Similarly, in the right side of Fig.  2, conservation quantities are 
shown in different times. The order of convergence for different values of k and number 
of elements are reported in Table 2. As expected, the optimal convergence orders of the 
approximate solutions have been obtained using the proposed HDG method. In Fig. 3, 
u and v are demonstrated at different times t = 0, 1, 2 with 500 quadratic elements, and 
Δt = 0.000 1.

Example 3  In this example, we intend to compare the proposed HDG method and the LDG 
method presented in [36]. For this purpose, we consider the following Ito-type coupled 
KdV system:

that is a special case of the general form (3) with considering nonzero right-hand sides. 
This special kind of problem lets us consider �(x, t) = �(x, t) = exp(−t) sin(x) as the exact 
solution of the problem. We let � = [−π, π], and �(x, 0) = �(x, 0) = sin(x) obviously are 
the initial conditions. For this case, boundary conditions are homogenous Dirichlet bound-
ary conditions. We use number of elements 10, 20, 40, 80, and 160 with appropriate time-
step sizes. The values �11 = 15 , 𝜏12 = |𝛼û| , 𝜏2 = |𝛽û| + 2 , and �3 = 40 are chosen, so 
that the conditions mentioned in Theorem 1 are valid. L2 error norms and corresponding 
numerical orders of accuracy of u, v, and their derivatives at the final time level T = 0.1 
for the HDG and LDG methods are shown in Fig. 4 for different values of the polynomial 
degree k. To make a better comparison, we use the time-lagging method for linearization 
of both LDG and HDG methods. From the results reported in Fig. 4, we find out that the 
expected convergence order, namely O(hk+1) , is obtained for the approximate solutions and 
their derivatives are generated by using the proposed HDG and LDG methods. Also, the 
ratio of the computational time of the proposed HDG method to the LDG method can be 
seen in Fig. 5. Due to the small bandwidth of the matrices in the HDG method, the compu-
tational time of the HDG method is less than that of the LDG method.

To show the advantage and strength of the proposed HDG method over the LDG method 
presented in [36], let us consider (30) with the exact solutions �(x, t) = (x − 0.5)2|x − 0.5| 
and �(x, t) = 0.1 sin(2πx) exp(−20t) with the periodic boundary conditions over � = [0, 1] . 
With the stabilization parameters �11 = 2 , 𝜏12 = |𝛼û| , 𝜏2 = |𝛽û| + 20 , and �3 = 2 , the 
obtained results at the final time T = 0.1 are listed in Table 3 for various numbers of ele-
ments and different time-step sizes. As seen, for the HDG method, errors are satisfactory 
and the convergence order is optimal whereas the disappointing results are obtained by the 
LDG method. This is due to the exact solution � which has discontinuous third derivative. 
If we apply the exponential time differencing method mentioned in [36] it might be pre-
dictable to get better results for the LDG method in this case.

(30)
{

�t + (−3�2 − �2)x − �xxx = �1(x, t),

�t − 2(��)x = �2(x, t),
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Fig. 4   L2 normalized absolute error norms ‖u − �‖Ω (dashed), ‖q − �‖Ω (dotted), ‖p − �‖Ω (dashed-dotted), 
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system (30) in Example 3 solved by the DG methods with the space of polynomials of maximum degree 
k = 0, 1, 2, 3 , respectively, from up to down. LDG method (left) and HDG method (right)
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Fig. 5   The ratio of the computational time of the proposed HDG method to the LDG method in [36], for 
degree of polynomials k = 0 (dashed), k = 1 (dotted), k = 2 (dashed-dotted), and k = 3 (solid) versus the 
number of nodes for the Ito-type coupled KdV system (30) in Example 3

Table 2   The order of 
convergence versus the 
refinements j = 1,⋯ , 7 in 
formula (29) with K = 10 for 
Example 2. When the number of 
refinements increases from 1 to 
7, the order of convergence tends 
to 2, 3, and 4 corresponding to 
k = 1, 2 , and 3, respectively

k j u q p v

1 1 − 0.115 9 − 0.869 7 − 0.357 8 0.114 8
2 0.671 0 0.346 9 0.461 3 0.420 3
3 2.229 1 2.175 9 1.252 9 2.548 4
4 2.870 0 2.778 8 1.982 7 2.549 2
5 2.562 4 2.623 6 2.015 3 2.213 4
6 2.296 5 2.314 3 2.008 2 2.060 5
7 2.123 5 2.016 5 2.004 5 2.042 5
Expected order 2

2  1 1.236 5 0.969 5 0.876 0 0.965 6
 2 4.299 0 3.405 6 2.869 0 2.802 7
 3 3.276 2 2.470 7 2.405 2 2.442 4
 4 3.074 6 2.562 1 2.872 9 2.403 7
 5 2.993 6 2.874 5 3.053 5 2.674 2
 6 2.967 3 2.913 5 2.826 5 2.942 5
 7 2.985 4 2.972 5 3.014 5 2.991 4

Expected order 3
3  1 3.588 4 2.579 4 1.623 7 1.868 1

 2 3.714 8 2.800 6 3.444 4 2.564 6
 3 3.675 2 2.877 3 2.533 3 3.470 5
 4 4.405 6 5.079 4 4.164 7 4.705 0
 5 3.997 3 4.771 5 4.045 8 4.321 1
 6 4.012 5 4.458 9 4.036 5 4.102 7
 7 4.005 7 4.162 5 4.008 0 4.028 7

Expected order 4
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Table 3   L
2
 error norms and the order of accuracy of u, v, and their derivatives at the final time level T = 0.1 

for both the proposed HDG and the LDG methods for Example 3

k N ‖u − �‖� Order ‖q − �‖� Order ‖p − �‖� Order ‖v − �‖� Order

LDG method
0 10 4.993 0E−2 4.024 8E−1 1.385 0 5.177 7E−1

20 5.138 4E−2 − 0.04 4.027 6E−1 − 0.00 1.378 8 0.01 5.695 3E−1 − 0.14
40 5.099 2E−2 0.01 4.000 8E−1 0.01 1.377 4 0.00 6.011 2E−1 − 0.08
80 5.108 3E−2 − 0.00 4.008 8E−1 − 0.00 1.380 8 − 0.00 6.178 4E−1 − 0.04
160 5.114 1E−2 − 0.00 4.015 6E−1 − 0.00 1.384 5 − 0.00 6.267 5E−1 − 0.02
320 5.118 7E−2 − 0.00 4.020 6E−1 − 0.00 1.387 0 − 0.00 6.315 3E−1 − 0.01

1 10 5.132 3E−2 4.046 0E−1 1.403 9 6.773 8E−1
20 5.123 2E−2 0.00 4.029 8E−1 0.01 1.393 2 0.01 6.502 2E−1 0.06
40 5.123 3E−2 − 0.00 4.026 9E−1 0.00 1.390 9 0.00 6.402 6E−1 0.02
80 5.120 2E−2 0.00 4.024 6E−1 0.00 1.390 3 0.00 6.375 6E−1 0.01

2 10 5.134 9E−2 4.045 1E−1 1.403 6 6.774 0E−1
20 5.120 2E−2 0.00 4.028 5E−1 0.01 1.391 7 0.01 6.437 3E−1 0.07
40 5.120 2E−2 0.00 4.024 6E−1 0.00 1.390 3 0.00 6.375 6E−1 0.01
80 2.929 8E−2 0.81 3.039 1E−1 0.41 1.811 3 − 0.38 6.367 6E−1 0.00

3 10 5.134 8E−2 4.045 1E−1 1.403 6 6.774 0E−1
20 5.123 3E−2 0.00 4.026 9E−1 0.01 1.390 9 0.01 6.402 6E−1 0.08
40 3.833 0E−2 0.42 3.413 0E−1 0.24 1.528 9 − 0.14 6.368 7E−1 0.01
80 2.519 4E−2 0.61 2.896 9E−1 0.24 2.409 7 − 0.66 6.366 7E−1 0.00

HDG method
0 10 1.229 0E−1 8.322 6E−2 2.756 0E−1 1.334 7E−2

20 7.761 4E−2 0.66 5.109 3E−2 0.70 1.367 4E−1 1.01 9.795 0E−3 0.45
40 4.102 5E−2 0.92 2.819 6E−2 0.86 7.527 3E−2 0.86 7.912 0E−3 0.31
80 2.052 1E−2 1.00 1.430 8E−2 0.98 3.843 2E−2 0.97 6.696 3E−3 0.24
160 1.024 5E−2 1.00 7.161 0E−3 1.00 1.916 8E−2 1.00 5.109 2E−3 0.39
320 5.121 9E−3 1.00 3.588 8E−3 1.00 9.587 6E−3 1.00 3.600 9E−3 0.50

1 10 1.167 6E−3 3.548 7E−3 8.909 8E−3 4.223 0E−2
20 2.292 8E−4 2.00 9.229 4E−4 1.94 2.307 6E−3 1.95 1.402 0E−2 1.59
40 6.950 4E−5 2.07 2.293 3E−4 2.01 5.790 5E−4 1.99 3.742 3E−3 1.90
80 1.678 1E−5 2.05 5.686 9E−5 2.01 1.440 8E−4 2.01 9.505 1E−4 1.98

2 10 5.879 0E−4 2.000 1E−4 2.411 0E−3 4.200 7E−2
20 5.601 1E−5 3.39 1.544 4E−5 3.69 1.718 6E−4 3.82 7.340 6E−3 2.52
40 4.995 8E−6 3.49 1.623 1E−6 3.25 1.718 6E−5 3.32 9.537 7E−4 2.94
80 1.480 5E−7 3.47 1.947 0E−7 3.06 2.015 2E−6 3.09 1.302 9E−4 2.87

3 10 5.114 5E−4 1.989 2E−4 2.370 4E−3 4.195 9E−2
20 2.371 1E−5 4.43 7.028 4E−6 4.82 7.677 6E−5 4.95 3.788 7E−3 3.47
40 1.054 0E−6 4.49 3.942 1E−7 4.16 4.114 1E−6 4.22 2.407 7E−4 3.98
80 4.707 4E−8 4.47 2.413 2E−8 4.03 2.474 3E−7 4.06 1.514 7E−5 3.99
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6 � Conclusion

In this paper, the Ito-type coupled KdV system of equations has been considered with 
some initial conditions together with periodic or homogeneous Dirichlet boundary con-
ditions. The system considered is in fact a system of first order in time and third order 
in space PDEs. By introducing appropriate broken Sobolev spaces and corresponding 
finite-element spaces, the HDG method has been applied to the Ito-type KdV system. 
The method is based on the framework of the LDG method for nonlinear PDEs. In addi-
tion to the local approximate variables, we considered three other global unknowns 
called numerical traces, and also, we have added three equations into the local equations, 
such that it is guaranteed conservation of the numerical fluxes. After applying spatial dis-
cretization, the temporal discretization has been done using the backward Euler implicit 
method. To get rid of the nonlinearity, the time-lagging linearization method has been 
exploited to the nonlinear terms of the discrete weak form. Using the Schur comple-
ment method, the final matrix-vector equation, “arisen from the HDG method, time dis-
cretization, and time-lagging linearization method”, is splitted into two smaller matrix-
vector operations. Using the energy method, the numerical stability of the method has 
been proved in the  L2 norm under certain conditions on the stabilization parameters and 
specified boundary conditions. In comparison with the LDG methods, numerical experi-
ments imply the capability of the proposed HDG method. In particular, the numerical 
results show that optimal convergence order is obtained at order k + 1 for a mesh with 
approximate solutions and their derivatives of degree k. Presented numerical conserva-
tions quantities of the approximate solution of the Ito-type coupled KdV system can be 
interpreted as a criteria for verification of validity of the proposed HDG method. We 
note that the HDG method is extremely local and so suitable for parallel implementations 
and easy for hp adaptivity in linear PDEs. To the best of our knowledge, any convergence 
analysis of both LDG and HDG methods for this kind of coupled nonlinear equations 
has not yet been presented. Just, for the linear case � = � = 0 , a convergence analysis of 
the HDG method can be found in [13]. We leave the convergence analysis of the HDG 
method for the coupled KdV system to the future works.
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